36 research outputs found

    On Semantic Segmentation and Path Planning for Autonomous Vehicles within Off-Road Environments

    Get PDF
    There are many challenges involved in creating a fully autonomous vehicle capable of safely navigating through off-road environments. In this work we focus on two of the most prominent such challenges, namely scene understanding and path planning. Scene understanding is a challenging computer vision task with recent advances in convolutional neural networks (CNN) achieving results that notably surpass prior traditional feature driven approaches. Here, we build on recent work in urban road-scene understanding, training a state of the art CNN architecture towards the task of classifying off-road scenes. We analyse the effects of transfer learning and training data set size on CNN performance, evaluating multiple configurations of the network at multiple points during the training cycle, investigating in depth how the training process is affected. We compare this CNN to a more traditional feature-driven approach with Support Vector Machine (SVM) classifier and demonstrate state-of-the-art results in this particularly challenging problem of off-road scene understanding. We then expand on this with the addition of multi-channel RGBD data, which we encode in multiple configurations for CNN input. We evaluate each of these configuration over our own off-road RGBD data set and compare performance to that of the network model trained using RGB data. Next, we investigate end-to-end navigation, whereby a machine learning algorithm optimises to predict the vehicle control inputs of a human driver. After evaluating such a technique in an off-road environment and identifying several limitations, we propose a new approach in which a CNN learns to predict vehicle path visually, combining a novel approach to automatic training data creation with state of the art CNN architecture to map a predicted route directly onto image pixels. We then evaluate this approach using our off-road data set, and demonstrate effectiveness surpassing existing end-to-end methods

    A Real-time Range Finding System with Binocular Stereo Vision

    Get PDF
    To acquire range information for mobile robots, a TMS320DM642 DSP-based range finding system with binocular stereo vision is proposed. Firstly, paired images of the target are captured and a Gaussian filter, as well as improved Sobel kernels, are achieved. Secondly, a feature-based local stereo matching algorithm is performed so that the space location of the target can be determined. Finally, in order to improve the reliability and robustness of the stereo matching algorithm under complex conditions, the confidence filter and the left-right consistency filter are investigated to eliminate the mismatching points. In addition, the range finding algorithm is implemented in the DSP/BIOS operating system to gain real-time control. Experimental results show that the average accuracy of range finding is more than 99% for measuring single-point distances equal to 120cm in the simple scenario and the algorithm takes about 39ms for ranging a time in a complex scenario. The effectivity, as well as the feasibility, of the proposed range finding system are verified

    Systems for Safety and Autonomous Behavior in Cars: The DARPA Grand Challenge Experience

    Get PDF

    Bifocal Stereoscopic Vision for Intelligent Vehicles

    Get PDF
    The numerous benefits of real-time 3D awareness for autonomous vehicles have motivated the incorporation of stereo cameras to the perception units of intelligent vehicles. The availability of the distance between camera and objects is essential for such applications as automatic guidance and safeguarding; however, a poor estimation of the position of the objects in front of the vehicle can result in dangerous actions. There is an emphasis, therefore, in the design of perception engines that can make available a rich and reliable interval of ranges in front of the camera. The objective of this research is to develop a stereo head that is capable of capturing 3D information from two cameras simultaneously, sensing different, but complementary, fields of view. In order to do so, the concept of bifocal perception was defined and physically materialized in an experimental bifocal stereo camera. The assembled system was validated through field tests, and results showed that each stereo pair of the head excelled at a singular range interval. The fusion of both intervals led to a more faithful representation of reality

    Incremental disparity space image computation for automotive applications

    Full text link
    Abstract—Generating a depth map from a pair of stereo images is a challenging task, which is often further complicated by the additional restrictions imposed by the target application; in the automotive field, for example, real-time environment reconstruction is essential for safety and autonomous navigation systems, thus requiring reduced processing times, often at the expense of a somewhat limited degree of accuracy in the results. Nevertheless, a-priori knowledge on the intended use of the algorithm can also be exploited to improve its performance, both in terms of precision and computational burden. This paper presents three different approaches to incremen-tal Disparity Space Image (DSI) computation, which leverage the properties of a stereo-vision system installed on a vehicle to produce accurate depth maps at sustained frame rates on commodity hardware. I

    Embedded visual perception system applied to safe navigation of vehicles

    Get PDF
    Orientadores: Douglas Eduardo Zampieri, Isabelle Fantoni CoichotTese (doutorado) - Universidade Estadual de Campinas, Faculdade de Engenharia MecanicaResumo: Esta tese aborda o problema de evitamento de obstáculos para plataformas terrestres semie autônomas em ambientes dinâmicos e desconhecidos. Baseado num sistema monocular, propõe-se um conjunto de ferramentas que monitoram continuamente a estrada a frente do veículo, provendo-o de informações adequadas em tempo real. A partir de um algoritmo robusto de detecção da linha do horizonte é possível investigar dinamicamente somente a porção da estrada a frente do veículo, a fim de determinar a área de navegação, e da deteção de obstáculos. Uma área de navegação livre de obstáculos é então representa a partir de uma imagem multimodal 2D. Esta representação permite que um nível de segurança possa ser selecionado de acordo com o ambiente e o contexto de operação. A fim de reduzir o custo computacional, um método automático para descarte de imagens é proposto. Levando-se em conta a coerência temporal entre consecutivas imagens, uma nova metodologia de gerenciamento de energia (Dynamic Power Management) é aplicada ao sistema de percepção visual a fim de otimizar o consumo de energia. Estas propostas foram testadas em diferentes tipos de ambientes, e incluem a deteção da área de navegação, navegação reativa e estimação do risco de colisão. Uma característica das metodologias apresentadas é a independência em relação ao sistema de aquisição de imagem e do próprio veículo. Este sistema de percepção em tempo real foi avaliado a partir de diferentes bancos de testes e também a partir de dados reais obtidos por diferentes plataformas inteligentes. Em tarefas realizadas com uma plataforma semi-autônoma, testes foram conduzidos em velocidades acima de 100 Km/h. A partir de um sistema em malha aberta, deslocamentos reativos autônomos foram realizados com sucessoResumé: Les études développées dans ce projet doctoral ont concerné deux problématiques actuelles dans le domaine des systèmes robotiques pour la mobilité terrestre: premièrement, le problème associé à la navigation autonome et (semi)-autonome des véhicules terrestres dans un environnement inconnu ou partiellement connu. Cela constitue un enjeu qui prend de l'importance sur plusieurs fronts, notamment dans le domaine militaire. Récemment, l'agence DARPA1 aux États-Unis a soutenu plusieurs challenges sur cette problématique robotique; deuxièmement, le développement de systèmes d'assistance à la conduite basés sur la vision par ordinateur. Les acteurs de l'industrie automobile s'intéressent de plus en plus au développement de tels systèmes afin de rendre leurs produits plus sûrs et plus confortables à toutes conditions climatiques ou de terrain. De plus, grâce à l'électronique embarquée et à l'utilisation des systèmes visuels, une interaction avec l'environnement est possible, rendant les routes et les villes plus sûres pour les conducteurs et les piétons. L'objectif principal de ce projet doctoral a été le développement de méthodologies qui permettent à des systèmes mobiles robotisés de naviguer de manière autonome dans un environnement inconnu ou partiellement connu, basées sur la perception visuelle fournie par un système de vision monoculaire embarqué. Un véhicule robotisé qui doit effectuer des tâches précises dans un environnement inconnu, doit avoir la faculté de percevoir son environnement proche et avoir un degré minimum d'interaction avec celui-ci. Nous avons proposé un système de vision embarquée préliminaire, où le temps de traitement de l'information (point critique dans des systèmes de vision utilisés en temps-réel) est optimisé par une méthode d'identification et de rejet d'informations redondantes. Suite à ces résultats, on a proposé une étude innovante par rapport à l'état de l'art en ce qui concerne la gestion énergétique du système de vision embarqué, également pour le calcul du temps de collision à partir d'images monoculaires. Ainsi, nous proposons le développement des travaux en étudiant une méthodologie robuste et efficace (utile en temps-réel) pour la détection de la route et l'extraction de primitives d'intérêts appliquée à la navigation autonome des véhicules terrestres. Nous présentons des résultats dans un environnement réel, dynamique et inconnu. Afin d'évaluer la performance de l'algorithme proposé, nous avons utilisé un banc d'essai urbain et réel. Pour la détection de la route et afin d'éviter les obstacles, les résultats sont présents en utilisant un véhicule réel afin d'évaluer la performance de l'algorithme dans un déplacement autonome. Cette Thèse de Doctorat a été réalisée à partir d'un accord de cotutelle entre l' Université de Campinas (UNICAMP) et l'Université de Technologie de Compiègne (UTC), sous la direction du Professeur Docteur Douglas Eduardo ZAMPIERI, Faculté de Génie Mécanique, UNICAMP, Campinas, Brésil, et Docteur Isabelle FANTONI-COICHOT du Laboratoire HEUDIASYC UTC, Compiègne, France. Cette thèse a été soutenue le 26 août 2011 à la Faculté de Génie Mécanique, UNICAMP, devant un jury composé des Professeurs suivantsAbstract: This thesis addresses the problem of obstacle avoidance for semi- and autonomous terrestrial platforms in dynamic and unknown environments. Based on monocular vision, it proposes a set of tools that continuously monitors the way forward, proving appropriate road informations in real time. A horizon finding algorithm was developed to sky removal. This algorithm generates the region of interest from a dynamic threshold search method, allowing to dynamically investigate only a small portion of the image ahead of the vehicle, in order to road and obstacle detection. A free-navigable area is therefore represented from a multimodal 2D drivability road image. This multimodal result enables that a level of safety can be selected according to the environment and operational context. In order to reduce processing time, this thesis also proposes an automatic image discarding criteria. Taking into account the temporal coherence between consecutive frames, a new Dynamic Power Management methodology is proposed and applied to a robotic visual machine perception, which included a new environment observer method to optimize energy consumption used by a visual machine. This proposal was tested in different types of image texture (road surfaces), which includes free-area detection, reactive navigation and time-to-collision estimation. A remarkable characteristic of these methodologies is its independence of the image acquiring system and of the robot itself. This real-time perception system has been evaluated from different test-banks and also from real data obtained by two intelligent platforms. In semi-autonomous tasks, tests were conducted at speeds above 100 Km/h. Autonomous displacements were also carried out successfully. The algorithms presented here showed an interesting robustnessDoutoradoMecanica dos Sólidos e Projeto MecanicoDoutor em Engenharia Mecânic

    Integrated Stereovision for an Autonomous Ground Vehicle Competing in the Darpa Grand Challenge

    Get PDF
    The DARPA Grand Challenge (DGC) 2005 was a competition, in form of a desert race for autonomous ground vehicles, arranged by the U.S. Defense Advanced Research Project Agency (DARPA). The purpose was to encourage research and development of related technology. The objective of the race was to track a distance of 131.6 miles in less than 10 hours without any human interaction. Only public GPS signals and terrain sensors were allowed for navigation and obstacle detection. One of the teams competing in the DGC was Team Caltech from California Institute of Technology, consisting primarily of undergraduate students. The vehicle representing Team Caltech was a 2005 Ford E-350 van, named Alice. Alice had been modified for off-road driving and equipped with multiple sensors, computers and actuators. One type of terrain sensors used on Alice was stereovision. Two camera pairs were used for short and long range obstacle detection. This master thesis concerns development, testing and integration of stereovision sensors during the final four months leading to the race. To begin with, the stereovision system on Alice was not ready to use and had not undergone any testing. The work described in this thesis enabled operation of stereovision. It further improved its capability such that it increased the overall performance of Alice. Reliability was demonstrated through multiple desert field tests. Obstacle avoidance and navigation using only stereovision was successfully demonstrated. The completed work includes design and implementation of algorithms to improve camera focus and exposure control, increase processing speed and remove noise. Also hardware and software parameters were configured to achieve best possible operation. Alice managed to qualify to the race as one of the top ten vehicles. However she was only able to complete about 8 miles before running over a concrete barrier and out of the course, as a result of hardware failures and state estimation errors

    A Comprehensive Review on Autonomous Navigation

    Full text link
    The field of autonomous mobile robots has undergone dramatic advancements over the past decades. Despite achieving important milestones, several challenges are yet to be addressed. Aggregating the achievements of the robotic community as survey papers is vital to keep the track of current state-of-the-art and the challenges that must be tackled in the future. This paper tries to provide a comprehensive review of autonomous mobile robots covering topics such as sensor types, mobile robot platforms, simulation tools, path planning and following, sensor fusion methods, obstacle avoidance, and SLAM. The urge to present a survey paper is twofold. First, autonomous navigation field evolves fast so writing survey papers regularly is crucial to keep the research community well-aware of the current status of this field. Second, deep learning methods have revolutionized many fields including autonomous navigation. Therefore, it is necessary to give an appropriate treatment of the role of deep learning in autonomous navigation as well which is covered in this paper. Future works and research gaps will also be discussed

    Perception and intelligent localization for autonomous driving

    Get PDF
    Mestrado em Engenharia de Computadores e TelemáticaVisão por computador e fusão sensorial são temas relativamente recentes, no entanto largamente adoptados no desenvolvimento de robôs autónomos que exigem adaptabilidade ao seu ambiente envolvente. Esta dissertação foca-se numa abordagem a estes dois temas para alcançar percepção no contexto de condução autónoma. O uso de câmaras para atingir este fim é um processo bastante complexo. Ao contrário dos meios sensoriais clássicos que fornecem sempre o mesmo tipo de informação precisa e atingida de forma determinística, as sucessivas imagens adquiridas por uma câmara estão repletas da mais variada informação e toda esta ambígua e extremamente difícil de extrair. A utilização de câmaras como meio sensorial em robótica é o mais próximo que chegamos na semelhança com aquele que é o de maior importância no processo de percepção humana, o sistema de visão. Visão por computador é uma disciplina científica que engloba àreas como: processamento de sinal, inteligência artificial, matemática, teoria de controlo, neurobiologia e física. A plataforma de suporte ao estudo desenvolvido no âmbito desta dissertação é o ROTA (RObô Triciclo Autónomo) e todos os elementos que consistem o seu ambiente. No contexto deste, são descritas abordagens que foram introduzidas com fim de desenvolver soluções para todos os desafios que o robô enfrenta no seu ambiente: detecção de linhas de estrada e consequente percepção desta, detecção de obstáculos, semáforos, zona da passadeira e zona de obras. É também descrito um sistema de calibração e aplicação da remoção da perspectiva da imagem, desenvolvido de modo a mapear os elementos percepcionados em distâncias reais. Em consequência do sistema de percepção, é ainda abordado o desenvolvimento de auto-localização integrado numa arquitectura distribuída incluindo navegação com planeamento inteligente. Todo o trabalho desenvolvido no decurso da dissertação é essencialmente centrado no desenvolvimento de percepção robótica no contexto de condução autónoma.Computer vision and sensor fusion are subjects that are quite recent, however widely adopted in the development of autonomous robots that require adaptability to their surrounding environment. This thesis gives an approach on both in order to achieve perception in the scope of autonomous driving. The use of cameras to achieve this goal is a rather complex subject. Unlike the classic sensorial devices that provide the same type of information with precision and achieve this in a deterministic way, the successive images acquired by a camera are replete with the most varied information, that this ambiguous and extremely dificult to extract. The use of cameras for robotic sensing is the closest we got within the similarities with what is of most importance in the process of human perception, the vision system. Computer vision is a scientific discipline that encompasses areas such as signal processing, artificial intelligence, mathematics, control theory, neurobiology and physics. The support platform in which the study within this thesis was developed, includes ROTA (RObô Triciclo Autónomo) and all elements comprising its environment. In its context, are described approaches that introduced in the platform in order to develop solutions for all the challenges facing the robot in its environment: detection of lane markings and its consequent perception, obstacle detection, trafic lights, crosswalk and road maintenance area. It is also described a calibration system and implementation for the removal of the image perspective, developed in order to map the elements perceived in actual real world distances. As a result of the perception system development, it is also addressed self-localization integrated in a distributed architecture that allows navigation with long term planning. All the work developed in the course of this work is essentially focused on robotic perception in the context of autonomous driving
    corecore