1,466 research outputs found

    The Scatter Search Based Algorithm for Beam Angle Optimization in Intensity-Modulated Radiation Therapy

    Get PDF
    This article introduces a new framework for beam angle optimization (BAO) in intensity-modulated radiation therapy (IMRT) using the Scatter Search Based Algorithm. The potential benefits of plans employing the coplanar optimized beam sets are also examined. In the proposed beam angle selection algorithm, the problem is solved in two steps. Initially, the gantry angles are selected using the Scatter Search Based Algorithm, which is a global optimization method. Then, for each beam configuration, the intensity profile is calculated by the conjugate gradient method to score each beam angle set chosen. A simulated phantom case with obvious optimal beam angles was used to benchmark the validity of the presented algorithm. Two clinical cases (TG-119 phantom and prostate cases) were examined to prepare a dose volume histogram (DVH) and determine the dose distribution to evaluate efficiency of the algorithm. A clinical plan with the optimized beam configuration was compared with an equiangular plan to determine the efficiency of the proposed algorithm. The BAO plans yielded significant improvements in the DVHs and dose distributions compared to the equispaced coplanar beams for each case. The proposed algorithm showed its potential to effectively select the beam direction for IMRT inverse planning at different tumor sites. © 2018 Ali Ghanbarzadeh et al

    Algorithm and performance of a clinical IMRT beam-angle optimization system

    Full text link
    This paper describes the algorithm and examines the performance of an IMRT beam-angle optimization (BAO) system. In this algorithm successive sets of beam angles are selected from a set of predefined directions using a fast simulated annealing (FSA) algorithm. An IMRT beam-profile optimization is performed on each generated set of beams. The IMRT optimization is accelerated by using a fast dose calculation method that utilizes a precomputed dose kernel. A compact kernel is constructed for each of the predefined beams prior to starting the FSA algorithm. The IMRT optimizations during the BAO are then performed using these kernels in a fast dose calculation engine. This technique allows the IMRT optimization to be performed more than two orders of magnitude faster than a similar optimization that uses a convolution dose calculation engine.Comment: Final version that appeared in Phys. Med. Biol. 48 (2003) 3191-3212. Original EPS figures have been converted to PNG files due to size limi

    Simplifying intensity-modulated radiotherapy plans with fewer beam angles for the treatment of oropharyngeal carcinoma.

    Get PDF
    The first aim of the present study was to investigate the feasibility of using fewer beam angles to improve delivery efficiency for the treatment of oropharyngeal cancer (OPC) with inverse-planned intensity-modulated radiation therapy (IP-IMRT). A secondary aim was to evaluate whether the simplified IP-IMRT plans could reduce the indirect radiation dose. The treatment plans for 5 consecutive OPC patients previously treated with a forward-planned IMRT (FP-IMRT) technique were selected as benchmarks for this study. The initial treatment goal for these patients was to deliver 70 Gy to > or = 95% of the planning gross tumor volume (PTV-70) and 59.4 Gy to > or = 95% of the planning clinical tumor volume (PTV-59.4) simultaneously. Each case was re-planned using IP-IMRT with multiple beam-angle arrangements, including four complex IP-IMRT plans using 7 or more beam angles, and one simple IMRT plan using 5 beam angles. The complex IP-IMRT plans and simple IP-IMRT plans were compared to each other and to the FPIMRT plans by analyzing the dose coverage of the target volumes, the plan homogeneity, the dose-volume histograms of critical structures, and the treatment delivery parameters including delivery time and the total number of monitor units (MUs). When comparing the plans, we found no significant difference between the complex IP-IMRT, simple IP-IMRT, and FP-IMRT plans for tumor target coverage (PTV-70: p = 0.56; PTV-59.4: p = 0.20). The plan homogeneity, measured by the mean percentage isodose, did not significantly differ between the IP-IMRT and FP-IMRT plans (p = 0.08), although we observed a trend toward greater inhomogeneity of dose in the simple IP-IMRT plans. All IP-IMRT plans either met or exceeded the quality of the FP-IMRT plans in terms of dose to adjacent critical structures, including the parotids, spinal cord, and brainstem. As compared with the complex IP-IMRT plans, the simple IP-IMRT plans significantly reduced the mean treatment time (maximum probability for four pairwise comparisons: p = 0.0003). In conclusion, our study demonstrates that, as compared with complex IP-IMRT, simple IP-IMRT can significantly improve treatment delivery efficiency while maintaining similar target coverage and sparing of critical structures. However, the improved efficiency does not significantly reduce the total number of MUs nor the indirect radiation dose

    Intensity modulated radiation therapy and arc therapy: validation and evolution as applied to tumours of the head and neck, abdominal and pelvic regions

    Get PDF
    Intensiteitsgemoduleerde radiotherapie (IMRT) laat een betere controle over de dosisdistributie (DD) toe dan meer conventionele bestralingstechnieken. Zo is het met IMRT mogelijk om concave DDs te bereiken en om de risico-organen conformeel uit te sparen. IMRT werd in het UZG klinisch toegepast voor een hele waaier van tumorlocalisaties. De toepassing van IMRT voor de bestraling van hoofd- en halstumoren (HHT) vormt het onderwerp van het eerste deel van deze thesis. De planningsstrategie voor herbestralingen en bestraling van HHT, uitgaande van de keel en de mondholte wordt beschreven, evenals de eerste klinische resultaten hiervan. IMRT voor tumoren van de neus(bij)holten leidt tot minstens even goede lokale controle (LC) en overleving als conventionele bestralingstechnieken, en dit zonder stralingsgeïnduceerde blindheid. IMRT leidt dus tot een gunstiger toxiciteitprofiel maar heeft nog geen bewijs kunnen leveren van een gunstig effect op LC of overleving. De meeste hervallen van HHT worden gezien in het gebied dat tot een hoge dosis bestraald werd, wat erop wijst dat deze “hoge dosis” niet volstaat om alle clonogene tumorcellen uit te schakelen. We startten een studie op, om de mogelijkheid van dosisescalatie op geleide van biologische beeldvorming uit te testen. Naast de toepassing en klinische validatie van IMRT bestond het werk in het kader van deze thesis ook uit de ontwikkeling en het klinisch opstarten van intensiteitgemoduleerde arc therapie (IMAT). IMAT is een rotationele vorm van IMRT (d.w.z. de gantry draait rond tijdens de bestraling), waarbij de modulatie van de intensiteit bereikt wordt door overlappende arcs. IMAT heeft enkele duidelijke voordelen ten opzichte van IMRT in bepaalde situaties. Als het doelvolume concaaf rond een risico-orgaan ligt met een grote diameter, biedt IMAT eigenlijk een oneindig aantal bundelrichtingen aan. Een planningsstrategie voor IMAT werd ontwikkeld, en type-oplossingen voor totaal abdominale bestraling en rectumbestraling werden onderzocht en klinisch toegepast

    Depth Modulation in Radiotherapy

    Get PDF
    Intensity Modulated Radiotherapy (IMRT) has been a major field of research over the last thirty years and is today the standard in radiotherapy treatment of cancer. The introduction of IMRT into the clinical environment has greatly improved the ability of the treatment team to conform the radiation dose to the tumour volume. Alongside improvements in image guidance, IMRT has led to a reduction in side effects for patients and opened up the possibilities of dose escalation and hypofractionation. IMRT is however by no means perfect. IMRT and derivatives such as Volumated Arc Therapy (VMAT) are limited by the exit dose from the X-ray beams and deliver a significant amount of radiation dose to normal tissues. The much publicised alternative to IMRT is proton therapy. Proton therapy beams deposit dose over a narrow range resulting in minimal exit dose. The future of radiotherapy certainly involves a significant contribution from proton therapy but the availability to patients is likely to remain limited for a long time to come. The research in this thesis considers the possibility of further improving IMRT by modulating radiotherapy beams along their direction of travel as well as across their intensity, i.e. the so called ‘Depth Modulation’ of the thesis title. Although there are numerous possible ways to achieve depth modulation, this work proposes a combination of X-ray beams with electron beams of different energies with both modalities delivered with a conventional medical linear accelerator. The research in this thesis is concerned with developing a proof of principle for this method. It is to some extent a theoretical study, however at each step the possibility of practical implementation has been considered with the view that the method is only a viable proposition if it can be effectively implemented into clinical practice. The technique proposed in this work is to use electron beams delivered through X-ray MLC with a standard patient set up. To reduce scatter and photon contamination it is proposed to remove the scattering foils from the beamline and to employ optimisation of the electron and photon components to compensate for any remaining penumbra broadening. The research has shown that improvements to dosimetry through removal of the scattering foil would allow delivery without reducing the source to surface distance, making a single isocentre synergistic delivery for both the electron and photon components practical. Electron dose segments have been calculated using Monte Carlo radiation transport and a procedure to optimise dose for the combined photon and electron IMRT technique has been developed. Through development of the optimisation procedure the characteristics of the mixed modality technique have been examined. A number of findings are demonstrated such as the benefit of gaps between electron segments, the benefits of optimising for energy in three dimensions and the dependence of the cost function minimum on the electron to photon ratio. Through clinical examples it has been shown that for tumours close to the surface the mixed modality technique has the potential to reduce the dose to normal tissues, particular in the low dose wash. Calculations of relative malignant induction probability demonstrate that this reduction in dose has the potential to reduce the incidence of secondary cancer induction. Possible treatment sites for application of the technique include breast, head and neck, brain and sarcomas

    Fully automated treatment planning solutions for robotic radiotherapy

    Get PDF

    Fully automated treatment planning solutions for robotic radiotherapy

    Get PDF

    Radiotherapy optimAl Design: An Academic Radiotherapy Treatment Design System

    Get PDF
    Optimally designing radiotherapy and radiosurgery treatments to increase the likelihood of a successful recovery from cancer is an important application of operations research. Researchers have been hindered by the lack of academic software that supports head-to-head comparisons of different techniques, and this article addresses the inherent difficulties of designing and implementing an academic treatment planning system. In particular, this article details the algorithms and the software design of Radiotherapy optimAl Design (RAD)
    corecore