6 research outputs found

    A distributed control for a grasping function of a hyperredundant arm

    Get PDF
    The paper focuses on the control problem of a tentacle robot that performs the coil function of grasping. First, the dynamic model of a hyperredundant arm with continuum elements produced by flexible composite materials in conjunction with active-controllable electro-rheological fluids is analyzed. Secondly, both problems, i.e. the position control and the force control are approached. The difficulties determined by the complexity of the non-linear integraldifferential equations are avoided by using a basic energy relationship of this system. Energy-based control laws are introduced for the position control problem. A force control method is proposed, namely the DSMC method in which the evolution of the system on the switching line by the ER fluid viscosity is controlled. Numerical simulations are also presente

    A new geometrical approach to solve inverse kinematics of hyper redundant robots with variable link length

    Get PDF
    In this paper a new approach that generates a general algorithm for n-link hyper-redundant robot is presented. This method uses repetitively the basic inverse kinematics solution of a 2- link robot on some virtual links,where the virtual links are defined following some geometric proposition. Thus, it eliminates the mathematical complexity in computing inverse kinematics solution of n-link hyper redundant robot. Further, this approach can handle planar manipulator with variable links eliminating singularity. Numerical simulations for planar hyper redundant models are presented in order to illustrate the competency of the model

    Stability control of a hyperredundant arm for a grasping operation

    Get PDF
    In this paper a problem of a class of hyperredundant arms with continuum elements that perform the grasping function by coiling is discussed. This function is often met in the animal world as in the case of elephant trunk or octopus tentacle. First, the dynamic model in 3D-space is developed. The equations that describe the motion of the arm that carries a load by coiling are inferred. The stability of the motion is discussed. Numerical simulations of the motion towards an imposed target are presente

    A distributed control for a grasping function of a hyperredundant arm

    Get PDF
    The paper focuses on the control problem of a tentacle robot that performs the coil function of grasping. First, the dynamic model of a hyperredundant arm with continuum elements produced by flexible composite materials in conjunction with active-controllable electro-rheological fluids is analyzed. Secondly, both problems, i.e. the position control and the force control are approached. The difficulties determined by the complexity of the non-linear integraldifferential equations are avoided by using a basic energy relationship of this system. Energy-based control laws are introduced for the position control problem. A force control method is proposed, namely the DSMC method in which the evolution of the system on the switching line by the ER fluid viscosity is controlled. Numerical simulations are also presente

    Boundary Control by Boundary Observer for Hyper-redundant Robots

    Get PDF
    The control problem of a class of hyper-redundant arms with continuum elements, with boundary measuring and control is discussed. First, the dynamic model of the continuum arm is presented. The measuring systems are based on the film sensors that are placed at the terminal sub-regions of the arm. The observers are proposed in order to reconstruct the full state of the arm. A back-stepping method is used to design a boundary control algorithm. Numerical simulations of the arm motion toward an imposed position are presented. An experimental platform shows the effectiveness of the proposed methods

    The mechanics of continuum robots: model-based sensing and control

    Get PDF
    corecore