8 research outputs found

    The Shapley value for directed graph games

    Get PDF
    The Shapley value for directed graph (digraph) games, TU games with limited cooperation introduced by an arbitrary digraph prescribing the dominance relation among the players, is introduced. It is dened as the average of marginal contribution vectors corresponding to all permutations that do not violate the subordination of players. We assume that in order to cooperate players may join only coalitions containing no players dominating them. Properties of this solution are studied and a convexity type condition is provided that guarantees its stability with respect to an appropriately dened core concept. An axiomatization for cycle digraph games for which the digraphs are directed cycles is obtained

    The average covering tree value for directed graph games

    Get PDF
    We introduce a single-valued solution concept, the so-called average covering tree value, for the class of transferable utility games with limited communication structure represented by a directed graph. The solution is the average of the marginal contribution vectors corresponding to all covering trees of the directed graph. The covering trees of a directed graph are those (rooted) trees on the set of players that preserve the dominance relations between the players prescribed by the directed graph. The average covering tree value is component efficient, and under a particular convexity-type condition it is stable. For transferable utility games with complete communication structure the average covering tree value equals to the Shapley value of the game. If the graph is the directed analog of an undirected graph the average covering tree value coincides with the gravity center solution

    Pemodelan Keputusan Stok Dan Impor Bawang Merah

    Get PDF
    Untuk mengoptimalkan fungsi rantai pasok dan menghadapi tantangan berupa kendala-kendala di dalam proses operasionalnya, setiap pelaku rantai pasok perlu untuk bekerjasama mengintegrasikan masing-masing fungsinya. Salah satu permasalahan dalam rantai pasok adalah ketidakseimbangan kuantitas dari penjualan dengan kuantitas pasokan. Penelitian ini bertujuan untuk mengusulkan model sederhana untuk menghadapi tantangan adanya ketidakseimbangan kuantitas penjualan dan kuantitas pasokan. Ketidakseimbangan tersebut menyebabkan overstock atau loss. Permasalahan tersebut diusulkan untuk diselesaikan dengan menggunakan volume buffer. Penelitian ini memodelkan model keputusan jumlah pasokan dan mengangkat studi kasus impor bawang merah di Indonesia, yang merupakan salah satu komoditas yang berpengaruh pada inflasi. Meskipun kebutuhan konsumsi cukup stabil dari sepanjang tahun, namun jumlah pasokan sangat dipengaruhi faktor ketidakpastian yang terjadi selama proses tanam hingga panen. Ketika pasokan diprediksi tidak mencukupi kebutuhan pasar, maka pemerintah akan mengambil keputusan untuk mengimpor komoditas tersebut. Oleh karena itu, pemerintah seharusnya membutuhkan mekanisme volume buffer untuk memastikan kebutuhan konsumsi terpenuhi sekaligus harga pasar terkendali. Permulaan dari model ini mempertimbangkan nilai-nilai stokastik dan model lanjutan dibuat untuk memperoleh harga pasar. Pricing model dalam penelitian ini mengacu pada prinsip metode Shapley value yang dimodifikasi. Variabel-variabel utama dalam penelitian ini adalah prediksi jumlah pasokan, prediksi jumlah kebutuhan, buffer dan kebutuhan pasokan yang diperoleh dari petani (stock needed), kebutuhan aktual, dan harga untuk setiap pelaku rantai pasok. Model dalam penelitian ini dirancang secara sekuensial. Hasil dari validasi penelitian menunjukkan harga pada model berbeda signifikan dengan data sekunder yang dibandingkan. Oleh karena itu, model dapat digunakan untuk menentukan jumlah pasokan yang dibutuhkan dan dapat digunakan untuk referensi harga pasar. ================================================================= To optimize supply chain role, the pl ayers of supply chain need to integrate its function. One of the general problems in supply chain was the unbalanced quantity of sales and quantity of supply. This paper focused on modeling a simple method to manage the gap between the demand and the supply. The gap may causing an overstock or a loss. This paper propose a buffer quantity in order to handle the gap by using import decision. The case study was about shallot supply - demand in Indonesia. In this study we model the supply decisions of shallot i n Indonesia. While the demand is quite stable over time, the supply is very much affected by the yield from the farms. The shortage can result in the government importing shallot from other countries. Hence, the government also needs to have a proper buffe ring mechanism in order to ensure the supply is sufficient and the price is quite stable. The initial model of this research was built by stochastic parameters and the extended model to gain pricing mechanism was built by Shapley value principal with modif ication. The primary variables were supply quantity prediction, demand quantity prediction, buffer and purchased quantity (stock needed), actual consumption, and price for three players. The validation proved that the result of price at each player presented a significant difference. Therefore, the model could be applied to decide the stock quantity needed and to keep the price stable at each player especially at the end player which was influencing the market price

    Structural restrictions in cooperation

    Get PDF
    Cooperative games with transferable utilities, or simply TU-games, refer to the situations where the revenues created by a coalition of players through cooperation can be freely distributed to the members of the coalition. The fundamental question in cooperative game theory deals with the problem of how much payoff every player should receive. The classical assumption for TU-games states that every coalition is able to form and earn the worth created by cooperation. In the literature, there are several different modifications of TU-games in order to cover the cases where cooperation among the players is restricted. The second chapter of this monograph provides a characterization of the average tree solution for TU-games where the restricted cooperation is represented by a connected cycle-free graph on the set of players. The third chapter considers TU-games for which the restricted cooperation is represented by a directed graph on the set of players and introduces the average covering tree solution and the dominance value for this class of games. Chapter four considers TU-games with restricted cooperation which is represented by a set system on the set of players and introduces the average coalitional tree solution for such structures. The last two chapters of this monograph belong to the social choice theory literature. Given a set of candidates and a set of an odd number of individuals with preferences on these candidates, pairwise majority comparison of the candidates yields a tournament on the set of candidates. Tournaments are special types of directed graphs which contain an arc between any pair of nodes. The Copeland solution of a tournament is the set of candidates that beat the maximum number of candidates. In chapter five, a new characterization of the Copeland solution is provided that is based on the number of steps in which candidates beat each other. Chapter six of this monograph is on preference aggregation which deals with collective decision making to obtain a social preference. A sophisticated social welfare function is defined as a mapping from profiles of individual preferences into a sophisticated social preference which is a pairwise weighted comparison of alternatives. This chapter provides a characterization of Pareto optimal and pairwise independent sophisticated social welfare functions

    Coalitional control in the framework of cooperative game theory

    Full text link
    [EN] Coalitional control is a fairly new branch of distributed control where the agents merge dynamically into coalitions according to the enabled/disabled communication links at each time instant. Therefore, with these schemes there is a reduction of the communication burden without compromising the system performance. In this tutorial, the main features of these schemes will be introduced in the framework of cooperative game theory, being the game related to the cost function that is optimized by the control approach, and with the players corresponding to either the communication links or the agents involved. In this context, several cooperative game theory tools will be considered in order to: rank the players, impose constraints on them, provide more effcient ways of calculation, perform system partitioning, etc., hence analyzing the main features related to each tool.[ES] El control coalicional es una rama incipiente del control distribuido donde los distintos agentes se agrupan de forma dinámica en coaliciones en función de los enlaces de comunicación activos/inactivos en cada instante de tiempo. Gracias a ello, se reduce la carga de comunicación sin comprometer las prestaciones del sistema. En este tutorial, se analizan las principales características de estos esquemas dentro del marco de la teoría de juegos cooperativos, estando el juego definido por la función de coste a optimizar en el esquema de control, y correspondiendo los jugadores bien a los enlaces de comunicación o bien a los propios agentes. En este contexto, se estudiarán diversas herramientas de teoría de juegos cooperativos, con objeto de clasificar jugadores, imponer restricciones en los mismos, proponer vías de cálculo más eficientes, realizar particionado de sistemas, etc., examinando las características más relevantes presentadas por cada herramienta.Este estudio ha sido parcialmente financiado por los proyectos de investigación OCONTSOLAR, (H2020 ADG-ERC, ID 789051), C3PO (MINECO, DPI2017-86918-R), y GESVIP (Junta de Andalucía, US-1265917). Asimismo, se agradece a Jose María Maestre, Encarnación Algaba y Eduardo F. Camacho las innumerables discusiones mantenidas a lo largo de los anos de doctorado que me ayudaron a dominar los conceptos presentados en este tutorial. Es también de destacar los comentarios del Editor y los revisores anónimos que han contribuido a la mejora sustancial del manuscrito. Finalmente, se dedica este artículo a Lloyd S. Shapley (1923-2016), ya que su concepto de solución (Shapley, 1953b) ha inspirado todo mi trabajo.Muros, FJ. (2021). El control coalicional en el marco de la teoría de juegos cooperativos. Revista Iberoamericana de Automática e Informática industrial. 18(2):97-112. https://doi.org/10.4995/riai.2020.13456OJS97112182Alamo, T., Normey-Rico, J. E., Arahal, M. R., Limon, D., Camacho, E. F., June 2006. Introducing linear matrix inequalities in a control course. In: Proceedings of the 7th IFAC Symposium on Advances in Control Education (ACE 2006). Madrid, Spain, pp. 205-210. https://doi.org/10.3182/20060621-3-ES-2905.00037Algaba, E., Fragnelli, V., Sánchez-Soriano, J. (Eds.), December 2019. The Handbook of the Shapley Value. CRC Press Series in Operations Research. Chapman & Hall/CRC, Boca Ratón, Florida, USA. https://doi.org/10.1201/9781351241410Aranda-Escolástico, E., Guinaldo, M., Heradio, R., Chacon, J., Vargas, H., Sánchez, J., Dormido, S., March 2020. Event-based control: A bibliometric analysis of twenty years of research. IEEE Access 8, 47188-47208. https://doi.org/10.1109/ACCESS.2020.2978174Baldivieso-Monasterios, P. R., Trodden, P. A., March 2021. Coalitional predictive control: Consensus-based coalition forming with robust regulation.Automatica 125, 109380. https://doi.org/10.1016/j.automatica.2020.109380Banzhaf, J. F., 1965. Weighted voting doesn't work: A mathematical analysis. Rutgers Law Review 19, 317-343.Barreiro-Gomez, J., Ocampo-Martinez, C., Quijano, N., March 2019. Time-varying partitioning for predictive control design: Density-games approach. Journal of Process Control 75, 1-14. https://doi.org/10.1016/j.jprocont.2018.12.011Barreiro-Gomez, J., Ocampo-Martinez, C., Quijano, N., Maestre, J. M., September 2017. Non-centralized control for flow-based distribution networks: A game theoretical insight. Journ. of the Franklin Inst. 354 (14), 5771-5796. https://doi.org/10.1016/j.jfranklin.2017.06.021Bauso, D., Cannon, M., April 2018. Consensus in opinion dynamics as a repeated game. Automatica 90, 204-211. https://doi.org/10.1016/j.automatica.2017.12.062Bauso, D., Notarstefano, G., November 2015. Distributed n-player approachability and consensus in coalitional games. IEEE Transactions on Automatic Control 60 (11), 3107-3112. https://doi.org/10.1109/TAC.2015.2411873Bauso, D., Timmer, J., March 2009. Robust dynamic cooperative games. International Journal of Game Theory 38 (1), 23-36. https://doi.org/10.1007/s00182-008-0138-1Bauso, D., Timmer, J., October 2012. On robustness and dynamics in (un)balanced coalitional games. Automatica 48 (10), 2592-2596. https://doi.org/10.1016/j.automatica.2012.06.057Becker, H.W., Riordan, J., April 1948. The arithmetic of Bell and Stirling numbers. American Journal of Mathematics 70 (2), 385-394. https://doi.org/10.2307/2372336Borm, P., Owen, G., Tijs, S., August 1992. On the position value for communication situations. SIAM Journal on Discrete Mathematics 5 (3), 305-320. https://doi.org/10.1137/0405023Boyd, S., El Ghaoui, L., Feron, E., Balakrishnan, V., 1994. Linear Matrix Inequalities in System and Control Theory. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, Pennsylvania, USA. https://doi.org/10.1137/1.9781611970777Cai, K., Ishii, H., September 2011. Quantized consensus and averaging on gossip digraphs. IEEE Transactions on Automatic Control 56 (9), 2087-2100. https://doi.org/10.1109/TAC.2011.2107630Camacho, E. F., Bordons, C., 2013. Model Predictive Control, 2nd Edition. Advances Textbooks in Control and Signal Processing. Springer, London, UK.Carreras, F., Freixas, J., January 2002. Semivalue versatility and applications. Annals of Operations Research 109 (1-4), 343-358. https://doi.org/10.1023/A:1016320723186Casella, G., Berger, R. L., 2002. Statistical Inference, 2nd Edition. Thomson Learning. Duxbury Advanced Series, Stamford, Connecticut, USA.Castro, J., Gómez, D., Molina, E., Tejada, J., June 2017. Improving polynomial estimation of the shapley value by stratified random sampling with optimum allocation. Computers & Operations Research 82, 180-188. https://doi.org/10.1016/j.cor.2017.01.019Castro, J., Gómez, D., Tejada, J., May 2009. Polynomial calculation of the Shapley value based on sampling. Computers & Operations Research 36 (5), 1726-1730. https://doi.org/10.1016/j.cor.2008.04.004Chanfreut, P., Maestre, J. M., Camacho, E. F., 2021a. Coalitional model predictive control on freeways traffic networks. IEEE Transactions on Intelligent Transportation Systems.En Prensa. https://doi.org/10.1109/TITS.2020.2994772Chanfreut, P., Maestre, J. M., Ferramosca, A., Muros, F. J., Camacho, E. F.,2021b. Distributed model predictive control for tracking: A clustering approach. Submitted to the IEEE Trans. on Autom. Control.No publicado.Chanfreut, P., Maestre, J. M., Muros, F. J., Camacho, E. F., 2021c. Clustering switching regions for feedback controllers: A convex approach. IEEE Transactions on Control of Network Systems.En Prensa.Darivianakis, G., Eichler, A., Lygeros, J., 2020. Distributed model predictive control for linear systems with adaptive terminal sets. IEEE Transactions on Automatic Control 65 (3), 1044-1056. https://doi.org/10.1109/TAC.2019.2916774De Souza, C. A., Camponogara, E., Kraus Jr.,W., Peccin, V. B., May/June 2015. Distributed MPC for urban traffic networks: A simulation-based performance analysis. Optimal Control Applications & Methods 36 (3), 353-368. https://doi.org/10.1002/oca.2148Di Nardo, A., Di Natale, M., Giudicianni, C., Musmarra, D., Santonastaso, G. F., Simone, A., September 2015. Water distribution system clustering and partitioning based on social network algorithms. Procedia Engineering 119, 196-205. https://doi.org/10.1016/j.proeng.2015.08.876Dörfler, F., Jovanovic, M. R., Chertkov, M., Bullo, F., September 2014. Sparsity-promoting optimal wide-area control of power networks. IEEE Transactions on Power Systems 29 (5), 2281-2291. https://doi.org/10.1109/TPWRS.2014.2304465Dubey, P., Neyman, A., Weber, R. J., February 1981. Value theory without efficiency. Mathematics of Operations Research 6 (1), 122-128. https://doi.org/10.1287/moor.6.1.122Ebihara, Y., Peaucelle, D., Arzelier, D., January 2014. LMI approach to linear positive system analysis and synthesis. Syst. & Control Letters 63, 50-56. https://doi.org/10.1016/j.sysconle.2013.11.001Fele, F., Debada, E., Maestre, J. M., Camacho, E. F., September 2018. Coalitional control for self-organizing agents. IEEE Transactions on Automatic Control 63 (9), 2883-2897. https://doi.org/10.1109/TAC.2018.2792301Fele, F., Maestre, J. M., Camacho, E. F., July 2015. Coalitional control: a bottom-up approach. In: Proceedings of the 33rd American Control Conference (ACC 2015). Chicago, Illinois, USA, pp. 4074-4079. https://doi.org/10.1109/ACC.2015.7171966Fele, F., Maestre, J. M., Camacho, E. F., February 2017. Coalitional control: Cooperative game theory and control. IEEE Control Systems Magazine 37 (1), 53-69. https://doi.org/10.1109/MCS.2016.2621465Fele, F., Maestre, J. M., Shahdany, M. H., Muñoz de la Peña, D., Camacho, E. F., April 2014. Coalitional model predictive control of an irrigation canal. Journal of Process Control 24 (4), 314-325. https://doi.org/10.1016/j.jprocont.2014.02.005Fletcher, R., Leyer, S., May 1998. Numerical experience with lower bounds for MIQP branch-and-bound. SIAM Journal on Optimization 8 (2), 604-616. https://doi.org/10.1137/S1052623494268455Fletscher, L. A., Maestre, J. M., Peroni, C. V., July 2018. Coalitional planningfor energy efficiency of HetNets powered by hybrid energy sources. IEEETransactions on Vehicular Technology 67 (7), 6573-6584. https://doi.org/10.1109/TVT.2018.2809639Gahinet, P., Nemirovskii, A. S., Laub, A. J., Chilali, M., 1995. LMI Control Toolbox For Use with MATLAB. The MathWorks, Inc., Natick, Massa-chusetts, USA.Ghintran, A., May 2013.Weighted position values. Mathematical Social Sciences 65 (3), 157-163. https://doi.org/10.1016/j.mathsocsci.2013.01.003Gilles, R. P., April 2010. The Cooperative Game Theory of Networks and Hierarchies. Vol. 44 of Theory and Decision Library C. Springer, Heidelberg,Germany. https://doi.org/10.1007/978-3-642-05282-8Gillies, D. B., 1959. Solutions to general non-zero-sum games. In: Tucker, A. W., Luce, R. D. (Eds.), Contributions to the Theory of Games IV. Princeton University Press, Princeton, New Jersey, USA, pp. 47-85. https://doi.org/10.1515/9781400882168-005Ginsburgh, V., Zang, I., November 2012. Shapley ranking of wines. Journal of Wine Economics 7 (2), 169-180. https://doi.org/10.1017/jwe.2012.35Han, Z., Niyato, D., Saad,W., Basar, T., Hjørungnes, A., 2012. Game Theory in Wireless and Communication Networks: Theory, Models, and Applications. Cambridge University Press, New York, USA.Harsanyi, J. C., 1959. A bargaining model for the n-person cooperative game. In: Tucker, A.W., Luce, R. D. (Eds.), Contributions to the Theory of Games IV. Princeton University Press, Princeton, New Jersey, USA, pp. 325-355. https://doi.org/10.1515/9781400882168-019Hiller, T., 2016. Excluded coalitions and the distribution of power in parliaments. Applied Economics 48 (4), 321-330. https://doi.org/10.1080/00036846.2015.1078449Hiller, T., January 2018. The effects of excluding coalitions. Games 9 (1), 1:1-1:7. https://doi.org/10.3390/g9010001Ishii, H., Tempo, R., February 2010. Distributed randomized algorithms for the PageRank computation. IEEE Transactions on Automatic Control 55 (9), 1987-2002. https://doi.org/10.1109/TAC.2010.2042984Jackson, M. O., 2008. Social and Economic Networks. Princeton University Press, Princeton, New Jersey, USA.Jiang, Y., May 2019. Intermittent distributed control for a class of nonlinear reaction-diffusion systems with spatial point measurements. Journal of the Franklin Institute 356 (7), 3811-3830. https://doi.org/10.1016/j.jfranklin.2019.01.010Kalai, E., Samet, D., September 1987. On weighted Shapley values. International Journal of Game Theory 16 (3), 205-222. https://doi.org/10.1007/BF01756292Khmelnitskaya, A., Selcuk, Ö., Talman, D., January 2016. The Shapley value for directed graph games. Operations Research Letters 44 (1), 143-147. https://doi.org/10.1016/j.orl.2015.12.009Lehrer, E., June 1988. An axiomatization of the Banzhaf value. International Journal of Game Theory 17 (2), 89-99. https://doi.org/10.1007/BF01254541Loehman, E. T., Whinston, A. B., 1976. A generalized cost allocation scheme. In: Stevens, A., Lin, Y. (Eds.), Theory and Measurement of Economic Externalities. Academic Press, New York, USA, pp. 87-101. https://doi.org/10.1016/B978-0-12-450450-9.50013-0Lopez-Rodriguez, F., Maestre, J. M., Muros, F. J., Camacho, E. F., July 2020. A modular feedback approach for distributed control. In: Proceedings of the 21st IFAC World Congress (IFAC 2020). Berlin, Germany, pp. 4086-4091.Lucchetti, R., Moretti, S., Patrone, F., Radrizzani, P., August 2010. The Shapley and Banzhaf values in microarray games. Computers & Operations Research 37 (8), 1406-1412. https://doi.org/10.1016/j.cor.2009.02.020Maestre, J. M., November 2010. Distributed model predictive control based on game theory. Ph.D. thesis, Department of Systems and Automation Engineering, University of Seville, Seville, Spain.Maestre, J. M., Ishii, H., October 2017. A PageRank based coalitional control scheme. International Journal of Control, Automation and Systems 15 (5), 1983-1990. https://doi.org/10.1007/s12555-016-0336-8Maestre, J. M., Lopez-Rodriguez, F., Muros, F. J., Ocampo-Martinez, C., February 2021. Modular feedback control of networked systems by clustering: A drinking water network case study. Processes 9 (2), 389. https://doi.org/10.3390/pr9020389Maestre, J. M., Muñoz de la Peña, D., Camacho, E. F., Alamo, T., 2011. Distributed model predictive control based on agent negotiation. Journal of Process Control 21 (5), 685-697. https://doi.org/10.1016/j.jprocont.2010.12.006Maestre, J. M., Muñoz de la Peña, D., Jiménez Losada, A., Algaba, E., Camacho, E. F., September/October 2014. A coalitional control scheme with applications to cooperative game theory. Optimal Control Applications and Methods 35 (5), 592-608. https://doi.org/10.1002/oca.2090Maestre, J. M., Muros, F. J., Fele, F., Camacho, E. F., July 2015. An assessment of coalitional control in water systems. In: Proceedings of the 14th European Control Conference (ECC 2015). Linz, Austria, pp. 3291-3296. https://doi.org/10.1109/ECC.2015.7331041Maestre, J. M., Negenborn, R. R. (Eds.), 2014. Distributed Model Predictive Control Made Easy. Vol. 69 of Intelligent Systems, Control and Automation: Science and Engineering. Springer, Dordrecht, The Netherlands. https://doi.org/10.1007/978-94-007-7006-5Martin, J. G., Muros, F. J., Maestre, J. M., Camacho, E. F., 2020. Clustering for multi-robot task allocation problems by game theory. Submitted to the IEEE Transactions on Cybernetics. No publicado.Marzband, M., Ardeshiri, R. R., Moafi, M., Uppal, H., June 2017. Distributed generation for economic benefit maximization through coalition formation-based game theory concept. International Transactions on Electrical Energy Systems 27 (6), e2313. https://doi.org/10.1002/etep.2313Maschler, M., Solan, E., Zamir, S., March 2013. Game Theory. Cambridge University Press, Cambridge, UK.Masero, E., Fletscher, L. A., Maestre, J. M., December 2020. A coalitional mo-del predictive control for the energy efficiency of next-generation cellular networks. Energies 13 (24), 6546. https://doi.org/10.3390/en13246546Masero, E., Frejo, J. R. D., Maestre, J. M., Camacho, E. F., January 2021. Alight clustering model predictive control approach to maximize thermal power in solar parabolic-trough plants. Solar Energy 214, 531-541. https://doi.org/10.1016/j.solener.2020.11.056Mitchell, M., 1998. An Introduction to Genetic Algorithms. MIT Press, Cambridge, Massachusetts, USA. https://doi.org/10.7551/mitpress/3927.001.0001Monroy, L., Fernández, F. R., April 2014. Banzhaf index for multiple voting systems. an application to the European Union. Annals of Operations Research 215, 215-230. https://doi.org/10.1007/s10479-013-1374-8Muros, F. J., 2019. Cooperative Game Theory Tools in Coalitional Control Networks. Springer Theses Series. Springer, Zug, Switzerland. https://doi.org/10.1007/978-3-030-10489-4Muros, F. J., Algaba, E., Maestre, J. M., Camacho, E. F., June/July 2016. Cooperative game theory tools to detect critical nodes in distributed control systems. In: Proceedings of the 15th European Control Conference (ECC 2016). Aalborg, Denmark, pp. 190-195. https://doi.org/10.1109/ECC.2016.7810285Muros, F. J., Algaba, E., Maestre, J. M., Camacho, E. F., June 2017a. The Banzhaf value as a design tool in coalitional control. Systems & Control Letters 104, 21-30. https://doi.org/10.1016/j.sysconle.2017.03.007Muros, F. J., Algaba, E., Maestre, J. M., Camacho, E. F., July 2017b. Harsanyi power solutions in coalitional control systems. IEEE Transactions on Automatic Control 62 (7), 3369-3381. https://doi.org/10.1109/TAC.2017.2651642Muros, F. J., Maestre, J. M., 2020. Generalized framework for coalitional feedback control with semivalues constraints. Submitted to the Journal of the Franklin Institute. No publicado.Muros, F. J., Maestre, J. M., Algaba, E., Alamo, T., Camacho, E. F., April 2017c. Networked control design for coalitional schemes using game-theoretic methods. Automatica 78, 320-332. https://doi.org/10.1016/j.automatica.2016.12.010Muros, F. J., Maestre, J. M., Ocampo-Martinez, C., Algaba, E., Camacho, E. F., December 2018a. A game theoretical randomized method for large-scale systems partitioning. IEEE Access 6 (1), 42245-42263. https://doi.org/10.1109/ACCESS.2018.2854783Muros, F. J., Maestre, J. M., Ocampo-Martinez, C., Algaba, E., Camacho, E. F., June 2018b. Partitioning of large-scale systems using game-theoretic coalitional methods. In: Proceedings of the 16th European Control Conference (ECC 2018). Limassol, Cyprus, pp. 2517-2522. https://doi.org/10.23919/ECC.2018.8550096Narayanam, R., Narahari, Y., January 2011. A Shapley value-based approach to discover influential nodes in social networks. IEEE Transactions on Automation Science and Engineering 8 (1), 130-147. https://doi.org/10.1109/TASE.2010.2052042Nash, J. F., September 1951. Non-cooperative games. Annals of Mathematics 54 (2), 286-295. https://doi.org/10.2307/1969529Nedic, A., Bauso, D., June 2013. Dynamic coalitional TU games: Distributed bargaining among players' neighbors. IEEE Transactions on Automatic Control 58 (6), 1363-1376. https://doi.org/10.1109/TAC.2012.2236716Negenborn, R. R., De Schutter, B., Hellendoorn, J., April 2008. Multi-agent model predictive control for transportation networks: Serial versus parallel schemes. Engineering Applications of Artificial Intelligence 21 (3), 353-366. https://doi.org/10.1016/j.engappai.2007.08.005Negenborn, R. R., van Overloop, P.-J., Keviczky, T., De Schutter, B., June 2009. Distributed model predictive control of irrigation canals. Networks and Heterogeneous Media 4 (2), 359-380. https://doi.org/10.3934/nhm.2009.4.359Nowak, A. S., March 1997. On an axiomatization of the Banzhaf value without the additivity axiom. International Journal of Game Theory 26 (1), 137-141. https://doi.org/10.1007/s001820050022Núñez, A., Ocampo-Martinez, C., Maestre, J. M., Schutter, B. D., August 2015. Time-varying scheme for noncentralized model predictive control of large-scale systems. Mathematical Problems in Engineering 2015, 560702. https://doi.org/10.1155/2015/560702Ocampo-Martinez, C., Bovo, S., Puig, V., June 2011. Partitioning approach oriented to the decentralised predictive control of large-scale systems. Journal of Process Control 21 (5), 775-786. https://doi.org/10.1016/j.jprocont.2010.12.005Ocampo-Martinez, C., Puig, V., Cembrano, G., Quevedo, J., February 2013.Application of MPC strategies to the management of complex networks of the urban water cycle. IEEE Control Systems Magazine 33 (1), 15-41. https://doi.org/10.1109/MCS.2012.2225919Olfati-Saber, R., Fax, J. A., Murray, R. M., January 2007. Consensus and cooperation in networked multi-agent systems. Proc. of the IEEE 95 (1), 215-233. https://doi.org/10.1109/JPROC.2006.887293Olfati-Saber, R., Murray, R. M., September 2004. Consensus problems in networks of agents with switching topology and time-delays. IEEE Transactions on Automatic Control 49 (9), 1520-1533. https://doi.org/10.1109/TAC.2004.834113Owen, G., September 1978. Characterization of the Banzhaf-Coleman index. SIAM Journal of Applied Mathematics 35 (2), 315-327. https://doi.org/10.1137/0135026Owen, G., 2013. Game Theory, 4th Edition. Emerald Group Publishing Limited, Bingley, UK.Peleg, B., Sudhölter, P., October 2007. Introduction to the Theory of Cooperative Games. Theory and Decision Library C. Springer.Penrose, L. S., 1946. The elementary statistics of majority voting. Journal of the Royal Statistical Society 109 (1), 53-57. https://doi.org/10.2307/2981392Peters, H., June 2015. Game Theory. A Multi-Leveled Approach, 2nd Edition. Springer Texts in Business and Economics. Springer, Heidelberg, Germany. https://doi.org/10.1007/978-3-662-46950-7Petrosjan, L., Zaccour, G., January 2003. Time-consistent Shapley value allocation of pollution cost reduction. Journal of Economics Dynamics & Control 27 (3), 381-398. https://doi.org/10.1016/S0165-1889(01)00053-7Philippe, M., Essick,

    The Shapley value for directed graph games

    Get PDF
    The Shapley value for directed graph (digraph) TU games with limited cooperation induced by a digraph prescribing the dominance relation among the players is introduced. It is defined as the average of the marginal contribution vectors corresponding to all permutations which do not violate the induced subordination of players. We study properties of this solution and its core stability. For digraph games with the digraphs being directed cycles an axiomatization of the solution is obtained
    corecore