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The slider-pinning problem

Audrey Lee ∗† Ileana Streinu ‡ Louis Theran §

Abstract

A Laman mechanism is a flexible planar bar-and-joint
framework with m ≤ 2n−3 edges and exactly k = 2n−
m degrees of freedom. The slider-pinning problem
is to eliminate all the degrees of freedom of a Laman
mechanism, in an optimal fashion, by individually fixing
x or y coordinates of vertices. We describe two easy to
implement O(n2) time algorithms.

1 Introduction

A bar-and-joint framework in the plane is a struc-
ture made of fixed-length bars connected by universal
joints. In other words, the framework is allowed to
move in any way that preserves the lengths of the bars.
A framework is rigid if all of these motions are trivial
rigid motions (translations or rotations).

A Laman graph is a graph with n vertices and 2n−3
edges with the property that any subgraph on n′ ≥ 2
vertices has at most 2n′ − 3 edges. A graph with the
hereditary count condition but fewer than 2n−3 edges is
called a Laman mechanism. A Laman framework
is an embedded Laman graph or mechanism: each of its
vertices is mapped to some point in the plane.

Laman’s theorem [5] states that Laman graphs are
exactly those that, when embedded on a generic point
set, correspond to minimally rigid frameworks, i.e., they
become flexible if any edge is removed. More generally,
Laman mechanisms with 2n− 3− f edges have f non-
trivial degrees of freedom as generic frameworks.

Finding the minimum number of thumbtacks that
would immobilize (pin down) a Laman mechanism is a
well-studied problem. Each thumbtack fixes the posi-
tion of a vertex (both x- and y-coordinates). We call
this the thumbtack-pinning problem. Lovász [10, 9]
gave an algorithm based on Khachian’s ellipsoid method
and polymatroid matching to compute the minimum
number of thumbtacks needed to pin a framework with
given numeric coordinates. Recently, Fekete [3] gave a
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combinatorial solution based on the rigidity matroid’s
rank function, which leads to a polynomial time algo-
rithm, based on bipartite matching, for computing the
set of thumbtacks.

The slider-pinning problem. In this paper, we con-
sider a simpler model for pinning, in which we constrain
a vertex to move on a fixed line, or fix the x- or y-
coordinates of a vertex separately, similar to the way a
mechanical slider joint acts. The problem is to identify
a set of k sliders (vertices and choices of coordinate
to fix) that pin down a framework with k degrees of
freedom, including the trivial ones (k = f + 3).

We call the problem of adding sliders to a Laman
mechanism so that it is minimally pinned down the
slider-pinning problem. The input is a Laman mech-
anism, and the output is a set of sliders that pin it down.
In this abstract, we consider only a subset of problems
and work with axis-parallel sliders. In the full paper, we
develop the entire theory of pinning (infinitesimal and
combinatorial) and give algorithms for arbitrary slider-
joints and various other generalizations.

Counting degrees of freedom in a Laman mechanism
shows that any slider pinning gives a 2-approximation
for the thumbtack-pinning problem. Beyond this ob-
servation, we do not consider the thumbtack-pinning
problem here.

Contributions. We describe two algorithms for the
slider-pinning problem. Both algorithms run in O(n2)
time and are very easy to implement. They are based

(a) (b)

Figure 1: Bar-slider frameworks and graphs: (a) a bar-
slider framework; (b) the same framework given combi-
natorially as a graph with edges and colored loops.
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Figure 2: Moves in the (2, 3)-pebble game with colors: (a) add edge; (b) pebble slide.

on pebble games (in particular, the original algorithm
for 2D rigidity of Hendrickson and Jacobs [4] and its ex-
tensions [1, 6, 12, 7]).

In this paper, we will use the pebble games for: (1)
Finding the rigid components (maximal rigid sub-
graphs) of Laman mechanisms [4, 1, 6, 7] and (2) Find-
ing 3T2 decompositions (colorings) of Laman graphs
and mechanisms [12]. All of these algorithms run in
O(n2) time and require O(n2) space.

Related work. Pebble games are a family of simple
construction rules for sparse graphs, which generalize
the Laman counts. They are used as subroutines for
algorithms that decide rigidity, sparsity and related de-
compositions (into rigid components, into edge-disjoint
spanning trees, etc.). For details, history and references,
see our previous papers [6, 12]. In a nutshell, the basic
2D pebble game begins with an empty directed graph;
2 pebbles are placed on each vertex. Edges are then
considered one at a time and moves are played on the
pebble game graph. Valid moves insert and direct an
edge exactly when the underlying graph remains (2, 3)-
sparse after the addition. In Section 2, we describe the
pebble game with colors [12], which is the main subrou-
tine of our first pinning algorithm.

In a companion paper [8], we prove the follow-
ing Laman-type theorem for bar-joint-and-slider
(shortly, bar-slider) frameworks. The combinatorial
model for bar-slider frameworks consists in graphs with
simple edges (having two distinct endpoints) and loops
(having one endpoint). Edges in the graph represent the
bars, and loops represent sliders at a vertex. Addition-
ally, loops may be colored red or blue to indicate which
axis the associated slider is parallel to. Multiple copies
of edges are not allowed, but there may be up to two
distinct loops (one red, one blue) on each vertex. Figure
1 shows an example of a bar-slider framework and its
associated graph.

Proposition 1 (Bar-slider framework rigidity).
Let G be a graph with 2n − k edges and k loops col-
ored red or blue. G is realizable as a pinned bar-and-
slider framework if and only if there is a 2-coloring of
the edges of G so that: (1) Each color forms a forest,
and no subset of ≥ 2 vertices induces two edge-disjoint

spanning trees; (2) Each monochromatic tree contains
exactly one loop of its color.

The edge coloring in the statement of Prop. 1 is a gen-
eralization of the so-called 3T2 decomposition [2], shown
to be equivalent to the Laman counting condition. To-
gether the coloring of the edges and loops certify that
G satisfies the hereditary condition that no set of n′

vertices spans more than 2n′ loops and edges [13]. The
graphs corresponding to pinned bar-and-slider frame-
works have interesting matroidal properties which we
do not go into here; these, along with some additional
algorithmic consequences, are discussed in [8].

Servatius et al. [11] present a counting condition for
thumbtack pinning that coincides with Prop. 1 in the
case where each vertex has either zero or two sliders.
They are not concerned with slider-pins or algorithmic
questions, which are our focus here.

2 The pebble game with colors

We briefly describe now our pebble game with colors
[12] before using it as a subroutine for Algorithm 1. It is
an adaptation of our pebble games for sparse graphs in
[6] for finding sparsity-certifying decompositions,
which are partitions of the edges and loops of a graph
into k color classes certifying that the graph is (k, `)-
sparse. Here we are concerned with k = 2 and ` = 3,
and, for these parameters, the desired coloring is the
3T2 decomposition described above. In the rest of this
section, we describe the (2, 3)-pebble game with col-
ors in terms of its initial configuration and the allowed
moves. The pebble game is an algorithmic set of rules
described as a game with a single player, who tries to
insert as many edges as possible onto an initially empty
board.

Method: The game is played on a directed graph
G (which initially is empty); one red pebble and one
blue pebble (for a total of 2) are placed on each ver-
tex. Input edges (from an initially given graph) are
subsequently considered in an arbitrary order. For each
edge, the algorithm tries to collect 4 pebbles on its
endpoints using pebble-slide moves (described below)
only if monochromatic cycles are not created. If the
pebbles cannot be collected, the edge is discarded. Oth-
erwise, the edge is inserted into G, using the add-edge



CCCG 2007, Ottawa, Ontario, August 20–22, 2007

(a) (b) (c)

Figure 3: First pinning algorithm: (a) a Laman mechanism with a 3T2 coloring; (b) the mechanism from (a) with
appropriately colored loops; (c) the sliders corresponding to the loops in (b).

move (also described below). At any point during the
game, each edge of G has exactly one pebble on it and
is interpreted as having the color of its pebble.

Pebble-slide move: Let vw be an edge in G, and
let w have a pebble on it. Replace vw with wv, move
the pebble from vw to v, and move the pebble from w
on to the reversed edge wv.

Add-edge move: Let v and w be vertices with two
pebbles (one red and one blue) on each. Insert the di-
rected edge vw in G, covering (and thus coloring) it
with one of the pebbles on v. Subsequently, this pebble
is removed from v.

The moves are shown in Figure 2. The key lemma of
[12] is that, if a pebble can be moved without creating a
monochromatic cycle, the corresponding pebble-slide
moves can be found and performed in O(n) time.

3 Algorithms for slider-pinning

We present now our slider-pinning algorithms and
sketch the proofs of correctness and running times.

Slider-pinning with a 3T2 decomposition. Our first
algorithm is based on Prop. 1.

Algorithm 1. Pinning with a 3T2 decomposition.
Input: A Laman mechanism G with 2n− k edges.
Output: A set of k sliders (with colors) that pin G.
Method: Use the (2, 3)-pebble game with colors to ver-
ify that G is Laman and find a 3T2 decomposition of G.
For each tree in the decomposition, add exactly one loop
of the same color somewhere in it. These loops are the
sliders to return.

Figure 3 illustrates Algorithm 1. The mechanism
has five monochromatic trees (three are single-vertex
red trees), corresponding to its five degrees of freedom
(three are trivial rigid motions). Thus, we use five slid-
ers to pin it down. The 3T2 decomposition guides the
choice of vertical or horizontal orientation, by identify-
ing orientations with colors.

Correctness follows immediately from Prop. 1.
Running time: Adding the loops takes O(n) time.

In [12], we proved that the pebble game requires O(n2)
time to find a 3T2 decomposition, so the total time is
O(n2).

Slider-pinning with rigid components. Our other al-
gorithm for the slider-pinning problem is based on the
rigid components in a Laman mechanism. Recall that
these are maximal rigid subgraphs of a Laman mecha-
nism; see [6] for an investigation of their properties.

Algorithm 2. Pinning with components.
Input: A Laman mechanism G with 2n− k edges.
Output: A set of k sliders that pin G.
Method: Use the pebble game components algorithm
from [6] to find the rigid components of G. Pick a com-
ponent as the base, and pin it by pinning down an edge
in the base with 3 sliders on the endpoints.

Until there is only one rigid component, repeat the
following:

• Pick a component that shares a vertex i with the
base.

• Use a slider to pin either coordinate of any vertex
j 6= i in that component.

• Add the edge jk for any vertex k 6= i of the base
to G, and use the component detection algorithm
from [6] to enlarge the base to be the component
containing jk.

Finally, return the sliders added.

Figure 4 illustrates one iteration of the component-
based pinning algorithm. Initially, the red base is
pinned. Adding an arbitrary slider to any vertex pins
the neighboring component and fixes the distance be-
tween vertices in the base and the neighbor. We model
this as a new edge in the graph, which then lets us re-
compute components and enlarge the base.
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Figure 4: Second pinning algorithm: (a) the pinned base (red) with the neighbor component (yellow); (b) adding a
slider (blue) and modeling it as a new edge (red); (c) expanding the base (red) to be the component containing the
new edge.

Correctness: The idea of the proof is that the only
motion available to a neighboring component touching
the pinned base is rotation around the vertex where
they overlap, so constraining a vertex to a line prevents
the neighbor from moving. This with Laman’s theorem
implies that the base is always pinned as the algorithm
runs.

Running time: The algorithm runs for k−3 phases,
each of which takes time O(n) by the analysis in [6, 7].
Then the total time is dominated by the O(n2) time
required to initially find the rigid components of G.

Comparison with Algorithm 1: Algorithm 1 is
based on our self-contained development of bar-slider
pinning rigidity in [8]. Because of its close connection
with Prop. 1, Algorithm 1 can generate all possible sets
of sliders that pin its input, and thus may lead to an
efficient algorithm for enumerating these.

The sets of sliders produced by Algorithm 2 are in cor-
respondence with sets of independent edges that com-
plete a Laman mechanism to a Laman graph. Efficiency
in Algorithm 2 comes from component structure theo-
rems from [6], which allow the edge to be added to be
found in constant time. However, this procedure may
not find all such sets of independent edges, implying
that some ways of pinning cannot be found by Algo-
rithm 2.
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