79 research outputs found

    Large scale hierarchical clustering of protein sequences

    Get PDF
    BACKGROUND: Searching a biological sequence database with a query sequence looking for homologues has become a routine operation in computational biology. In spite of the high degree of sophistication of currently available search routines it is still virtually impossible to identify quickly and clearly a group of sequences that a given query sequence belongs to. RESULTS: We report on our developments in grouping all known protein sequences hierarchically into superfamily and family clusters. Our graph-based algorithms take into account the topology of the sequence space induced by the data itself to construct a biologically meaningful partitioning. We have applied our clustering procedures to a non-redundant set of about 1,000,000 sequences resulting in a hierarchical clustering which is being made available for querying and browsing at . CONCLUSIONS: Comparisons with other widely used clustering methods on various data sets show the abilities and strengths of our clustering methods in producing a biologically meaningful grouping of protein sequences

    Large scale hierarchical clustering of protein sequences

    Get PDF
    Background: Searching a biological sequence database with a query sequence looking for homologues has become a routine operation in computational biology. In spite of the high degree of sophistication of currently available search routines it is still virtually impossible to identify quickly and clearly a group of sequences that a given query sequence belongs to. Results: We report on our developments in grouping all known protein sequences hierarchically into superfamily and family clusters. Our graph-based algorithms take into account the topology of the sequence space induced by the data itself to construct a biologically meaningful partitioning. We have applied our clustering procedures to a non-redundant set of about 1,000,000 sequences resulting in a hierarchical clustering which is being made available for querying and browsing at http://systers.molgen.mpg.de/. Conclusions: Comparisons with other widely used clustering methods on various data sets show the abilities and strengths of our clustering methods in producing a biologically meaningful grouping of protein sequences

    The SYSTERS Protein Family Database in 2005

    Get PDF
    The SYSTERS project aims to provide a meaningful partitioning of the whole protein sequence space by a fully automatic procedure. A refined two-step algorithm assigns each protein to a family and a superfamily. The sequence data underlying SYSTERS release 4 now comprise several protein sequence databases derived from completely sequenced genomes (ENSEMBL, TAIR, SGD and GeneDB), in addition to the comprehensive Swiss-Prot/TrEMBL databases. The SYSTERS web server (http://systers.molgen.mpg.de) provides access to 158 153 SYSTERS protein families. To augment the automatically derived results, information from external databases like Pfam and Gene Ontology are added to the web server. Furthermore, users can retrieve pre-processed analyses of families like multiple alignments and phylogenetic trees. New query options comprise a batch retrieval tool for functional inference about families based on automatic keyword extraction from sequence annotations. A new access point, PhyloMatrix, allows the retrieval of phylogenetic profiles of SYSTERS families across organisms with completely sequenced genomes

    Ortho2ExpressMatrix—a web server that interprets cross-species gene expression data by gene family information

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The study of gene families is pivotal for the understanding of gene evolution across different organisms and such phylogenetic background is often used to infer biochemical functions of genes. Modern high-throughput experiments offer the possibility to analyze the entire transcriptome of an organism; however, it is often difficult to deduct functional information from that data.</p> <p>Results</p> <p>To improve functional interpretation of gene expression we introduce Ortho2ExpressMatrix, a novel tool that integrates complex gene family information, computed from sequence similarity, with comparative gene expression profiles of two pre-selected biological objects: gene families are displayed with two-dimensional matrices. Parameters of the tool are object type (two organisms, two individuals, two tissues, etc.), type of computational gene family inference, experimental meta-data, microarray platform, gene annotation level and genome build. Family information in Ortho2ExpressMatrix bases on computationally different protein family approaches such as EnsemblCompara, InParanoid, SYSTERS and Ensembl Family. Currently, respective all-against-all associations are available for five species: human, mouse, worm, fruit fly and yeast. Additionally, microRNA expression can be examined with respect to miRBase or TargetScan families. The visualization, which is typical for Ortho2ExpressMatrix, is performed as matrix view that displays functional traits of genes (differential expression) as well as sequence similarity of protein family members (BLAST e-values) in colour codes. Such translations are intended to facilitate the user's perception of the research object.</p> <p>Conclusions</p> <p>Ortho2ExpressMatrix integrates gene family information with genome-wide expression data in order to enhance functional interpretation of high-throughput analyses on diseases, environmental factors, or genetic modification or compound treatment experiments. The tool explores differential gene expression in the light of orthology, paralogy and structure of gene families up to the point of ambiguity analyses. Results can be used for filtering and prioritization in functional genomic, biomedical and systems biology applications. The web server is freely accessible at <url>http://bioinf-data.charite.de/o2em/cgi-bin/o2em.pl</url>.</p

    The SYSTERS protein family database: taxon-related protein family size distributions and singleton frequencies

    No full text
    Based on the SYSTERS protein family database, we present taxon-related protein family frequencies and distributions. A set of taxon-related protein families is a subset of the whole family set with respect to one taxon, where taxon is not restricted to the species level but may be any rank in the taxonomy. We examine eight ranks in the lineages of seven organisms. A strong linear correlation is observed between the total number of different families and the number of sequences in the data set under consideration. We fitted the generalised power-law function to protein family distributions in a least-squares sense excluding singleton frequencies. Taxon-related family distributions tend to have the same shape and a negative slope being not larger than -2.1 for large data sets. For smaller data sets, the slope is decreasing down to -3.7. Slopes of family distributions are found to be slowly increasing towards higher taxonomic ranks. Our observations lead to a new estimation of single sequence cluster frequencies. Data sets of various species are studied with respect to being complete or incomplete

    Clustering protein sequences with a novel metric transformed from sequence similarity scores and sequence alignments with neural networks

    Get PDF
    BACKGROUND: The sequencing of the human genome has enabled us to access a comprehensive list of genes (both experimental and predicted) for further analysis. While a majority of the approximately 30000 known and predicted human coding genes are characterized and have been assigned at least one function, there remains a fair number of genes (about 12000) for which no annotation has been made. The recent sequencing of other genomes has provided us with a huge amount of auxiliary sequence data which could help in the characterization of the human genes. Clustering these sequences into families is one of the first steps to perform comparative studies across several genomes. RESULTS: Here we report a novel clustering algorithm (CLUGEN) that has been used to cluster sequences of experimentally verified and predicted proteins from all sequenced genomes using a novel distance metric which is a neural network score between a pair of protein sequences. This distance metric is based on the pairwise sequence similarity score and the similarity between their domain structures. The distance metric is the probability that a pair of protein sequences are of the same Interpro family/domain, which facilitates the modelling of transitive homology closure to detect remote homologues. The hierarchical average clustering method is applied with the new distance metric. CONCLUSION: Benchmarking studies of our algorithm versus those reported in the literature shows that our algorithm provides clustering results with lower false positive and false negative rates. The clustering algorithm is applied to cluster several eukaryotic genomes and several dozens of prokaryotic genomes

    JACOP: A simple and robust method for the automated classification of protein sequences with modular architecture

    Get PDF
    BACKGROUND: Whole-genome sequencing projects are rapidly producing an enormous number of new sequences. Consequently almost every family of proteins now contains hundreds of members. It has thus become necessary to develop tools, which classify protein sequences automatically and also quickly and reliably. The difficulty of this task is intimately linked to the mechanism by which protein sequences diverge, i.e. by simultaneous residue substitutions, insertions and/or deletions and whole domain reorganisations (duplications/swapping/fusion). RESULTS: Here we present a novel approach, which is based on random sampling of sub-sequences (probes) out of a set of input sequences. The probes are compared to the input sequences, after a normalisation step; the results are used to partition the input sequences into homogeneous groups of proteins. In addition, this method provides information on diagnostic parts of the proteins. The performance of this method is challenged by two data sets. The first one contains the sequences of prokaryotic lyases that could be arranged as a multiple sequence alignment. The second one contains all proteins from Swiss-Prot Release 36 with at least one Src homology 2 (SH2) domain – a classical example for proteins with modular architecture. CONCLUSION: The outcome of our method is robust, highly reproducible as shown using bootstrap and resampling validation procedures. The results are essentially coherent with the biology. This method depends solely on well-established publicly available software and algorithms

    A data gathering toolkit for biological information integration

    Get PDF
    SYSTERS is a biological information integration system containing protein sequences from many protein databases such as Swiss-Prot and TrEMBL and also protein sequences from complete genomes available at Ensembl, The Arabidopsis Information Resource, SGD and GeneDB. For some protein sequences their encoding nucleotide sequences can be found in their corresponding websites. However, for some protein sequences their encoding nucleotide sequences are missing. The goal of this thesis is to. collect all nucleotide sequences for the protein sequences in SYSTERS and store them in a common database. There are two cases. The first case is that if the nucleotide sequences can be found, we collect them and put them in our database. The second case is that if the nucleotide sequences are missing, we use back-translation and use TBLASTN to search the nucleotide sequences and store them in our database

    UPF201 Archaeal Specific Family Members Reveal Structural Similarity to RNA-Binding Proteins but Low Likelihood for RNA-Binding Function

    Get PDF
    We have determined X-ray crystal structures of four members of an archaeal specific family of proteins of unknown function (UPF0201; Pfam classification: DUF54) to advance our understanding of the genetic repertoire of archaea. Despite low pairwise amino acid sequence identities (10–40%) and the absence of conserved sequence motifs, the three-dimensional structures of these proteins are remarkably similar to one another. Their common polypeptide chain fold, encompassing a five-stranded antiparallel β-sheet and five α-helices, proved to be quite unexpectedly similar to that of the RRM-type RNA-binding domain of the ribosomal L5 protein, which is responsible for binding the 5S- rRNA. Structure-based sequence alignments enabled construction of a phylogenetic tree relating UPF0201 family members to L5 ribosomal proteins and other structurally similar RNA binding proteins, thereby expanding our understanding of the evolutionary purview of the RRM superfamily. Analyses of the surfaces of these newly determined UPF0201 structures suggest that they probably do not function as RNA binding proteins, and that this domain specific family of proteins has acquired a novel function in archaebacteria, which awaits experimental elucidation

    BAR-PLUS: the Bologna Annotation Resource Plus for functional and structural annotation of protein sequences

    Get PDF
    We introduce BAR-PLUS (BAR+), a web server for functional and structural annotation of protein sequences. BAR+ is based on a large-scale genome cross comparison and a non-hierarchical clustering procedure characterized by a metric that ensures a reliable transfer of features within clusters. In this version, the method takes advantage of a large-scale pairwise sequence comparison of 13 495 736 protein chains also including 988 complete proteomes. Available sequence annotation is derived from UniProtKB, GO, Pfam and PDB. When PDB templates are present within a cluster (with or without their SCOP classification), profile Hidden Markov Models (HMMs) are computed on the basis of sequence to structure alignment and are cluster-associated (Cluster-HMM). Therefrom, a library of 10 858 HMMs is made available for aligning even distantly related sequences for structural modelling. The server also provides pairwise query sequence–structural target alignments computed from the correspondent Cluster-HMM. BAR+ in its present version allows three main categories of annotation: PDB [with or without SCOP (*)] and GO and/or Pfam; PDB (*) without GO and/or Pfam; GO and/or Pfam without PDB (*) and no annotation. Each category can further comprise clusters where GO and Pfam functional annotations are or are not statistically significant. BAR+ is available at http://bar.biocomp.unibo.it/bar2.0
    corecore