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Abstract
We introduce a single-valued solution concept, the so-called average covering tree
value, for the class of transferable utility games with limited communication structure
representedby adirected graph.The solution is the averageof themarginal contribution
vectors corresponding to all covering trees of the directed graph. The covering trees of a
directed graph are those (rooted) trees on the set of players that preserve the dominance
relations between the players prescribed by the directed graph. The average covering
tree value is component efficient, and under a particular convexity-type condition it
is stable. For transferable utility games with complete communication structure the
average covering tree value equals to the Shapley value of the game. If the graph is
the directed analog of an undirected graph the average covering tree value coincides
with the gravity center solution.
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1 Introduction

In classical cooperative game theory it is assumed that any coalition of players may
form. However, in many practical situations the collection of feasible coalitions that
can be formed is restricted by some social, economical, hierarchical, communica-
tional, or technical structure. The study of games with transferable utility and limited
cooperation represented by means of an undirected communication graph, later on
for brevity called graph games, was initiated by Myerson (1977). Assuming that only
connected players can cooperate, the Myerson value for graph games is defined as the
Shapley value (cf. Shapley 1953) of the so-called restricted game for which the worth
of each coalition is equal to the sum of the worths of its connected components in the
graph. The average tree solution for graph games, introduced by Herings et al. (2008)
for cycle-free graph games and generalized by Herings et al. (2010) for the class of all
graph games, assigns to each player the average of the player’s marginal contributions
to his successors in all admissible spanning trees of the given communication graph.
A spanning tree is admissible if every player has in each component in the subgraph
on the set of his successors in the tree exactly one direct successor in the tree. Another
solution concept applicable to graph games is the gravity center solution for games
with restricted communication represented by an arbitrary collection of coalitions,
developed in Koshevoy and Talman (2014). For graph games the gravity center solu-
tion assigns to each player the average of the player’s marginal contributions to the
player’s successors with respect to all admissible trees, not necessarily spanning trees.

In this paper we consider transferable utility games with limited cooperation
induced by restrictions represented by means of a directed graph (digraph) later on for
brevity called digraph games. For a directed link in an arbitrary digraph there are two
possible different basic interpretations. One interpretation is that a link is directed to
indicate which player has initiated the communication but at the same time it repre-
sents a fully developed communication link where players are able to communicate
in both directions with each other. In such a case, following Myerson (1977), it is
natural to assume that there is no subordination of players and to focus on component
efficient values. Another interpretation of a directed link is based on the assumption
that a directed link represents a one-way relation between the players, which leads
to two different possible interpretations of a digraph. The first possibility is when
the communication between players is supposed to be feasible only along the directed
paths in the digraph, for example a flow situation. This assumption is incorporated into
the solution concepts of web values, in particular the tree value, and the average web
value for cycle-free digraph games introduced in Khmelnitskaya and Talman (2014)
and the covering values for cycle-free digraph games studied in Li and Li (2011).
Another option is to assume that the digraph represents a subordination of players.
An example of such a situation is a sequencing problem where the tasks that have to
be performed are ordered according to some technological procedure, not necessarily
linearly ordered but the ordering of the tasks is represented by some digraph. Another
example can be taken from the following social choice situation. Consider a society
consisting of individuals with different opinions, possibly incomplete preferences,
about the importance of several proposals or tasks that need to be completed. If the
preferences of the individuals are aggregated by using majority voting, then it is well
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known that the resulting structure will be a digraph on the set of tasks. In this digraph,
a directed link from a task to another task means that the majority of the society thinks
the first task is more important than the latter one. In both examples the digraph might
not be cycle-free. In the first example directed cycles may appear in cases when the
production process includes, as subprocesses, the production of for example power
supply (e.g., electricity or fuel) needed both for the overall production and in particular
for these subprocesses as well. In the second example directed cycles stand for the
well known Condorcet paradox. In case when it is assumed that the digraph represents
a subordination of players we again have several options. It might be that each player
is followed by only one player not dominating him and this situation is analyzed in
Khmelnitskaya et al. (2014) where the Shapley value for digraph games is introduced.
Another option is when after each player several players may follow as long as this
does not hurt the total subordination among the remaining players prescribed by the
digraph.

In the paper we abide by the latter interpretation of a directed link and we introduce
a new component efficient solution concept for digraph games. To define this solution
wefirst introduce for any directed graph the set of so-called covering trees. The root of a
covering tree of a digraph is one of the undominated players (nodes) of the digraph. The
root has in every component of the set of remaining players one of its undominated
players as immediate successor. On its turn, each of these latter players in every
subcomponent of the set of remaining players in the component the player belongs to
has one of the undominated players in this subcomponent as immediate successor, and
so on. For instance, in the example considering a sequencing problem the unrelated
tasks can be performed at the same time and once a task has been completed the
remaining succeeding tasks can be split into groups of unrelated tasks and next in
every group a task is performed that is not dominated by any other task in that group,
and so on. Since every digraph on a finite set has at least one undominated node, the
collection of covering trees defined in this way is nonempty. In every covering tree of
a digraph, the dominance relation between the players in the digraph is preserved in
the sense that each player is an undominated player in the the subgraph on the set of
his successors in the tree together with himself. To every covering tree corresponds a
unique marginal contribution vector in which every player receives as payoff what he
contributes in worth as undominated player when joining all the components of the
set of his successors in the tree. The average covering tree value of a digraph game is
then the average of the marginal contribution vectors that correspond to all covering
trees of the underlying digraph.

We also introduce a convexity-type condition underwhich the solution is an element
of the core and therefore cannot be blocked by any subset of connected players. In case
the digraph is a tree this condition is weaker than superadditivity. For this case there
is only one covering tree, the tree itself, and the average covering tree value is equal
to the tree value first introduced in Demange (2004) under the name of hierarchical
outcome and later axiomatized in Khmelnitskaya (2010). For digraph games with
complete communication structure the average covering tree value is equal to the
Shapley value (cf. Shapley 1953) of the underlying game. The solution can also be
applied to undirected graph games by taking the directed analog of the undirected
graph, obtained by replacing each undirected link between two players by two directed
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links in both directions. For this class of games, the average covering tree value is equal
to the gravity center solution. This allows to consider the average covering tree value
for digraph games as a generalization of the gravity center solution for undirected
graph games. When for the class of undirected graph games only the covering trees
of the directed analog that are also spanning trees of the graph are considered, the
average covering tree value coincides with the average tree solution. Besides, the
average covering tree value coincides with the Shapley value for digraph games if all
covering trees of the digraph are linear.

The structure of the paper is as follows. Basic definitions and notation are given in
Sect. 2. Covering trees of a digraph and the average covering tree value are defined
in Sect. 3. Section 4 studies properties of the average covering tree value and its
stability. The application of the average covering tree value to undirected graph games
is discussed in Sect. 5.

2 Preliminaries

A cooperative game with transferable utility, or TU game, is a pair (N , v), where
N = {1, . . . , n} is a finite set of n ≥ 2 players and v : 2N → IR is a characteristic
function defined on the power set of N , satisfying v(∅) = 0. A subset S ⊆ N is
a coalition and the associated real number v(S) represents the worth of coalition S,
which can be freely distributed amongst the members of S. We denote the set of TU
games with fixed player set N by GN . For simplicity of notation and if no ambiguity
appears we write v when we refer to a game (N , v) ∈ GN . A game v ∈ GN is
superadditive if v(S ∪ Q) ≥ v(S) + v(Q) for all S, Q ⊆ N such that S ∩ Q = ∅, and
v ∈ GN is convex if v(S ∪ Q) + v(S ∩ Q) ≥ v(S) + v(Q) for all S, Q ⊆ N .

A payoff vector is a vector x ∈ IRN with i th component xi being the payoff to
player i ∈ N . A value on GN is a function ξ : GN → IRN that assigns to every game
v ∈ GN a payoff vector ξ(v) ∈ IRN with ξi (v) as the payoff to player i ∈ N . In the
sequel we use notation x(S) = ∑

i∈S xi for any x ∈ IRN and S ⊆ N . |A| denotes the
cardinality of a finite set A.

The cooperation structure on the player set N is specified by a graph, directed or
undirected, on N . A graph on N consists of N as the set of nodes and for a directed
graph, or digraph, a collection of ordered pairs � ⊆ {(i, j) | i, j ∈ N , i 	= j} as
the set of directed links (arcs) from one player to another player in N , and for an
undirected graph a collection of unordered pairs L ⊆ {{i, j} | i, j ∈ N , i 	= j} as
the set of links (edges) between two players in N . An undirected graph L on N we
identify with its directed analog, �L = {(i, j) | {i, j} ∈ L}. We say that a digraph �

on N contains an undirected link {i, j}, if both (i, j) ∈ � and ( j, i) ∈ �.
For a digraph � on N , a sequence of different players (i1, . . . , ik), k ≥ 2, is a path

in � between players i1 and ik if {(ih, ih+1), (ih+1, ih)} ∩ � 	= ∅ for h=1, . . . , k−1,
and a directed path in� from player i1 to player ik if (ih, ih+1) ∈ � for h=1, . . . , k−1.
Players i and j in N are connected in � if there exists a path in � between i and j .
� is connected if any two different nodes in N are connected in �. If there exists a
directed path in � from player i ∈ N to player j ∈ N , then j is a successor of i and
i is a predecessor of j in �. If (i, j) ∈ �, then player j is an immediate successor
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of player i and player i is an immediate predecessor of j in �. For i ∈ N , S�(i) is
the set of successors of player i in � and S̄�(i) = S�(i) ∪ {i} is the set of successors
of i in � together with player i . A path (i1, . . . , ik), k ≥ 3, in � is a cycle in � if
{(ik, i1), (i1, ik)} ∩ � 	= ∅, and a directed path (i1, . . . , ik), k ≥ 2, in � is a directed
cycle in � if (ik, i1) ∈ �.1 A digraph � on N is cycle-free if it contains no directed
cycles, i.e., no node is a successor of itself, and� is strongly cycle-free if it is cycle-free
and contains no cycles.

Given a digraph � on N and coalition S ⊆ N , the subgraph of� on S is the digraph
�|S = {(i, j) ∈ � | i, j ∈ S} on S. A coalition S ⊆ N is connected in � if �|S is
connected. For S ⊆ N , C�(S) denotes the collection of subsets of S being connected
in �, and S/� is the collection of maximal connected subsets, the components, of S
in �.

A digraph T on N is a tree if there is a unique player without predecessors, the root
of the tree, denoted by r(T ), and for every other player in N there is a unique directed
path in T from r(T ) to that player. Note that a tree is a connected strongly cycle-free
digraph. A player in a tree having no successors is a leaf. A tree T on N is a spanning
tree of a digraph � on N if T ⊆ �. A digraph composed by a number of disjoint trees
is a forest. A tree in which each player has at most one immediate successor is linear.

Given a digraph � on N and coalition S ⊆ N , player i ∈ S dominates player j ∈ S
in S if j ∈ S�|S (i) and i /∈ S�|S ( j). Player i ∈ S is an undominated player in �|S if
i ∈ S�|S ( j) implies j ∈ S�|S (i). Notice that an undominated player in �|S is either
a node in S without predecessors in �|S or a member of at least one directed cycle in
�|S . For a digraph � on N and coalition S ⊆ N , U�(S) denotes the set of players
undominated in �|S . Since N is assumed to be finite, U�(S) 	= ∅ for any nonempty
coalition S ⊆ N . A tree has precisely one undominated player, being the root of the
tree.

A pair (v, �) of a TU game v ∈ GN and digraph � on N constitutes a game
with directed cooperation structure or digraph game on N . The set of all digraph
games on a fixed player set N is denoted by GΓ

N . A digraph game (v, �) ∈ GΓ
N is

superadditive (convex) if the game v is superadditive (convex). A value on GΓ
N is a

function ξ : GΓ
N → IRN that assigns to every digraph game (v, �) a vector of payoffs

ξ(v, �) ∈ IRN with ξi (v, �) as the payoff to player i ∈ N .
Following the assumption of Myerson (1977) for undirected graph games, it is

assumed that only in a connected coalition players are able to cooperate and obtain the
total worth of the coalition. In the remaining of the paper it is assumed without loss
of generality that the grand coalition of all players forms a connected set in the given
communication digraph. If this is not the case, then each component in the digraph
can be considered separately.

3 The average covering tree value

In this section we introduce a new solution concept for the class of digraph games
which is defined as the average of the marginal contribution vectors corresponding

1 Note that in a digraph a cycle of length 2 is not defined.
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to all of the so-called covering trees of the digraph. Given a digraph � on N , for the
construction of a covering tree T of � we apply the following algorithm.

Algorithm 3.1 0. Choose i ∈ U�(N ). Set T = ∅, Si = N\{i}, and S j = ∅ for
j ∈ N\{i}.

1. Let Si/� = {C1, . . . ,Cm}. For k = 1, . . . ,m, choose jk ∈ U�(Ck) and set
S jk = Ck\{ jk}. Set T = T ∪ {(i, j1), . . . , (i, jm)} and Si = ∅.

2. If S j = ∅ for all j ∈ N , then stop. Otherwise, choose i ∈ N such that Si 	= ∅ and
return to Step 1.

In the initial step 0 one of the undominated players in � is chosen as the root
r(T ) of the covering tree, i.e., r(T ) ∈ U�(N ). We arrive to the iterative step 1 with
some player i selected in the previous step. Player i is an undominated player of some
connected coalition in �, where Si is the set of remaining players in this connected
coalition, in particular, when coming from the initial step player i is the root r(T ) and
Si = N\{r(T )}. The set of players in Si is the union of one or more components in
�, denoted by C1, . . . ,Cm . In each component Ck , k = 1, . . . ,m, an undominated
player jk is chosen, which then becomes an immediate successor of i in the tree T ,
and by S jk we denote the set of remaining players in Ck , i.e., S jk = Ck\{ jk}. If in step
2 all sets S j , j ∈ N , are empty, then there are no players left and the construction of
the covering tree T has been completed. Otherwise, some player i with nonempty set
Si is chosen and the procedure with step 1 is repeated.

Remark 3.2 From Algorithm 3.1 for the construction of a covering tree it follows that
a tree T on N is a covering tree of a digraph � on N if and only if for all (i, j) ∈ T it
holds that i ∈ U�(S̄T (i)) and S̄T ( j) ∈ ST (i)/�.

This means that a tree is a covering tree of a digraph if and only if any player i ∈ N
is an undominated player in the set consisting of himself and all his successors in the
tree and that each of his immediate successors in the tree together with his successors
in the tree is a component of i’s successor set in the digraph.

Since the set of all players in a digraph game is assumed to be a connected set
in the digraph, the set of nodes in a covering tree of the digraph coincides with the
set of players. A covering tree of a digraph may contain directed links that do not
belong to the digraph, i.e., a covering tree is not necessarily a spanning tree of the
digraph. For an arbitrary digraph the number of covering trees depends on the number
of undominated players in each component of all subgraphs. In case the digraph is a
tree, there exists only one undominated player in every component of any subgraph
of the tree, so that the only covering tree is the tree itself. On the other hand, for the
complete digraph there exists a directed link from any player to any other player, so
that there is only one component in any subgraph and every player of a coalition is
undominated. Hence, the number of covering trees of the complete graph �c

N on N is
equal to n! and every covering tree is linear.

Example 3.3 Consider the digraphs � = {(1, 3), (2, 3)}, �′ = {(1, 2), (2, 3), (3, 4),
(4, 1)}, and �′′ = {(1, 2), (1, 4), (2, 3), (3, 2), (3, 4), (3, 5), (4, 1)}, as depicted in
Fig. 1.
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(a) Digraph Γ.

1 2

3

(b) Digraph Γ′.

1 2

4 3

(c) Digraph Γ′′.

1 2

4 3

5

Fig. 1 Digraphs of Example 3.3

The sets of undominated players in the digraphs�,�′, and�′′ are {1, 2}, {1, 2, 3, 4},
and {1, 2, 3, 4}, respectively. Following Algorithm 3.1 we may construct the covering
trees of digraphs �, �′, and �′′, as depicted in Fig. 2.

We explain in detail the construction of the covering trees of the digraph �. In �

both players 1 and 2 are undominated and can be chosen as the root of a covering tree. If
player 1 is taken as the root, the remaining players 2 and 3 form a connected coalition in
�with only player 2 being undominated, yielding covering tree T1 = {(1, 2), (2, 3)}. If
player 2 is taken as the root, the remaining players 1 and 3 form a connected coalition in
� with only player 1 being undominated, yielding covering tree T2 = {(2, 1), (1, 3)}.

As we can see, covering trees may have different structures, in particular, some
of them can be linear. The two covering trees of the digraph � are linear but are not
spanning trees of �. In fact, � contains no spanning trees. On the other hand, all four
covering trees of �′ are linear spanning trees. Among the covering trees of �′′ the
trees T ′′

1 , T
′′
4 , T

′′
5 , and T ′′

7 are spanning trees, while T ′′
2 , T

′′
3 , T

′′
6 , and T ′′

8 are not.

(a) Covering trees of Γ. (b)Covering trees of Γ′.
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3

T2

2

1

3
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1

2

3
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2

2

3
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1
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3
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T ′
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(c) Covering trees of Γ′′.
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T ′′
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3

1 5

4

T ′′
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2
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1
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3
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1

2

T ′′
6

3

1 5

2 4

T ′′
7

4

1

2

3

5

T ′′
8

4

1

3

2 5

Fig. 2 Covering trees corresponding to the digraphs of Example 3.3
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The next proposition states that a covering tree of a directed graph preserves the
subordination between players prescribed by the digraph.

Proposition 3.4 For every covering tree T of a digraph� on N it holds that if (i, j) ∈ �

and i /∈ S�( j) then S̄�( j) ⊆ ST (i).

Proof Let i, j ∈ N be such that (i, j) ∈ � and i /∈ S�( j). If i = r(T ), then i /∈ S�( j)
and i 	= j imply S̄�( j) ⊆ N\{i} = ST (i). Suppose i 	= r(T ). The set {i} ∪ S̄�( j)
is a connected coalition in � and for every S ⊆ N such that S ⊇ {i} ∪ S̄�( j), player
i dominates any player of S̄�( j) in the subgraph �|S . Take any k ∈ N such that i ∈
ST (k). Then due to Algorithm 3.1 for constructing covering trees ST (k) ⊇ {i}∪ S̄�( j)
and so any player of S̄�( j) is dominated by i in the component of ST (k) in� containing
{i} ∪ S̄�( j). This also holds for the player k′ satisfying (k′, i) ∈ T . Since S̄T (i) is
the component of ST (k′) in � containing {i} ∪ S̄�( j) and i /∈ S�( j), it follows that
S̄�( j) ⊆ S̄T (i)\{i} = ST (i). �

The proposition says that if in a digraph � player i directly dominates player j ,
i.e., (i, j) ∈ � and i /∈ S�( j), then in any covering tree of � player i dominates both
player j and any of his successors in the digraph.

A covering tree of a digraph possesses also the next useful properties.

Proposition 3.5 Let T be a covering tree of a digraph � on N, then it holds that
(i) for all i ∈ N, S̄T (i) ∈ C�(N );
(ii) for all i, j ∈ N, if S̄T (i) ∩ S̄T ( j) = ∅, then S̄T (i) ∪ S̄T ( j) /∈ C�(N ).

Proof (i) Let i ∈ N . If i = r(T ), then S̄T (i) = N and by assumption N is a connected
coalition in �. If i 	= r(T ), there exists j ∈ N such that ( j, i) ∈ T which implies
S̄T (i) ∈ ST ( j)/�. Hence, S̄T (i) ∈ C�(N ).

(ii) Let i, j ∈ N such that S̄T (i)∩ S̄T ( j) = ∅. Since T is a covering tree, there exist
unique h, k,m ∈ N with k 	= m satisfying (h, k), (h,m) ∈ T , S̄T (i) ⊆ S̄T (k), and
S̄T ( j) ⊆ S̄T (m). Since S̄T (k) and S̄T (m) are two different components of ST (h) in
�, it holds that S̄T (k)∪ S̄T (m) /∈ C�(N ). Since S̄T (i) ⊆ S̄T (k) and S̄T ( j) ⊆ S̄T (m),
also S̄T (i) ∪ S̄T ( j) /∈ C�(N ). �

Property (i) of Proposition 3.5 says that in every covering tree of a digraph each
player togetherwith all his successors forms a connected set in the digraph,while prop-
erty (i i) states that the union of different branches of a covering tree is not connected
in the digraph.

Given a digraph game (v, �) ∈ GΓ
N and covering tree T of �, the marginal contri-

bution vector mT (v, �) ∈ IRN corresponding to T is defined as the payoff vector

mT
i (v, �) = v(S̄T (i)) −

∑

C∈ST (i)/�

v(C), for all i ∈ N . (1)

At the marginal contribution vector corresponding to a covering tree, any player
receives as payoff the difference between the worth of the set composed by himself
together with all his successors in the covering tree and the total worths of the compo-
nents of the set of all his successors in the covering tree. This difference is the player’s
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contribution in worth when he joins his successors in the covering tree as undominated
player to form a larger connected coalition.

Let T � denote the collection of covering trees of a digraph �.

Definition 3.6 For a digraph game (v, �) ∈ GΓ
N , the average covering tree value (ACT

value) is the average of themarginal contribution vectors corresponding to all covering
trees of the digraph �, i.e.,

ACT (v, �) = 1

|T �|
∑

T∈T �

mT (v, �).

Example 3.7 Consider a 5-player digraph game with characteristic function v(S) =
|S|2, S ⊆ N , and digraph �′′ depicted in Fig. 1c). The marginal contribution vectors
corresponding to the eight covering trees depicted in Fig. 2c are given by

mT ′′
1 (v, �′′) = (9, 7, 7, 1, 1), mT ′′

2 (v, �′′) = (9, 1, 13, 1, 1),

mT ′′
3 (v, �′′) = (3, 9, 11, 1, 1),

mT ′′
4 (v, �′′) = (1, 9, 11, 3, 1), mT ′′

5 (v, �′′) = (3, 1, 15, 5, 1),

mT ′′
6 (v, �′′) = (7, 1, 15, 1, 1),

mT ′′
7 (v, �′′) = (7, 5, 3, 9, 1), mT ′′

8 (v, �′′) = (7, 1, 7, 9, 1).

Whence we obtain that ACT (v, �′′) = ( 234 , 17
4 , 41

4 , 15
4 , 1).

When the digraph underlying a digraph game is a tree, there is only one covering
tree, the tree itself, and the average covering tree value is equal to the tree value for
forest digraph games first introduced in Demange (2004) under the name of hierar-
chical outcome and later axiomatized in Khmelnitskaya (2010). In case the digraph
is a complete graph, the average covering tree value is the average of the marginal
contribution vectors corresponding to n! covering trees, all of which are linear, and
therefore, it coincides with the Shapley value of the underlying game. Besides, if all
covering trees of the digraph are linear, the average covering tree value coincides with
the Shapley value for digraph games. The particular case of the average covering tree
value for undirected graph games is discussed in Sect. 5.

4 Properties and stability of the average covering tree value

In this section we show that the average covering tree value is (component) efficient
and satisfies linearity, the null-player property, hierarchical efficiency, the weak player
property, and is independent of inessential links. We also state conditions which guar-
antee the average covering tree value to be an element of the core.2 The first three
properties are well-known in the literature.

For a digraph game (v, �) ∈ GΓ
N , a payoff vector x ∈ IRN is component efficient if

x(C) = v(C) for all C ∈ N/�, and x is efficient if x(N ) = v(N ).

2 The notion of the core for classical TU games is introduced by Gillies (1953).
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A value ξ on G ⊆ GΓ
N is (component) efficient ((C)E) if for every (v, �) ∈ G,

ξ(v, �) is (component) efficient.
A number of other values known in the literature, like the web values, in particular

the tree value, and the average web value for digraph games introduced in Khmelnit-
skaya and Talman (2014) and the covering values for digraph games studied in Li and
Li (2011), are not (component) efficient. Moreover, the latter values are defined only
for cycle-free digraph games.

A value ξ on G ⊆ GΓ
N is linear (L) if for every (v, �), (w, �) ∈ G and a, b ∈ IR,

ξ(av + bw,�) = aξ(v, �) + bξ(w, �), where (av + bw)(S) = av(S) + bw(S) for
all S ⊆ N .

For a digraph game (v, �) ∈ GΓ
N , connected coalition S ∈ C�(N ), and player

i ∈ S, the marginal contribution of i to S is defined as

�
(v,�)
i (S) = v(S) −

∑

C∈(S\{i})/�

v(C).

A player i ∈ N is a null-player in (v, �) ∈ GΓ
N if �

(v,�)
i (S) = 0 for all S ∈ C�(N )

such that S � i .
A value ξ on G ⊆ GΓ

N satisfies the null-player property (NP) if for every (v, �) ∈ G
and null-player i in (v, �), ξi (v, �) = 0.

Given a digraph � on N , a coalition S ⊆ N is a closed hierarchy in � if it satisfies
the following properties:

(i) S = S̄�(i) for some i ∈ N ;
(ii) j ∈ N\S and h ∈ S\U�(S) imply ( j, h) /∈ �.
A coalition is a closed hierarchy in a digraph if it consists of a player and all

his successors in the digraph and, moreover, the only players in the coalition that
are dominated by players outside the coalition are the undominated players in the
coalition. Hence, any directed path from a player outside the coalition to a player
inside the coalition contains an undominated player in the coalition.

A value ξ on G ⊆ GΓ
N is hierarchically efficient (HE) if for every (v, �) ∈ G and

closed hierarchy S ⊆ N in �,
∑

i∈S ξi (v, �) = v(S).
Given a digraph game, a hierarchical efficient value assigns its worth to each closed

hierarchy in the digraph. For a digraph game with the digraph being a tree, a hierar-
chically efficient value assigns to every coalition composed by a player together with
all his successors in the tree exactly its worth.

Given a digraph � on N , a player i ∈ N is a weak player in � if i has no successors
in �, i.e., S�(i) = ∅.

A value ξ on G ⊆ GΓ
N possesses the weak player property (WP) if for every

(v, �) ∈ G and weak player i ∈ N in �, ξi (v, �) = v({i}).
A value satisfying the weak player property assigns his own worth to every player

without successors in the digraph. Such a player is not able to obtain any other payoff
because this player cannot be an undominated player in any non-singleton coalition
he belongs to. In case the digraph is a tree, the weak player property means that every
player being a leaf of the tree receives his own worth. Note that every weak player
forms a closed hierarchy in the digraph.
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Given a digraph � on N , a directed link (i, j) ∈ � is inessential in � if i /∈ S�( j)
and there exists i ′ ∈ N such that (i, i ′) ∈ �, i /∈ S�(i ′), and j ∈ S�(i ′). A directed
link (i, j) ∈ � is inessential if it is possible to reach player j from i also by using
a directed path different than link (i, j). The absence of an inessential link does not
change the set of predecessors of a player.

A value ξ on G ⊆ GΓ
N is independent of inessential links (IIL) if for every (v, �)∈G

and inessential directed link (i, j)∈� it holds that ξ(v, �)=ξ(v, �\{(i, j)}).
A value being independent of inessential links assigns the same solution to a digraph

game when inessential links are removed from (or added to) the digraph.

Theorem 4.1 The average covering tree value on GΓ
N satisfies component efficiency,

linearity, the null-player property, hierarchical efficiency, the weak player property,
and independence of inessential links.

Proof (CE) For a connected digraph game (v, �) ∈ GΓ
N , the average covering tree

value is the average of the marginal contribution vectors corresponding to all covering
trees of the digraph �. By (1) the marginal contribution vector corresponding to any
covering tree of � distributes the worth v(N ) and is therefore efficient. If the digraph
� is not connected, then the average covering tree solution is applied separately to
each component of N in � and therefore distributes for every C ∈ N/� the worth
v(C) over all players in C . Whence the component efficiency of the average covering
tree value follows.

(L) Given two digraph games (v, �) and (w, �) in GΓ
N and real numbers a, b ∈ IR,

since the digraph representing the communication structure is the same for all three
digraph games (v, �), (w, �) and (av +bw,�), the collection of covering trees is the
same for these three digraph games. Since the solution is a linear combination of the
marginal contribution vectors induced by all covering trees and each of these marginal
contribution vectors linearly depends on the worths of the coalitions, the ACT solution
satisfies linearity.

(NP) Take any digraph game (v, �) ∈ GΓ
N and null-player i ∈ N for (v, �). We

show mT
i (v, �) = 0 for any T ∈ T � , which implies ACTi (v, �) = 0. Since i is a

null-player for (v, �), i ∈ S̄T (i), and S̄T (i) ∈ C�(N ), we have

�
(v,�)
i (S̄T (i)) = v(S̄T (i)) −

∑

C∈(S̄T (i)\{i})/�

v(C) = 0.

Since S̄T (i)\{i} = ST (i), we obtain

v(S̄T (i)) −
∑

C∈ST (i)/�

v(C) = 0,

which implies
mT

i (v, �) = v(S̄T (i)) −
∑

C∈ST (i)/�

v(C) = 0.

(HE /WP) Take any digraph game (v, �) ∈ GΓ
N and let S ⊆ N be a closed hierarchy.

Clearly, S = S̄�(u) for any u ∈ U�(S). Moreover, for all Q ∈ C�(N ) with Q � S
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we have U�(Q) ∩ S = ∅ and for any i ∈ Q\S there exists Q′ ∈ (Q\{i})/� such
that S ⊆ Q′. Since the number of players is finite, for all T ∈ T � we must have that
S̄T (u) = S for some u ∈ U�(S), which implies

∑
i∈S ACTi (v, �) = v(S). Since

a weak player forms a closed hierarchy by its own, it holds that a value satisfying
hierarchical efficiency also satisfies the weak player property.

(IIL) Take any digraph game (v, �) ∈ GΓ
N and let (i, j) ∈ � be an inessential

directed link, so there exists i ′ ∈ N such that (i, i ′) ∈ �, i /∈ S�(i ′), and j ∈ S�(i ′).
Let �′ = �\{(i, j)}. We claim that T � = T �′

.
Take any T ∈ T � . Since (i, i ′) ∈ � and i /∈ S�(i ′), Proposition 3.4 implies

S̄�(i ′) ⊆ ST (i). Hence, for all S ⊇ ST (i), U�(S) = U�′
(S) and S/� = S/�′.

Moreover, �|ST (i) = �′|ST (i), which implies that T ∈ T �′
.

Conversely, take any T ′ ∈ T �′
. The only difference between� and�′ is the absence

of the directed link (i, j). So, also for �′ we have that (i, i ′) ∈ �′ and i /∈ S�′
(i ′).

Again from Proposition 3.4 it follows that S̄�′
(i ′) ⊆ ST

′
(i).Hence, for all S ⊇ ST

′
(i),

U�′
(S) = U�(S) and S/�′ = S/�. Moreover, �′|ST ′

(i) = �|ST ′
(i), which implies

that T ′ ∈ T � . �
Following Myerson, our basic assumption is that only connected players are able

to cooperate. Whence the core of a digraph game (v, �) ∈ GΓ
N is defined as the set of

component efficient payoff vectors that are not blocked by any connected coalition,
i.e.,

C(v, �) = {x ∈ IRN | x(C) = v(C) for all C ∈ N/�; x(S)

≥ v(S) for all S ∈ C�(N )}.

A value ξ is stable on G ⊆ GΓ
N if for every (v, �) ∈ G, ξ(v, �) ∈ C(v, �).

In case the underlying digraph is a tree, it is shown in Demange (2004) that under
the mild condition of superadditivity the corresponding unique marginal contribution
vector, which coincides with the average covering tree value, is efficient and cannot be
blocked by any connected coalition and, therefore, it belongs to the core of the digraph
game.However, for digraph gameswithmore general digraph structure superadditivity
cannot guarantee even the nonemptiness of the core. Below we introduce a sufficient
convexity-type condition that ensures the core stability of the average covering tree
value.

Definition 4.2 Given a digraph � on N , a connected coalition S ∈ C�(N ) is hierar-
chical in � if for any i ∈ S and j ∈ N such that (i, j) ∈ � and i /∈ S�( j) it holds that
S̄�( j) ⊆ S.

A connected coalition is hierarchical in a digraph if whenever a player of the coali-
tion dominates an immediate successor in the digraph then this immediate successor
together with all his successors in the digraph also belong to the coalition. From
Proposition 3.4 we immediately obtain the following corollary.

Corollary 4.3 Given a digraph � on N, for any covering tree T ∈ T � and i ∈ N it
holds that the coalition S̄T (i) is hierarchical in �.
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Definition 4.4 A digraph game (v, �) ∈ GΓ
N is �-convex if

v(S) + v(Q) ≤ v(S ∪ Q) +
∑

C∈(S∩Q)/�

v(C)

for every S, Q ∈ C�(N ) that satisfy the following properties:

(i) S ∪ Q ∈ C�(N );
(ii) S or Q is hierarchical in �;
(iii) every C ∈ (S ∩ Q)/� is hierarchical in �.

On the class of digraph games with complete communication structure�-convexity
reduces to convexity because for those games all subsets of N are hierarchical con-
nected coalitions. If the digraph � on N is not complete, then the condition of
�-convexity of a digraph game (v, �) ∈ GΓ

N is weaker than the condition of con-
vexity of the TU game v. For convexity of a TU game v the convexity condition
v(S) + v(Q) ≤ v(S ∪ Q) + v(S ∩ Q) is required for all S and Q. However, for �-
convexity this condition is only required for those S and Q such that both are connected
coalitions, their union is a connected coalition, at least one of them is hierarchical,
and each component of their intersection is hierarchical as well. Moreover, the worth
of their intersection is replaced by the sum of the worths of the components of the
intersection. For example, in case the digraph is a tree, the next proposition shows that
�-convexity is weaker than �-superadditivity.

A digraph game (v, �) ∈ GΓ
N is �-superadditive if v(S) + v(Q) ≤ v(S ∪ Q) for

any disjoint connected coalitions S and Q such that S ∪ Q is a connected coalition.
Note that the condition of �-superadditivity for a digraph game (v, �) is weaker

than the condition of superadditivity for the game v.

Proposition 4.5 Any�-superadditive digraph game (v, �) ∈ GΓ
N with digraph� being

a tree is �-convex.

Proof Take a �-superadditive digraph game (v, �) ∈ GΓ
N with � being a tree. Let

S, Q ∈ C�(N ) be two distinct connected coalitions such that S ∪ Q is a connected
coalition in �, Q is hierarchical in �, and each C ∈ (S ∩ Q)/� is hierarchical in �.
We need to show that

v(S ∪ Q) +
∑

C∈(S∩Q)/�

v(C) ≥ v(S) + v(Q).

If S ∩ Q = ∅, then �-superadditivity implies

v(S ∪ Q) +
∑

C∈(S∩Q)/�

v(C) = v(S ∪ Q) ≥ v(S) + v(Q).

Suppose that S ∩ Q 	= ∅ and S\Q 	= ∅. Then r(�|Q) ∈ S ∩ Q because � is a tree.
Since every C ∈ (S ∩ Q)/� must be a connected coalition hierarchical in �, it holds
that S ∩ Q = Q, and so Q ⊂ S. This implies
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v(S ∪ Q) +
∑

C∈(S∩Q)/�

v(C) = v(S ∪ Q) + v(S ∩ Q) = v(S) + v(Q).

Next, suppose S ∩ Q 	= ∅ and S\Q = ∅. Then r(�|S) ∈ S ∩ Q because � is a tree.
Since every C ∈ (S ∩ Q)/� must be a connected coalition hierarchical in �, it holds
that S ∩ Q = S and S is also a connected coalition hierarchical in �, and so S ⊂ Q.
This implies

v(S ∪ Q) +
∑

C∈(S∩Q)/�

v(C) = v(S ∪ Q) + v(S ∩ Q) = v(Q) + v(S).

�
The next theorem shows that for any �-convex digraph game (v, �) ∈ GΓ

N the
average covering tree value is an element of the core, i.e., ACT (v, �) ∈ C(v, �).

Theorem 4.6 The average covering tree value is stable on the class of �-convex
digraph games.

Proof Consider a �-convex digraph game (v, �) ∈ GΓ
N . We show that for every

covering tree T ∈ T � it holds that its corresponding marginal contribution vector
mT (v, �) is an element of the core and therefore also its average must be. Take any
T ∈ T � . Component efficiency of ACT (v, �) follows fromTheorem4.1. To show that∑

i∈S mi
T (v, �) ≥ v(S) for any S ∈ C�(N ), consider the subgraph T |S . It has com-

ponents S1, . . . , Sk′ . Note that T |S1 , . . . , T |Sk′ are all subtrees of T . For k = 1, . . . , k′,
let rk denote the root of subtree T |Sk .Without loss of generality, let r1, . . . , rk′ be such
that k1 < k2 implies S̄T (rk1) ⊂ S̄T (rk2) or S̄

T (rk1)∩ S̄T (rk2) = ∅. For k = 1, . . . , k′,
let Grk be the set of immediate successors of the players of Sk in T that are not in
S, i.e., Grk = { j ∈ N\S | (i, j) ∈ T for some i ∈ Sk}. Let R = {r1, . . . , rk′ } and
I = ∪r∈RGr . We define a tree T ∗ with root rk′ on the set of players R ∪ I , where the
set of immediate successors of a player r ∈ R is given by Gr and the set of immediate
successors of a player i ∈ I is given by the set

Gi = {r ∈ R| S̄T (r) ⊂ S̄T (i), �r ′ ∈ R\{r} with S̄T (r) ⊂ S̄T (r ′) ⊂ S̄T (i)}.

Let I = {i1, . . . , il ′ }. Without loss of generality, let i1, . . . , il ′ be such that l1 < l2

implies k1 ≤ k2 where kh , h = 1, 2, is such that (rkh , ilh ) ∈ T ∗. For l = 1, . . . , l ′
consider the sets S̄T (il) and Bil−1 = S ∪ (S̄T (i1) ∪ · · · ∪ S̄T (il−1)). By Corollary
4.3, S̄T (il) is a connected coalition hierarchical in � for any l = 1, . . . , l ′. To apply
the induction argument on l in order to show that the set Bil is a connected coalition,
suppose that Bil−1 is a connected coalition. Notice that for l = 1 the set Bil−1 = S
is a connected coalition. Let i ∈ N be the unique immediate predecessor of il in
T , then from the construction of T ∗ it follows that i ∈ S and from Remark 3.2 it
follows that S̄T (il) ∈ ST (i)/�. Due to (i) of Proposition 3.5 S̄T (i) is a connected
coalition which implies that (i, j) ∈ � for some j ∈ S̄T (il). Because j ∈ S̄T (il)
and i ∈ Bil−1 , (i, j) ∈ � implies that their union, which is equal to Bil , is indeed a
connected coalition.Moreover, by construction of T ∗, the components of their possibly

123



Journal of Combinatorial Optimization (2020) 39:315–333 329

empty intersection are the hierarchical connected coalitions S̄T (r), r ∈ Gil . From �-
convexity it then follows that

v(S ∪ (S̄T (i1) ∪ · · · ∪ S̄T (il−1))) + v(S̄T (il))

≤ v(S ∪ (S̄T (i1) ∪ · · · ∪ S̄T (il))) +
∑

r∈Gil

v(S̄T (r)).

By repeated application of this inequality for l = 1, . . . , l ′ and since S ∪
(
⋃l ′

l=1 S̄
T (il)) = S̄T (rk′) it follows that

v(S) +
l ′∑

l=1

v(S̄T (il)) ≤ v(S̄T (rk′)) +
l ′∑

l=1

∑

r∈Gil

v(S̄T (r)).

Because {i1, . . . , il ′ } = ⋃k′
k=1 Grk , the latter inequality can be rewritten as

v(S) +
k′

∑

k=1

∑

i∈Grk

v(S̄T (i)) ≤ v(S̄T (rk′)) +
k′

∑

k=1

∑

i∈Grk

∑

r∈Gi

v(S̄T (r)).

Since T ∗ is a tree, every coalition S̄T (rk), k = 1, . . . , k′, appears exactly once in
the right hand side and we obtain

v(S) +
k′

∑

k=1

∑

i∈Grk

v(S̄T (i)) ≤
k′

∑

k=1

v(S̄T (rk)).

Since for k = 1, . . . , k′, Sk = S̄T (rk)\(⋃i∈Grk
S̄T (i)), we have

∑

i∈S
mi

T (v, �) =
k′

∑

k=1

⎡

⎣v(S̄T (rk)) −
∑

i∈Grk

v(S̄T (i))

⎤

⎦ .

From the last two equations it follows that
∑

i∈S mi
T (v, �) ≥ v(S), which completes

the proof. �

5 Undirected graph games

In this section we consider the class of undirected (connected) graph games. As dis-
cussed in the preliminaries any undirected graph L on the player set N can be identified
with its directed analog�L by replacing each undirected link of L between two players
by two directed links with opposite direction. In the directed analog of an undirected
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graph, every player in any connected coalition is undominated and therefore any con-
nected coalition is hierarchical in the digraph. This follows from the fact that every
successor of a player is also a predecessor of that player. Moreover, as it follows from
Remark 3.2, if (i, j) is a link in a covering tree T of the directed analog of an undi-
rected graph L , then the set consisting of j and all his successors in T is a component
in L of the successor set of i in T .

In Koshevoy and Talman (2014) theGravity Center orGC solution is introduced for
TU games where the communication structure between players is represented by an
arbitrary collection of coalitions which includes all singletons and the grand coalition.
When applied to an undirected graph the collection of feasible coalitions is precisely
the set of connected coalitions in the graph. In this setting a strictly nested set, denoted
byN , is a subcollection of feasible coalitions where for each pair of feasible coalitions
one is a subset of the other or their intersection is empty and the union of any number
of disjoint feasible coalitions is not feasible. Each maximal strictly nested set induces
a tree T on N such that for each i ∈ N the set S̄T (i) is the smallest coalition in N
containing i and (i, j) ∈ T if S̄T ( j) is the largest subset of ST (i) in N containing j .
The GC solution is the average of the marginal contribution vectors that correspond to
the trees that are induced by all maximal strictly nested sets of the set system. In case
the collection of feasible coalitions is the set of connected coalitions of an undirected
graph, the set of trees induced by the collection of maximal strictly nested sets is
equal to the set of covering trees of the directed analog of the undirected graph. This
is because for every covering tree the collection of sets consisting of any player and
his successors is a maximal strictly nested set, and conversely every maximal strictly
nested set induces a covering treewith the sets consisting of a player and his successors
being the elements of the strictly nested set.

For an undirected graph game (v, L) on N , let GC(v, L) denote the GC solution
of (v, L), i.e., GC(v, L) is the average of the marginal contribution vectors that cor-
respond to all maximal strictly nested sets of the collection of connected coalitions
of the graph L . Then the average covering tree value of the digraph game (v, �L) is
equal to the GC solution of the undirected graph game (v, L).

Proposition 5.1 For an undirected graph game (v, L) it holds that ACT (v, �L) =
GC(v, L).

To guarantee that the average covering tree value is core stable, in Definition 4.4 the
concept of�-convexity is introduced for a digraphgame (v, �). In case of anundirected
graph game (v, L) we may use �L -convexity of the game to obtain stability of the
average covering tree solution. This stability condition coincides with the convexity-
type condition given in Koshevoy and Talman (2014).

Corollary 5.2 For an undirected graph game (v, L), the average covering tree value
ACT (v, �L) is an element of the core if for any two connected coalitions S and Q in
L such that S ∪ Q is a connected coalition in L it holds that

v(S) + v(Q) ≤ v(S ∪ Q) +
∑

C∈(S∩Q)/�L

v(C). (2)
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Herings et al. (2008) introduce the average tree solution for TU games with cycle-
free undirected graph communication structure. This solution is generalized for TU
games with arbitrary undirected graph communication structure in Herings et al.
(2010). The average tree solution is defined as the average of the marginal vectors
that correspond to all spanning normal trees of the undirected graph. For an undi-
rected graph L on N , a tree T on N is a spanning tree of L if (i, j) ∈ T implies
{i, j} ∈ L , and in Diestel (2005) a tree T on N is defined as a normal tree of L if
the ends of every link in L are comparable in the tree order of T . A tree T on N is
therefore a spanning normal tree of L if for every (i, j) ∈ T it holds that {i, j} ∈ L
and S̄T ( j) ∈ ST (i)/�L . The collection of spanning normal trees of an undirected
graph corresponds therefore one-to-one to the set of spanning covering trees of its
directed analog.

Proposition 5.3 Let L be an undirected graph on N. A tree T on N is a spanning
normal tree of L if and only if T is a spanning covering tree of �L .

On the class of undirected graph games the average tree solution is therefore equal
to the average of the marginal contribution vectors that correspond to all covering trees
that are also spanning trees of the directed analog of the graph. We remark that for a
directed graph not being the directed analog of an undirected graph spanning covering
trees may not exist. For example, the digraph � of Example 3.3 has no spanning
covering trees.

For undirected graph games, Myerson (1977) introduces the Myerson value. In
order to find the Myerson value of an undirected graph game, the so-called Myerson
restricted game and all permutations on N are considered. Every permutation yields a
marginal contribution vector of the Myerson restricted game and the Myerson value
is the average of all these n! marginal contribution vectors. If the communication
structure of an undirected graph game is not complete, the same marginal contribution
vector may correspond to different permutations. However, for the average covering
tree value of the directed analog of an undirected graph game, all marginal contribution
vectors will differ from each other, see Koshevoy and Talman (2014).

The next example illustrates for an undirected graph game the differences between
the average covering tree value (or GC solution), the Myerson value, and the average
tree solution.

Example 5.4 Consider the undirected graph game (v, L) with three players, where
L = {{1, 2}, {2, 3}} and v(S) = 0 if |S| ≤ 1 and v(S) = |S|2 if |S| ≥ 2. The graphical
representation of the undirected graph L , its directed analog �L , and the five covering
trees of �L are depicted in Fig. 3.

For each of the five covering trees of the digraph �L shown in Fig. 3c, a different
marginal contribution vector is obtained and their average is equal to the average
covering tree value of the digraph game (v, �L ). The fivemarginal contribution vectors
whose average is theGC solution of the undirected graph game (v, L) coincidewith the
marginal vectors corresponding to these covering trees. The covering trees T1, T2, T3
are the spanning normal trees of the undirected graph L, and their average is equal to
the average tree solution of the undirected graph game (v, L). Those three trees are
also the spanning covering trees of the digraph �L .
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(a) Undirected graph L.

1 2 3

(b) Directed analog ΓL.

1 2 3

(c) Covering trees of ΓL.

T1

1

2

3

T2

2

31

T3

3

2

1

T4

1

3

2

T5

3

1

2

Fig. 3 Undirected graph and its directed analog with corresponding covering trees of Example 5.4

In Fig. 4, the imputation set of the directed graph game (v, �L) is depicted. The
shaded area in the figure shows the set of core allocations and each of the five extreme
points of the core corresponds to a marginal contribution vector corresponding to
one of the covering trees. The average covering tree solution for the directed graph
game (v, �L) and therefore also the GC solution for the undirected graph game (v, L)

is the average of all five different marginal contribution vectors and is the gravity
center of the core for this example. The average tree solution for the undirected graph
game (v, L) is the average of the three marginal contribution vectors mT1 , mT2 , mT3 .

Since there are three players, there are six permutations with corresponding marginal
contribution vectors that determine the Myerson value. Two permutations, (1, 3, 2)
and (3, 1, 2), yield the same marginal vector mT2 . For the Myerson value, the vector

(9, 0, 0) (0, 9, 0)

(0, 0, 9)

x1 + x2 = 4

x2 + x3 = 4

mT2

mT1

mT4

mT5 mT3

Fig. 4 Imputation set of the digraph game of Example 5.4
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mT2 is therefore counted twice as marginal contribution vector, while each of the other
four vectors are counted once as marginal contribution vector.

To conclude, we have shown that based on the representation of an undirected
graph via its directed analog, the gravity center solution for an undirected graph game
coincides with the average covering tree value for the corresponding digraph game
determined by the directed analog of the graph. Therefore, the average covering tree
value for digraph games can be considered as a generalization of the gravity center
solution for undirected graph games.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Interna-
tional License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
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