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CHAPTER 1

Introduction

In 2020, an estimated 19.3 million new cancer cases were diagnosed worldwide, of
which more than 132.000 new cases in the Netherlands (World Health
Organization: Sung et al. (2021)), making cancer a leading cause of death.
Radiation therapy, or radiotherapy, is one of the main treatment modalities for
treating cancer. In external beam radiotherapy, ionizing radiation is used to
damage cancer cells by directing a beam of radiation through the patient towards
the tumor. However, when the radiation passes through the patient’s body, not only
damage is done to the cancer cells, but also to the healthy tissue surrounding the
tumor. The goal of radiotherapy is to inflict sufficient damage to the cancer cells to
eradicate the tumor while limiting the damage to the healthy tissue as much as
possible to prevent unnecessary radiation-induced side effects.

1.1 Stereotactic radiotherapy using the CyberKnife

Stereotactic Body Radiation Therapy (SBRT) is a radiotherapy approach in which
high radiation doses are delivered to the tumors in a limited number of daily
fractions (typically 3-5 fractions). High-precision dose delivery, generally based on
image-guidance, is required to limit dose delivery to healthy tissue as much as
possible.

The CyberKnife® robotic radiotherapy device (figure 1.1) is a system that can
deliver SBRT. It features a linear accelerator (linac), which produces the ionizing
radiation used for treatment, mounted on a robotic arm. The robotic arm allows for
easy delivery of (non-coplanar) beam directions, without the need for manual
couch shifts. The radiation beam can be shaped with a multi-leaf collimator (MLC),
see figure 1.2. The CyberKnife’s InCise™ 2 MLC consists of 26 leaf pairs of
high-density material (tungsten). Each leaf can be moved individually in or out of
the radiation beam, featuring the beam shaping. Patients are irradiated from
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Figure 1.1: The CyberKnife® radiotherapy treatment device at the Erasmus MC.

multiple directions, and per direction multiple beam shapes (called segments), each
with its own X-ray intensity, are used to allow for intensity-modulated radiation
therapy (IMRT).

High-quality radiotherapy dose distributions can be delivered using the
CyberKnife, with excellent clinical outcomes (Fuller et al., 2018, Meier et al., 2018,
van der Voort van Zyp et al., 2009). However, the enhanced degrees of freedom of
fully non-coplanar robotic radiotherapy increases the complexity of finding optimal
patient-specific beam angles and beam segments.

1.2 Radiotherapy treatment planning

The process of patient-specific selection of the settings of the radiotherapy
treatment unit that will result in the best possible, or anyway a high-quality, patient
dose distribution is called treatment planning. For each patient, a personalized
radiotherapy treatment plan is generated before treatment. This treatment plan
consists of the delivery parameters that are used to irradiate the patient (beam
directions, segment shapes, and segment intensities). Plan generation is generally
performed in a commercial software package called Treatment Planning System
(TPS). The planning procedure starts with the acquisition of a computed



INTRODUCTION 3

Figure 1.2: The InCise™ 2 multi-leaf collimator (MLC) can be used to shape the radiation
beam.

tomography scan (planning CT) to provide a 3-dimensional representation of the
patient’s anatomy. Next, structures of interest, such as the tumor and nearby
organs at risk (OAR), are segmented in the CT-scan. These segmented structures
are used to optimize delivery parameters, aiming at high dose in the tumor and low
doses in OARs. Based on the clinical planning protocol for the tumor site to be
treated, a mathematical optimization problem is formulated (i.e. cost functions for
tumor/OAR doses with weights). This optimization problem is subsequently solved
to obtain the machine delivery parameters, and the resulting 3-dimensional patient
dose distribution projected on the planning CT-scan. The planner evaluates
whether the resulting dose distribution satisfies the requirements and objectives as
stated in the clinical planning protocol. However, due to the anatomical variations
per patient, the trade-offs between planning objectives may vary per patient and
are unknown prior to planning. If the planner is not yet satisfied with the resulting
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plan quality, the planner can adapt the mathematical optimization, e.g. by changing
cost functions weights, and then rerun the optimization. In this way, the planner
can balance the delicate trade-offs between tumor coverage, OAR, and plan delivery
efficiency. This adaptation step is repeated until the planner is satisfied with the
plan quality or if the planner thinks that no significant further improvements in
plan quality can be achieved with further adaptation of the optimization problem.
The plan quality of clinical treatment plans can vary drastically depending on the
skills and ambition of the planner, the complexity of the case, and the time available
for planning (Berry et al., 2016, Giglioli et al.,, 2016, Marino et al,, 2015, Nelms et al,,
2012).

1.3 Automated radiotherapy treatment planning

Automated treatment planning has been proposed to improve the quality and
consistency of radiotherapy treatment plans, and can also substantially reduce the
treatment planning workload (e.g. Breedveld et al. 2019b, Fogliata et al. 2014,
Giglioli et al. 2020, Hansen et al. 2016, 2017, Heijmen et al. 2018, Hussein et al.
2016, 2018, Marrazzo et al. 2019, Oud et al. 2020, Purdie et al. 2014, Tol et al. 2015,
Zarepisheh et al. 2019). In our center, Erasmus-iCycle has been developed for
automated multi-criterial optimization (MCO) of beam fluence profiles and beam
angles (FMO + BAO) (Breedveld et al., 2012). Erasmus-iCycle automatically
generates a single Pareto-optimal radiotherapy treatment plan for each patient.
Plan generation is based on a planning protocol specific ‘wish-list’ that is used for
all patients treated according to the protocol. The wish-list contains hard planning
constraints and prioritized planning objectives. Many validation studies have
demonstrated that with an appropriate wish-list, quality of automatically generated
plans supersedes that of plans generated with iterative planning by a planner
(above) (Buergy et al.,, 2017, Della Gala et al., 2017, Heijkoop et al., 2014, Heijmen
et al,, 2018, Rossi et al,, 2018, 2019, Sharfo et al.,, 2015, 2018, Voet et al.,, 20133,
2014). As Erasmus-iCycle only optimizes pencil-beam intensities, the system was
originally integrated with the commercial Monaco TPS (Elekta AB, Stockholm,
Sweden) to convert generated plans into clinically deliverable plans for C-arm
linacs (Voet et al., 2013a, 2014). This coupling to a commercial TPS also prevents
regulatory issues with CE (Conformite Européenne) or FDA (U.S. Food & Drug
Administration) approval.
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1.4 Clinically deliverable treatment plans

A widely used optimization approach for radiotherapy treatment planning is to first
optimize the beam fluence profiles (Fluence Map Optimization, FMO), and then
convert the optimized fluences into deliverable multi-leaf collimator (MLC)
segments and their corresponding segment weights. However, the conversion of an
FMO plan into a clinically deliverable plan can degrade the plan quality, since
delivery restrictions and the dosimetric impact of the MLC cannot be fully
accounted for during the FMO phase.

At the start of this thesis, a planning workflow was available that could
automatically generate clinically deliverable plans for CyberKnife robotic
radiotherapy using the Iris™ variable aperture collimator (Rossi et al., 2018).
However, no system was available for clinically deliverable plans for the CyberKnife
equipped with the InCise™ 2 MLC. Additionally, shorter treatment times can be
achieved with the InCise™ 2 MLC than with the fixed cones or with the Iris™
variable collimator (Tomida et al, 2017). The ability to generate clinically
deliverable treatment plans outside of the commercial TPS allows for an objective
comparison between automated plans and manually generated plans in the clinical
TPS, both on plan quality as on plan delivery efficiency.

1.5 Aim and outline of this thesis

The aim of this thesis was to develop and validate novel, fully automated treatment
planning solutions for robotic radiotherapy, with emphases on clinical deliverability
of generated treatment plans and on optimization of beam angles.

In chapter 2, a novel algorithm was proposed to convert Erasmus-iCycle FMO
plans into plans that can be delivered at a CyberKnife with the InCise™ 2 MLC, using
the same beam angles. The focus was on minimizing dosimetric plan quality loss
between final segmented plans and initial FMO plans. MLC segments were
iteratively added to the segmented plan while considering all included beams
simultaneously. The performance of the algorithm was investigated for three tumor
sites: prostate, head and neck, and liver.

The exploratory analyses in chapter 2 were performed with a simplified dose
calculation engine. Therefore, in chapter 3, the segmentation algorithm developed
in chapter 2 was further improved by integration of a standalone version of the
clinical dose engine. The challenge of this study was on how to cope with the
fundamental differences between approximate dose delivered by pencil-beams and
the accurate dose delivered by full segments (including MLC scatter and
transmission effects). The improved segmentation algorithm was extensively tested
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for prostate and liver cancer.

In chapter 4, a fully automated treatment planning workflow for robotic
radiotherapy was proposed, and validated for prostate cancer. To this purpose,
Erasmus-iCycle was coupled to the segmentation algorithm developed in chapter 3.
Validation was performed by comparison of automatically generated plans with
plans that were manually generated with the clinical TPS by an experienced medical
physicist. Comparisons included dosimetric and delivery efficiency parameters.

Beam angle optimization (BAO) (as also used in the previous chapter) is a
non-convex optimization problem and can therefore result in sub-optimal
solutions. In chapter 5, a new BAO approach was proposed, allowing detection of
sub-optimality of generated plans. For each patient, the basis of plan generation is a
so-called total-beam-space (TBS) reference plan generated with Erasmus-iCycle
providing a high-quality Pareto-optimal plan. TBS-FMO plans include all beam
directions (i.e. no longer BAO as in Erasmus-iCycle), without enforcing any delivery
restrictions. To convert TBS-FMO plans into deliverable plans, the segmentation
algorithm developed in chapters 2 & 3 with slight modifications was used. For
prostate cancer patients, the novel TBS-BAO approach was compared with the
approach in chapter 4 and with manual planning. For this study, 594 clinically
deliverable treatment plans were automatically generated for 33 patients.

In chapter 6, the proposed treatment planning solutions for automated planning
for the robotic CyberKnife are discussed in a wider context, together with their
challenges, opportunities, and potential future research.
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8 ABSTRACT

Abstract

Segmentation can degrade a high-quality dose distribution obtained by fluence map
optimisation (FMO). A novel algorithm is proposed for generation of MLC segments
to deliver an FMO plan with step-and-shoot IMRT while minimising quality loss. All
beams are considered simultaneously while generating MLC segments for
reproducing the 3-dimensional FMO dose distribution. Segment generation is only
steered by the 3D FMO dose distribution, i.e. underlying FMO fluence profiles are
not considered. The algorithm features prioritised generation of segments, focusing
on accurate reproduction of clinical objectives with the highest priorities. The
performance of the segmentation algorithm was evaluated for 20 prostate patients,
15 head-and-neck patients, and 12 liver patients. FMO dose distributions were
generated by automated multi-criteria treatment planning (Pareto-optimal plans)
and subsequently segmented using the proposed method. Various segmentation
strategies were investigated regarding prioritisation of objectives and limitation of
the number of segments. Segmented plans were dosimetrically similar to FMO
plans and for all patients a clinically acceptable segmented plan could be generated.
Substantial differences between FMO and segmented fluence profiles were
observed. Avoidance of the usual reconstruction of 2D FMO fluence profiles for
segment generation, and instead simultaneously generating segments for all beams
to directly reproduce the 3D FMO dose distribution is a likely explanation for the
obtained results. For the strategies of limiting the number of segments large
reductions in number of segments were observed with minimal impact on plan
quality.
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2.1 Introduction

In intensity modulated radiation therapy (IMRT) treatment planning, the
optimisation problem may be split into a fluence map optimisation (FMO) phase
and a segmentation phase to convert the optimised fluences into multi-leaf
collimator (MLC) segments. An advantage of this approach is that the FMO problem
can be modelled as a convex multi-criterial optimisation problem (Breedveld et al.,
2019b) with a guaranteed globally optimal solution in optimisation. As treatment
machine limitations (e.g. limitations of the MLC) are not fully accounted for in FMO,
the deliverable plan resulting from the segmentation phase may have a quality loss
compared to the FMO plan. Additionally, decisions on multi-criterial trade-offs, as
made during FMO, are generally not explicitly taken into account in the
segmentation phase (Salari and Unkelbach, 2013).

One approach for segmentation in static step-and-shoot IMRT is to separately
segment the beam fluence profiles for the involved beams into sets of deliverable
segments by stratifying fluences into discrete intensity levels and subsequently
generate feasible segments for each beam that match the optimised fluence profile
(Stiss et al, 2007, Xia and Verhey, 1998). In general, the more segments are
included the better the fluence profile can be replicated. To restrict the treatment
delivery time, pre-defined trade-offs between plan quality and treatment time can
be used to restrict the number of intensity levels and number of segments (Craft
et al, 2007). To the best of our knowledge, published MLC segmentation
approaches for static step-and-shoot IMRT plans are all based on independent
segmentation of the 2-dimensional fluence profiles of all beams (Goéren and Taskin,
2015, Long et al, 2016, Luan et al,, 2006, Sun and Xia, 2004, Stss et al., 2007).
Sequencing the fluences for each beam separately excludes mutual dosimetric
compensation of imperfect segmentations of the 2-dimensional beam fluence
profiles to optimally reproduce the initial 3-dimensional FMO dose distribution.

Extensive research has been done to improve MLC segmentation with
non-discretised intensity levels and leaf positions (Long et al., 2016), to investigate
segmentation efficiency under various MLC constraints (Goren and Taskin, 2015),
to explore regularization in the dose domain before segmentation (Nguyen et al,
2015) and to minimise beam-on-time (Crooks et al. 2002, Ahuja and Hamacher
2005, Boland et al. 2004). However, none of the published methods explicitly
account for differences in objective priorities during segmentation. Consequently,
discrepancies between FMO fluence and sequenced fluence may potentially lead to
dose deviations in the PTV and OARs with uncontrolled balances, i.e. without
explicitly considering the clinical priorities.
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In contrast to FMO followed by segmentation, Direct Aperture Optimisation
(DAO) has been proposed to directly generate MLC segments (Men et al.,, 2007,
Romeijn et al., 2005, Shepard et al., 2002). DAO operates under the “What you see is
what you get” principle, meaning that at every stage of the optimisation process the
treatment plan is directly feasible for delivery and no segmentation phase (with
possible loss in plan quality) is needed. However, including the non-convex
modelling of the (physical) constraints of the collimator and treatment device leads
to a non-convex optimisation problem. The column generation (CG) approach has
been proposed as heuristic in the field of DAO to solve the optimisation problem in
radiotherapy (Carlsson, 2008, Cassioli and Unkelbach, 2013, Men et al, 2007).
Research on CG approaches for DAO includes investigations on convergence
(Carlsson and Forsgren, 2014), generation of segments under various MLC
constraints (Men et al., 2007) and inclusion of pre-defined multi-criterial trade-offs
(Salari and Unkelbach, 2013).

In our centre we have given preference to plan optimisation using FMO followed
by segmentation, because of the guaranteed Pareto and global optimality of the
FMO plans that we generate with Erasmus-iCycle, an algorithm for automated a
priori Multi-Criterial treatment plan Optimisation (MCO) (Breedveld et al., 2012).
For each patient, a single Pareto-optimal FMO plan is generated with clinically
favourable trade-offs, considering all treatment objectives with explicitly assigned
priorities. This differs from a posteriori MCO (e.g. Bokrantz and Miettinen 2015,
Craft and Richter 2013) in which, for each patient, a set of Pareto-optimal plans is
generated with automated planning, while selection of a clinically favourable plan is
performed by a user.

In this study, a prioritised dose-based MLC segment generation method is
proposed which minimises 3-dimensional plan quality loss compared to the FMO
plan by placing extra consideration on high priority clinical objectives. To
reconstruct the 3-dimensional FMO dose, a CG approach was implemented that
simultaneously optimises the beam segments for all treatment beams, rather than
replicating the 2-dimensional fluences separately as is done in other published MLC
segmentation methods. Segment generation was only steered by the 3D FMO dose
distribution, i.e. underlying FMO fluence profiles were not considered. In this sense,
the term segmentation as applied in this paper has a slightly different meaning
from that in the literature. The CG approach was chosen because of its intuitive
mechanism of generating segments and proven effectiveness in IMRT treatment
planning (Carlsson, 2008, Romeijn et al., 2005, Salari and Unkelbach, 2013).

The overall goal was to achieve high quality radiotherapy treatment plans by
combining global optimality of the FMO plan with a fast prioritised “DAO-like”
segmentation. The segmentation was tailored to individual patients by using the
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prioritised approach in combination with personalised clinical objectives obtained
from the FMO plan. The proposed technique was developed in the context of
CyberKnife robotic radiotherapy, but can be applied for segmentation of any static
step-and-shoot IMRT or stereotactic body radiation therapy (SBRT) plan.
Possibilities for keeping calculation and delivery times low were included in the
investigations. = The segmentation performance was evaluated for prostate,
head-and-neck and liver tumours.

2.2 Materials & Methods

This section starts with briefly describing the applied FMO (section 2.2.1). Next, CG
is introduced in section 2.2.2, while the proposed segmentation with CG is
described in section 2.2.3. Prioritised steering on personalised objectives is
described in section 2.2.4, which includes approaches to minimise the number of
segments. Finally, plan evaluation criteria and details on our computational study
are presented in sections 2.2.5 and 2.2.6, respectively.

2.2.1 Patients, FMO treatment plans and dose calculation model

An overview of the clinical cases and FMO plans used to evaluate the performance
of the MLC segmentation is presented in table 2.1. All FMO plans were generated
with fully automated multi-criterial optimisation as implemented in Erasmus-iCycle
(Breedveld et al., 2012, 2017). A pencil-beam approach was used to describe dose
delivered to the patient, i.e. d = Ax with d the vector containing the patient’s voxel
doses, A the dose deposition matrix, and x the pencil beam weights (see also
Breedveld et al., 2006, 2017, Nguyen et al., 2015, Zhu et al,, 2012). For CyberKnife
plans the beamlet and segmentation resolutions were defined at 800 mm from the
source, while this was 1000 mm for conventional linac plans. For all plans a beam
energy of 6 MV was used. For the prostate treatments, FMO was performed using
pencil beams with a 5 x 5 mm? beamlet resolution, while a 5 x 10 mm? beamlet
resolution was used for liver and head-and-neck cancer. These FMO resolutions
have shown to provide a good balance between plan quality and computational
efficiency. Since MLC segmentation of a FMO dose distribution can result in
degradation of plan quality, segmentation on a higher resolution than the FMO
resolution can compensate for potential degradation in plan quality. We modelled
the CyberKnife InCise2 MLC and performed all segmentations (including the
conventional linac plans) for this MLC, which has 2 banks of 26 leaves with a leaf
thickness of 3.85 mm defined at 800 mm SAD. Since our dose engine is limited to
integer values of resolution only, the segmentation was performed on a resolution
ofa1x4mm?



12 MATERIALS & METHODS

Table 2.1: Overview of the clinical cases and FMO plans.

Treatmentsite =~ Cases  Treatment unit Beams Prescribed dose  Fractions
Prostate 20  CyberKnife 25  non-coplanar 38 Gy 4
Head-and-neck 15  Conventional linac 9 coplanar 46 Gy 23
Liver 12 CyberKnife 25  non-coplanar 60 Gy 3

2.2.2 Column generation

CG is generally used to solve large-scale problems. The large-scale optimisation
problem is denoted as the Master Problem (MP). Instead of solving the MP directly,
the MP is solved by iteratively solving a restricted version of the problem denoted
as the Restricted Master Problem (RMP). The RMP only includes a subset of the
original decision-variables (i.e. the beamlet intensities x). During each iteration of
the CG method, the RMP is solved and the solution is projected onto the MP. The
projection on the MP can be used to identify the next promising subset of decision
variables, which will be added to the RMP in the subsequent CG iteration. This
identification step is called the Pricing Problem (PP). If no new decision-variables
can be identified, the MP is solved to optimality. For a detailed description of CG in
RT, see Carlsson and Forsgren, 2014, Men et al,, 2007, Romeijn et al., 2005.

2.2.3 Problem definition and segment generation

The CG workflow, as introduced by Romeijn et al. (2005) for DAO in radiotherapy,
was in this study used to segment FMO dose distributions by iteratively identifying
promising MLC segments, see figure 2.1. The CG workflow is denoted in grey, while
the proposed prioritised workflow consists of the grey workflow, followed by red.

The MP for plan segmentation is formulated in section 2.2.3.1. In each iteration
the most promising segment is identified by solving the PP (section 2.2.3.2) and
then added to the RMP (section 2.2.3.3). The RMP only contains the segments
identified so far and it is solved to optimality to determine the intensities of the
segments. At the end of each iteration, segments for which the intensity falls below
the minimum required Monitor Units (MU) are removed (section 2.2.3.4). Then, in
the next iteration the PP is again solved to identify the next promising segment.

For the proposed prioritised MLC segmentation, the CG workflow is
incorporated into an adaptive framework (section 2.2.4). If a segmented solution
converges to a dose distribution that does not comply with one or more of the DV
criteria, segmentation is re-started with extra emphasis on high priority objectives.
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Discard MLC
segments

Update of MP
(2.4.2)

Select structure Restricted

to update extension in radiotherapy Master Problem
(2.4.1) (RMP) (2.3.3)
Converged No
and violated Solve RMP

DV objectives?
MLC segment

Evaluate DV
objectives rejection (2.3.4)
Evaluate
solution on MP

Figure 2.1: Schematicrepresentation of the column generation (CG) approach for prioritised
MLC segmentation as a combination of the grey and red workflows. The numbers between
brackets refer to corresponding paragraphs.

Master Problem
(MP) (2.3.1)

Pricing problem
(PP) (2.3.2)
Add MLC
segment to RMP

Prioritised Column generation

2.2.3.1 Master Problem

With x denoting the fluence vector, our MP is formulated by:

minimise () + wp(x) (MP) (2.1)
subject to x=0

x = 0 ensures non-negative fluences and f(x) and p(x) are given by:

FG) = ) liny 2 (Ax — d5)IE 22)
vev
Npry
p(.X') — ¥ Z e—a(ij—DP) (23)
PTV =

The quadratic term f(x) is the main driving force of the MP, similar to objective
functions commonly used in treatment planning (Breedveld et al., 2006, Carlsson
and Forsgren, 2014). The vector 1, contains voxel-dependent weight factors for
each volume v € V, which play a key role in the MP adaptation part of the algorithm
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described in section 2.2.4. df defines the FMO dose distribution. f(x) can be
rewritten in the canonical form to increase computational efficiency (Breedveld
etal, 2006).

The term p(x) with weight w in equation (2.1) puts extra emphasis on attaining
an adequate PTV coverage by penalising under-dosage of the PTV, for which the
Logarithmic Tumour Control Probability (LTCP) is used (equation (2.3), as
proposed by Alber and Reemtsen (2007)). D denotes the prescribed dose for the
PTV, Npry the number of sampled PTV voxels, and A;x the dose delivered to PTV
voxel j. a is a constant related to cell survival (Alber and Reemtsen, 2007), which
was tuned to achieve adequate coverage. An a equal to 0.90, 0.82 and 0.40 was
used for prostate, head-and-neck and liver respectively.

2.2.3.2 Pricing problem and feasible segment generation

For the identification of the most promising feasible segment, an approach similar
to Romeijn et al. 2005 has been implemented, in which the gradient from the MP is
projected onto the beamlet grid for each of the beams. Beamlets with a negative
gradient are favourable for inclusion into the next segment, as these indicate the
most effective descent direction for the MP. These individual beamlets are grouped
together into feasible MLC segments by constructing a layered graph (per beam
direction) for possible combinations of adjacent negative beamlets. Mechanical
restrictions of the MLC device are taken into account during construction of the
graph. The following segment restrictions, similar to the restrictions of the
CyberKnife InCise2 MLC, were enforced: the MLC segment contains only one
contiguous opening, a minimum number of 2 leaf pairs open per segment (7.7 mm
in total), a minimum opening size of 7.6 mm in the direction of the leaves, and
interdigitation is allowed. Given that our dose engine operates on integer values of
resolution, a field size restriction of two leaf pairs open per segment (8 mm in total)
and a minimum opening size of 8 mm in the direction of the leaves were used
instead. The graph is subsequently solved using a shortest path algorithm. The
pricing problem was implemented in C++ using Boost Graph Libraries (v1.58) and
solved using a Bellman-Ford shortest path algorithm. A post-processing step was
implemented to guarantee feasible segments. Feasible segments are generated for
all beam directions in parallel, but only the most promising segment (the one with
the largest sum of negative contributions) is selected and added to the RMP.

2.2.3.3 Restricted Master Problem

The restricted version of the Master Problem is formulated in equation (2.4), where
the quadratic (2.2) and LTCP (2.3) terms are now given by equations (2.5) and (2.6).
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Variable x, denotes segment intensities. In each iteration, a promising segment is
identified and added to the RMP; a new column is added to the optimisation
problem. The RMP is subsequently solved to optimality to determine the intensities
x, for included MLC segments. For this we use our in-house developed solver
(Breedveld et al,, 2017), specifically designed and tuned for solving radiotherapy
optimisation problems, but any non-linear solver could in principle be used.

minimise fr(xr) + wpr(xy) (RMP) (2.4)

subject to X =0

Where the quadratic and LTCP terms are now given by:

Fr0e) = D lln 2y = A1 (25)
vev
Npry
- v _DP
pr(ar) = & Z e~ Arjxr=D") (2.6)
PTV =1

2.2.3.4 Segment rejection

For treatment delivery a minimum MU/segment is imposed because dose delivery
for MU below this threshold may be inaccurate. Also, segments added to the RMP in
an early stage of the segmentation process can decline in relevance due to addition
of newer segments. We have chosen not to enforce the minimum MU/segment
constraint while solving the RMP, in order to maintain the ability to identify and
remove segments for which the contribution to the solution diminishes. When the
intensity of a segment drops below the minimum the segment is removed from the
RMP. Additionally, after segment removal, the intensities of the remaining
segments are re-optimised and it is again verified whether they fulfil the minimum
MU constraint. Discarding redundant columns (segments) from the RMP reduces
the size of the problem which improves the computational efficiency of solving the
RMP. For the hypo-fractionated SBRT plans (prostate and liver) in this study a
minimum MU/segment per fraction of 5 was used and for the conventionally
fractionated plans the minimum MU /segment per fraction was 3.

2.2.4 Prioritised MLC segmentation

The performance regarding the posed (personalised) objectives is tracked during
segmentation (section 2.2.4.1). If a segmented solution converges towards a
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solution that does not comply with one or more of the objectives, the MP is updated
in an attempt to better reflect the requested trade-offs (section 2.2.4.2), taking into
account the clinical priorities.

2.2.4.1 Prioritised objectives for segmentation

For the three investigated tumour sites, the tumour and OAR objectives with
assigned priorities as used for the segmentation of FMO plans are presented in
table 2.2a. They are in line with the clinical treatment planning protocols at
Erasmus MC. For each patient, the personalised goal values for the OAR objectives
are obtained from the Pareto-optimal FMO plan generated with Erasmus-iCycle to
obtain trade-offs in OAR sparing during the segmentation like they were made
during the automated multi-criterial FMO. During segmentation there is no need to
obtain a PTV coverage higher than requested in the clinical protocol, even if it is
obtained during FMO. Therefore, to generate maximum space for OAR sparing
during segmentation, the tumour objectives are enforced as provided in the
treatment protocol.

When during a segmentation all objective functions have converged and one or
more of the objective functions have not reached the goal value, an update of the MP
is performed, i.e. the MP is modified to put more emphasis on the objective function
with an unattained goal with the highest priority (table 2.2a) in a subsequent
segmentation run. When multiple objectives with equal priority are not fulfilled,
the structure with the largest deviation from the desired objective value is selected.

2.2.4.2 Updates of the MP during segmentation

Two mechanisms are used simultaneously for updates of the MP. The first approach
is adjustment of the individual voxel weights n,, within the quadratic objective
function (equation 2.2). Increasing the weight will magnify the difference between
the attained dose in the segmented solution and the reference dose for that voxel,
as obtained in the FMO plan. This will put more emphasis on that particular voxel
for attaining its reference dose. The second option is to adjust the reference dose
df within the quadratic objective function. By adjusting the reference dose for a
voxel the difference in dose will be increased, thereby increasing the contribution
to the MP objective function, but this option also favours deviations from the
original FMO plan.

For each update, only the voxels in the selected structure that do not comply with
the criteria contribute to adjustment of the MP cost function. A maximum of three
MP updates was enforced to limit calculation time and to remain close to the FMO
solution. The values of w, n,, and df with the updates are presented in section 2.3.1.



AUTOMATED PRIORITISED 3D-DOSE-BASED MLC SEGMENT GENERATION

17

Table 2.2: Personalised objectives for prioritised segmentation of a prostate, head-and-neck
or liver FMO plan with assigned priorities (Pr.); for each patient, the goal values for the OAR
objectives were the plan parameters in the corresponding FMO dose distributions, while
the tumour objectives were always enforced as stated in the treatment planning protocol
(a) and hard constraints to evaluate clinical acceptability of plans (b).

E))
Prostate Head-and-neck Liver
Tumor objective Pr.  Tumor objectives Pr.  Tumor objectives Pr.
PTV Vps3sey > 95% 1 PTV Vps>a376y > 98% 1 PTV Vpse0Gy > 95% 1
Dicc <492Gy 2 Dice <75Gy 2
Personalized objectives ~ Pr.  Personalized objectives Pr.  Personalized objectives Pr.
Rectum  Dj. 2 Spinal cord Dicc 3 Liver- GTV Vbp>156y 3
Bladder  Dj.c 3 Brainstem Dice 3 Duodenum Dice 4
Urethra  Dsy 4 ParotidL/R  Dpmean 4 Smallbowel Dj 4
D19y 4 SMGL/R Dmean 4 Stomach Dscc 4
Dsqo 4 Larynx Dmean 5  Spinal cord Dicc 5
CochleaL/R Dpean 6  Esophagus Dicc 5
Esophagus Dmean 6  Kidney L/R Vp>1s6y 6
Oral cavity Dimean 6
(b)
Prostate Head-and-neck Liver

Clinical constraints

Clinical constraints

Clinical constraints

PTV Vb>3s6y > 95%
Rectum D, <32.3Gy
Bladder D;.. < 38Gy

PTV Vb>43.76y > 98%
Dicc <49.2Gy

Spinal cord D;.. <50 Gy

Brainstem  D;.. < 60GYy

PTV Vpse0Gy > 95%
Dicc <75Gy
Liver - GTV  Vp<ysgy 2 700 cc
Duodenum D;.. <30Gy
Small bowel D;.. < 30Gy
Stomach Dscc < 225Gy
Spinal cord Di.. < 18 Gy
Esophagus Di.. <27 Gy
Kidney L/R VD>1SGy <33%

If the update of the objective function yields a plan of inferior plan quality than before

the update the segmentation falls back on the previous plan.

Segmentations are eventually terminated when the MP objective function has

converged with all clinical objectives (table 2.2a) met, or if the maximum number of

MP resets (three) has been reached. The convergence criterion was defined as the

objective value being within 10% of its current value over the last 10 iterations for

segment additions. This criterion was relaxed to 12.5% when all clinical objectives

were met. As a result, fewer segments were included when an adequate plan has

already been achieved.
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2.2.4.3 Segment reduction

An important contributor to treatment delivery time is the number of segments. To
investigate possibilities for active steering on the number of segments, we have
implemented and evaluated six segmentation approaches: three prioritised
segmentation (PS) methods and three non-prioritised (noPS) methods:

1. PS_full: Full prioritised segmentation as described in sections 2.2.4.1 and
2.2.4.2.

2. PS_remove: PS_full, followed by stepwise removal of segments. For every
removal step, the segments are ranked based on their relative contribution to
the PTV mean dose. Subsequently, the segment with the lowest contribution
is removed and the intensities x,. of the remaining segments (equation (2.4))
are re-optimised. This process is continued until a tumour objective is
violated.

3. PS_terminate: Start prioritised segmentation like in PS_full, but terminate as
soon as all tumour objectives are met after the last update of the MP.

4. noPS_full: Start segmentation like in PS_full, but do not update the MP, i.e. the
prioritised list of personalised objectives is not used during segmentation.

5. noPS_remove: noPS_full, followed by stepwise removal of segments (see 2 for
details).

6. noPS_terminate: Start segmentation like in noPS_full, but terminate as soon as
all tumour objectives are met.

2.2.5 Plan evaluation criteria

Plans segmented with the various approaches were mutually compared and
compared with FMO. The analyses focused on clinical acceptability, dosimetric
quality, number of segments, MU and segmentation time. Criteria for clinical
acceptability are summarised in table 2.2b. Dose-volume parameters and the
Conformation Number (CN) as proposed by van 't Riet et al. (1997) were used to
quantify dosimetric quality. Additionally, visual inspections of the dose
distributions were performed.

2.2.6 Computation times

Segmentations were performed on a dual CPU system, consisting of 2 octocore Intel
Xeon E5-2690 CPUs, running at 2.90 GHz and with 128 GB of memory. For the various
segmentation approaches, calculation times were recorded.
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2.3 Results

Segmentation parameters found to be suitable for prioritised segmentation are
presented in section 2.3.1. Prior to presenting the overall performance results for
the segmentation approaches in section 2.3.3, one head-and-neck case is discussed
in detail in section 2.3.2.

2.3.1 Prioritised segmentation parameters

A weight w of 103 for the LTCP term of the objective function (2.1) was found to
work adequately for all tumour sites and was kept fixed throughout the
investigations. As mentioned in section 2.2.3.1, the contribution of the LTCP term
diminished when an adequate PTV coverage was attained. The value of 103
provided an appropriate trade-off between steering on sufficient PTV coverage
(when necessary) and reconstruction of the FMO dose distribution provided. The
voxel weights n,, of the quadratic part of the objective function (2.2) were all set to
1 at the start of the segmentation. For updates of the MP cost function, the weights
for selected voxels were increased from 1 to 5, to 10 and to 15 for subsequent
updates. For OAR objectives, the voxel reference doses df, initially obtained from
the FMO dose distribution were decreased by 0.33 Gy at the same time.

2.3.2 Segmentation performance - example patient

Figure 2.2 shows for an example patient axial and sagittal slices through the PTV for
the FMO plan (a) and the segmented PS_full plan (b). FMO and segmented dose
distributions were similar, though small deviations were noticeable. As required by
the clinical protocol (table 2.2b), in both plans more than 98% of the PTV was
covered by at least 95% of the prescribed dose (yellow isodose line in figure 2.2,
43.7 Gy=95%). Isodose lines of the segmented plan were somewhat smoother,
which can be explained by the difference in fluence modulation. In FMO, the fluence
is modulated per beamlet, although some form of regularisation (smoothing) is
applied. In segmented plans, collections of connecting beamlets are irradiated with
equal intensity, which generally results in smoother fluence profiles. In principle,
the higher modulation in FMO could have resulted in a more conformal plan.
However, in this case a minor increase in CN was observed in the segmented plan;
CN=0.77 for FMO and 0.79 for the segmented plan. FMO and segmented fluence
profiles for all beams are shown in figure 2.3. Even though FMO and segmented
dose distributions were similar, substantial differences in fluence profiles per beam
were observed.
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Isodose lines
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Figure 2.2: Similar FMO (a) and PS_full segmented (b) dose distributions for the example
HN patient discussed in section 2.3.2. Depicted structures: PTV (red), spinal cord (green),
brainstem (blue), parotid L/R (cyan/purple), oesophagus (yellow) and oral cavity (light
blue).

DVHs for the FMO plan and all segmented plans are presented in figure 2.4. For
all three PS methods the goal values for both PTV objectives were attained
(table 2.2), with PTV coverages of 98.9%, 98.8% and 98.8% and PTV D,.. of 49.0
Gy, 49.1 Gy and 49.2 Gy for PS_full, PS_remove and PS_terminate respectively. In
comparison, in none of the noPS plans the PTV D, .. goal was achieved (PTV D;.. of
50.1 Gy). Since the PTV D, .. was already violated for noPS_full, no segments could
be removed without violating one of the tumour objectives in the reduction step
and therefore all noPS plans were equal. Figure 2.5 shows for the example HN case
the PTV objective functions (Vps4376y and Vpssg26y) as a function of iteration
number during the segmentation process. In order to meet for both functions the
goal values three MP updates for the PTV were necessary, to place more emphasis
on crucial voxels that contributed to PTV overdose.
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Figure 2.3: Fluence profiles to realise the FMO and segmented plans for the example patient
discussed in section 2.3.2, plotted per beam. Even though the FMO and segmented dose
distributions are similar (figure 2.2), substantial differences between FMO and segmented
fluence profiles per beam were observed.
100 DVHs for head-and-neck - example patient
T Y T _ T
A —FMO
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30 noPs \ —Parotid L
20 | QAUERY —Parotid R
N N \ —0Oesophagus
10 \ ) L —Oral cavity
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Figure 2.4: DVHs for FMO and segmented plans for the example head-and-neck case
presented in section 2.3.2. Tumour objectives are denoted with red triangles. Inset: close-
up of the DVHs around maximum dose. All three PS plans met both tumour objectives
compared to none of the noPS plans (none of them fulfilled the PTV D, .. objective).
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Head-and-neck - iterative optimisation of PTV objectives
— T

100 ——T— === 500

S —— e T —— I
80 W ‘\ -400
——PTV Coverage
60 ——PTV Vol >49.2Gy |[-300
§ — — —Goal value ’g
40 H - 200
20 - - 100
12.9 cc 3.2cc 1.5cc 0.3 cc
O 1 1 \ L \ L | \ 0
50 100 150 200 250 300

Iteration (#)

Figure 2.5: For the example head-and-neck patient discussed in section 2.3.2, tumour
objective functions’ values during the PS_full prioritised segmentation plotted against
iteration number. In order to meet the goal values (table 2.2a), three updates of
the objective function were necessary. Updates were performed at iteration 85 (PTV
Vp>a9.26y = 12.9 cc), atiteration 162 (PTV Vps49.26y = 3.2 cc) and at iteration 233 (PTV
Vb>490.26y = 1.5 cc). Atthe end of PS_full, PTV Vps.49 26y = 0.3 c¢, which is within the goal
value (< 1 cc, table 2.2a).

2.3.3 Segmentation performance - all patients

Figures 2.6, 2.7 and 2.8 show population mean DVHs for the three patient groups.
DVHs per individual patient can be found in the supplementary materials. For
prostate and liver the mean DVHs for the six segmentation approaches were very
close to those of the FMO plans. For the OARs this also held for head-and-neck
cancer, but for the three noPS segmentation approaches the mean Vp5 49 56, for the
PTV exceeded the clinical dose constraint (table 2.2b), see inset of figure 2.7.
Figure 2.9 shows the number of clinically acceptable plans, which for
head-and-neck indeed shows that for each of the three noPS approaches only 1 out
of 15 plans was clinically acceptable.

Figures 2.10, 2.11 and 2.12 show details on the performance of the six
segmentation approaches for the three investigated tumour sites. The subfigure
“PTV Dlcc” of figure 2.11 shows that acceptability issues with noPS plans for
head-and-neck cancer were indeed indeed related to too large PTV volumes
receiving high dose. Among the three PS approaches, differences between achieved
dosimetric parameters for head-and-neck were clinically irrelevant (figure 2.11).
Overall the best segmentation approach for this group seems PS_terminate as it has
the lowest # segments (median: 75), the lowest # iterations (median: 334) and the
lowest MU (median per fraction: 979 MU). Also for prostate and liver cancer,
PS_terminate is often a good choice, mainly because of the relatively low
# segments, low # iterations and low total MU.
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Average DVHs for prostate (N=20)
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Figure 2.6: Average DVHs for the prostate cases (N=20) for the FMO plans (thick solid
lines) and the segmented plans (dashed). The PTV coverage objective is denoted with a
red triangle.

Another interesting observation are the differences in deviation observed per
segmentation method over various objectives with different priorities (table 2.2a).
For example, for prostate cancer the smallest deviations were observed for the
most important OAR (i.e. rectum). With decreasing importance (increasing priority
number) the deviations in dose from the FMO plan increased (compare objective
subplots in figure 2.10). No similar trend was observed for the noPS approaches,
which indicates that the proposed extension of the segmentation technique is able
to reduce dose deviations in a prioritised manner.

2.4 Discussion

MLC segmentation approaches were investigated that aim at accurate
reconstruction of optimised FMO distributions, while complying with the
mechanical limitations of the treatment device. To reconstruct 3-dimensional FMO
dose distributions, a column generation approach was implemented that
simultaneously optimised the beam segments for all treatment beams, while
ignoring the underlying FMO fluence profiles.

For OARs the proposed segmentation method uses a convex quadratic objective
function to minimise the voxel-wise differences between the intended FMO dose
and the segmented dose. During prioritised segmentation, this objective function
may iteratively be adapted to maximally reproduce OAR dose parameters, while
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Figure 2.7: Average DVHs for the head-and-neck cases (N=15) for the FMO plans (thick solid

lines) and the segmented plans (dashed). Inset: close-up of the DVHs around maximum
dose. PTV objectives are denoted with red triangles.
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Figure 2.8: Average DVHs for the liver cases (N=12) for the FMO plans (thick solid lines) and
the segmented plans (dashed). PTV objectives are denoted with red triangles.
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Clinically acceptable plans
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Figure 2.9: Percentage of clinically acceptable plans. A plan was considered acceptable if
for all constraints the obtained values were within 0.25 Gy or 0.25% of imposed values
(table 2.2b). Plans segmented using the prioritised methods (PS) outperformed the
non-prioritised methods (noPS). Especially for head-and-neck where more emphasis was
needed on crucial voxels, in 14 out of the 15 cases, in order to meet the PTV D, . constraint.

considering the clinical priorities. In initial attempts, we tried to also use for the
PTV only a quadratic cost function, similar to the OARs. However, achieving
clinically acceptable PTV coverages and maximum doses often failed. Therefore, the
quadratic function was supplemented with an LTCP term. Also for FMO plan
generation, the LTCP cost function is often used for obtaining adequate PTV dose
(Alber and Reemtsen, 2007, Breedveld et al., 2012, 2017).

In our study, segmented plans were in good agreement with the FMO plans
(section 2.3.3), and the number of segments and MU of the generated plans are in
line with our clinical experience. Quantitative comparison with published
segmentation methods is difficult due to large variations in clinical cases and plans,
and in applied segmentation objectives, parameters and quality measures. Also, in
published studies the number of evaluated cases is generally relatively low
(typically 2 to 10 compared to 47 in this study). However, qualitative comparisons
indicate a superior FMO plan reproduction with the proposed approach.
Explanations for this could be i) the direct reconstruction of the 3D FMO dose
distribution with total ignorance of obtained FMO fluences, and simultaneous
segment generation for all beam directions, instead of the generally observed focus
on reconstruction of separate fluence profiles, and ii) the prioritised approach with
an explicit drive to avoid plan quality losses for the highest clinical priorities. With
this approach, segmentation is fully focused on maintaining the quality of the FMO
plan with minimal limitations in selecting optimal segments and preservation of the
clinical trade-offs. We have indeed observed substantial differences between FMO-
and segmented fluence profiles for similar dose distributions (see figures 2.2 and
2.3 for an example patient). Possibly, the featured large freedom in beam segment
selection has contributed to the high quality of the reconstructed plans with
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Figure 2.10: Comparison of treatment plan characteristics for FMO and the six segmentation
approaches for prostate cancer. The whiskers in the boxplots denote the range of the data,
i.e. minimum and maximum observed values and the coloured bars the 25-75% percentile
range with the median value depicted with a horizontal line. Horizontal red dashed lines
denote clinical constraints as summarised in table 2.2b. A plan was considered acceptable if
for all constraints the obtained values were within 0.25 Gy or 0.25% of imposed values. MU
= Monitor Unit, CN = Conformation Number, an asterisk (*) denotes a significant (p < 0.05)
difference compared to FMO (Wilcoxon Signed Rank test).
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Figure 2.11: Comparison of treatment plan characteristics for FMO and the six segmentation
approaches for head-and-neck cancer. The whiskers in the boxplots denote the range of
the data, i.e. minimum and maximum observed values and the coloured bars the 25-75%
percentile range with the median value depicted with a horizontal line. Horizontal red
dashed lines denote clinical constraints as summarised in table 2.2b. A plan was considered
acceptable if for all constraints the obtained values were within 0.25 Gy or 0.25% of imposed
values. MU = Monitor Unit, CN = Conformation Number, an asterisk (*) denotes a significant
(p < 0.05) difference compared to FMO (Wilcoxon Signed Rank test).
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Figure 2.12: Comparison of treatment plan characteristics for FMO and the six segmentation
approaches for liver cancer. The whiskers in the boxplots denote the range of the data,
i.e. minimum and maximum observed values and the coloured bars the 25-75% percentile
range with the median value depicted with a horizontal line. Horizontal red dashed lines
denote clinical constraints as summarised in table 2.2b. A plan was considered acceptable if
for all constraints the obtained values were within 0.25 Gy or 0.25% of imposed values. MU
= Monitor Unit, CN = Conformation Number, an asterisk (*) denotes a significant (p < 0.05)
difference compared to FMO (Wilcoxon Signed Rank test).
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clinically acceptable numbers of segments (see figures 2.10, 2.11 and 2.12). Nguyen
et al. 2015 investigated dose domain regularisation for MLC segmentation and
observed that the segmented fluence profiles with and without regularisation could
be substantially different. A direct comparison with published or commercially
available segmentation approaches would be very interesting. For such studies it
would be important to eliminate potential bias, e.g. originating from difference in
dose calculation models, segmentation objectives or evaluation measures.

In this paper, FMO treatment plans were generated with Erasmus-iCycle
(Breedveld et al, 2012), which has been successfully implemented in clinical
practice for fully automated multi-criterial generation of clinically deliverable plans
for head-and-neck, prostate, advanced lung cancer and advanced cervical cancer.
For these tumour sites, Erasmus-iCycle is used for FMO plan generation, while the
Monaco TPS (Elekta AB, Stockholm, Sweden) is effectively used for segmentation
(Della Gala et al.,, 2017, Heijmen et al., 2018, Sharfo et al., 2015, Voet et al., 2013a,
2014). For automated offline treatment planning calculation time is not crucial, but
in other scenarios it could be. Therefore, we have investigated calculation times for
the segmentation approaches. When plan quality is the most important aspect, the
PS_full is most suitable; fully converged segmentation with the best plan quality.
When calculation time is more important, for example in the case of online-adaptive
treatment, the PS_terminate could be a more suitable option. It provides a
reduction in number of segments compared to the PS_full, with only minimal
impact on plan quality. Additionally, the terminate and remove plans generally have
a lower number of MU and so these plans are more efficient to deliver compared to
the fully converged plans. A possible drawback of the terminate and remove
approaches could be that the personalised objectives obtained from the FMO dose
distributions are too challenging to reconstruct under the mechanical limitations.
In that case, a plan would be returned with a high number of segments while
fulfilling the highest feasible objectives. Regarding the terminate approach, since
the segmentation minimises the difference between the FMO dose and segmented
dose, terminating the segmentation when the tumour objectives are met does not
necessarily mean that none of the remaining objectives are met. The segmentation
primarily works on all dose points simultaneously with an extra emphasis on PTV
coverage due to the LTCP term, prior to placing extra emphasis on other prioritised
objectives. Investigations on further reduction of calculation times using GPU are
on-going; preliminary results indicate a potential reduction in calculation time with
a factor of 5.

The prioritised extension of the segmentation has been observed to be effective,
but the impact is patient dependent and it increases calculation time. An option for
clinical practice would be to always perform a full prioritised segmentation and let
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the user decide which plan is most appropriate per patient, given that the
intermediate (e.g. PS_terminate, noPS_full, noPS_terminate) plans are also available
when PS_full is performed.

Interesting opportunities for further improving the proposed MLC
segmentation approach would be to integrate published improvements in DAO
techniques into this MLC segmentation method. One interesting approach in
particular would be to integrate the Aperture Shape Optimization (ASO) algorithm
as proposed by Cassioli and Unkelbach (2013), which optimises the shapes of the
included segments in between CG iterations. However, this will also increase
computation time. Another useful improvement might be to integrate a clinical
dose engine in order to account for MLC scatter effects or to include a fuzzy
controller to reduce numerical noise on the gradient maps as proposed by Yang
etal. (2018).

2.5 Conclusions

Novel MLC segmentation approaches have been proposed for accurate
reconstruction of high-quality FMO dose distributions, while complying with the
mechanical limitations of the treatment device.  3-dimensional FMO dose
distributions are reconstructed with total ignorance of underlying FMO fluences,
and simultaneous segment generation for all beam directions. Due to the proposed
prioritised approach, plan reconstruction has an accent on high priority planning
objectives. Clinically acceptable segmented dose distributions could be generated
for all cases with a plan quality that was in good agreement with the FMO plan and
clinically acceptable numbers of segments.
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32 ABSTRACT

Abstract

Radiotherapy treatment planning requires accurate modeling of the delivered
patient dose, including radiation scatter effects, MLC leaf transmission,
interleaf-leakage, etc. In fluence map optimization (FMO), a simple dose model is
used to first generate an intermediate plan based on pencil-beams. In a second step
(segmentation phase), this intermediate plan is then converted into a deliverable
treatment plan with MLC segments. In this paper, we investigate novel approaches
for the use of a clinical dose engine (CDE) for segmentation of FMO plans in robotic
radiotherapy. Segments are sequentially added to the plan. Generation of each next
segment is based on the total 3D dose distribution, resulting from already selected
segments and the desired FMO dose, considering all treatment beams as candidates
for delivery of the new segment. Three versions of the segmentation algorithm
were investigated with differences in the integration of the CDE. The combined use
of pencil-beams and segments in a segmentation method is non-trivial. Therefore,
new methods were developed for the use of segment doses calculated with the CDE
in combination with pencil-beams, used for the selection of new segments. For 20
patients with prostate cancer and 12 with liver cancer, segmented plans were
compared with FMO plans. All three versions of the proposed segmentation
algorithm could well mimic FMO dose distributions. Segmentation with a fully
integrated CDE provided the best plan quality and lowest numbers of Monitor Units
and segments at the cost of increased calculation time.
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3.1 Introduction

In intensity-modulated radiation therapy (IMRT), dose is delivered with a multi-leaf
collimator (MLC), which comes with radiation scatter effects, MLC leaf transmission,
and interleaf-leakage. There are generally two optimization approaches to construct
an IMRT plan.

The first approach splits the optimization problem into a fluence map
optimization (FMO) phase and a segmentation phase. In FMO, each beam is
discretized into a two-dimensional grid of beamlets, confined by the beam shape.
Beamlet intensities are optimized using a pencil-beam formulation that relates
intensities to delivered patient dose. Pencil-beam dose distributions are
approximative, as final MLC configurations are not known in the FMO phase. In the
subsequent segmentation phase, the optimized beamlet intensities are converted
into MLC segments to create a deliverable plan. This conversion may degrade the
FMO plan quality as the dosimetric impact of the MLC is not fully accounted for
during FMO. Nevertheless, an advantage of this approach is that the FMO problem
can be modeled as a convex multi-criterial optimization problem (Breedveld et al.,
2019b) with a guaranteed globally optimal solution in the FMO phase.

The second approach for IMRT plan generation, called Direct Aperture
Optimization (DAO), directly generates MLC segments (Men et al,, 2007, Romeijn
et al, 2005, Shepard et al,, 2002). The non-convex modeling of the (physical)
constraints of the treatment device in DAO leads to a non-convex optimization
problem with a risk to get trapped in a local minimum. Moreover, the identification
of each new segment is based on a simplified dose model, with similar
shortcomings as FMO. In our center, we have given preference to treatment plan
optimization using FMO followed by segmentation, because of the Pareto and global
optimality of the FMO plans that are generated with Erasmus-iCycle (Breedveld
etal, 2012).

In a previously published paper, we proposed a segmentation algorithm that
reconstructs the 3D FMO dose distribution considering all beams simultaneously
(Schipaanboord et al., 2019c), rather than separate reconstruction of the FMO beam
fluence profiles as done in published segmentation algorithms (Goren and Taskin,
2015, Long et al,, 2016, Luan et al,, 2006, Sun and Xia, 2004, Siiss et al., 2007). This
segmentation algorithm used a column generation (CG) approach, similar to DAO
approaches, that iteratively identified segments and added them to the treatment
plan. Segments were constructed using pencil-beams generated with a simplified
MLC model, assuming that a following re-optimization of the segment weights with
an accurate dose engine could (in part) compensate for the simplified dose model
used during segmentation. Yet, this was not verified.
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In this paper, we investigated approaches for integration of a clinical dose
engine (CDE) into the segmentation algorithm proposed by Schipaanboord et al.
(2019c). A CDE can accurately calculate dose delivered by MLC segments, taking
into account scatter and transmission effects. When using an accurate (clinical)
dose engine, there is a discrepancy between dose delivered by pencil-beams and by
its corresponding segment, which results in challenges for the previously used
column generation approach. Three versions of the segmentation algorithm with
different degrees of integration of the CDE were investigated. For comparison of the
segmentation approaches, calculation times, ability to dosimetrically mimic
corresponding FMO plans, numbers of Monitor Units (MU), and numbers of
segments were considered.

3.2 Materials & Methods

First, the column generation algorithm for MLC segmentation is summarized in
section 3.2.1. Then, the integration of the CDE into the segmentation algorithm is
described in section 3.2.2. Details on the FMO plans, plan evaluation criteria, and
the validation of plan segmentation methods are presented in section 3.2.3.
Section 3.2.4 describes the used computer hardware.

3.2.1 MLC segmentation using column generation

The use of column generation for the segmentation is previously described in detail
in Schipaanboord et al. (2019c). In short, the segmentation problem is defined as
the master problem (MP), which is iteratively solved by repeatedly solving a
restricted version of the problem, denoted as the RMP. The RMP only holds a subset
of the original decision variables, which in the perspective of MLC segmentation
represents the so far selected segments. The RMP is solved to obtain the segment
weights. The solution of the RMP is then converted into pencil-beam weights, which
are used to calculate the gradient of the objective function of the MP. In the
subsequent pricing problem (PP) step, the gradient is used to identify promising
beamlets, which are then grouped to from a segment to be added to the RMP. After
the PP step, the RMP is solved again to obtain the segment weights and the process
is repeated. When no new segments can be identified that improve the MP, the MP
is solved to optimality. The formulation of MP, PP and RMP used in this study are
described in sections 3.2.1.1, 3.2.1.2 and 3.2.1.3, respectively.
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3.2.1.1 Master Problem

For the formulation of the MP, a pencil-beam approach was used to describe dose
delivered to the patient: d = Ax, where x denotes the pencil-beam weights (fluence
intensities), A denotes the dose deposition matrix, and d denotes the vector
containing the patient’s voxel doses. The segmentation problem is formulated by:

minixmize f(x) + wip(x) + wrg(x), (MP) (3.1)

subject to x=0.

x = 0 ensures non-negative fluences and f(x), p(x), and g(x) are given by:

G =)l Ax - a1 (3:2)
vev
1 Npry
- - —a(ij—DP) ]
p(x) Nory ; e ) (3.3)
gx) = z X. (3.4)
XEX

The MP consists of three terms: 1) a quadratic term f(x) that minimizes dose
differences between input FMO dose and segmented dose, 2) a term p(x) based on
logarithmic tumor control probability (LTCP), with weight w;, to put extra
emphasis on attaining adequate PTV coverage (Schipaanboord et al., 2019c), and 3)
a configurable Monitor Units (MU) penalty term g(x), with weight w,, to invoke
reduction of the beam-on time.

In f(x), the vector n,, contains voxel-dependent weight factors for each volume
v € V and df, defines the FMO distribution. In p(x), DP denotes the prescribed dose
for the PTV, Npry the number of sampled PTV voxels, Ajx the dose delivered to PTV
voxel j, and « is a constant related to cell survival and this constant was tuned to
achieve adequate PTV coverage (Schipaanboord et al., 2019¢). In g(x), X denotes
the set of all pencil-beams.

3.2.1.2 Pricing Problem

New segments are identified in the PP step. For the identification, the gradient of
the objective function of the MP is calculated and reshaped from the vectorized
format to the 2-dimensional beamlet grid format for each of the beams. Beamlets
with negative gradients are favorable for inclusion in the next segment, as they
move the MP towards its minimum. A segment is formed by grouping a set of
beamlets with negative gradients under the mechanical restrictions of the
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treatment device. By grouping beamlets with negative gradients and adding them
to the RMP, the CG approach utilizes a greedy gradient descent method to solve the
MP. For identifying the most promising group of connected beamlets with negative
gradients, a layered graph approach is used, similar to the approach in Romeijn
et al. (2005) and also explained in detail in Schipaanboord et al. (2019c). The
restrictions are taken into account while constructing a layered graph for each of
the beam directions and the graphs are subsequently solved using a Bellman-Ford
shortest path algorithm. Each identified segment i is then represented by a binary
vector of open and closed beamlets, denoted by ;.

The mechanical restrictions enforced during identification of new segments
were similar to the restrictions of the CyberKnife InCise2 MLC: a segment can
contain only one contiguous opening, a minimum field opening size of 7.5 x 7.7
mm? (57.75 mm?), a minimum number of 2 leaf pairs open per segment (7.7 mm in
total), a minimum opening size of 5 mm in the directions of the leaves, and
interdigitation is allowed. All segmentations were performed on a resolution of 5 X
3.85 mm? The leaf width matches that of the CyberKnife InCise 2 MLC (Accuray
Inc.), which has 2 banks of 26 leaves with a leaf width of 3.85 mm defined at 800
mm SAD. To reduce inter-leaf leakage the CyberKnife InCise2 MLC is tilted by 0.5°
which reduces the projected segment size and causes an asymmetry of
approximately +0.25 mm in the penumbral width at the top and bottom of the
segment, analogous to the tongue-and-groove effect observed with interlocking
leaves (Asmerom et al., 2016). In the finite sized pencil-beam algorithm of the CDE
the projected aperture reduction is applied during segment dose calculation, and
the penumbra asymmetry is ignored.

3.2.1.3 Restricted Master Problem

For each iteration of the CG, the identified segment is added to the RMP by adding a
new column to the optimization problem. This column represents the dose
deposition of the segment and is calculated by multiplying the pencil-beam matrix
A with the binary open-closed vector representation of the segment S;, the segment
dose deposition matrix for all identified segments is denoted by A,. The updated
RMP is then solved to optimality to obtain the segment weights (segment
intensities) x,. For this, we use our in-house developed solver (Breedveld et al.,
2017), specifically designed and tuned for solving radiotherapy optimization
problems, but any non-linear solver can be used. The RMP is formulated by:

min)icmize fr () + w10y (%) + w29, (1), (RMP) (3.5)

subject to x = 0.
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x, = 0 ensures non-negative segment weights and f,-(x,.), p,-(x;-), and g, (x,) are

given by:
Fr06) = D T2 CApx = A3, (3:6)
vev
Npty
pr(xy) = e—a(Azjr—DP)’ (3.7)
Npry &
j=1
G0 = ) (38)
XrEX,

i.e. identical to equations (3.2-3.4), but then in segment-space instead of
beamlet-space. At last, to continue the CG loop, the segment weights are expressed
in pencil-beam weights using (3.9). To convert the segment weights x, into
pencil-beam weights x, the open beamlets S; of a segment i are multiplied by their
corresponding segment weight x,; and then accumulated over all identified
segments [.

1
x= z S (3.9)
i=1

The RMP solution expressed in pencil-beam weights can then be used to calculate
the gradient of the objective function of the MP, which is used to identify the next
segment.

3.2.2 Integration of clinical dose engine in MLC segmentation

The CDE can accurately calculate segment doses, taking into account scatter and
transmission effects (not accounted for in the pencil-beam dose calculations), by
modeling the MLC segment as one physical object. For the integration of the CDE in
the column generation loop, every time a segment is identified in the PP the
corresponding leaf configuration of the MLC is provided to the CDE. The CDE then
returns a dose deposition vector for unit intensity of this segment. This dose
deposition vector can then be used in the RMP to calculate the weights of the
segments.

One of the challenges for integrating a CDE into the CG approach is that a
segment dose calculated with the CDE differs from the segment dose calculated as
the sum of its pencil-beams. Since the segments shapes, i.e. the leaf positions, are
not known when the pencil-beams are calculated, an approximation of the field size,
scatter and transmission effects are used. While, for the segment dose calculations,
the leaf positions are known and thus the scatter and transmission effects are more
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accurately predicted. This can cause problems when the RMP solution is converted
back to the individual pencil-beam weights (using equation (3.9)). The MP expects
a dose deposition per pencil-beam as given in 4,;, (d = Appx), but x,. is calculated
using the dose deposition per segment as given in Ay, 4. When converting x,- back to
x, this causes a discrepancy in dose calculated in the MP as compared to the dose
calculated in the RMP. Because of this dose discrepancy between the two dose
deposition matrices, the dose resulting from x,, (d = A,x,) is not an accurate
representation for the MP, since the MP is based on A # A,..

In practice, due to the scatter and transmission effects accounted for in the RMP
and not in the MP, this would result in an over-prediction of the delivered dose in the
MP. As a consequence, fewer beamlets have a negative gradient and therefore fewer
beamlets are predicted to be favorable for inclusion in the next segment. This would
cause the segmentation to terminate prematurely. In the conventional CG approach,
this problem does not occur because both the MP and the RMP use the same pencil-
beam basis for dose calculation, i.e. A,px = A, ;.

To mitigate this difference in segment dose deposition between the MP and the
RMP, we have introduced two extra versions of the RMP:

RMPey:

This version of the RMP accurately models the segment dose using the CDE. The
RMPg,, is formulated by:

minimize fseg (xseg) *+ W1Pseg (xseg) T W29seg (xseg)' (RMPseg) (3.10)

Xseg

subject to Xseg = 0.

Xseg = 0 ensures non-negative segment weights and fse g (Xseg), Pseg (Xseg), and

Iseg (xseg) are given by:

fseg(xseg) = Z ”nvl/z(Asegxseg - dllj)”%' (3.11)
vev
Npry
Pseg(Xseg) = Z e_a(Aseg'jxseg_DP). (3.12)
NPTV -
j=1
Gseg(Xseg) = Z Xseg- (3.13)
Xseg€Xseg

Here, Ag.4 denotes the accurate segment dose deposition matrix calculated with
the CDE, each column of A, 4 denotes the dose deposition per identified segment for
unit intensity, xs.4 denotes the segment weights for the CDE segments and X4 the
set of CDE segment weights.
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RMP

This version of the RMP models the segment dose as the sum of its pencil-beams,
similar to the RMP from section 3.2.1.3. The RMP,, is formulated by:

minimize  fop () = Y 0" (App iy — Aseg¥eeg)ll3,  (RMPy) (3.14)
vev

subject to x, = 0.

This RMP approximates the accurate dose from the RMPg. (AsegXsey) In
pencil-beams. It finds the segment weights x, that minimize the dose difference
between the accurately modeled segments in the RMP,,, and the segments modeled
as the sum of its pencil-beams in the RMP,. This minimization step attempts to
account for differences in segment intensities due to MLC scatter effects.

We have investigated three variants for the integration of the CDE in the column
generation algorithm, see figure 3.1:

No integration (NO-int):

The first method does not use the CDE in the intermediate iterations and resembles
a conventional CG model for MLC segmentation. Throughout the segmentation, the
segment dose is modeled as the sum of its pencil-beams (RMP). The CDE is only
applied for a final re-optimization of the segment weights using the RMPy,, and for
the final dose calculation, after all segments shapes have been identified. This
method functions as a baseline performance.

Medium integration (MED-int):

The second method uses the CDE to calculate the accurate segment dose Ay, for
each newly identified segment in the PP, and scales the segment as a whole. In the
RMPg, (3.10) the weights x4 for the accurate CDE segments are calculated. The
dose corresponding to this solution, AgegXseg, is converted in pencil-beams by the
RMPy;, (3.14). For this, the RMP,;, uses an open and closed beamlet representation
S; (3.9) to model the segment dose in Ay .. In this case, each non-zero element of S
has the same value, namely 1. The conversion from accurate segment dose to
pencil-beams is necessary to calculate the gradient on the pencil-beams for the next
CG iteration.
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Full integration (FULL-int):

The third method uses the CDE to calculate the accurate segment dose 4,4 for each
newly identified segment in the PP, similar to MED-int. Also, the RMPy,, (3.10)
calculates the weights x4 for the CDE segments. Additional to the conversion step
using the RMP;, (3.14), this method features an additional segment approximation
step because the MLC scatter effects are not uniformly distributed over the open
area of a segment but occur mostly at the edges of the opening. Instead of an open
and closed beamlet representation, as used for MED-int, the pencil-beams are
allowed to have partial contributions to the segment dose. Le. S; for the identified
segment i is no longer binary (open-closed), but may now contain continuous
values (3.9). This additional approximation step is formulated by:

minimize )" 19,1/ (4pyS; — Aseq )l (3.15)
¢ vevV
subject to S; = 0. (3.16)

This results in a closer representation of the accurate segment dose when
converting the CDE segment weights to pencil-beam weights. Note that this
approach physically still represents a deliverable segment (RMP.), but the
re-weighting takes place in the pencil-beam space (RMPy,).

3.2.3 Plan details and segmentation validation

The segmentation performance of the proposed methods was evaluated on a cohort
of 32 patients treated with robotic radiotherapy, consisting of 20 SBRT prostate
cases (38 Gy in 4 fractions, with highly heterogeneous PTV dose distributions to
mimic HDR brachytherapy dose distributions) and 12 liver cases (60 Gy in 3
fractions). All FMO plans were generated with fully automated multi-criterial
optimization as implemented in Erasmus-iCycle (Breedveld et al, 2012, 2017),
generating Pareto-optimal plans, and with a 25 non-coplanar beam geometry
(Rossi et al, 2015). These FMO plans were identical to the plans used in
Schipaanboord et al. (2019c). The clinical objectives used to evaluate the
segmentation performance are given in table 3.1.

To visualize the trade-off in plan quality versus MU, five segmentations per case
were performed with increasing weights of the MU penalty term
(w, € {1, 2.5, 5, 7.5, 10}). A one-sided plan quality index (PQI) was defined as the
mean difference in achieved criterion values (in Gy) between an FMO plan and its
corresponding segmented plan (3.17), with n the number of criteria for that
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Figure 3.1: Integrations of the CDE into the column generation algorithm. The NO-int
method only uses the CDE after all segments have been identified. The MED-int method
uses the CDE during the segmentation for identification of new segments. For this, it uses
a binary (open and closed) beamlet intensity representation in the RMPp,, to model the
accurate segment dose from the RMPge,. The FULL-int method uses the CDE during the
segmentation for identification of new segments and uses a continuous beamlet intensity
representation in the RMPy,;, to model the accurate segment dose from the RMPg., more
closely than the MED-int. See section 3.2.2 for the formulations of the RMPp;, and the
RMPg.,. Abbreviations: MP: Master Problem, PP: Pricing Problem, RMP: Restricted Master
Problem, CDE: Clinical Dose Engine.
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Table 3.1: Clinical objectives for prostate and liver cases.

Prostate Liver
PTV Vaggy > 95% PTV Veogy > 95%
Urethra D5y, < 45Gy Dicc <75Gy

Urethra Digoy < 42 Gy Liver - GTV VisGgy 2 700 cc
Urethra Dsgo, < 40 Gy Duodenum Dicc <30Gy
Rectum Dicc <323Gy  Small bowel Dicc <30Gy
Bladder Dic.c <38Gy Stomach Dsee < 225Gy
Spinal cord Dycc <18Gy
Esophagus Dicc <27Gy

patient, FMO; the value of criterion i for the FMO plan and SEG; the achieved
criterion value for the corresponding segmented plan.

1~ ||FMoO; = SEG;| if FMO; < SEG;
PQI [AGY] = —Z (3.17)
n&g if FMO; > SEG;

Like the FMO plans, all segmented treatment plans were linearly scaled to the
PTV coverage objective for a fair comparison in plan quality.

3.2.4 Computer hardware

Segmentations were performed on an Intel Core i7-3820 with 4 physical cores
running at 3.60 GHz, with 32 GB of memory and equipped with an NVIDIA GeForce
GTX Titan Black GPU card. The segmentation involves many (computationally
intensive) matrix-vector multiplications, these are performed on the GPU to speed
up the process. All calculation times are including data transfer between our
research environment and the CDE.

3.3 Results

In section 3.3.1, we first present the segmentation performance on one prostate case.
Overall performance on a patient population basis is then discussed in section 3.3.2.

3.3.1 Segmentation performance — example patient

Figure 3.2 shows the DVHs of the FMO plan and the three segmented plans for an
example prostate case. Overall, there is a high degree of similarity between FMO and
segmented doses. Also, differences between the three segmentations are minor. In
figure 3.3, the input FMO dose distribution is compared with the dose distribution
generated with the FULL-int segmentation method.
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Figure 3.2: DVHs for FMO and segmented plans (w, = 1) for the example prostate case
discussed in section 3.3.1. All plans were normalized to have a PTV coverage of 95% at 38
Gy. Sxx: number of segments, kMUxx: kMU (kilo MU). Clinical objectives are denoted with
red triangles, see table 3.1.

(a) FMO (b) Segmented

Isodose lines
38.0 Gy

15.2 Gy

Figure 3.3: Axial (top) and sagittal (bottom) slices through the PTV for the FMO dose (a) and
the segmented dose obtained with the fully integrated CDE (FULL-int) method (b) for the
example prostate case discussed in section 3.3.1. Depicted structures: PTV (red), rectum
(blue), bladder (yellow), urethra (light blue), and femoral heads L/R (cyan/purple).
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3.3.2 Segmentation performance — patient population

Population averaged DVHs are shown in figure 3.4 for both the prostate plans and
the liver plans. Evaluated on a population basis, for prostate, increasing the weight
from 1 to 2.5 resulted in a violation of clinical constraints on either the rectum or the
bladder. For clinically acceptable plans, a w, equal to 1 was chosen for the prostate
plans to be presented throughout this paper. For liver, w, could be increased from
1 to 5 without compromising on any clinical constraints (see table 3.1). Therefore,
for the liver plans a w, equal to 5 was chosen to provide the best balance between
clinically acceptable plans and deliverability of the plans. Unless otherwise stated,
these w, weights are used in the remainder of this paper. In general, the DVHs of the
segmented plans are similar to the DVHs of the FMO plans for both treatment sites.
For prostate, segmented urethra and rectum doses are slightly higher than in FMO.
For liver, the segmented plans have a higher maximum dose than the FMO plans (less
homogeneous PTV dose), yet all plans still meet the PTV D, .. < 75 Gy objective.

Dosimetric plan parameter values for segmented and FMO plans are compared
in figure 3.5 (prostate) and in figure 3.6 (liver). For prostate, increases in urethra
Dsgo, and rectum D,;.. were observed in the segmented plans, but occasional
violations of clinical constraints or objectives were minor.  For the other
parameters, the FMO values were closely reproduced. Also for liver, differences
between segmented and FMO plan parameter values were generally small and no
constraint violations in segmented plans were observed. For both tumor sites,
differences in the three segmentation approaches were small.

Figure 3.7 shows for the three segmentation approaches, PQI as a function of
the number of MU and the number of segments. For data generation,
segmentations were performed for various weights of the MU penalty term
(w, € {1, 2.5, 5, 7.5, 10}). A clear trade-off between PQI and the number of MU or
the number of segments is observed. Plans generated with the highest MU penalty
weight (w, = 10) have the lowest number of MU and the lowest number of
segments, but also the highest PQI. The FULL-int method shows overall the best PQI
values for equal MU or equal numbers of segments.

Table 3.2 shows segmentation times. The NO-int method is able to identify the
segments within 2 minutes, but then needs an additional 12 minutes to recalculate
the segment doses using the CDE. The average identification time for the MED-int
and FULL-int methods was 49 minutes (over all plans, both prostate and liver). The
additional recalculation step is not needed for MED-int and FULL-int, since it is
integrated into the segmentation routine. For all methods, a final forward dose
calculation can be performed to obtain the 3D dose distribution.
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Figure 3.4: Population averaged DVHs. Upper panel: prostate, lower panel: liver. All
prostate plans were normalized to have a PTV coverage of 95% at 38 Gy and all liver plans

to a PTV coverage of 95% at 60 Gy. Clinical objectives are denoted with red triangles, see
table 3.1.
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Figure 3.5: Segmentation results for the prostate plans. Segmented values for clinical
objectives are plotted against the values of the input FMO plan. All plans were normalized
to have a PTV coverage of 95% at 38 Gy.

Table 3.2: Average segmentation times needed to generate deliverable treatment plans.
CDE = Clinical Dose Engine.

Method Segment CDE calculation Subtotal Total
identification =~ & re-optimization  (identification)  (incl. 3D dose)

[min] [min] [min] [min]

Prostate  NO-int 1.6+ 0.2 126 £ 2.2 142+ 2.3 20.0+ 29
MED-int 438+ 79 - 438+ 7.9 492+ 83

FULL-int 523+ 84 - 52.3+ 84 579+ 9.0

Liver NO-int 07+ 0.1 11.5+3.2 123+ 3.3 155+ 4.0
MED-int 49.7 £ 14.6 - 49.7 + 14.6 524 +15.4

FULL-int 54.0 £ 13.7 - 54.0 + 13.7 57.6 + 14.7
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All segmented plans met the

constraints and also the FMO objective values were closely replicated. All plans were
normalized to have a PTV coverage of 95% at 60 Gy.
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Figure 3.7: For various weights of the MU penalty term (w, € {1, 2.5, 5, 7.5, 10}), PQl is
plotted against the number of kMU (left panels) and the number of segments (right panels)
for each of the three investigated segmentation approaches. Each marker represents a w,-
“segmentation approach” combination plotted against the mean kMU or the mean segments
over all patients; error bars in y-direction denote the standard error of the mean in PQI and
error bars in x-direction denote the standard error of the mean in kMU or in segments. Mean
kMU and mean segments decrease with increasing w,. Plans generated with the highest MU
penalty weight (w,=10) have lowest kMU or segments.

3.4 Discussion

Accurate modeling of the segment dose, including leakage and scatter effects of the
MLC, is essential when converting an FMO dose distribution into a deliverable
radiotherapy treatment plan. In this study, we found that calculation of accurate
segment doses at the end of the segmentation, together with a re-optimization of
the segment weights, provides similar plan quality to that of treatment plans
generated with a fully integrated CDE (figures 3.5 & 3.6). Yet, the fully integrated
(FULL-int method) achieved this plan quality with fewer number of MUs or
segments (figure 3.7). Therefore, if calculation times are not an issue, the FULL-int
method would be the best segmentation method for the patients studied in this
paper.

Published MLC segmentation methods are mainly based on independent
segmentation of the 2D FMO beam fluence profiles (Goren and Taskin, 2015, Long
et al,, 2016, Luan et al, 2006, Sun and Xia, 2004, Siiss et al., 2007). In such
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approaches, it is infeasible to fully account for MLC scatter effects. In literature,
there are a few published papers that also use a CDE to model the dose. For
example, Kontaxis et al. (2015a,b) use the Monte Carlo dose engine (GPUMCD) from
Elekta AB for solving the segmentation problem by iteratively subtracting a
segment dose from an ideal input dose. However, in their approach, the
identification of new segments is done by segmentation of the fluence profiles per
beam. For CyberKnife, Bedford et al. (2019b) used Accuray’s CDE to calculate
pencil-beam matrices for beam selection. This CDE was also used for dose
calculation for dynamic arc delivery (Bedford et al., 2019a). To the best of our
knowledge, this is the first paper to integrate the CDE into a column generation
formalism to fully account for MLC scatter effects during segmentation, not only for
MLC segmentation with column generation, but also for DAO approaches with
column generation.

One of the obstacles for integrating the CDE in segmentation is that for each
iteration the solution in the dose domain needs to be expressed in terms of
pencil-beams. This conversion is needed to calculate the gradient of the objective
function, which is then used to identify the next promising segment. Since the beam
characteristics are different for each segment, the solution cannot be exactly
expressed in terms of the generic pencil-beams. As a consequence, there is a
discrepancy between the exact segment dose and the segment dose calculated with
pencil-beams. This impacts the accuracy of the gradient used for identification of
the next segment. In this study, we have minimized the impact of this discrepancy
by introducing an additional optimization step within each iteration of the column
generation loop. This optimization step minimizes the difference between the CDE
dose and the dose from the pencil-beam solution. This additional optimization step
reduces the discrepancy, yet does not fully resolve the issue. The remnant
discrepancy is smaller for the FULL-int method than for the MED-int method, since
the FULL-int method has more freedom for minimizing the dose differences per
segment. This resulted in overall somewhat better plan quality for the FULL-int
method (figure 3.7). Another interesting observation is that, when comparing
NO-int with MED-int, the faster NO-int method performs generally better than the
MED-int. A reason for this could be that, generally, at the start of the segmentation
larger segments are added to the plan than at the later stages of the segmentation,
where smaller segments are added that only subtly improve the MP per segment.
We hypothesize that the prediction of smaller segments is more affected by the
dose discrepancy between the RMP and the MP than the prediction of larger
segments. In the NO-int method, the prediction by the PP of the segment dose to be
added to the RMP is exactly what is added to the RMP. Due to this exact prediction,
the NO-int method could continue to identify smaller segments that could be
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beneficial to improve the MP for longer before stalling. The additional smaller
segments in the NO-int plan, could then help to minimize the degradation when
converted to accurate CDE doses. This could also explain why the NO-int method
requires more segments than the FULL-int method for similar plan quality. Since
the MED-int method can only linearly scale the segment weights as a whole to
minimize the dose discrepancy between the RMP and the MP, the accuracy of the
prediction is less than with the FULL-int method. Which will lead for the NO-int
method to stall earlier than the FULL-int method. This suggests that, to exploit the
added benefit of the CDE, the FULL-int method should be used, otherwise it is
better and faster to use the NO-int method.

Since segments can be iteratively replaced by better ones during segmentation,
more segments are generated than used in the final treatment plan. As a
consequence, the MED-int and FULL-int methods have a larger overhead due to the
many CDE dose calculations and, therefore, it takes around 3.5 times longer to
calculate a treatment plan than with the NO-int method. Identification of the
segments with the NO-int method takes 1-2 minutes. The subsequent serial
recalculation of the segment doses using the CDE for re-optimization of the
segment weights takes another 12 minutes and an extra 5 minutes for final 3D dose
calculations. Since all the segments are already identified, these steps could be
performed in parallel. This could reduce the calculation times to less than two
minutes and make it potentially interesting for online adaptive treatment planning.
Total segmentation times presented in table 3.2 are based on serial 3D calculations
of the segment doses. On average, a CDE dose calculations costs 8 seconds. If these
CDE calculations would be performed in parallel, this would result in a potential
time reduction for prostate of 18 minutes for NO-int and 5 minutes for MED-int and
FULL-int. For liver, potential time reductions are 14 minutes for NO-int and 3
minutes for MED-int and FULL-int.

Recently, many improvements for column generation in radiotherapy treatment
planning have been published (e.g. Cassioli and Unkelbach 2013, Nguyen et al. 2016,
2017). In particular, two improvements would be very interesting in combination
with the proposed algorithms. The first improvement would be to include a fuzzy
controller to reduce numerical noise on the gradient maps as proposed by Yang et al.
(2018). The second improvement would be to include the gradient of the previous
iteration to improve convergence as proposed by Zhang et al. (2019).

3.5 Conclusions

With our segmentation algorithm, segments are sequentially added to the plan.
Generation of each next segment is based on the total 3D dose distribution,
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resulting from already selected segments, and the desired 3D FMO dose,
considering all treatment beams as candidates for delivery of each new segment.
When combined with a high-accuracy clinical dose engine, this algorithm could
accurately reconstruct FMO plans optimized with pencil-beams into clinically
deliverable treatment plans. Plan quality, MU, number of segments and calculation
time depended on the level of integration of the clinical dose engine in the
segmentation algorithm. The combined use of pencil-beams and segments in a
segmentation method is non-trivial. Therefore, new methods were developed for
the use of intermediate segment doses calculated with the CDE in combination with
pencil-beams, used for selection of new segments.
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54 ABSTRACT

Abstract

Purpose: To propose and validate a fully automated multi-criterial treatment
planning solution for a CyberKnife® equipped with an InCise™ 2 multi-leaf
collimator.

Methods: The AUTO BAO plans are generated with fully-automated prioritized
multi-criterial optimization (AUTO MCO) of pencil-beam fluence maps with
integrated non-coplanar beam angle optimization (BAO), followed by MLC segment
generation. Both the AUTO MCO and segmentation algorithms have been in-house
developed. @~ AUTO MCO generates for each patient a single, high-quality
Pareto-optimal IMRT plan. The segmentation algorithm then accurately mimics the
AUTO MCO 3D dose distribution, while considering all candidate beams
simultaneously, rather than replicating the fluence maps. Pencil-beams, segment
dose depositions, and final dose calculations are performed with a stand-alone
version of the clinical dose calculation engine. For validation, AUTO BAO plans were
generated for 33 prostate SBRT patients and compared to reference plans (REF)
that were manually generated with the commercial treatment planning system
(TPS), in absence of time pressure. REF plans were also compared to AUTO RB
plans, for which fluence map optimization was performed for the beam angle
configuration used in the REF plan, and the segmentation could use all these beams
or only a subset, depending on the dosimetry.

Results: AUTO BAO plans were clinically acceptable and dosimetrically similar to
REF plans, but had on average reduced numbers of beams ((beams in AUTO
BAO)/(beams in REF) (relative improvement): 24.7/48.3 (-49%)), segments
(59.5/98.9 (-40%)), and delivery times (17.1/22.3 min. (-23%)). Dosimetry of
AUTO RB and REF were also similar, but AUTO RB used on average fewer beams
(38.0/48.3 (-21%)) and had on average shorter delivery times (18.6/22.3 min.
(-17%)). Delivered Monitor Units (MU) were similar for all three planning
approaches.

Conclusions: A new, vendor-independent optimization workflow for fully
automated generation of deliverable high-quality CyberKnife® plans was proposed,
including BAO. Compared to manual planning with the commercial TPS, fraction
delivery times were reduced by 5.3 min. (-23%) due to large reductions in beam
and segment numbers.
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4.1 Introduction

Quality of clinical treatment plans can vary drastically (Berry et al,, 2016, Giglioli
et al,, 2016, Marino et al., 2015, Nelms et al., 2012), for example, depending on the
skills and ambition of the planner, the complexity of the case, and the time available
for planning. Automated treatment planning can be used to improve the quality and
consistency of treatment plans (e.g. Breedveld et al. 2019b, Fogliata et al. 2014,
Giglioli et al. 2020, Hansen et al. 2016, 2017, Heijmen et al. 2018, Hussein et al.
2016, 2018, Marrazzo et al. 2019, Oud et al. 2020, Purdie et al. 2014, Tol et al. 2015,
Zarepisheh et al. 2019), and can also substantially reduce the treatment planning
workload.

In our center, Erasmus-iCycle has been developed for automated multi-criterial
optimization (MCO) of IMRT fluence profiles and beam angles (FMO + BAO)
(Breedveld et al, 2012). Erasmus-iCycle automatically generates a single
Pareto-optimal radiotherapy treatment plan. As it only optimizes pencil-beam
intensities, the system was originally integrated with the commercial Monaco TPS
(Elekta AB, Stockholm, Sweden) to convert generated plans into clinically
deliverable plans for C-arm linacs (Voet et al., 2013a, 2014).

In this paper, we propose and validate a novel, fully automated treatment
planning solution for a CyberKnife® equipped with the InCise™ 2 MLC (Accuray
Inc,, Sunnyvale, USA). Plan generation is performed fully outside the clinical
treatment planning system, using Erasmus-iCycle for pencil-beam based FMO and
BAO (Breedveld et al., 2012, Voet et al,, 2013a, 2014), followed by MLC segment
generation aimed at close reproduction of the pencil-beam optimized 3D dose
distributions. The applied segmentation algorithm is fully compatible with all
characteristics of the InCise™ 2 MLC (Schipaanboord et al, 2019c, 2020). All
pencil-beam, MLC segment, and final dose distributions were calculated with a
stand-alone version of the commercial dose calculation engine. As automated plan
generation includes BAO, the plans are denoted ‘AUTO BAO’ in the remainder of the
paper. Generated BAO plans could in principle be delivered on a CyberKnife®, as
the commercial dose calculation is used and the InCise™ 2 MLC is modeled
accordingly. However, the applied software has no FDA clearance, and also
according to the recently issued MDR (Medical Device Regulations), the system can
currently not be applied for clinical treatment.

The main aim of this paper was to develop a new automated treatment planning
pipeline, independent of the CyberKnife® supplier, for generation of deliverable
plans and to evaluate whether it could in principle replace the current manual
planning, with the well-known plan quality issues of the latter and involved
workload. Apart from dosimetric plan quality also delivery efficiency (Monitor
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Table 4.1: Clinical dose-volume constraints

Structure Constraint
PTV Dnax < 62.5Gy
Urethra Dsop <455 Gy

DIO% <42 Gy
DSO% <40 Gy

Rectum V3z3gy < 1.0cc(or 1.2 cc)
Dinax <38Gy

Rectum mucosa  Dpax < 28.5 Gy

Bladder Vascy < 1.0 cc (or 1.5 cc)

Dinax < 41.8Gy
Femoral heads Dnax < 24 Gy

Units (MU), number of beams, number of segments) and delivery times were
evaluated.

For validation, the novel autoplanning workflow was first configured for prostate
SBRT. For a group of 33 prostate SBRT patients, their AUTO BAO plan was compared
to a reference plan (‘REF’) that was manually generated with the commercial TPS.
Each REF plan was also compared to a corresponding plan with automated FMO for
the (fixed, patient-specific) beam angles in the REF plan (AUTO RB’: AUTO Reference
Beams).

4.2 Materials & Methods

4.2.1 Patient data and planning protocol

In this study, contoured planning CT-scans of 33 patients treated with robotic
radiotherapy for low- to intermediate-stage prostate cancer were used. Patients
were scanned in head-first, supine position, with an average slice thickness of 1.55
mm [min: 1.50 mm, max: 3.00 mm], and an average pixel spacing of 0.97 mm [min:
0.80 mm, max: 0.98 mm] in X and Y directions. The patients were irradiated with a
hypofractionated SBRT protocol, delivering 38 Gy in 4 fractions, and featuring
highly heterogeneous PTV dose distributions (mimicking HDR brachytherapy)
(Aluwini et al.,, 2010, 2013). For the PTV, a uniform volume expansion of 3 mm of
the CTV was used. The average PTV volume was 70.2 cm3 (41.7 - 128.5 cm3). The
PTV coverage objective was defined as 95% of the PTV volume should receive the
prescribed dose. The clinical dose-volume constraints for this protocol are listed in
table 4.1. The intention for rectum and bladder was to keep the near-maximum
doses (D1.c) below 32.3 Gy and 38 Gy, respectively. However, when considered
infeasible, the 1 cc constraint could be relaxed to 1.2 cc and 1.5 cc for rectum and
bladder, respectively.
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4.2.2 Reference plans (REF)

Attention was paid to using high-quality, manually-generated REF plans for
validation of the new autoplanning pipeline. All REF plans were generated by a
single experienced medical physicist, using manual iterative trial-and-error
planning with the VOLO™ optimizer as introduced in Precision v. 2.0.0.0. (Accuray
Inc., Sunnyvale, USA), in the absence of time pressure. Prior to generation of final
plans, the physicist spent ample time (in the order of weeks) to develop a strategy
for efficient generation of acceptable, high-quality REF plans. The option to
pre-select a randomized and spatially distributed subset of nodes prior to
optimization was not used for the generation of the REF plans. Instead,
optimization started with all possible nodes available in the prostate robot motion
path to use all available degrees of freedom for obtaining highest quality REF plans.

The REF plans were originally generated for planning study to validate the new
VOLO™ optimizer by comparisons with clinical plans generated with the sequential
optimization approach, both implemented in the commercial TPS. This study, by
Gizynska et al. 2021, showed that the REF plans were highly superior to the clinical
plans, both in terms of dosimetric plan quality as in plan deliverability. Also, several
other studies reported enhanced plan quality when using the VOLO™ optimizer
instead of the sequential optimization approach (Calusi et al., 2020, Schiiler et al.,
2020, Zeverino et al.,, 2019).

4.2.3 AUTO plans

In contrast to manual Pareto navigation based MCO, Erasmus-iCycle based MCO
entails automated generation of a single Pareto-optimal plan for each patient. Plan
generation is based on a planning protocol specific ‘wish-list’ that is used for all
patients treated according to the protocol. The wish-list contains hard planning
constraints and prioritized planning objectives (Breedveld et al., 2012). For this
study, a dedicated wish-list was constructed for the clinical prostate SBRT planning
protocol, considering the planning constraints in table 4.1. The wish-list can be
found in Appendix A. Erasmus-iCycle can handle DVH constraints directly.
Originally the DVH constraints could only be used by approximation (Breedveld
et al,, 2017), but more recently also with high accuracy (Breedveld et al., 2019a).
Due to the induced complexity of using DVH criteria, only hard clinical DVH
constraints are included in the FMO wish-list. For the wish-list configuration, five
patients (out of the 33 included patients) were used for training, and five extra
patients for testing (fine-tuning of the wish-list). In this study, BAO meant
generation of patient-specific 25-beam configurations.

Both FMO and segmentation were performed using a pencil-beam resolution of
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3 mm in the direction of the leaves and 3.85 mm perpendicular to the leaves at 800
mm SAD (leaf width of the InCise™ 2 MLC). Pencil-beam and segment dose
depositions were calculated with a stand-alone version of CyberKnife’s dose engine,
provided by Accuray Inc. For the segmentation phase of this study, a MU penalty
weight equal to 3 (Eq. 2 in Schipaanboord et al. 2019c¢) was used. A degradation
tolerance of 0.25% per objective (table 4.1) was used for the segment reduction
method, which iteratively removes low contribution segments after the
segmentation as long as the objective degradation is within the specified tolerance.
The segmentation algorithm does not necessarily utilize all candidate beams
provided for FMO, therefore the final deliverable AUTO RB plans may have fewer
beams than the provided candidate beamset of the corresponding REF plan.

4.2.4 Plan evaluation and comparison

A PTV coverage of 95% was aimed for, however, for some patients this was not
feasible due to limiting OAR constraints (table 4.1). Prior to comparing treatment
planning strategies (REF vs. AUTO BAO and AUTO RB), all three plans of a patient
were normalized to exactly the same PTV coverage to minimize bias in dose
delivery comparisons for healthy tissues, generally 95%. If 95% coverage was not
feasible due to limiting OAR constraints for one or more treatment plans of a
patient, all plans for that patient were normalized to the plan with the lowest PTV
coverage to avoid inducing OAR constraint violations by normalizing to a higher
PTV coverage.

AUTO plans were compared with REF plans using dosimetric plan parameters
applied in clinical practice, Dose Volume Histograms (DVHs), visual inspection of
the dose distributions, Conformation Number (van 't Riet et al., 1997), numbers of
beam directions, numbers of MLC segments, numbers of MU per fraction, and
estimated treatment delivery times, calculated with a stand-alone treatment time
estimator provided by Accuray Inc. The estimated treatment time (ETT) includes
beam-on time, robot movements, changing of apertures, and imaging, while
excluding patient setup time.

Wilcoxon signed-rank tests for paired data were performed to assess statistical
significance (p-value < 0.05) of differences between AUTO plans and manually
generated REF plans.

4.2.5 Computation times

Computation times for AUTO plans were measured for 10 patients on an Intel Xeon
Gold 6248 @ 2.5 GHz, containing 40 cores and with 386 GB of memory.
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Figure 4.1: Population averaged PTV, rectum, bladder, and urethra Dose Volume Histograms
(DVHs) for the reference plans (REF), the AUTO plans with beam angle optimization
(AUTO BAO), and the AUTO plans with the reference beam geometry (AUTO RB). Clinical
constraints are denoted with triangles, see table 4.1.
4.3 Results

4.3.1 Plan comparisons

The population averaged DVHs in figure 4.1 show high similarity for the three
planning approaches, with small advantages for autoplanning compared to REF for
the higher urethra doses and in the intermediate dose range for rectum and bladder
(especially for AUTO RB). An example dose distribution for REF and AUTO BAO is
shown in figure 4.3.1.

The dosimetric plan parameter comparisons presented in figure 4.3 confirm the
overall similarity between AUTO plans and REF plans. Depending on the parameter,
small overall advantages for AUTO plans or REF plans were seen. Some patients
demonstrate differences that could possibly be clinically relevant, sometimes in
favor of AUTO, sometimes in favor of REF. The upper parts of table 4.2 and 4.3
present overviews of differences between dosimetric plan parameters in REF plans
and AUTO BAO plans (table 4.2) or AUTO RB plans (table 4.3). Although many of
the differences in dosimetric plan parameters are statistically significant, they are
small from the clinical point of view, sometimes in favor of AUTO and for other
parameters in favor of REF.

Results for non-dosimetric parameters are presented in the bottom sections of
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Figure 4.2: An example dose distribution for REF (left) and AUTO BAO (right). Depicted
structures: PTV (red), Urethra (green), Rectum (dark blue), and Bladder (light blue).

tables 4.2 and 4.3 and in figure 4.4. A clinically relevant reduction in estimated
treatment time was observed for the AUTO plans compared to the REF (AUTO BAO:
-5.3 min. [-15.6, 1.0], AUTO RB: -3.7 min. [-11.7, 4.0]). This was related to
reductions in the numbers of beams (AUTO BAO: -23.6 [-34, -12], AUTO RB: -10.4
[-23, -2]) and the numbers of segments (AUTO BAO: -39.4 [-115, -12], AUTO RB:
-37.5 [-118, -37]), whereas no significant differences for the number of MU per
fraction were observed.

4.3.2 Computation times

Table 4.4 shows autoplanning mean computations times with ranges, divided in 1)
generation of the pencil-beam matrices together with the optimization of the FMO
dose distributions (PB + FMO) and, 2) the subsequent segmentation of the FMO dose
distributions (Segmentation).

4.4 Discussion

In this study, we have proposed a fully automated treatment planning workflow for
a robotic CyberKnife® unit equipped with the InCise™ 2 MLC, and validated it for
prostate SBRT by comparison of generated AUTO BAO plans with high-quality,
manually generated reference plans (REF). The AUTO BAO plans are optimized fully
independently of the commercial TPS, using in-house developed applications for
integrated multi-criterial pencil-beam-based beam angle and fluence map
optimization (Breedveld et al., 2012, Voet et al,, 2013a, 2014), and subsequent
generation of MLC segments (Schipaanboord et al, 2019c, 2020). Although
practically not yet possible because of plan import restrictions, the plans are in
principle deliverable at clinical CyberKnife® units. The AUTO BAO prostate SBRT
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Figure 4.3: Comparisons of REF, AUTO BAO, and AUTO RB regarding dosimetric plan
parameters. Every marker represents a plan parameter comparison for one of the 33 study
patients. Red lines show treatment planning aims. FH: Femoral head. See section 4.2.1 for
differences between constraint and objective levels.
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Figure 4.4: Non-dosimetric plan parameters of the AUTO plans compared to corresponding
REF plan parameters. Every marker represents a plan parameter comparison for one of the
33 study patients. MU/fx: Monitor Units per fraction, ETT: Estimated treatment time.
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Table 4.2: Plan parameter comparisons for AUTO BAO and REF plans. Doses (Dxx) are
presented in Gy and volume (Vxx) in cc. Entrance dose was evaluated using D;. of a ring
structure of 3 cm thickness inside the patient’s external contour. FH: Femoral head, MU /fx:
Monitor Units per fraction, ETT: Estimated treatment time.

REF AUTO BAO AUTO BAO - REF
Mean (min, max) Mean (min, max) A (min, max) p
PTV Dogos 34.7 (29.3,36.8) 35.3 (325,36.5) 06 (-1.1,3.1) <.001
Do.03¢c 60.2 (56.0,61.8) 59.5 (53.8,62.5) -0.7 (-5.0,2.6) .03
Urethra Dsop 40.5 (38.8,41.5) 40.1 (38.7,41.7) -04 (-1.5,1.8) .005
D109 40.0 (384,41.1) 39.7 (385,41.3) -04 (-1.5,1.7) .005
Dsoop 38.6 (35.1,39.9) 38.1 (35.8,39.8) -0.6 (-1.8,1.2) <.001
Rectum V32.36y 0.5 (0.0,1.0) 0.5 (0.0,1.0) 0.0 (-0.50.5) .5
Do.03cc 35,5 (32.8,37.0) 364 (27.9,38.0) 0.8 (-7.2,3.2) <.001
Dimean 7.2 (4.7,9.5) 71  (42,104) -0.2  (-3.6,2.4) 4
Mucosa Do.03¢c 24.8 (20.7,27.2) 24,7 (11.0,28.1) -0.0 (-13.1,6.8) 3
Bladder V3gcy 0.3 (0.0,0.9) 0.4 (0.0,0.8) 0.1 (-0.3,04) .001
Do.03¢c 39.4 (37.8,40.6) 40.0 (37.5,41.8) 0.6 (-1.1,2.0) <.001
Dmean 9.1 (6.8,12.9) 89 (54,12.6) -0.2  (-2.1,3.1) Nl
Entrance Dy 17.3  (14.2,19.9) 18.0 (15.3,20.1) 0.7 (-2.8,4.2) .02
Left FH Do.03¢c 13.2 (7.4,17.6) 139 (5.7,19.6) 0.7 (-69,7.8) 2
Right FH  Dg3cc 15.1 (9.7,18.6) 15.0 (7.0,194) -0.1  (-3.3,4.3) .8
Conformality 0.82 (0.75,0.88) 0.79 (0.75,0.87) -0.03 (-0.07,0.02) <.001
Beams 48.3 (37.0,59.0) 24.7 (22.0,25.0) -23.6 (-34.0,-12.0) <.001
Segments 98.9 (54.0,167.0) 59.5 (40.0,95.0) -39.4 (-115.0,22.0) <.001
MU/fx [x1000] 6.1 (49,89) 6.2 (49,83) 01 (-2.7,3.2) .5
ETT [min] 22.3  (17.0,32.0) 17.1  (14.1,22.0) -5.3 (-15.6,1.0) <.001

plans were clinically acceptable with a quality equivalent to the REF plans.
However, as no manual fine-tuning of AUTO plans was needed, the quality of these
plans was independent of manual planners and the workload was virtually zero.
AUTO BAO also had shorter delivery times (23% reduction, 5.3 min.) and vastly
reduced numbers of beams (24.7 vs. 48.3) and segments (59.5 vs. 98.9).

To the best of our knowledge, this is the first fully-independent system for
automated generation of deliverable plans, that combines automated non-coplanar
BAO, FMO, and segmentation all together. Automated generation of clinically
deliverable plans was developed for other systems, but final plan generation was
always performed using the commercial TPS. Or, deliverable plans were created but
the planning workflow required manual tweaking during plan optimization or did
not include non-coplanar BAO. For example, Erasmus-iCycle was integrated with
Monaco (Elekta AB, Stockholm, Sweden) (Voet et al., 2013a, 2014) for treatment
with C-arm linacs, and to MultiPlan (Accuray Inc., Sunnyvale, USA) (Rossi et al,
2018) for treatment with a CyberKnife® in combination with the IRIScollimator.
The 4r planning approach relies on importing optimized beam angles into Eclipse
(Varian Medical System, Palo Alto, USA), followed by conventional treatment
planning (Murzin et al., 2018, Tran et al,, 2017, Woods et al.,, 2016, Yu et al,, 2018).
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Table 4.3: Plan parameter comparisons for AUTO RB and REF plans. Doses (Dxx) presented
in Gy and volumes (Vxx) in cc. Entrance dose was evaluated using D, of a ring structure
of 3 cm thickness inside the patient’s external contour. FH: Femoral head, MU/fx: Monitor
Units per fraction, ETT: Estimated treatment time.

REF AUTO RB AUTO RB - REF
Mean (min, max) Mean (min, max) A (min, max) p
PTV Dogos 34.7 (29.3,36.8) 35.1 (33.2,36.3) 04 (-1.1,3.8) .02
Do.03cc 60.2 (56.0,61.8) 59.1 (54.7,61.8) 1.1 (-34,1.9) <.001
Urethra Dsop 40.5 (38.8,41.5) 40.3 (38.1,42.0) -0.2 (-1.5,1.3) 1
D109 40.0 (384,41.1) 39.8 (37.8,41.5) -0.2 (-1.2,1.0) .03
Dsoop 38.6 (35.1,39.9) 38.1 (35.1,40.0) -0.6 (-1.4,0.6) <.001
Rectum V32.36y 0.5 (0.0,1.0) 04 (0.0,1.1) -0.0 (-0.5,0.7) .3
Do.03cc 35,5 (32.8,37.0) 364 (28.8,38.0) 0.8 (-6.3,4.9) .004
Dimean 7.2 (4.7,9.5) 6.8 (4.4,10.0) -0.4 (-3.3,2.5) .03
Mucosa Do.03¢c 24.8 (20.7,27.2) 24.0 (12.8,28.5) -0.8 (-11.2,7.8) 3
Bladder V3gcy 0.3 (0.0,0.9) 0.4 (0.1,09) 0.1 (-0.2,0.3) <.001
Do.03¢c 39.4 (37.8,40.6) 40.1 (38.5,414) 0.7 (-1.6,2.2) <.001
Dmean 9.1 (6.8,12.9) 82 (5.0,12.1) -09 (-2.7,2.8) <.001
Entrance  Dq 17.3  (14.2,19.9) 17.2  (12.9,21.4) -0.0 (-44,34) 9
Left FH Do.03¢c 13.2 (7.4,17.6) 154 (11.3,19.4) 2.2 (-1.7,5.7) <.001
Right FH  Dg3cc 15.1 (9.7,18.6) 15.6 (11.5,19.9) 0.5 (-33,4.2) .2
Conformality 0.82 (0.75,0.88) 0.78 (0.72,0.84) -0.04 (-0.07,-0.01) <.001
Beams 48.3 (37.0,59.0) 38.0 (29.0,49.0) -10.4  (-23.0,-2.0) <.001
Segments 98.9 (54.0,167.0) 61.5 (40.0,105.0) -37.5 (-118.0,37.0) <.001
MU/fx [x1000] 6.1 (49,89) 6.2 (4.7,74) 0.1 (-25,1.8) 2
ETT [min] 22.3  (17.0,32.0) 18.6 (15.0,24.3) -3.7 (-11.7,4.0) <.001

Table 4.4: Planning and computation times in minutes calculated over the first 10 patients.
The reported REF planning time is manual hands-on time, while the reported AUTO times
are fully automated calculation times without manual interaction. PB + FMO: Calculation of
pencil-beams + Fluence Map Optimization.

PB + FMO Segmentation Total
Approach Mean (min,max) Mean (min,max) Mean (min, max)
REF (manual) 50 (10,170)
AUTO BAO 621 (529,742) 16 (13,19) 637 (542,761)
AUTO RB 80 (53,169) 18 (14,24) 98 (67,193)

The Expedited Constrained Hierarchical Optimization (ECHO) system also uses
Eclipse to generate a final plan, the optimized fluence maps are imported and then
leaf sequencing is performed within Eclipse (Zarepisheh et al,, 2019). The ASEQ
method used for online replanning creates deliverable plans with the use of the
Monte Carlo dose engine (GPUMCD) from Elekta AB, but requires manual tweaking
during plan optimization and uses predefined clinical beam configurations
(Kontaxis et al., 2015a,b, 2017a,b).

The use of column-generation in radiotherapy treatment planning was first
proposed by Romeijn et al. 2005 to solve the Direct Aperture Optimization (DAO)
problem.  The 4m planning approach (Dong et al, 2013ab) also uses a
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column-generation approach, based on the formulation proposed by Romeijn et al.,
but uses column-generation to solve the BAO/FMO problem. In the proposed
autoplanning workflow for CyberKnife® with MLC, the BAO/FMO problem is solved
using a multi-criterial optimization as implemented in Erasmus-iCycle (Breedveld
et al, 2012). Then, a column-generation method, inspired by the approach by
Romeijn et al., was used to solve the segmentation problem by mimicking the 3D
FMO dose distribution (Schipaanboord et al., 2019c¢, 2020). This two-step approach
of BAO/FMO followed by segmentation turns out to be more flexible for the
multi-criteria optimization.

Computation times for AUTO BAO plans were on average 637 min. While this
may seem long, important to realize is that no manual hands-on planning or manual
corrections of the computed plans were applied. In a clinical context, this would
mean that a deliverable plan is ready within a day of contour approval by the
treating physician. In our clinical practice, this has always been a requirement for
application of Erasmus-iCycle based automated plan generation for C-arm linacs
(although current plan generation is much faster). Contributing most to the
computation time was the applied integrated, iterative BAO which is
computationally expensive for large numbers of beams. This BAO approach was
chosen because it has been shown to provide good quality treatment plans in
previous studies (Breedveld et al.,, 2012, Rossi et al., 2018, 2021, Sharfo et al.,, 2021,
Voet et al., 2012). Alternatively, the proposed workflow could also be combined
with a BAO approach that selects beam angles prior to FMO optimization. This
would avoid the need for multiple FMO iterations, which would reduce the
computation time. Or, instead of the patient-specific beam angle optimization, a
pre-defined set of beam angles (class-solution) could be used for all patients. For
example, the non-coplanar beam angle class-solution proposed by Rossi et al. 2015
Furthermore, our current research implementation utilizes serial calculation of the
pencil-beams and the final dose calculations (included in both FMO and
segmentation).  Parallelization of these calculation steps could reduce the
computation time substantially.

The presented comparison of AUTO RB plans with REF plans allowed us to
compare autoplanning with manual planning without a bias of different beam
angles; the AUTO RB plans indicate what performance could be achieved with the
CyberKnife® system for each patient when using a different optimization approach
for the same input beam angles (as used in the REF plan). As shown in table 4.3, not
all input angles were always used in the final AUTO RB plans (on average 38.0 of the
48.3 beams in REF). Nevertheless, quality of the AUTO RB plans was similar to the
REF plan quality. Apart from the reduced number of beams, this was obtained with
also a substantially lower number of segments and a significantly reduced delivery
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time (table 4.3). In the intermediate dose range, AUTO RB plans are slightly
favorable over AUTO BAO plans (figure 4.1). This is attributed to the lower
numbers of beams used in AUTO BAO (24.7 vs. 38.0). For AUTO BAO our aim was to
obtain a quality that was comparable to REF. Going to e.g. 38 beams in AUTO BAO
would have further enhanced the quality of the AUTO BAO plans, but at the cost of
large increases in calculation time.

In this study, we have introduced a novel automated treatment planning pipeline
for CyberKnife® SBRT and we validated it for prostate cancer. In an ongoing study,
the new workflow is being investigated for lung SBRT, another type of treatment that
is frequently performed with the CyberKnife®.

Recently, the RATING framework with guidelines for performing high-quality
treatment planning studies has been published (Hansen et al., 2020). There is also a
score sheet attached to the framework to get a quantitative impression on the
quality of treatment planning papers. According this sheet, our study scored
92/100%. The filled-out sheet is provided in Appendix B.

4.5 Conclusions

A new vendor-independent workflow for fully automated generation of deliverable,
high-quality CyberKnife plans was proposed, including patient-specific beam angle
optimization (BAO). Compared to manual planning with the commercial TPS in
absence of time pressure, dosimetric plan quality for prostate SBRT was similar,
while fraction delivery times reduced by 5.3 min (from 22.3 to 17.1 min) due to
large reductions in beam and segment numbers.
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Appendix A

Table A1: The wish-list used to automatically generate the FMO plans using Erasmus-iCycle,
containing a list of constraints and a list of prioritized planning objectives. The optimization
starts with optimizing on the PTV to attain sufficient PTV coverage, while respecting all
constraints from the constraints list. Once an objective is optimized, it is added as an
additional constraint to the constraint list and then the next objective will be optimized.
The relative ranking of the objectives is based on clinical importance of the structures. A
detailed description of the Erasmus-iCycle workflow is provided in Breedveld et al.,, 2012
(Breedveld etal., 2012). UrethraPlan is defined as the volume of the urethra within the PTV.

Constraints
Priority Volume Dose metric ~ Limit
PTV Dmax 61.5 Gy
UrethraPlan D5% 45 Gy
D10% 42 Gy
Dmean 40 Gy
Rectum Dmax 38 Gy
Dlcc 323Gy
Rectum mucosa Dmax 27 Gy
Bladder Dmax 41.8 Gy
Dlcc 38 Gy
Penile bulb Dmax 1.5 Gy
Ring PTV 2cm - 3cm Dmax 25 Gy
Skin dose Dmax 20 Gy
Shell 3mm Dmax 38 Gy
Shell 3cm Dmax 20 Gy
Shell 5cm Dmax 20 Gy
Objectives
Priority Volume Dose metric ~ Goal Sufficient ~ Parameters
1 PTV - OARs L LTCP 0.01 0.01 DP =37 Gy, a =0.90
2 PTV | LTCP 0.25 0.25 DP =37 Gy, @ = 0.60
3 UrethraPlan | Dmean 39 Gy 38 Gy
4 | LTCP 0.50 DP =40 Gy, a =-0.50
5 Rectum L LTCP 0.00 DP =27 Gy, a =-0.20
6 Bladder L LTCP 0.00 DP =31 Gy, a =-0.20
7 Dose bath | Dmax 15 Gy
8 Femoral heads | Dmax 24 Gy
Appendix B

Filled-out RATING score sheet can be found online.
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68 ABSTRACT

Abstract

Properly selected beam angles contribute to the quality of radiotherapy treatment
plans. However, the Beam Angle Optimization (BAO) problem is difficult to solve to
optimality due to its non-convex discrete nature with many local minima. In this
study, we propose TBS-BAO, a novel approach for solving the BAO problem, and test
it for non-coplanar robotic CyberKnife radiotherapy for prostate cancer. First, an
ideal Pareto-optimal reference dose distribution is automatically generated using a
priori multi-criterial fluence map optimization (FMO) to generate a plan that
includes all candidate beams (total-beam-space, TBS). Then, this ideal dose
distribution is reproduced as closely as possible in a subsequent
segmentation/beam angle optimization step (SEG/BAO), while limiting the number
of allowed beams to a user-selectable preset value. SEG/BAO aims at a close
reproduction of the ideal dose distribution. For each of 33 prostate SBRT patients,
18 treatment plans with different pre-set numbers of allowed beams were
automatically generated with the proposed TBS-BAO. For each patient, the
TBS-BAO plans were then compared to a plan that was automatically generated
with an alternative BAO method (Erasmus-iCycle) and to a high-quality manually
generated plan. TBS-BAO was able to automatically generate plans with clinically
feasible numbers of beams (~25), with a quality highly similar to corresponding
91-beam ideal reference plans. Compared to the alternative Erasmus-iCycle BAO
approach, similar plan quality was obtained for 25-beam segmented plans, while
computation times were reduced from 10.7 hours to 4.8/1.5 hours, depending on
the applied pencil-beam resolution in TBS-BAO. 25-beam TBS-BAO plans had
similar quality as manually generated plans with on average 48 beams, while
delivery times reduced from 22.3 to 18.4/18.1 min. TBS reference plans could
effectively steer the discrete non-convex BAO.
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5.1 Introduction

An important aspect contributing to radiotherapy treatment plan quality is the use
of appropriate beam angles. Especially, for non-coplanar Stereotactic Body
RadioTherapy (SBRT), in which high doses are delivered in a limited number of
fractions, selection of the appropriate beam angles is crucial for high-quality
treatment (Bedford et al., 2019b, Dong et al,, 2013a,b, Rossi et al,, 2012, 2018, 2021,
Rwigema et al., 2015, Sharfo et al., 2017, 2021, Woods et al,, 2016, Yu et al,, 2018).
The Beam Angle Optimization (BAO) problem is formally a discrete, combinatorial
optimization problem that is difficult to solve to optimality (Bangert et al,, 2012),
since the optimization space is highly non-convex with many local minima (Craft,
2007, Sodertrom and Brahme, 1993).

Various BAO approaches have been investigated. For example, sequential
addition of new beam angles by ranking candidate beams (Bangert and Unkelbach,
2016, Breedveld et al,, 2012). The 4m approach, proposed by Dong et al. 2013b,
uses a computer-assisted design (CAD) model to eliminate candidate beams that
may cause collisions between the gantry and the couch or patient. Then, the beams
are iteratively selected from the set of remaining candidate beams by predicting the
benefit of each beam using the first-order information and selecting the beam with
the lowest predicted objective function value. Furthermore, hybrid approaches that
combine heuristics to explore the optimization space for finding the global
minimum with local gradient-based search algorithms, have been explored. For
example, Aleman et al. 2008 combined simulated annealing with a deterministic
local search algorithm. Bertsimas et al. 2013 combined simulated annealing with
gradient information to find the local minimum. Rocha et al. 2016 proposed a
derivative-free multi-start framework with a pattern search algorithm, and Bedford
et al. 2019b proposed an evolutionary algorithm to select non-coplanar beam angle
sets for the CyberKnife. Amit et al. 2015 proposed a model-based approach based
on the relationship between beam angles and anatomical features. Lately, also
deep-learning-based BAO has been proposed (Sadeghnejad-Barkousaraie et al.,
2020).

In this work, we introduce the novel TBS-BAO approach for solving the BAO
problem. This approach integrates BAO with segmentation, rather than solving the
BAO problem prior to or during the FMO phase. TBS-BAO first generates an ‘ideal’
reference dose distribution using all available candidate beams (total-beam-space,
TBS). This plan is generated with a priori multi-criterial FMO, providing for each
patient a high-quality Pareto-optimal plan with clinically favorable trade-offs, and
represents the ideal plan quality for a patient that could be achieved when
including all beam directions and when no delivery restrictions are taken into
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account. This ideal FMO dose distribution is then used to guide the following IMRT
segmentation with integrated BAO (SEG/BAO) for constructing a deliverable plan
with a preset maximum number of beam directions. For SEG/BAO, the
segmentation approach presented in Schipaanboord et al. 2019¢, 2020 with some
modifications is used as a starting point. MLC segments are sequentially added to
the plan; each segment is added to the beam in the TBS that minimizes the
dosimetric differences between the segmented plan and the ideal reference plan.
The purpose of this study is to investigate to what extent the proposed integrated
non-convex SEG/BAO can closely reproduce ideal reference plans. To investigate
this, TBS-BAO prostate SBRT plans with variable pre-selected beam numbers were
compared to plans generated with a previously published alternative BAO approach
(Breedveld et al., 2012) and with high-quality manually generated plans.

5.2 Materials & Methods

5.2.1 Patient data

In this study, contoured CT scans of 33 prostate cancer patients, previously treated
in our institution with the CyberKnife robotic treatment unit, were used. The
patients were treated with a hypofractionated SBRT protocol, delivering 38 Gy in 4
fractions, and featuring highly heterogeneous PTV dose distributions (Aluwini et al.,
2010, 2013). The average PTV volume was 70.2 cm® (41.7 - 128.5 cm3). The PTV
coverage objective was defined as 95% of the PTV volume should receive the
prescribed dose. However, for some patients, the requested PTV coverage was not
feasible due to limiting OAR constraints. If this was the case, the PTV coverage was
compromised to respect the OAR constraints, in line with clinical practice.
Additionally, if a plan featured a PTV coverage larger than 95%, the plan was
re-normalized to exactly 95% PTV coverage to maximize OAR sparing, as is also
done in clinical practice. The clinically used PTV objective and the applied
dose-volume constraints are listed in table 5.1. This patient cohort was also used in
previous studies Gizynska et al. 2021, Schipaanboord et al. 2021.

5.2.2 Generation of ideal total-beam-space (TBS) reference plans

Ideal total-beam-space reference plans were fully automatically generated with our
in-house developed Erasmus-iCycle optimizer for a priori Multi-Criterial plan
Optimization (MCO) (Breedveld et al, 2009, 2012, 2017, 2019b). With
Erasmus-iCycle, a single Pareto-optimal FMO plan is automatically generated for
each patient. With proper configuration of the so-called wish-list with hard
constraints and prioritized objectives, the generated Pareto-optimal plan also has
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Table 5.1: Tumor objective and clinical dose-volume constraints

Structure Objective / Constraint

PTV V3gcy = 95% (objective)
Dinax < 625Gy

Urethra D5, < 45.5 Gy

DlO% <42 Gy
Dsgy, < 40 Gy

Rectum V3z3¢y <1l2cc
Dmax < 38Gy

Rectum mucosa  Dpay < 285 Gy

Bladder V3gay <15cc

Dmax < 418Gy
Femoral heads Diax < 24 Gy

clinically favorable trade-offs. Many studies have demonstrated superiority of
automatically generated plans over conventional manual planning (Bijman et al,,
2020, 2021, Breedveld et al,, 2012, Buschmann et al., 2018, Heijmen et al., 2018,
Redapi et al., 2021, Rossi et al,, 2018, 2021, Sharfo et al., 2016, 2015, 2017, 2018,
2021, Voet et al., 2012, 2013a). In contrast, in a posteriori MCO, (e.g. Bokrantz and
Miettinen 2015, Craft and Richter 2013) for each patient, a set of Pareto-optimal
plans is generated with automated planning, while selection of a clinically favorable
plan is performed by a user.

In this study, we used a previously developed wish-list for the generation of the
ideal reference plans for this patient cohort (Schipaanboord et al,, 2021). FMO was
performed using all 91 available CyberKnife candidate beams from the prostate MLC
path set (Accuray Inc., 2015). To investigate the balance between calculation speed
and plan quality, ideal plans were generated with a high pencil-beam resolution of 3
mm in the direction of the leaves and 3.85 mm perpendicular to the leaves (leaf width
ofthe InCise™ 2 ML(C), denoted as ‘Ideal HR’, and with low resolution pencil-beams (6
x 7.7 mmz), denoted as ‘Ideal LR’ Pencil-beams were calculated with a stand-alone
version of CyberKnife’s dose engine, provided by Accuray Inc.

5.2.3 Integrated MLC segmentation and BAO (SEG/BAO) using column generation

A column generation (CG) approach was used for segmentation of ideal reference
plans with integrated BAO. The approach was originally developed for FMO IMRT
plans, using pre-selected favorable beam directions (Schipaanboord et al., 2019c),
and in this paper extended for TBS-BAO, demanding that the algorithm does not only
generate favorable segments for clinically optimal beam directions, but inherently
also selects the optimal beam directions from the large total-beam-space, up to the
pre-set maximally allowed number of beams.

Our published CG-based segmentation method (Schipaanboord et al., 2019c,
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2020) generates MLC segments for FMO plans, while considering the available
pre-selected beam angles simultaneously. It uses quadratic dose differences
between the reference FMO dose distribution and the segmented dose distribution,
supplemented with terms to focus on target coverage and total MU minimization, to
define the master problem (MP). The MP is solved by iteratively solving the
restricted master problem (RMP), which is restricted to feasible segment shapes
only and is solved to obtain the corresponding segment weights. These segment
weights (solution of the RMP) are then used to calculate the gradient on the
objective function of the MP. In the subsequent pricing problem (PP) phase, a
promising segment is identified and added to the RMP. In this phase, the gradient
on MP is used to identify promising beamlets that can be grouped into a feasible
segment given the mechanical restrictions of the MLC. Feasible candidate segments
are generated for all pre-selected candidate beams simultaneously, however, only
the most promising segment (the segment with the largest sum of negative
gradients) is added to the RMP per CG iteration. Subsequently, the RMP is solved
again to obtain the segment weights and the process is repeated until no feasible
segment can be found that improves the MP.

The basis for SEG/BAO with CG is that segments are sequentially added to the
plan, while considering all available candidate beams simultaneously. In the
published papers, the input FMO distribution was generated with limited sets of
pre-established favorable beam directions. Therefore, optimality of beam angles
was upfront guaranteed. In this study, the ideal FMO reference plan is generated
with all 91 candidate beams and the selection of the beams is performed during
MLC segmentation instead. A heuristic was integrated into the column generation
workflow, to limit the maximum allowed number of beams per plan to avoid
clinically unfeasible numbers, while initially being able to select segments from all
91 candidate beams. Once the preset number of beam directions is reached, MLC
segments could only be added to the already selected beams. This was achieved by
only generating feasible segments during the PP phase for the already selected
beam directions, once the limit was reached. The most promising segment to be
added to the RMP was then selected from this subset of segments. Additionally,
segments that are no longer favorable can be removed during the segmentation
process. As a result, beam directions are also dynamically added and removed
throughout the segmentation process. If the number of beams in the current
solution is reduced to below the preset maximum allowed number of beams, all 91
candidate beams are again available during the PP phase for the identification of
the next segment (until the preset number of beam directions is reached again).

Clinical hard constraints were not explicitly enforced during SEG/BAO segment
generation. To accommodate such constraints in SEG/BAO, the published
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Table 5.2: Wish-list for final weight re-optimization of selected MLC segments.
ROV = Residual Objective Value at the end of segmentation (see section 5.2.3).

Constraints
Volume Dose metric Limit
PTV Dynax < 625Gy
Urethra Dso, <455 Gy
D1gv, <42 Gy
Dimean <40 Gy
Rectum V32.3Gy <1.2cc
Dmax < 38Gy
Rectum mucosa  Dpax < 28.5 Gy
Bladder V3say <15cc
Dynax < 418Gy
Femoral heads Dijax < 24 Gy
Skin Diax < 20 Gy
Dose Quadratic differences 200% ROV
MU/segment linear 25
Objectives
Priority Volume Metric Goal Sufficient
1 PTV T Vaggy 95% 95%
2 Dose ! Quadratic differences 0
3 Total MU | Linear 0

segmentation approach was extended with a segment weight re-optimization step
including hard dose-volume constraints as applied in clinical planning (table 5.2).
For this weight re-optimization, which was performed after selection of all
segments, a fixed dedicated wish-list was used for all plans of all patients
(table 5.2). Apart from the dose-volume constraints from table 5.1, additional
constraints were added to the objective function: a dose-volume constraint to limit
skin dose, a constraint on the quadratic dose difference with the input dose (based
on the residual objective value found after segmentation), and a constraint to
enforce the minimum required amount of MU per segment. The constraint on the
quadratic dose differences aimed at limiting possible degradation of the dose
distribution when maximizing the first objective of the wish-list (PTV coverage).
For this term, a constraint value of 200% of the objective value at the end of the
segment identification was used (prior to the segment weight re-optimization step
with hard constraints).

In the remainder of this paper, final segmented patient plans, generated with
Ideal HR or LR reference plans for a chosen maximum number of beams are
denoted with ‘TBS-BAO HR (maximum number of beams)’ and ‘TBS-BAO LR
(maximum number of beams), respectively. Both ideal reference plans and
deliverable plans were fully automatically generated, i.e. no manual fine-tuning of
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automatically generated plans was performed. During generation of the TBS-BAO
plans, all delivery restrictions of the CyberKnife were taken into account (including
the leaf width of 3.85 mm, both for Ideal HR and Ideal LR), and the applied dose
calculation engine was the same as used in the clinical TPS. Therefore, generated
plans could in principle be clinically delivered. For the integration of the clinical
dose engine into the column generation formalism, the fully integrated version of
the RMP as proposed in Schipaanboord et al. 2020 was used. In some cases, the
final deliverable plan did not utilize the maximum allowed number of beams: either
new segments did not further improve the score of the MP (and is thus converged),
or no new feasible segment shapes could be identified.

5.2.4 Validation of the proposed novel TBS-BAO approach

For each patient, 9 TBS-BAO HR plans and 9 TBS-BAO LR plans were generated with
maximum numbers of final beams from 10 to 50 in steps of 5. The first validation of
these plans was based on comparisons with plans that were manually created
(‘Manual’) with the clinical CyberKnife treatment planning system (Precision v2.0)
by an experienced medical physicist (Gizynska et al., 2021, Schipaanboord et al,
2021). Secondly, the TBS-BAO plans were compared to deliverable 25-beam
‘iCycle-BAO(25)’ plans generated with the Erasmus-iCycle option for integrated
beam angle and beam fluence optimization (Breedveld et al., 2012), followed by
segmentation with the approach as proposed in (Schipaanboord et al, 2019c,
2020). The Erasmus-iCycle BAO approach has been extensively validated and
applied for various treatment sites (Breedveld et al,, 2012, Rossi et al., 2018, 2021,
Sharfo et al,, 2017, 2021, Voet et al., 2012, 2013b). In Erasmus-iCycle, beam angles
are sequentially selected. For the selection of each next beam direction, each not yet
selected beam direction is evaluated by solving an IMRT optimization problem for a
beam arrangement consisting of the already selected beam directions plus the
candidate beam direction. Once all candidate beams are evaluated, the most
favorable beam direction is added to the treatment plan. This routine is continued
until the desired number of beam directions is reached or if further improvement in
the patient dose distribution is considered clinically irrelevant.

5.2.5 Plan evaluations and comparisons

Plan evaluations and comparisons were based on obtained PTV coverages, plan
parameters in table 5.1, patient body doses, Dose Volume Histograms (DVH),
number of included beams, number of MLC segments, Weighted Segment Sizes
(WSS (Calusi et al., 2020)), MUs per fraction, Conformation Numbers (van 't Riet
et al, 1997), estimated treatment delivery times, and visual inspection of dose
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distributions. Delivery times were calculated with a standalone treatment time
estimator provided by Accuray Inc, considering beam-on times, robot movements,
changing of apertures, and imaging. Patient setup time was not included. To assess
statistical significance (P < 0.05), Wilcoxon signed-rank tests for paired data were
performed on important clinical parameters.

5.2.6 Computation times

For 10 arbitrary selected patients, computation times for TBS-BAO(25) plans were
compared to computation times for generation of corresponding iCycle-BAO(25)
plans, and to manual planning times for the corresponding Manual plans. Plan
generations were performed on an Intel Xeon Gold 6248 @ 2.5 GHz, containing 40
cores and with 386 GB of memory.

5.3 Results

5.3.1 Plan comparisons

Figure 5.1 shows generated dose distributions for an example patient. Dosimetric
plan parameters presented in figure 5.2 show that there were no violations of hard
constraints in any of the plans generated with TBS-BAO, iCycle-BAO, or manual
planning. Subplot 5.2.a shows that for all six plan types (TBS-BAO HR, TBS-BAO LR,
Ideal HR, Ideal LR, iCycle-BAO(25) and Manual), the mean PTV Coverage was very
close to the clinically desired 95%, with similar outliers with lower coverage.

In general, mean dosimetric plan parameters for urethra, rectum, and bladder in
segmented TBS-BAO HR and TBS-BAO LR plans improved with increasing preset
maximum beam numbers, moving towards the value of the corresponding Ideal HR
or Ideal LR reference plan with 91 beams (figure 5.2). However, improvements
started to level off around a preset maximum of 25 beams. For maximum allowed
beam numbers = 25, the average delivery times and WSS gradually increased
slightly, while beam segment numbers and MU per fraction remained relatively
constant. Urethra plan parameters were favorable for TBS-BAO LR, compared to
TBS-BAO HR, which was reversed for rectum and bladder. This was fully in line
with the plan parameters for the corresponding reference Ideal plans; lower
urethra mean values for Ideal LR, lower rectum and bladder values for Ideal HR.
Figure 5.3 shows a comparison of the population averaged DVHs of ideal reference
plans and segmented TBS-BAO plans.

Achieved iCycle-BAO(25) plan parameters for urethra, rectum, and bladder
were highly similar to corresponding values in the TBS-BAO plans, sometimes
closer to TBS-BAO HR, sometimes closer to TBS-BAO LR (figure 5.2). No significant
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iCycle-BAO (25)

Manual (41) Isodose lines

TBS-BAO HR (10) TBS-BAO HR (25) TBS-BAO HR (40)

TBS-BAO LR (10) TBS-BAO LR (25) TBS-BAO LR (40)

Figure 5.1: Dose distributions for an example patient. iCycle-BAO(25) and Manual (41) are
validation plans. TBS-BAO-HR(XX) and TBS-BAO-LR(XX) are segmented plans generated
with the proposed TBS-BAO approach for preset maximum numbers of beams of 10, 25
and 40. Depicted structures: PTV (red), Urethra (green), Rectum (dark blue), and Bladder
(light blue).

differences in delivery times were observed between the iCycle-BAO(25) plans and
TBS-BAO plans (figure 5.2.t): on average 18.0 minutes (min: 14.1, max: 22.0) for
iCycle-BAO(25) and 18.4 minutes (min: 13.9, max: 28.9) for TBS-BAO HR(25). The
Manual plans with on average 48 beams performed dosimetrically similar to
TBS-BAO plans with a maximum of 25 selected beams, while delivery times of the
former plans were substantially higher (figure 5.2.t): on average 22.3 minutes (min:
17.0, max: 32.0) for Manual and 18.4 minutes (min: 13.9, max: 28.9) for TBS-BAO
HR(25). Figure 5.4 shows population averaged DVH comparisons between
TBS-BAO plans and validation iCycle-BAO(25) and Manual plans. See Appendix A
for more details on plan parameter comparisons.
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Figure 5.2: Overview of plan parameters for all segmented plans (TBS-BAO HR, TBS-BAO LR)
together with the ideal FMO reference plans (Ideal HR, Ideal LR) and the validation plans
(Manual, iCycle-BAO(25)). Each subplot shows results for one plan parameter. The lines
representing TBS-BAO HR and TBS-BAO LR show for each maximum allowed number of
beams (along the x-axis) the population mean parameter value, with colored areas depicting
ranges. Plan parameter values for the Ideal HR and Ideal LR FMO plans and both validation
plans are depicted with vertical line plots, positioned along the x-axis at the average number
of realized beams per approach. The marker within each vertical line depicts the average
value and the vertical line the range. Manual plans had on average 48 included beams. WSS
= Weighted Segment Size.
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(a)

Population averaged DVHs (N=33)
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Figure 5.3: Population averaged DVHs for ideal reference FMO plans with 91 beams and
segmented TBS-BAO plans with 25 beams. a) comparisons for Ideal HR reference plans, b)
comparisons for Ideal LR reference plans. Clinical constraints are denoted with triangles,
see table 5.1.



BEAM ANGLE OPTIMIZATION GUIDED BY A TOTAL-BEAM-SPACE REFERENCE PLAN 79
(a) Population averaged DVHs (N=33)
100 : : : : : :
= iCycle-BAO (25)
- - TBS-BAO HR (25)
80 o e N TBS-BAO LR (25) ||
- - PTV
< 60l § — Urethra |
— = Rectum
SEJ - Bladder
=}
S 40t :
201 1
0 ‘S, A4 I
0 10 20 30 40 50 60 70 80
Dose (Gy)
(b) )
100 ‘ ‘
Manual (48)
TBS-BAO HR (25)
80 TBS-BAO LR (25) ||
PTV
3 60 Urethra |
< Rectum
g Bladder
=
g 40 1
20 1
0 I
70 80

Dose (Gy)

Figure 5.4: Population averaged DVHs for TBS-BAO HR(25), TBS-BAO LR(25) and validation
plans. a) validation plans are iCycle-BAO(25) plans, b) validation plans are Manual plans
with on average 48 non-coplanar beams. Clinical constraints are denoted with triangles,

see table 5.1.
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Table 5.3: Computation times in hours for 10 arbitrarily selected patients. The reported
Manual planning time is manual hands-on time, while the other reported times are fully
automated calculation times without manual interaction. PB + FMO: Calculation of pencil-
beams + Fluence Map Optimization.

PB + FMO Segmentation Total
Approach Mean (min,max) Mean (min, max) Mean (min, max)
TBS-BAO HR (10) 43 (29,7.2) 04 (0.3,0.5) 4.7 (3.2,7.5)
(25) 0.5 (0.3,0.6) 48 (33,7.5)
(50) 0.5 (0.3,0.6) 48 (33,75)
TBS-BAO LR (10) 1.1 (0.8,2.2) 0.4 (0.3,0.6) 1.5 (1.1, 2.7)
(25) 0.4 (0.3,0.6) 1.5 (1.1, 2.7)
(50) 0.5 (0.3,0.6) 1.6 (1.1, 2.7)
iCycle-BAO (25) 104 (8.8,124) 03 (0.3,04) 10.7 (9.2,12.7)
Manual 08 (0.2, 2.8)

5.3.2 Computation times

Table 5.3 shows for 10 arbitrarily selected patients, measured computation times
for automatic generation of TBS-BAO plans, times for automatic generation of
corresponding iCycle-BAO(25) plans, and times for manual generation of the
corresponding Manual plans. TBS-BAO has a clear advantage in computation time
over iCycle-BAO, especially when Ideal LR plans are used as the reference plan.

5.4 Discussion

In this study, the novel TBS-BAO approach for solving the BAO problem was
proposed, and validated for non-coplanar CyberKnife SBRT for prostate cancer
patients. The essence for solving the BAO problem is that plan generation starts
with creation of an ‘ideal’ reference dose distribution, using all available candidate
beams (total-beam-space, TBS). This ideal reference plan is generated with
multi-criterial FMO, providing for each patient a Pareto-optimal plan. The ideal
FMO dose distribution then acts as a strong guidance in the following non-convex
IMRT segmentation with integrated BAO (SEG/BAO). This SEG/BAO for a preset
maximum number of included beams aimed at realizing the ideal reference plan as
closely as possible. MLC segments are sequentially added to the beams, aiming at
minimization of dosimetric differences between the segmented plan and the ideal
reference plan. With the globally optimal reference plan at hand, there is always a
quality measure for the final segmented plan with pre-defined maximum number of
beams.

Dosimetrically, the clinically deliverable plans with 25 beams (TBS-BAO HR and
TBS-BAO LR) were highly similar to the 91-beam ideal reference plans (Ideal HR
and LR). Especially, for rectum and bladder, ideal dose distributions could be
closely reproduced. For urethra sparing, a slight increase of approximately 1 Gy was
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observed between the ideal reference plans and the segmented plans. For most
plan parameters, improvements in TBS-BAO plans leveled off for allowed maximum
numbers of non-coplanar beams > 25.

While all plan parameters in Ideal HR and Ideal LR plans were within clinical
constraints, there were slight trade-off differences between Ideal HR and Ideal LR in
OAR sparing. Ideal HR performed slightly better for rectum and bladder, while Ideal
LR was slightly better for urethra sparing (figure 5.2, panels c-1). The differences
between Ideal HR and Ideal LR plans were reproduced in the segmented TBS-BAO HR
and TBS-BAO LR plans. This indicates that depending on the pencil-beam resolution
used during FMO, a slightly different trade-off in OAR sparing was achieved. Possibly,
with the coarser pencil-beam resolution of Ideal LR, a somewhat larger area around
the urethra was needed to be spared to fulfill the urethra constraints, at the price of
a little less sparing for bladder and rectum (but still within constraints). As indicted
in table 5.3, for a maximum of 25 beams, the total plan generation time for TBS-BAO
HR of 4.8 hours reduced to 1.6 hours for TBS-BAO LR. This may also be considered
in choosing between the HR or LR approach. Appropriate beamlet resolution may
have to be tuned per tumor site. At the moment, our research system uses serial
calculations for the pencil-beams and for the final dose calculations. Parallelization
of these dose calculation steps could substantially reduce the computation times for
both TBS-BAO HR and TBS-BAO LR.

Plan parameters of iCycle-BAO(25) plans were overall similar to those of
TBS-BAO HR(25) and TBS-BAO LR(25) (figures 5.2 & 5.4) with small advantages of
one or the other, depending on parameter. This also implies that plan parameters
of the iCycle-BAO(25) plans were close to Ideal plan parameters. This observed
high quality of iCycle-BAO plans is in line with observations in other studies (Rossi
etal, 2018, 2021, Sharfo et al,, 2017, 2021). With the availability of the Ideal plans,
this could now be objectively verified. A clear advantage of the proposed TBS-BAO
over iCycle-BAO is calculation time (table 5.3). With iCycle-BAO, calculation time
substantially increases with beam number (Breedveld et al., 2012). A test for a
single patient resulted in a computation time for TBS-BAO LR(40) of 1.1 hours
while generating the corresponding iCycle-BAO(40) plan took 29.3 hours.
Increasing the number of allowed beams per plan only had a marginal impact on
the total calculation time for the TBS-BAO approach, since the ideal reference plan
is always performed on all available candidate beams, and in the first part of the
segmentation phase, all candidate beams are taking into account for the
identification of the next MLC segment, irrespective of the maximum number of
beams per plan. On average, the calculation time for the segmentation phase of the
TBS-BAO plans increased from 23 min. (0.4 hours) for a plan with a maximum of 10
beams to 28 min. (0.5 hours) for a plan with a maximum of 50 beams.
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Comparisons between Manual and TBS-BAO plans demonstrated that the
Manual plans that were made by an experienced physicist in the absence of time
pressure (Gizynska et al., 2021) were indeed of high quality (figure 5.2). On the
other hand, this Manual plan quality can possibly not be reached in clinical routine
with planners with various skill sets and with time pressure. The manual plans had
on average 48 included beams, while the quality was similar to TBS-BAO plans with
a maximum of 25 beams. Delivery times of Manual plans were on average 3.9 min
longer. Generation of TBS-BAO plans required virtually zero manual workload,
while generation of the Manual plans took on average 0.8 hours.

The proposed TBS-BAO approach was developed for generating step-and-shoot
IMRT. Extending the method for dynamic delivery would be an interesting option.
This would require extra restrictions on segment shapes for consecutive segments,
yet the requirement on the minimum MU per segment is no longer needed since the
dose delivery is continuous. Additionally, Men et al. (2010) showed that column
generation can be used to generate radiotherapy treatment plans for dynamic
delivery, Kearney et al. (2017, 2018) demonstrated the feasibility of continuous
arc delivery for the CyberKnife, and Bedford et al. (2020) demonstrated that
sufficient delivery accuracy for clinical application can be accomplished with
dynamic arc delivery on the CyberKnife. Currently, the CyberKnife does not
support dynamic delivery, however, the proposed TBS-BAO approach could in
principle be applied for generating treatment plans for conventional linacs.

5.5 Conclusions

The novel Total-Beam-Space-BAO approach (TBS-BAO) uses for each plan
generation an ‘ideal’ dose distribution as reference. This ideal dose distribution is
generated with fluence map optimization using all available candidate beams. The
following integrated BAO and segmentation for a preset maximum number of
included beams then aims at realizing the ideal reference plan as closely as
possible. The full planning pipeline is automated; there is virtually no manual
workload. For CyberKnife prostate SBRT, generation of TBS-BAO plans was much
faster than plan generation with an alternative BAO approach. Compared to
high-quality Manual planning, there was no involved workload and TBS-BAO plans
with 25 beams had similar plan quality as the Manual plans with on average 48
beams. Delivery times for the TBS-BAO plans were reduced by on average 3.9 min.
The ideal TBS reference FMO plans could effectively steer the discrete non-convex
MLC segmentation with integrated BAO (SEG/BAO).
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Appendix A

Table Al1: Plan parameter comparisons for Manual and TBS-BAO HR plans with a maximum
of 25 beams. Doses (Dxx) presented in Gy and volumes (Vxx) in cc. Entrance dose was
evaluated using Dq.. of a ring structure of 3 cm thickness inside the patient’s external
contour. FH: Femoral head, MU/fx: Monitor Units per fraction, DT: Delivery time.

Manual TBS-BAO HR(25) TBS-BAO HR(25) - Manual
Mean (min, max) Mean (min, max) A (min, max) p
PTV Dogo, 349 (31.2,36.8) 35.0 (33.5,36.4) 01 (-12,27) 8
Do.03cc 60.7 (57.9,62.4) 57.9 (55.5,59.7) -2.8 (-5.5,-0.5) <.001
Urethra  Dsgy, 40.8 (38.9,41.9) 414  (40.0,42.6) 0.6 (-1.0,2.0) <.001
D109 40.4 (385,41.4) 40.9 (393,42.0) 0.6 (-09,1.9) <.001
D509 389 (35.1,40.0) 39.1 (35.2,40.0) 0.1 (-1.0,0.9) 1
Rectum V3230y 0.5 (0.2,1.1) 04 (0.0,0.9) -0.1  (-0.5,0.5) .004
Do.03cc 35.8 (34.4,37.6) 36.0 (28.5,38.0) 0.2 (-6.6,3.0) 1
Dinean 73 (47,97) 68 (3.8,9.9) 04 (-2.7,2.3) 01
Mucosa Do.03cc 25.0 (22.0,27.0) 23.6 (12.9,282) -1.3  (-11.2,6.0) 1
Bladder V3scy 04 (0.0,1.2) 0.5 (0.0,1.0) 0.1 (-0.4,04) 1
Do.03cc 39.7 (37.8,41.6) 40.1 (36.8,41.5) 03 (-17,1.5) .006
Dmean 9.2 (6.9,12.9) 83 (4.7,13.1) -09 (-2.7,1.8) <.001
Entrance Dy 174 (14.1,19.9) 17.3  (12.9,20.2) -0.1  (-4.0,3.5) .8
LeftFH Dy g3cc 133 (7.6,17.7) 152  (11.8,19.0) 1.9 (-15,7.2) <.001
Right FH = Dg3cc 15.2 (9.9,18.6) 154 (9.8,18.7) 0.1 (-2.6,2.5) 5
Conformality 0.82 (0.75,0.88) 0.79 (0.71,0.86) -0.03 (-0.07,0.00) <.001
Beams 48.3 (37.0,59.0) 24.8 (24.0,25.0) -23.5 (-34.0,-12.0) <.001
Segments 98.9 (54.0,167.0) 67.8 (40.0,144.0) -312 (-96.0,31.0) <.001
MU/fx [x1000] 59 (4.2,89) 6.7 (4.6,9.8) 0.8 (-2.0,4.7) .002
Delivery time [min] ~ 22.3  (17.0,32.0) 18.4 (13.9,28.9) 3.9 (-14.0,6.6) <.001
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Table A2: Plan parameter comparisons for Manual and TBS-BAO LR plans with a maximum
of 25 beams. Doses (Dxx) presented in Gy and volumes (Vxx) in cc. Entrance dose was
evaluated using Dq.. of a ring structure of 3 cm thickness inside the patient’s external
contour. FH: Femoral head, MU/fx: Monitor Units per fraction, DT: Delivery time.

Manual TBS-BAO LR(25) TBS-BAO LR(25) - Manual
Mean (min, max) Mean (min, max) A (min, max) p
PTV Dogos 349 (31.2,36.8) 35.5 (33.2,36.5) 0.5 (-0.5,3.2) <.001
Do.03cc 60.7 (57.9,62.4) 57.8 (54.8,60.9) -29 (-5.6,-0.4) <.001
Urethra  Dsgy, 40.8 (38.9,41.9) 40.6 (39.4,42.2) 0.2 (-2.0,15) 1
D10 40.4 (38.5,414) 40.2 (38.9,41.7) -0.2 (-1.8,1.5) .2
Dsgo, 38.9 (35.1,40.0) 385 (34.5,39.8) 0.5 (-1.7,0.7) <.001
Rectum V3236y 0.5 (0.2,1.1) 0.5 (0.0,1.0) -0.0 (-0.5,0.5) .3
Do.03¢c 35.8 (344,37.6) 36.3 (295,38.0) 0.5 (-5.6,2.2) .008
Dinean 73 (47,9.7) 7.8  (46,119) 05 (-2.7,4.3) 1
Mucosa Do.03¢c 25.0 (22.0,27.0) 24.8 (145,28)5) -0.1  (-9.6,6.5) 7
Bladder  Vsggy 04 (0.0,1.2) 0.6 (0.1,1.1) 0.2 (-0.3,0.8) <.001
Dg.03cc 39.7 (37.8,41.6) 40.4 (38.7,41.8) 0.7 (-1.0,2.8) <.001
Dinean 9.2 (6.9,12.9) 9.7 (59,15.1) 0.6 (-1.5,4.3) .04
Entrance D 174 (14.1,19.9) 17.5 (13.7,20.1) 0.0 (-3.7,3.4) 7
LeftFH Dy g3cc 133 (7.6,17.7) 15.9 (125,21.4) 27 (-10,7.2) <.001
Right FH = Dg3cc 15.2 (9.9,18.6) 158 (11.2,19.7) 0.6 (-3.3,5.0) 1
Conformality 0.82 (0.75,0.88) 0.76 (0.67,0.84) -0.06 (-0.11,-0.01)  <.001
Beams 48.3 (37.0,59.0) 249 (24.0,25.0) -23.5 (-34.0,-12.0) <.001
Segments 98.9 (54.0,167.0) 67.5 (40.0,137.0) -31.4 (-114.0,37.0) <.001
MU/fx [x1000] 59 (4.2,8.9) 6.6 (4.3,9.8) 0.6 (-2.9,4.7) .009

Delivery time [min] ~ 22.3  (17.0,32.0) 181  (14.0,27.7) -42  (-158,6.4) <.001
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Table A3: Plan parameter comparisons for iCycle-BAO and TBS-BAO HR plans with a
maximum of 25 beams. Doses (Dxx) presented in Gy and volumes (Vxx) in cc. Entrance dose
was evaluated using D of a ring structure of 3 cm thickness inside the patient’s external
contour. FH: Femoral head, MU/fx: Monitor Units per fraction, DT: Delivery time.

iCycle-BAO(25) TBS-BAO HR(25) TBS-BAO HR - iCycle-BAO
Mean (min, max) Mean (min, max) A (min, max) p
PTV Dogo, 354 (33.4,36.5) 35.0 (33.5,36.4) -04 (-1.9,0.5) <.001
Do.03cc 60.0 (54.9,62.3) 57.9 (55.5,59.7) 21 (-39,13) <.001
Urethra  Dgy, 40.4 (39.1,425) 414 (40.0,42.6) 1.1 (-0.8,3.5) <.001
D109 39.9 (385,42.0) 409 (39.3,42.0) 1.0 (-09,3.3) <.001
Dsgo, 383 (355,39.8) 39.1 (352 40.0) 0.8 (-0.921) <.001
Rectum V3230y 0.5 (0.0,0.9) 0.4 (0.0,0.9) -0.1  (-0.3,0.1) <.001
Do.03cc 36.4 (28.1,38.0) 36.0 (28.5,38.0) -04 (-2.2,0.7) .02
Dinean 71 (4.2,10.3) 68 (3.8,9.9) 02 (-1.6,0.8) .04
Mucosa Do.03cc 24.5 (11.3,27.9) 23.6 (12.9,282) -0.8 (-3.7,1.6) .002
Bladder V3sey 0.5 (0.0,0.9) 0.5 (0.0,1.0) -0.0 (-0.2,04) 1
Dg.03cc 403 (38.1,41.8) 401 (36.8,415) 03 (-2.8,0.8) 1
Dimean 8.9 (5.3,13.0) 83 (4.7,13.1) -0.6 (-39,1.3) .008
Entrance Dy 17.9 (158,19.5) 173 (12.9,20.2) -0.6 (-5.6,2.9) 1
LeftFH Dy g3cc 13.8 (5.7,19.8) 15.2  (11.8,19.0) 1.4 (-59,7.6) .002
Right FH  Dg3cc 149 (7.6,19.5) 154 (9.8,18.7) 0.5 (-4.8,4.9) 2
Conformality 0.80 (0.74,086) 0.79 (0.71,0.86)  -0.01  (-0.05,0.03) .03
Beams 249 (24.0,25.0) 24.8 (24.0,25.0) -0.1  (-1.0,1.0) 4
Segments 67.7 (40.0,95.0) 67.8  (40.0,144.0) 0.1 (-45.0,51.0) 1.0
MU/fx [x1000] 6.2 (49,74) 6.7 (4.6,9.8) 0.5 (-0.8,2.6) .003

Delivery time [min] ~ 18.0  (14.1,22.0) 18.4 (13.9,28.9) 04 (-48,7.6) 6
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Table A4: Plan parameter comparisons for iCycle-BAO and TBS-BAO LR plans with a
maximum of 25 beams. Doses (Dxx) presented in Gy and volumes (Vxx) in cc. Entrance dose
was evaluated using D of a ring structure of 3 cm thickness inside the patient’s external
contour. FH: Femoral head, MU/fx: Monitor Units per fraction, DT: Delivery time.

iCycle-BAO(25) TBS-BAO LR(25) TBS-BAO LR - iCycle-BAO
Mean (min, max) Mean (min, max) A (min, max) p
PTV Dogy, 354 (33.4,36.5) 35.5 (33.2,36.5) 0.0 (-0.8,0.8) 4
Do.03cc 60.0 (54.9,62.3) 57.8 (54.8,60.9) -2.2  (-4.7,1.0) <.001
Urethra  Dgy, 40.4 (39.1,425) 40.6 (39.4,42.2) 02 (-1.1,24) .04
D109 39.9 (385,42.0) 402 (38.9,641.7) 02 (-1.1,2.2) .03
Dsgo, 383 (355,39.8) 385 (345,39.8) 01 (-1.0,1.1) 1
Rectum V3230y 0.5 (0.0,0.9) 0.5 (0.0,1.0) -0.0 (-0.3,0.1) 1
Do.03cc 36.4 (28.1,38.0) 36.3 (29.5,38.0) -0.0 (-0.8,1.4) 5
Dinean 71 (4.2,10.3) 7.8  (4.6,11.9) 0.7 (-0.7,23) <.001
Mucosa Do.03cc 24.5 (11.3,27.9) 24.8 (14.5,28.5) 04 (-2.2,3.2) .02
Bladder V3scy 0.5 (0.0,0.9) 0.6 (0.1,1.1) 0.1 (-0.1,0.7) <.001
Do.03cc 403 (38.1,41.8) 404 (38.7,418) 0.1 (-0.7,1.7) 6
Dinean 8.9 (5.3,13.0) 9.7 (59,15.1) 0.8 (-1.1,3.1) <.001
Entrance D 17.9 (158,195) 17.5 (13.7,20.1) 0.5 (-3.1,2.8) 1
LeftFH Dy g3cc 13.8  (5.7,19.8) 15.9 (12.5,21.4) 21  (-2.5,87) <.001
Right FH = Dgo3cc 149 (7.6,19.5) 158 (11.2,19.7) 09 (-3.2,5.2) .03
Conformality 0.80 (0.74,086) 0.76 (0.67,0.84) -0.04 (-0.12,0.02) <.001
Beams 249 (24.0,25.0) 249 (24.0,25.0) -0.0 (-1.0,1.0) 7
Segments 67.7 (40.0,95.0) 67.5 (40.0,137.0)  -0.2 (-54.0,57.0) 7
MU/fx [x1000] 6.2 (49,74) 6.6 (4.3,9.8) 04 (-1.1,2.7) 3
Delivery time [min] ~ 18.0  (14.1,22.0) 18.1 (14.0,27.7) 0.1 (-6.0,7.4) 8







CHAPTER 6

Discussion

This thesis focused on developing and validating novel, fully automated treatment
planning solutions for robotic radiotherapy, with emphases on clinical
deliverability of generated treatment plans and on optimization of beam angles.
Developed solutions are fully independent of the commercial TPS for manual plan
generation. Automated plans were compared with manual plans both regarding
plan quality and plan delivery efficiency. In this chapter, I will elaborate on the
choice of algorithms, discuss the advantages and limitations of the methods
proposed, and discuss potential future research.

6.1 FMO + segmentation vs. Direct Aperture Optimization (DAO)

In radiotherapy treatment planning, there are generally two optimization
approaches for generating IMRT plans for pre-selected beam directions.

The first approach splits the optimization in two phases: a fluence map
optimization (FMO) phase that optimizes the fluence profiles for all beam
directions and a segmentation phase to convert the optimized fluences into a
deliverable plan, consisting of multi-leaf collimator (MLC) segments and
corresponding segment intensities (Breedveld et al., 2012, Luan et al., 2006, Sun
and Xia, 2004, Siiss et al., 2007, Xia and Verhey, 1998). The segmentation can
degrade the quality of a dose distribution obtained with FMO.

The second approach is Direct Aperture Optimization (DAO) that optimizes
directly on the MLC parameters (Men et al., 2007, Romeijn et al., 2005, Shepard
et al, 2002). In this approach, the treatment plan is directly deliverable at every
stage of the optimization process, therefore no segmentation phase (with a possible
loss in plan quality) is needed. However, including the non-convex modeling of the
(physical) constraints of the collimator and treatment device leads to a non-convex
optimization problem with a risk to get trapped in local minima.
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Both approaches can have their advantages and disadvantages. An advantage of
FMO with our in-house Erasmus-iCycle, an algorithm for automated a priori
Multi-Criterial treatment plan Optimization (MCO), is that it can handle hard dose
constraints, whereas in most DAO approaches proposed in literature a weighted
sum objective function is used without any hard constraints. In practice, the latter
approach requires manual tweaking of the weights of the objective function per
patient to arrive at a clinically desirable dose distribution, with favorable
patient-specific trade-offs between objectives while respecting all hard constraints.
An advantage of DAO is that the delivery constraints are respected during
optimization, therefore no segmentation phase is required to generate a deliverable
treatment plan.

In our center we have given preference to plan optimization using automated
FMO with Erasmus-iCycle, followed by segmentation. The generated FMO plans
have guaranteed Pareto and global optimality. Moreover, with proper
configuration, the applied wish-list driven MCO results in plans of high clinical
quality. In this thesis novel segmentation algorithms are proposed to reconstruct
FMO dose distributions as accurately as possible, with a focus on most important
dosimetric features of the FMO dose distribution.

6.2 Challenges in step-and-shoot segmentation

For the developed segmentation algorithm (chapters 2 & 3) a column generation
approach was chosen with a quadratic dose minimization term as the main driving
force to reconstruct input FMO dose distributions.

6.2.1 Column-generation

The column generation method is often used to solve large-scale optimization
problems by iteratively solving a series of smaller, but increasingly growing,
problems. This approach was chosen because of its intuitive mechanism of
generating segments and proven effectiveness in IMRT treatment planning using
DAO (Carlsson, 2008, Romeijn et al., 2005, Salari and Unkelbach, 2013).

During the work in this thesis, we observed that homogeneous tumor dose
distributions were difficult to reconstruct within clinically acceptable numbers of
segments using the column generation approach. Many segments with small
segments weight were required to adequately reconstruct the homogeneous dose
distribution. A limiting factor during optimization was the minimum MU per
segment restriction for the robotic treatment unit to ensure accurate dose delivery
per segment.
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Potentially, this could be linked to how segments are handled in the current
column generation formulation: all identified segments remain unchanged during
the segmentation of the plan and each identified segment is based on the local
gradient information at that specific iteration of the optimization. When the
solution progresses and more segments are added to the plan, the existing
segments would likely benefit from slight adaptions to adapt to the current dose
distribution.

In the proposed implementation, the minimum MU segment restriction is not
explicitly enforced during optimization of the segment weights; only the
non-negative constraint of the segment weights is enforced (chapters 2 and 3,
equations 2.1, 2.4, 3.4, and 3.8). Instead, during segmentation, when a segment
weight falls below the minimum MU constraint, this segment is removed from the
plan. The ability to dynamically remove identified segments and replace them with
more suitable segments improves the delivery efficiency of the plans. An interesting
option to adapt segment shapes is the Aperture Shape Optimization algorithm
proposed by Cassioli and Unkelbach 2013. This algorithm uses a column generation
approach and applies gradient information to further optimize the leaf positions for
already identified segments, either during the optimization or only applied to the
final deliverable plan. Possibly, the segmentation algorithm proposed in this thesis
could be further refined with a similar type of segment shape fine-tuning.

6.2.2 Objective function — quadratic minimization term

Initially, the applied objective function for generation of MLC segments only
consisted of a quadratic minimization term to minimize dose differences with the
given input FMO dose distribution, and a non-negativity constraint (chapter 2,
equations 2.1 & 2.2). The quadratic term was chosen because of its convex
formulation and fast optimization. However, the quadratic term alone yielded plans
with insufficient PTV coverage or too low PTV min doses. For this reason, the
objective function was extended with an LTCP term to provide adequate PTV
coverage (equation 2.3). In chapter 3, an MU penalty term was added to reduce
beam-on-time (equation 3.4). Yet, the quadratic minimization term remained the
main driving force of the segmentation.

Important to note is that in the developed approach, the quality of the input
FMO dose distribution is vital. After all, the quadratic minimization term works
towards the input dose distribution, without a drive to get better than the input
dose distribution. At the same time, the input dose distribution must be physically
achievable. Segmentation of a hypothetical dose distribution with the prescribed
dose to the tumor and no dose to the healthy tissue does not work, since the



92 DISCUSSION

hypothetical dose distribution does not hold any information on the achievable
trade-offs between PTV and OARs or between OARs. Throughout this thesis, Pareto
and globally optimal FMO plans generated with Erasmus-iCycle were used as input
dose distributions for the segmentation algorithm. These plans are based on
pencil-beam dose depositions and therefore reflect (to a large extent) physically
achievable patient dose.

In a so-far unpublished project, deliverable dose distributions for prostate
cancer patients, generated with manual planning in the commercial Precision TPS
(Accuray Inc., Sunnyvale, USA) were used as input for the segmentation, instead of
the Erasmus-iCycle FMO dose distributions. Given the degeneracy of the treatment
planning problem (Alber et al., 2002), it was investigated whether a different set of
segments and weights could be found that would render the same dosimetric plan
quality, but with improved plan delivery efficiency. Generally, plans generated with
our segmentation approach had similar dosimetric plan quality as the initial
manual plans with some slight deteriorations, while plan delivery efficiency was
similar. As pointed out above, our segmentation approach focuses on
reconstruction of the input plan, so no plan improvements were expected. The
manual plans were made by an experienced medical physicist, who focused on both
dosimetric plan quality and delivery efficiency. In this experiment, our
segmentation approach could not beat the delivery efficiency obtained by the
manual planner.

A novelty of our segmentation approach is that it reconstructs the
3-dimensional FMO dose distribution while considering all allowed beam
directions simultaneously, instead of reconstructing 2-dimensional fluence profiles.
Sequencing the fluences for each beam separately excludes mutual dosimetric
compensation of imperfect segmentations of the 2D beam fluence profiles. The
developed methodology also enabled to focus on reconstructing important
dosimetric features of dose distributions, which would not have been possible with
independent sequencing of 2-dimensional fluence profiles.

A challenge in the developed segmentation approach is full compliance with
maximum or minimum dose constraints, since these constraints are dependent on a
single or a few voxels, and are therefore difficult to enforce with a weighted sum of
quadratic dose differences formulation. In chapter 2, this problem was mitigated to
a certain extent with the use of the ‘multi-criterial’ segmentation, which
dynamically adapted the weights of crucial voxels within the objective function to
better respect the hard constraints (section 2.2.4). In chapter 5, section 5.2.3, a final
segment weight re-optimization step was added using a wish-list optimization. This
step was performed at the end of the segmentation and ensured compliance with
hard constraints at the cost of a few minutes extra calculation time.
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6.2.3 Integration of a clinical dose engine

To accurately model the delivered patient dose, including MLC scatter and leaf
transmission effects, a standalone version of the clinical dose engine (CDE) was
integrated into the column generation formalism. One of the challenges of the
integration was that the accurate segment dose calculated with the CDE differed
from the segment dose calculated as the sum of its (approximated) pencil-beams,
the latter also calculated with the CDE. In the conventional CG formulation,
pencil-beams are used to describe the beam intensity to dose deposition relation
for both the Master Problem and the Restricted Master Problem, i.e. the dose
prediction in MP is the same as the dose prediction in RMP. Therefore, the solution
on the RMP can be directly converted into a solution on the MP, which is needed to
calculate the gradients for identification of the next segment. However, when the
segment dose prediction in the RMP is calculated with a CDE (to better reproduce
the real dose delivery) dose differences are induced. Initially, this resulted in
over-predictions of the delivered dose in MP. As a consequence, fewer beamlets had
a negative gradient and therefore fewer beamlets were predicted to be favorable for
inclusion in the segments. As a result, the segmentation would terminate
prematurely. In chapter 3, two versions of the RMP were introduced to the CG
workflow to mitigate this problem. One version of the RMP modeled the accurate
segment dose using the CDE (RMPq,), and another version modeled the segment
dose using the approximated pencil-beams used in MP (RMP;,). RMPg, is solved to
obtain the segment weights for the accurate dose delivery plan. For each identified
segment added to RMPg,, also a segment is added to RMPp,, that mimics the
accurate segment dose in RMPy,, but is constructed out of the pencil-beams used
in MP. In the RMP;,, each beamlet could partially (non-binary) contribute to the
segment dose. Then, in an additional minimization phase added to each CG
iteration, the individual beamlets and segment weights for RMP,, were optimized
to mimic the accurate segment dose from RMPg, as accurately as possible. These
individual beamlets and segment weights could then be used to calculate the
gradient on MP for the identification of the next segment.

The proposed approach mitigated the problem to a certain extent so that the
segmentation did not terminate prematurely, however, it did not solve the
fundamental dose differences between MP and RMP when including a CDE. Other
options for improving the dose discrepancy between MP and RMP could be
explored. For example, better approximations of the pencil-beam characteristics.
Pencil-beams that are located at the edge of the tumor projection are more likely to
end up on the edge of an MLC segment. A possible improvement could be to include
a heuristic that estimates the likelihood of a pencil-beam to end up on the edge of
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an identified segment, based on the projection of the tumor and OARs. Depending
on this estimation MLC scatter effects could be taken into account for the
calculation of the pencil-beam dose deposition, e.g. with a Monte Carlo based
pencil-beam algorithm.

6.3 Challenges in treatment delivery efficiency and plan complexity

An important aspect of radiotherapy treatment plans is delivery efficiency; shorter
treatment times improve patient comfort and delivery accuracy (reduced risk on
patient motion), and leakage dose is reduced with lower MU.

In chapter 3, a variable MU penalty term was added to the objective function to
reduce beam-on-time (equation 3.4). The weight of this term was tuned per tumor
site to balance the trade-off between plan quality and delivery efficiency. In
chapter 4, we found that there was no significant difference in the total MU between
manual planning and automated treatment planning. This might indicate that the
total MU found for both approaches is needed to provide sufficient dose to the
tumor. If that is the case, substantial improvements in minimizing beam-on time
can be considered unlikely.

Alternatively, the total beam-off time could be reduced to improve delivery
efficlency. When evaluating the individual segments per treatment plan, we
observed that some treatment plans had multiple segments per beam direction that
also had similar MU per segment. Potentially, these segments can be combined into
one segment to reduce both the number of segments and the total MU per plan.

In the investigated robotic treatment unit, a Traveling Salesman Problem is solved
for each plan to find the best route through the utilized node positions, given the
constraints for cable management of the treatment device. Therefore, substantial
improvements in travel path through the node positions are also considered unlikely.

Another possibility to enhance efficiency is to balance the number of segments
and beam directions, since the next MLC segment can already be prepared when the
treatment device moves from one node position to the next. If a plan could be
generated that makes optimal use of this property, the delivery time could possibly
be further reduced. As an indication, for the 25-beam plans from chapter 5 with on
average 68 segments, the estimated time spent for robot movement was 7.0 min.
(38%), for beam on time 6.9 min. (38%), and for changing apertures 2.5 min.
(14%). For the 50-beam plans with on average 70 segments, these estimated times
were: robot movement: 10.4 min. (50%), beam on time: 6.9 min. (33%), and
changing apertures: 1.4 min. (7%). Utilizing one segment per beam direction could
potentially speed up the delivery efficiency with 7%-14%.
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Besides the focus on delivery efficiency, another important aspect of
radiotherapy treatment plans is plan complexity. First of all, the proposed plans in
this thesis respect all the MLC restrictions of the InCise™ 2 MLC. The Modulation
Complexity Score (MCS) (McNiven et al., 2010) for the plans discussed in chapter 4
are slightly lower for the automated plans (0.41 [min: 0.31, max: 0.49]) than for
manual plans (0.49 [min: 0.33, max: 0.60]). The MCS score accounts for the shape
of the segments and the amount of modulation per beam direction (number of
segments per beam direction). The MCS ranges from 0 to 1, where a score of 1
means the least amount of modulation (only rectangular segments with a single
segment per beam), and a score of 0 means the most amount of modulation. The
automated plans had fewer beam directions which in part can explain the increased
complexity, since the plans had more segments per beam direction, resulting in
more modulation per individual beam direction.

6.4 Opportunities for improving calculation time

Currently, the proposed automated planning solution is not fully optimized for
calculation efficiency. The most time-consuming phases (based on the calculations
in chapter 5 with a pencil-beam resolution of 3 x 3.85 mm?) were: FMO
optimization (219 min, 76%), pencil-beam calculation (41 min, 14%),
segmentation (24 min.,, 8%), and final dose calculation (4 min., 1%). For a
pencil-beam resolution of 6 x 7.7 mm?, the calculations times were 53 min.( 55%)
for FMO optimization, 14 min. (15%) for pencil-beam calculation, 24 min. (25%)
for segmentation, and 4 min. (4%) for the final dose calculation.

Both pencil-beam calculations and final dose calculations are currently
performed in series, which, in principle, could be done in parallel. As a reference,
pencil-beam calculations with a resolution of 5 x 3.85 mm? in the TPS take on
average 2.5 seconds (patient-independent machine data needed for the
pencil-beam calculations is pre-loaded when the patient data is loaded, this takes
on average: ~14 seconds). During a plan optimization, the final segment dose
calculations are performed during segmentation. To provide an estimate of the
calculation time, recalculations of the final segment doses in the TPS take on
average 59 seconds. Implementation of parallel dose calculations could potentially
reduce our calculations times by 43 minutes (15%) for the high-resolution
pencil-beam option and by 17 minutes (18%) for the low-resolution pencil-beam
option.

Another opportunity to improve calculation time is to include deep-learning
approaches. At the moment, full treatment planning using deep learning still has its
challenges, for example in the generalizability of the models, overfitting (limited
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data), or the deliverability of the predicted dose distribution (unpublished work at
our center). However, deep-learning has already been shown to be suitable for
speeding up or improving parts of the optimization process, for example, fast dose
calculation (Kontaxis et al, 2020), boosting performance of conventional dose
calculation algorithms (Bai et al, 2021, Xing et al, 2020), or beam angle
optimization (Bohara et al., 2020, Sadeghnejad-Barkousaraie et al., 2020, 2021).

Our research system for automated treatment planning is the result of years of
research and collaboration between various researchers. As a result, the current
research implementation is a combination of multiple research applications written
in various programming languages. For each plan generation, optimization data has
to be transferred back and forth between applications, which contributes to total
computation times. One coherent system that is fully optimized for calculation
efficiency, similar to a commercial TPS, could substantially improve the calculation
time. With improved calculation times the automated workflow could also be
interesting for daily online re-planning.

6.5 Beam Angle Optimization

Properly selected beam angles contribute to the quality of radiotherapy treatment
plans. The Beam Angle Optimization (BAO) problem, however, is difficult to solve
to optimality (Bangert et al., 2012) due to its non-convex discrete nature with many
local minima (Craft, 2007, S6dertrém and Brahme, 1993).

In chapter 5, we proposed a method (TBS-BAO) that integrates BAO in plan
segmentation (SEG/BAO), rather than solving the BAO problem prior to or during
the FMO phase. The method first generates an ideal Total-Beam-Space (TBS)
reference plan, which is then used to guide the following SEG/BAO phase that aims
at reconstruction of the TBS reference plan. The TBS-BAO planning approach is
fully automated; there is virtually no manual workload. The generation of TBS
reference plans including all available beam directions is now technologically
feasible due to the recent advancements in computational power.

When comparing the TBS-BAO approach to the previously proposed BAO
method in Erasmus-iCycle and to manual planning, only minor differences in
dosimetric plan quality were observed for prostate SBRT. However, the delivery
times of the 25-beam TBS-BAO plans were 3.9 minutes shorter than for the manual
plans, due to the inclusion of fewer beams and segments. So far, TBS-BAO has only
been tested for prostate cancer. Studies on other tumor sites are on-going.

The observation that for prostate SBRT the dosimetric improvement in plan
quality leveled off at around 25 to 30 beams per plan led to the hypothesis that the
added value of BAO is reduced for high numbers of beams per plan. To verify this,
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Impact of BAO for plans with high numbers of beams
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Figure 6.1: Population averaged DVHs for plans with high numbers of beams, comparing
plans with the first 45 selected beams (best) out of the 91 candidate beams, plans with the
complementary set of beams (worst), and plans with a set of 45 randomly selected beams
(random).

an preliminary experiment was performed for 5 prostate SBRT patients for which
we generated three treatment plans with high numbers of beams. For the first plan,
the first 45 selected beams by TBS-BAO, out of the 91-candidate beam set, were
used (best angles). For the second plan, the complementing 46 beams from the
candidate beam set were used (worst). For the third plan, a random set of 45 beams
from the candidate beam set were used (random). A clear difference in dosimetric
plan quality was observed between the ‘best’ and ‘worst’ plans, whereas the plan
quality of the ‘random’ plans was in between the plan quality of the ‘best’ and
‘worst’ plans, see figure 6.1. This suggests that even for plans with high numbers of
beam directions per plan, there remains a dosimetric gain of using BAO.

6.6 Other future work and perspectives

6.6.1 Application of the proposed MLC segmentation for different modalities

An interesting option would be to adapt the developed MLC segmentation method
for application in dynamic dose delivery, such as Volumetric Modulated Arc
Therapy (VMAT). As mentioned earlier, the minimum MU per segment restriction
was often a limiting factor for optimization of step-and-shoot plans. This can be
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even more problematic with conventional fractionation schemes, where the total
MU is distributed over many fractions. In dynamic delivery, when consecutive
segments can be linked together, this MU per segment restriction is not an issue
anymore. However, dynamic delivery requires more restrictions on segment
shapes for consecutive segments.

In particular, dynamic delivery for the CyberKnife would be interesting;
combining the non-coplanar beam space of the CyberKnife for high-quality
treatment plans with the treatment efficiency of dynamic delivery. = More
specifically, to investigate options for integrating non-coplanar arc optimization in
the TBS-BAO algorithm. This would allow for generating efficient treatment plans
for the CyberKnife, while working towards the ideal plan quality of the
total-beam-space reference plan. Men et al. (2010) showed that column generation
can be used to generate treatment plans for dynamic delivery, Kearney et al. (2017,
2018) demonstrated the feasibility of continuous arc delivery for the CyberKnife,
and Bedford et al. (2020) demonstrated that sufficient delivery accuracy for clinical
application can be accomplished with dynamic arc delivery on the CyberKnife.

Existing MR-Linac systems only support step-and-shoot treatments, i.e.
dynamic delivery is not available. The proposed TBS-BAO method could be used to
generate deliverable IMRT treatment plans with integrated BAO. For this, the
planning approach would need a Monte Carlo based dose calculation algorithm to
account for the electron return effect to perform accurate pencil-beam and segment
dose calculations.

6.6.2 Towards clinical application of the proposed methods

To use the developed workflow in clinical practice, the system should be MDR
(Medical Device Regulations) or FDA (Food and Drug Administration) approved.
For application as an independent self-functioning treatment planning system, it
should comply to the highest risk class (MDR class III), since malfunctioning could
cause death or an irreversible deterioration of a person’s state of health. Also when
applied as a QA-system, or when used as reference for conventional treatment
planning, MDR-compliance is mandatory, although in a lower class (class IIb).

The advantages of having an independent self-functioning treatment planning
system for the radiotherapy department would be to reduce the manual planning
workload, reduce the treatment delivery time (chapters 4 & 5), or to use the tool as
a QA-system to validate the clinical plans that are delivered to the patients (i.e.
increase consistency of clinical plans). Currently, at our center, an automatic dose
verification step is already performed for each treatment plan by recalculating the
dose distribution using a third-party Monte Carlo dose engine (SciMoCa). This dose



99

verification step could be extended with a dose delivery verification step. For this,
the final deliverable dose could be re-segmented with the proposed method from
chapters 2 & 3. If the estimated delivery time of the reconstructed dose is
substantially lower than the actual treatment plan, this plan could be flagged for
re-evaluation by the medical physicist. Such a system could be run fully
automatically in the background for all plans. Additionally, it would provide
valuable feedback on achieved plan quality with the clinical TPS and insights on
potential improvements to the vendor of the treatment device. Once such an
automated planning system for the CyberKnife would be clinically available, the
next steps would be to perform clinical validation studies to demonstrate the
applicability in clinical practice and to explore other tumor sites.






Summary

Stereotactic Body Radiation Therapy (SBRT) is a radiotherapy approach in which
high radiation doses are delivered to the tumors in a limited number of daily
fractions (typically 3-5 fractions). High-precision dose delivery, generally based on
image-guidance, is required to limit dose delivery to healthy tissue as much as
possible. The CyberKnife® robotic radiotherapy device is a system that can deliver
SBRT and allows for easy delivery of (non-coplanar) beam directions, without the
need of manual couch shifts. High-quality radiotherapy dose distributions can be
delivered using the CyberKnife, with excellent clinical outcomes (Fuller et al., 2018,
Meier et al., 2018, van der Voort van Zyp et al, 2009). However, the enhanced
degrees of freedom of fully non-coplanar robotic radiotherapy increases the
complexity of finding optimal patient-specific beam angles and beam segments.
This makes it more difficult to consistently generate high-quality treatment plans,
especially under clinical circumstances with a variety of planner skill-sets and
planning time constraints. The aim of this thesis was to develop and validate novel,
fully automated treatment planning solutions for robotic radiotherapy, with
emphases on clinical deliverability of generated treatment plans and on
optimization of beam angles.

In radiotherapy treatment planning, there are generally two optimization
approaches. The first approach splits the treatment plan optimization into two
phases: a fluence map optimization (FMO) phase that optimizes the fluence profiles
per beam direction, and a segmentation phase to convert the optimized fluences
into a deliverable plan (consisting of multi-leaf collimator (MLC) segments and
corresponding segment intensities). However, the segmentation phase can degrade
the high-quality dose distribution obtained with FMO. The second approach is
Direct Aperture Optimization (DAO) that optimizes directly on the MLC
configurations. In this approach the treatment plan is directly deliverable at every
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stage of the optimization process, so no segmentation phase (with a possible loss in
plan quality) is needed. However, including the non-convex modeling of the
(physical) constraints of the collimator and treatment device leads to a non-convex
optimization problem. In our center, we have given preference to plan optimization
using the first approach (FMO followed by segmentation), because of the
guaranteed Pareto and global optimality of the FMO plans. The FMO plans are
generated with Erasmus-iCycle, an algorithm for automated a priori Multi-Criterial
treatment plan Optimization (MCO).

In chapter 2, a novel algorithm was proposed for converting a high-quality FMO
dose distribution into a deliverable plan (consisting of MLC-segments and
corresponding segment intensities). The algorithm focuses on minimizing plan
quality loss by reproducing the 3-dimensional FMO dose distribution, rather than
replicating the 2-dimensional fluences separately as is done in published MLC
segmentation methods. All beams are considered simultaneously while generating
MLC segments. The algorithm features prioritized generation of segments, focusing
on accurate reproduction of clinical objectives with the highest priorities. The
performance of the segmentation algorithm was evaluated for 20 prostate patients,
15 head-and-neck patients, and 12 liver patients. FMO dose distributions were
generated by automated multi-criteria treatment planning (Pareto-optimal plans)
and subsequently segmented using the proposed method. Segmented plans were
dosimetrically similar to FMO plans and for all patients a clinically acceptable
segmented plan could be generated. Substantial differences between FMO and
segmented fluence profiles were observed. Avoidance of the usual reconstruction of
2D FMO fluence profiles for segment generation, and instead simultaneously
generating segments for all beams to directly reproduce the 3D FMO dose
distribution is a likely explanation for the obtained results.

In chapter 3, the proposed algorithm was further improved to accurately model
the dose delivered to the patient with the integration of a clinical dose engine
(CDE). Three versions of the algorithm were investigated with differences in the
integration of the CDE. The combined use of pencil-beams and accurate segment
doses in a segmentation method is non-trivial. Therefore, new methods were
developed for the use of segment doses calculated with the CDE in combination
with pencil-beams, used for the selection of new segments. For 20 patients with
prostate cancer and 12 with liver cancer, segmented plans were compared with
FMO plans. All three versions of the proposed segmentation algorithm could well
mimic FMO dose distributions. Segmentation with a fully integrated CDE provided
the best plan quality and lowest numbers of Monitor Units and segments at the cost
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of increased calculation time.

In chapter 4, we proposed and validated a fully automated multi-criterial

treatment planning solution for SBRT with a CyberKnife® equipped with an
InCise™ 2 multi-leaf collimator. Automated treatment plans including non-coplanar
Beam Angle Optimization (BAO) were generated fully outside the clinical TPS, using
Erasmus-iCycle for pencil-beam based FMO and BAO, followed by the proposed
algorithm from chapters 3 & 4 for MLC segment generation aimed at close
reproduction of the FMO dose distribution. These plans are referred to as ‘AUTO
BAO'. For validation, AUTO BAO plans were generated for 33 prostate SBRT patients
and compared to reference plans (REF) that were manually generated with the
commercial TPS, in absence of time pressure. REF plans were also compared to
AUTO RB plans, for which fluence map optimization was performed for the beam
angle configuration used in the REF plan, and the segmentation could use all these
beams or only a subset, depending on the dosimetry.
AUTO BAO plans were clinically acceptable and dosimetrically similar to REF plans,
but had on average reduced numbers of beams ((beams in AUTO BAO)/(beams in
REF) (relative improvement): 24.7/48.3 (-49%)), segments (59.5/98.9 (-40%)),
and delivery times (17.1/22.3 min. (-23%)). Dosimetry of AUTO RB and REF were
also similar, while AUTO RB used on average fewer beams (38.0/48.3 (-21%)) and
had on average shorter delivery times (18.6/22.3 min. (-17%)). Delivered Monitor
Units (MU) were similar for all three planning approaches. A new,
vendor-independent optimization workflow for fully automated generation of
deliverable high-quality CyberKnife® plans was proposed, including BAO.
Compared to manual planning with the commercial TPS, fraction delivery times
were reduced by 5.3 min. (-23%) due to large reductions in beam and segment
numbers.

In chapter 5, we proposed TBS-BAO v, a novel approach for solving the BAO
problem, and tested it for non-coplanar robotic CyberKnife radiotherapy for
prostate cancer. Properly selected beam angles contribute to the quality of
radiotherapy treatment plans, however, the BAO problem is difficult to solve to
optimality due to its non-convex discrete nature with many local minima. The
proposed BAO method, first, generates an ‘ideal’ Pareto-optimal reference dose
distribution using multi-criterial fluence map optimization (FMO) for a plan that
includes all candidate beams (‘total-beam-space’, TBS). The following integrated
BAO and segmentation for a preset maximum number of included beams then aims
at realizing the ideal reference plan as accurately as possible. For each of the 33
prostate SBRT patients, 18 treatment plans with different pre-set numbers of
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allowed beams, were automatically generated with the proposed TBS-BAO. For
each patient, the TBS-BAO plans were then compared to a plan that was
automatically generated with an alternative BAO method (Erasmus-iCycle) and to a
high-quality manually generated plan. TBS-BAO was able to automatically generate
plans with clinically feasible numbers of beams (~25), with a quality highly similar
to corresponding 91-beam ideal reference plans. Compared to the alternative
Erasmus-iCycle BAO approach, similar plan quality was obtained for 25-beam
segmented plans, while computation times were reduced from 10.7 hours to
4.8/1.5 hours, depending on the applied pencil-beam resolution in TBS-BAO.
25-beam TBS-BAO plans had similar quality as manually generated plans with on
average 48 beams, while delivery times reduced from 22.3 to 18.4/18.1 min. TBS
reference plans could effectively steer the discrete non-convex BAO.

In chapter 6, the proposed treatment planning solutions are discussed in a wider
context, together with their challenges, opportunities, and potential future research.



Samenvatting

Stereotactische radiotherapie is een vorm van bestralingstherapie waarbij de
patiént wordt bestraald met een hoge dosis in een beperkt aantal dagelijkse fracties
(meestal tussen de 3 tot 5 fracties). Voor deze manier van bestralen is een hoge
precisie vereist om de (onvermijdelijke) dosis aan het omliggende gezonde weefsel
zo laag mogelijk te houden. De CyberKnife® is een robotisch bestralingssysteem dat
zulke stereotactische bestralingsplannen kan afstralen. Daarnaast is het met de
CyberKnife mogelijk om zogeheten ‘niet-coplanaire’ bundelhoeken af te stralen
zonder dat de tafel (waarop de patiént ligt) daarvoor handmatig versteld hoeft te
worden. Mede hierdoor kan de CyberKnife bestralingsplannen van hoge kwaliteit
afstralen en zijn er veelbelovende klinische resultaten mee behaald (Fuller et al,,
2018, Meier et al., 2018, van der Voort van Zyp et al., 2009). Echter, door de extra
mogelijkheden van de CyberKnife is het lastiger om bestralingsplannen te maken
van een consistente hoge kwaliteit dan voor conventionele radiotherapie, met name
in een klinische setting waarbij planners onder tijdsdruk werken. Het doel van dit
proefschrift was om nieuwe methodes te ontwikkelen en valideren voor het
volledig automatisch optimaliseren van bestralingsplannen voor robotbestraling.
Hierbij lag een focus op het behalen van klinisch afstraalbare bestralingsplannen en
op het optimaliseren van de bundelhoeken.

Een bestralingsplan beschrijft in essentie de configuratie van het
bestralingsapparaat, en de daaruit volgende dosisverdeling in de patiént. Een
dergelijk bestralingsplan beschrijft de bundelhoeken, de vormen van de bundels, en
de intensiteit van de bundels die gebruikt gaan worden voor het bestralen van de
patiént. In het algemeen zijn er twee optimalisatie technieken voor het genereren
van een bestralingsplan. De eerste techniek splitst de optimalisatie in twee fases:
een zogeheten fluence map optimalisatie (FMO) fase waarbij de
intensiteitsprofielen per bundel worden geoptimaliseerd, en een segmentatiefase
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waarin de geoptimaliseerde intensiteitsprofielen worden omgezet in een
afstraalbaar plan (bestaande uit multi-leaf collimator (MLC) segmenten en
bijbehorende intensiteiten per MLC segment). Echter, er kan bij deze
segmentatiefase kwaliteitsverlies optreden bij het converteren van de
geoptimaliseerde intensiteitsprofielen naar een afstraalbaar plan. De tweede
techniek is Direct Apeture Optimization (DAO) en optimaliseert direct op de MLC
configuraties. Met deze techniek is het bestralingsplan op elk moment van het
optimalisatie proces afstraalbaar en is er daarom geen segmentatiefase nodig (met
mogelijk kwaliteitsverlies). Voor deze techniek worden de (fysieke) voorwaarden
en beperkingen van de MLC en het bestralingssysteem meegenomen in het
optimalisatie proces. Een bijkomend nadeel is dat dit leidt tot een niet-convex
optimalisatieprobleem, wat wiskundig moeilijk op te lossen is. Op onze afdeling
gaat de voorkeur uit naar het optimaliseren van een bestralingsplan door middel
van de eerste techniek (optimaliseren van intensiteitsprofielen per bundel gevolgd
door het converteren naar een afstraalbaar plan). De reden hiervoor is dat wij op
onze afdeling Pareto-optimale intensiteitsprofielen kunnen genereren met
Erasmus-iCycle, een algoritme voor het automatisch genereren van een
bestralingsplan door middel van het optimaliseren van bundelhoeken en
intensiteitsprofielen op basis van meerdere doelfuncties.

In hoofdstuk 2 is er een nieuw segmentatie-algoritme geintroduceerd voor het
converteren van een hoge kwaliteit FMO dosisverdeling naar een afstraalbaar plan
(bestaande uit MLC segmenten en bijbehorende intensiteiten per MLC segment).
Het algoritme is gefocust op het minimaliseren van het kwaliteitsverlies door
middel van het reconstrueren van de 3-dimensionale FMO dosisverdeling in plaats
van het reconstrueren van de 2-dimensionale intensiteitsprofielen per bundelhoek,
zoals wordt gedaan in bestaande gepubliceerde segmentatiemethodes. Voor het
genereren van nieuwe MLC segmenten worden alle bundelhoeken tegelijkertijd
meegenomen. Tevens wordt er bij het reconstrueren van de FMO dosisverdeling
gefocust op het nauwkeurig reproduceren van de klinische doelstellingen met de
hoogste prioriteiten. Het segmentatie-algoritme is getest op een dataset van 20
prostaatkanker patiénten, 15 hoofd-halskanker patiénten en 12 leverkanker
patiénten. Hiervoor werden eerst automatisch Pareto-optimale FMO
dosisverdelingen gegenereerd en vervolgens gesegmenteerd met het nieuwe
segmentatie-algoritme. De gesegmenteerde plannen waren dosimetrisch
gelijkwaardig aan de FMO dosisverdelingen, daarnaast kon er voor alle patiénten
een Kklinisch acceptabel plan gegenereerd worden. Er werden substantiéle
verschillen gevonden tussen de FMO intensiteitsprofielen en de gesegmenteerde
intensiteitsprofielen. Waarschijnlijk is dit een gevolg van het direct reconstrueren
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van de 3-dimensionale dosisverdeling in plaats van het reconstrueren van de
2-dimensionale intensiteitsprofielen per bundelhoek.

In hoofdstuk 3 is het segmentatie-algoritme doorontwikkeld. Klinische software
(‘clinical dose engine’, CDE) voor het nauwkeurig kunnen berekenen van de dosis
afgifte per segment is hiervoor geintegreerd in het segmentatie-algoritme. Voor het
gezamenlijk gebruik van pencil-beam doses en segment doses in het
segmentatie-algoritme waren nieuwe methodes nodig, hiervoor zijn drie
implementaties van het algoritme met verschillende mates van integratie van de
CDE ontwikkeld. De prestaties van de drie implementaties van het algoritme zijn
met elkaar vergeleken voor een dataset van 20 prostaatkanker patiénten en 12
leverkanker patiénten. Hierbij werden de gesegmenteerde plannen met de FMO
dosisverdelingen vergeleken. Alle drie de implementaties konden de FMO
dosisverdelingen nauwkeurig reconstrueren. De implementatie met de volledig
geintegreerde CDE genereerde de hoogste kwaliteit dosisverdelingen met het
laagste aantal monitor-eenheden en segmenten, ten Kkoste van een langere
rekentijd.

In hoofdstuk 4 is er een nieuw systeem geintroduceerd en gevalideerd voor het
volledig automatisch genereren van bestralingsplannen voor de CyberKnife®
uitgerust met de InCise™ 2 MLC, inclusief niet-coplanaire bundelhoekoptimalisatie.
De bestralingsplannen worden volledig onafhankelijk van het klinische TPS
gegenereerd met behulp van Erasmus-iCycle voor de optimalisatie van de
bundelhoeken en intensiteitsprofielen gevolgd door segmentatie met het algoritme
ontwikkeld in de hoofdstukken 3 & 4. Deze automatisch gegenereerde plannen
worden ‘AUTO BAO’ genoemd. Voor de validatie van het systeem zijn er AUTO BAO
plannen gegenereerd voor 33 prostaatkanker SBRT patiénten en vergeleken met
referentie plannen (REF), die handmatig en zonder tijdsdruk zijn gegenereerd in de
commerciéle TPS. Daarnaast zijn de REF plannen vergeleken met AUTO RB
plannen, waarbij FMO optimalisatie was uitgevoerd voor de bundelhoeken uit de
REF plannen. De daaropvolgende segmentatie kon alleen deze bundelhoeken
gebruiken, of een gedeelte van de bundelhoeken afthankelijk van de dosimetrie van
het plan. De AUTO BAO plannen waren klinisch acceptabel en dosimetrisch
gelijkwaardig aan de REF plannen, maar hadden gemiddeld minder bundelhoeken
((bundelhoeken in AUTO BAO)/(bundelhoeken in REF) (relatief verschil):
24.7/48.3 (-49%)), segmenten (59.5/98.9 (-40%)) en behandeltijden (17.1/22.3
min. (-23%)). De AUTO RB en REF plannen waren ook dosimetric gelijkwaardig,
echter AUTO RB gebruikte daarvoor gemiddeld minder bundelhoeken (38.0/48.3
(-21%)) en had gemiddeld kortere behandeltijden (18.6/22.3 min. (-17%)). Er was
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geen significant verschil gevonden voor de benodigde monitor eenheden tussen de
drie methodes. Een nieuw en onafhankelijk optimalisatiesysteem voor het
automatisch genereren van afstraalbare plannen voor de CyberKnife met een hoge
kwaliteit is ontwikkeld, inclusief niet-coplanaire bundelhoekoptimalisatie.
Vergeleken met de handmatig gegenereerde plannen is de behandeltijd verkort met
5.3 min. (-23%) door een vermindering in het aantal bundelhoeken en segmenten.

Hoofdstuk 5 introduceert TBS-BAO (Total-Beam-Space - Beam Angle
Optimization), een nieuwe methode voor het oplossen van het
bundelhoek-optimalisatieprobleem. Het systeem is getest voor niet-coplanaire
robotbestraling met de CyberKnife voor prostaatkanker. De kwaliteit van
bestralingsplannen is mede afhankelijk van goed gekozen bundelhoeken, echter,
het optimaal oplossen van het bundelhoek-optimalisatieprobleem is lastig doordat
het probleem niet-convex en discreet is met veel lokale minima. De voorgestelde
methode genereert eerst een ‘ideaal’ Pareto-optimale referentie dosisverdeling met
behulp van FMO op basis van meerdere doelfuncties en gebruikt daarvoor alle
mogelijke bundelhoeken (‘total-beam-space’, TBS). Daarna wordt deze ideale
dosisverdeling zo nauwkeurig mogelijk nagebootst terwijl het aantal toegestane
bundelhoeken wordt beperkt tot een door de gebruiker vooraf ingestelde waarde.
Voor een dataset van 33 prostaatkanker SBRT patiénten wordt voor elke patiént 18
bestralingsplannen gegenereerd, elk bestralingsplan met een ander vooraf
ingesteld aantal toegestane bundelhoeken. Voor elke patiént worden de TBS-BAO
bestralingsplannen vergeleken met een automatisch gegenereerd bestralingsplan
dat gebruikt maakt van een alternatieve bundelhoek-optimalisatiemethode
(Erasmus-iCycle), en met een handmatig gegenereerd bestralingsplan. Automatisch
gegenereerde TBS-BAO bestralingsplannen met een klinisch haalbaar aantal
bundelhoeken (~25) waren dosimetrisch vergelijkbaar met het ideale referentie
plan met 91 bundelhoeken. De TBS-BAO plannen en Erasmus-iCycle plannen
hadden een vergelijkbare plan kwaliteit, terwijl de rekentijden werden verkort van
10.7 uur tot 4.8/1.5 uur, afthankelijk van de toegepaste pencil-beam resolutie in
TBS-BAO. TBS-BAO plannen met 25 bundelhoeken waren vergelijkbaar in kwaliteit
ten op zichten van handmatige gegenereerde plannen met gemiddeld 48
bundelhoeken, terwijl de behandeltijden werden verkort van 22.3 minuten to
18.4/18.1 minuten.

Hoofdstuk 6 bevat een algemene discussie over de voorgestelde methodes voor
het optimaliseren van bestralingsplannen voor de CyberKnife, inclusief uitdagingen,
kansen en suggesties voor toekomstig onderzoek.
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