398,196 research outputs found

    The size of a formula as a measure of complexity

    Get PDF
    25 pagesWe introduce a refinement of the usual Ehrenfeucht-Fra\"{\i}ss\'e game. The new game will help us make finer distinctions than the traditional one. In particular, it can be used to measure the size formulas needed for expressing a given property. We will give two versions of the game: the first version characterizes the size of formulas in propositional logic, and the second version works for first-order predicate logic.Peer reviewe

    Arithmetic Circuit Lower Bounds via MaxRank

    Full text link
    We introduce the polynomial coefficient matrix and identify maximum rank of this matrix under variable substitution as a complexity measure for multivariate polynomials. We use our techniques to prove super-polynomial lower bounds against several classes of non-multilinear arithmetic circuits. In particular, we obtain the following results : As our main result, we prove that any homogeneous depth-3 circuit for computing the product of dd matrices of dimension n×nn \times n requires Ω(nd1/2d)\Omega(n^{d-1}/2^d) size. This improves the lower bounds by Nisan and Wigderson(1995) when d=ω(1)d=\omega(1). There is an explicit polynomial on nn variables and degree at most n2\frac{n}{2} for which any depth-3 circuit CC of product dimension at most n10\frac{n}{10} (dimension of the space of affine forms feeding into each product gate) requires size 2Ω(n)2^{\Omega(n)}. This generalizes the lower bounds against diagonal circuits proved by Saxena(2007). Diagonal circuits are of product dimension 1. We prove a nΩ(logn)n^{\Omega(\log n)} lower bound on the size of product-sparse formulas. By definition, any multilinear formula is a product-sparse formula. Thus, our result extends the known super-polynomial lower bounds on the size of multilinear formulas by Raz(2006). We prove a 2Ω(n)2^{\Omega(n)} lower bound on the size of partitioned arithmetic branching programs. This result extends the known exponential lower bound on the size of ordered arithmetic branching programs given by Jansen(2008).Comment: 22 page

    New methods for 3-SAT decision and worst-case analysis

    Get PDF
    We prove the worst-case upper bound 1:5045 n for the time complexity of 3-SAT decision, where n is the number of variables in the input formula, introducing new methods for the analysis as well as new algorithmic techniques. We add new 2- and 3-clauses, called "blocked clauses", generalizing the extension rule of "Extended Resolution." Our methods for estimating the size of trees lead to a refined measure of formula complexity of 3-clause-sets and can be applied also to arbitrary trees. Keywords: 3-SAT, worst-case upper bounds, analysis of algorithms, Extended Resolution, blocked clauses, generalized autarkness. 1 Introduction In this paper we study the exponential part of time complexity for 3-SAT decision and prove the worst-case upper bound 1:5044:: n for n the number of variables in the input formula, using new algorithmic methods as well as new methods for the analysis. These methods also deepen the already existing approaches in a systematically manner. The following results..

    Space complexity in polynomial calculus

    Get PDF
    During the last decade, an active line of research in proof complexity has been to study space complexity and time-space trade-offs for proofs. Besides being a natural complexity measure of intrinsic interest, space is also an important issue in SAT solving, and so research has mostly focused on weak systems that are used by SAT solvers. There has been a relatively long sequence of papers on space in resolution, which is now reasonably well understood from this point of view. For other natural candidates to study, however, such as polynomial calculus or cutting planes, very little has been known. We are not aware of any nontrivial space lower bounds for cutting planes, and for polynomial calculus the only lower bound has been for CNF formulas of unbounded width in [Alekhnovich et al. ’02], where the space lower bound is smaller than the initial width of the clauses in the formulas. Thus, in particular, it has been consistent with current knowledge that polynomial calculus could be able to refute any k-CNF formula in constant space. In this paper, we prove several new results on space in polynomial calculus (PC), and in the extended proof system polynomial calculus resolution (PCR) studied in [Alekhnovich et al. ’02]: 1. We prove an Ω(n) space lower bound in PC for the canonical 3-CNF version of the pigeonhole principle formulas PHPm n with m pigeons and n holes, and show that this is tight. 2. For PCR, we prove an Ω(n) space lower bound for a bitwise encoding of the functional pigeonhole principle. These formulas have width O(log n), and hence this is an exponential improvement over [Alekhnovich et al. ’02] measured in the width of the formulas. 3. We then present another encoding of the pigeonhole principle that has constant width, and prove an Ω(n) space lower bound in PCR for these formulas as well. 4. Finally, we prove that any k-CNF formula can be refuted in PC in simultaneous exponential size and linear space (which holds for resolution and thus for PCR, but was not obviously the case for PC). We also characterize a natural class of CNF formulas for which the space complexity in resolution and PCR does not change when the formula is transformed into 3-CNF in the canonical way, something that we believe can be useful when proving PCR space lower bounds for other well-studied formula families in proof complexity

    Computing the Maximum using (min, +) Formulas

    Get PDF
    We study computation by formulas over (min,+). We consider the computation of max{x_1,...,x_n} over N as a difference of (min,+) formulas, and show that size n + n log n is sufficient and necessary. Our proof also shows that any (min,+) formula computing the minimum of all sums of n-1 out of n variables must have n log n leaves; this too is tight. Our proofs use a complexity measure for (min,+) functions based on minterm-like behaviour and on the entropy of an associated graph

    Lower Bounds on the Complexity of MSO_1 Model-Checking

    Get PDF
    One of the most important algorithmic meta-theorems is a famous result by Courcelle, which states that any graph problem definable in monadic second-order logic with edge-set quantifications (MSO2) is decidable in linear time on any class of graphs of bounded tree-width. In the parlance of parameterized complexity, this means that MSO2 model-checking is fixed-parameter tractable with respect to the tree-width as parameter. Recently, Kreutzer and Tazari proved a corresponding complexity lower-bound---that MSO2 model-checking is not even in XP wrt the formula size as parameter for graph classes that are subgraph-closed and whose tree-width is poly-logarithmically unbounded. Of course, this is not an unconditional result but holds modulo a certain complexity-theoretic assumption, namely, the Exponential Time Hypothesis (ETH). In this paper we present a closely related result. We show that even MSO1 model-checking with a fixed set of vertex labels, but without edge-set quantifications, is not in XP wrt the formula size as parameter for graph classes which are subgraph-closed and whose tree-width is poly-logarithmically unbounded unless the non-uniform ETH fails. In comparison to Kreutzer and Tazari, (1) we use a stronger prerequisite, namely non-uniform instead of uniform ETH, to avoid the effectiveness assumption and the construction of certain obstructions used in their proofs; and (2) we assume a different set of problems to be efficiently decidable, namely MSO1-definable properties on vertex labeled graphs instead of MSO2-definable properties on unlabeled graphs. Our result has an interesting consequence in the realm of digraph width measures: Strengthening a recent result, we show that no subdigraph-monotone measure can be algorithmically useful, unless it is within a poly-logarithmic factor of (undirected) tree-width

    Potts models with magnetic field: arithmetic, geometry, and computation

    Get PDF
    We give a sheaf theoretic interpretation of Potts models with external magnetic field, in terms of constructible sheaves and their Euler characteristics. We show that the polynomial countability question for the hypersurfaces defined by the vanishing of the partition function is affected by changes in the magnetic field: elementary examples suffice to see non-polynomially countable cases that become polynomially countable after a perturbation of the magnetic field. The same recursive formula for the Grothendieck classes, under edge-doubling operations, holds as in the case without magnetic field, but the closed formulae for specific examples like banana graphs differ in the presence of magnetic field. We give examples of computation of the Euler characteristic with compact support, for the set of real zeros, and find a similar exponential growth with the size of the graph. This can be viewed as a measure of topological and algorithmic complexity. We also consider the computational complexity question for evaluations of the polynomial, and show both tractable and NP-hard examples, using dynamic programming.Comment: 16 pages, LaTeX; v2: final version with small correction

    Lower Bounds on the Complexity of MSO1 Model-Checking

    Full text link
    One of the most important algorithmic meta-theorems is a famous result by Courcelle, which states that any graph problem definable in monadic second-order logic with edge-set quantifications (i.e., MSO2 model-checking) is decidable in linear time on any class of graphs of bounded tree-width. Recently, Kreutzer and Tazari proved a corresponding complexity lower-bound - that MSO2 model-checking is not even in XP wrt. the formula size as parameter for graph classes that are subgraph-closed and whose tree-width is poly-logarithmically unbounded. Of course, this is not an unconditional result but holds modulo a certain complexity-theoretic assumption, namely, the Exponential Time Hypothesis (ETH). In this paper we present a closely related result. We show that even MSO1 model-checking with a fixed set of vertex labels, but without edge-set quantifications, is not in XP wrt. the formula size as parameter for graph classes which are subgraph-closed and whose tree-width is poly-logarithmically unbounded unless the non-uniform ETH fails. In comparison to Kreutzer and Tazari; (1)(1) we use a stronger prerequisite, namely non-uniform instead of uniform ETH, to avoid the effectiveness assumption and the construction of certain obstructions used in their proofs; and (2)(2) we assume a different set of problems to be efficiently decidable, namely MSO1-definable properties on vertex labeled graphs instead of MSO2-definable properties on unlabeled graphs. Our result has an interesting consequence in the realm of digraph width measures: Strengthening the recent result, we show that no subdigraph-monotone measure can be "algorithmically useful", unless it is within a poly-logarithmic factor of undirected tree-width

    Lower Bounds for QBFs of Bounded Treewidth

    Full text link
    The problem of deciding the validity (QSAT) of quantified Boolean formulas (QBF) is a vivid research area in both theory and practice. In the field of parameterized algorithmics, the well-studied graph measure treewidth turned out to be a successful parameter. A well-known result by Chen in parameterized complexity is that QSAT when parameterized by the treewidth of the primal graph of the input formula together with the quantifier depth of the formula is fixed-parameter tractable. More precisely, the runtime of such an algorithm is polynomial in the formula size and exponential in the treewidth, where the exponential function in the treewidth is a tower, whose height is the quantifier depth. A natural question is whether one can significantly improve these results and decrease the tower while assuming the Exponential Time Hypothesis (ETH). In the last years, there has been a growing interest in the quest of establishing lower bounds under ETH, showing mostly problem-specific lower bounds up to the third level of the polynomial hierarchy. Still, an important question is to settle this as general as possible and to cover the whole polynomial hierarchy. In this work, we show lower bounds based on the ETH for arbitrary QBFs parameterized by treewidth (and quantifier depth). More formally, we establish lower bounds for QSAT and treewidth, namely, that under ETH there cannot be an algorithm that solves QSAT of quantifier depth i in runtime significantly better than i-fold exponential in the treewidth and polynomial in the input size. In doing so, we provide a versatile reduction technique to compress treewidth that encodes the essence of dynamic programming on arbitrary tree decompositions. Further, we describe a general methodology for a more fine-grained analysis of problems parameterized by treewidth that are at higher levels of the polynomial hierarchy
    corecore