research

Arithmetic Circuit Lower Bounds via MaxRank

Abstract

We introduce the polynomial coefficient matrix and identify maximum rank of this matrix under variable substitution as a complexity measure for multivariate polynomials. We use our techniques to prove super-polynomial lower bounds against several classes of non-multilinear arithmetic circuits. In particular, we obtain the following results : As our main result, we prove that any homogeneous depth-3 circuit for computing the product of dd matrices of dimension n×nn \times n requires Ω(nd1/2d)\Omega(n^{d-1}/2^d) size. This improves the lower bounds by Nisan and Wigderson(1995) when d=ω(1)d=\omega(1). There is an explicit polynomial on nn variables and degree at most n2\frac{n}{2} for which any depth-3 circuit CC of product dimension at most n10\frac{n}{10} (dimension of the space of affine forms feeding into each product gate) requires size 2Ω(n)2^{\Omega(n)}. This generalizes the lower bounds against diagonal circuits proved by Saxena(2007). Diagonal circuits are of product dimension 1. We prove a nΩ(logn)n^{\Omega(\log n)} lower bound on the size of product-sparse formulas. By definition, any multilinear formula is a product-sparse formula. Thus, our result extends the known super-polynomial lower bounds on the size of multilinear formulas by Raz(2006). We prove a 2Ω(n)2^{\Omega(n)} lower bound on the size of partitioned arithmetic branching programs. This result extends the known exponential lower bound on the size of ordered arithmetic branching programs given by Jansen(2008).Comment: 22 page

    Similar works

    Full text

    thumbnail-image

    Available Versions