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Abstract: In this paper a problem of a class of hyperredundant arms with continuum elements 
that perform the grasping function by coiling is discussed. This function is often met in the 
animal world as in the case of elephant trunk or octopus tentacle. First, the dynamic model in 
3D-space is developed. The equations that describe the motion of the arm that carries a load by 
coiling are inferred. The stability of the motion is discussed. Numerical simulations of the 
motion towards an imposed target are presented. 
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Introduction 
 

Hyperredundant arms are a class of arms that can achieve any position and orientation in 3D-
space. The control of these systems is very complex and a great number of researchers have tried 
to offer solutions. In [2], Gravagne analyzed the kinematical model of “hyper-redundant” robots, 
known as “continuum” robots. Important results were obtained by Chirikjian and Burdick [3]-[5] 
which laid the foundations for the kinematical theory of hyper-redundant robots. Their results are 
based on a “backbone curve” that captures the macroscopic geometric features of a robot. The 
inverse kinematical problem is reduced to determining the time varying backbone curve 
behavior. New methods for determining “optimal” hyper-redundant manipulator configurations 
based on a continuous formulation of kinematics are developed. Mochiyama has also 
investigated the problem of controlling the shape of an HDOF rigid-link robot with two-degree-
of-freedom joints using spatial curves [6], [7]. [8, 9] presents the state of the art of the continuum 
robots, outline their areas of application and introduce some control issues. 

In other papers [10, 11] several technological solutions for actuators used in hyper-redundant 
structures are presented and conventional control systems are introduced. 

In this paper, the problem of a class of hyperredundant arms with continuum elements that 
performs the grasping function by coiling is discussed. This function is often met in the animal 
world as in the case of the elephant trunk (Fig. 1), octopus tentacle or constrictor snakes. First, 
the dynamical model presented in [2] is developed for 3D-space. The equations that describe the 
motion of the arm that carries a load by coiling are inferred. 

The paper is organized as follows: section II presents the hyperredundant structure with 
continuum elements; section III studies the dynamic model in 3D-space; section IV presents the 
control algorithm; section V verifies the control laws by means of computer simulations. 
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Fig. 1. Elephant trunk   Fig. 2. Distribution of forces around the object-load 

 
Technological model 

 
The paper studies a class of hyperredundant arms, that can achieve any position and 

orientation in 3D space, and that can perform a coil function for the grasping (Fig. 2). The arm 
is a high degree of freedom structure or a continuum structure. 

Technologically, these arms are based on the use of flexible composite materials in 
conjunction with active controllable electro-rheological (ER) fluids that can change their 
mechanical characteristics in the presence of electrical fields. 

The general form of the arm is presented in Fig. 3. It consists of a number (N) of elements, 
cylinders mode of fiber-reinforced rubber. There are four internal chambers in the cylinder, 
each of them containing the ER fluid with an individual control circuit. The deformation in each 
cylinder is controlled by an independent electrohydraulic pressure control system combined 
with the distributed viscosity control of the ER fluid. The chambers of the segment have 
reinforced rubber walls with fiber in a circular direction. Thus, it is easy to deform it in axial 
direction while it resists deformation in the radial direction. The cylinder can be bent in any 
direction by appropriately controlling the pressure in the four chambers. The electrical control 
of the ER fluid viscosity is obtained by an electrode network distributed on the length of the 
cylinder. 

 

 
Fig. 3. The cylinder structure 

 
The technological model can be considered as one with a control, highly flexible and elastic 

backbone. We shall assume that the backbone never bends beyond the “small-strain region” 
where an applied stress produces a strain that is recoverable and observes approximately linear 
stress-strain relationship. Similarly, the system is frictionless and any other damping and 
friction are neglected. 
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The last m elements (m<N) represent the grasping terminal. These elements contain a number 
of force sensors distributed on the surface on the cylinders. These sensors measure the contact 
with the load ensure the distributed force control during the grasping. The sensor network 
constitutes a number of impedance devices [12] (see Fig. 3) that define the dynamic relationship 
between the grasping element displacement and the contact force. 

 
Theoretical model 
 
The essence of the hyperredundant model is a 3-dimensional backbone curve C. The 

independent parameter s is related to the arc-length from the origin of the curve C, [ ]Ls ,0∈ , 

where: ∑
=

=
N

i
ilL

1

 and il  represent the length of the elements i of the arm in the initial position. 

The position of the point s on curve C is defined by the position vector ( )srr = , [ ]Ls ,0∈  

and the orientation is given by two continuum angles ( )sθ  and ( )sq . It is assumed that the 

bending of the element is produced by the fluid pressure control in the θ -plane chamber and 
then q-plane chamber (Fig. 4). 

 

 
Fig. 4. The tentacle movements: a) initial position; b) step 1: θ  – plane bending; c) step 2: q – plane 
bending 

 

 
The position vector on curve C is given by: 

( ) ( ) ( ) ( )[ ]Tszsysxsr = ,    (1) 

where ( ) ( )∫ ′′=
s

sdssx
0

sinθ , 

 

 ( ) ( ) ( )∫ ′′′−=
s

sdssqsy
0

cossin θ ,  (2) 

 

 ( ) ( ) ( )∫ ′′′=
s

sdssqsz
0

coscos θ , [ ]ss ,0∈′  

For a dynamic motion, the time variable will be introduced, ( )tsrr ,= . The arm has 

equivalent bending stiffness EI with linear mass density ρ  and rotational inertial density I.  

 
a) No load arm 

 
The kinetic and potential energies are: 
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( )∫ ++=
L

dsrqIT
0
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where rɺ , θɺ , qɺ  denote 
( )
t

str

∂

∂ ,
, 

( )
t

st

∂

∂ ,θ
, 

( )
t

stq

∂

∂ ,
, respectively. 

The bending of the arm is determined by the distributed torques iθτ , qiτ , Ni ,,2,1 …=  in 

each chamber of the cylinder: 
 

( )
16

2

21

d
pp iii

π
τ θθθ ⋅−=     (5) 

 

( )
16

2

21

d
pp iqqiqi

π
τ θ ⋅−=     (6) 

 

where 1ipθ , 2ipθ , 1qip , 2qip  are the fluid pressures in each θ , q  – pair  of chambers and d is the 

diameter of the cylinder. 
The distributed moments can be defined as: 

 

( ) ( ) ( )
1

1

,
N

i i
i

s t t s sθ θτ δ
−

=

= −∑M    (7) 

 

( ) ( ) ( )
1

1

,
N

q qi i
i

s t t s sτ δ
−

=

= −∑M    (8) 

 

with ∑
=

=
i

k
ki ls

1

, ( )1,,2,1 −= Ni … . 

 

The arm can be also considered as a linear viscoelastic damping mechanism with damping 
coefficient b. 

The grasping force ( )sf  is a distributed force along the last elements of the arm (Fig. 2). 

We denote by ω  the generalized coordinate vector: 
 









=

q

θ
ω       (9) 

 

and the moment vector as: 
 

q

m

m
θ 

=  
 

M      (10) 

Using the same procedure as in [2], the dynamic model of the arm can be derived as: 
 

2

2

TI b EI A f
s

ω
ω ω

∂
+ − = +

∂
ɺɺ ɺ M     (11) 

s

f
r

∂

∂
=ɺɺρ      (12) 
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with the boundary conditions: 
 

( )
Ls

Lt
EI θτ

θ
=

∂

∂ ,
; 

( )
qLs

Ltq
EI τ=

∂

∂ ,
   (13) 

 

where 








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

−−

−=

θθ
θθ

θ

cossinsincos

coscossinsin

0cos

qq

qqA   (14) 

 
b) Load arm 

 
The load of the arm is represented by a circular body with diameter Ld  and mass Lm . The 

position of the load can be approximated by the vector ( ) ( )tLrtrL ,= . We denote by Lω , Lf , 

Lθτ , qLτ  the positions, force and the torques at the end point of the arm: 
 

( ) ( ) ( )
( )

( ) ( )
( ) ( )
( ) ( )
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The kinetic energy will be: 
 

( )[ ]
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  (16) 

 

where LI θ and qLI  represent the inertia moments of the load with respect to θ  and q rotations, 

respectively. 
We will discuss a light-weight arm in which the gravitational component of the arm is 

neglected with respect to the load. The potential gravitational energy will be: 

∫=
L

LG dsqgmV
0

coscos θ     (17) 

 
From (4), (16), (17), the dynamic model can be easily derived, 
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0=+ LLL frm ɺɺ      (21) 
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where 








−

−
=

θ
θ

sincos0

0cossin

q

q
C   (22) 

 

( )qLLL IIdiagI ,θ=     (23) 

 
Control algorithm 

 
We consider that the initial state of the system is given by: 

 

( ) [ ]Tqs 000 ,,0 θωω ==     (24) 
 

( ) [ ] [ ]TT

qs 0,0,,0 00 == ɺɺɺ θω    (25) 
 

where 
( )
( )




=

=

sqq

s

,0

,0

0

0 θθ
    (26) 

 

corresponding to the initial position of the arm defined by the curve 0C : 
 

( ) ( )( )sqsC 000 ,: θ , [ ]Ls ,0∈    (27) 
 

The desired position is represented by the curve dC : 
 

( ) ( )( )sqsC ddd ,: θ , [ ]Ls ,0∈    (28) 
 

with [ ]Td 0,0=ωɺ     (29) 

We define by ( )ste ,θ , ( )steq ,  and ( )te  the position errors: 
 

( ) ( ) ( )stsste dθθθ −= ,,     (30) 

( ) ( ) ( )sqtsqste dq −= ,, , with [ ]Ls ,0∈   (31) 
 

or the global error: 
 

( ) ( ) ( )( ) ( ) ( )( )[ ]∫ −+−=
L

dd dssqtsqstste
0

,, θθ   (32) 

 

Theorem. The control system of the position for a load arm in a grasping function by coiling is 
stable if the distributed torqueses have the form: 

( ) ( )tsektsek iiipiiididi ,, θθθθθθ ττ −−= ɺ   (33) 

( ) ( )tsektsek iqipqiiqidqidqiqi ,, −−= ɺττ   (34) 

where idθτ  and dqiτ  are the desired static holding torques [3, 4] and idk θ , ipk θ , dqik , pqik  are 

positive control coefficients. 
Proof. See Appendix. 
 

Simulation 
 

A hyperredundant manipulator with 6 elements is considered. The position control problem 
is first analyzed for the initial position ( )5.0,0,5.40 −=r  and the final position 
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( )5.3,5.3,1=Fr . A discretization for each element with an increment 
6

l
=∆  is introduced 

and a MATLAB code is applied. The result is presented in Fig. 5. 
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Fig. 5. No load position control 

 
A control algorithm for an arm with 11 elements that carries a circular load by coiling in θ -

plane are simulated in Fig. 6. The initial position is given by ( )0,0,50 =r  and the final 

position is ( )5,0,5.1=Fr . 
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Fig. 6. 2D control of position and grasping with load 

 
Then, the same algorithm is applied for a 11-element arm in 3D space, with a circular load 

between initial position ( )1,2,40 =r and final position ( )4,3,1=Fr . The result of the 

simulation is presented in Fig. 7. 
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Fig. 7. Grasping the load and motion with the load 

Conclusion  
 

The paper considers the control problem of a hyperredundant robot with continuum 
elements that perform the coil function for grasping. The structure of the arm consists of 
flexible composite materials in conjunction with active – controllable electro-rheological fluids. 
The dynamic model in 3D space is developed. The equations that describe the motion of the 
arm that carries a load by coiling are inferred. The stability of the motion is discussed. 
Numerical simulations of the motion towards an imposed target are presented. 
 
Appendix 
 

We consider the following Lyapunov functional [2]: 
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The time derivative will be as follows: 
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 (A.2) 

For a desired position: 

[ ] ., constq T

ddd == θω  
 

and using the dynamic model (18), (19) and the boundary condition conditions (20), (21), the 
relation (A.2) can be rewritten as: 
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Substituting the control (…) in (A.3), we obtain: 

( ) 0
1

≤−= ∑
=

N
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i
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iiktV ωων
ɺɺ     (A.4) 
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