
New Jersey Institute of Technology New Jersey Institute of Technology

Digital Commons @ NJIT Digital Commons @ NJIT

Theses Electronic Theses and Dissertations

Spring 5-31-2006

A data gathering toolkit for biological information integration A data gathering toolkit for biological information integration

Munira Lokhandwala
New Jersey Institute of Technology

Follow this and additional works at: https://digitalcommons.njit.edu/theses

 Part of the Biostatistics Commons, and the Computer Sciences Commons

Recommended Citation Recommended Citation
Lokhandwala, Munira, "A data gathering toolkit for biological information integration" (2006). Theses.
1713.
https://digitalcommons.njit.edu/theses/1713

This Thesis is brought to you for free and open access by the Electronic Theses and Dissertations at Digital
Commons @ NJIT. It has been accepted for inclusion in Theses by an authorized administrator of Digital Commons
@ NJIT. For more information, please contact digitalcommons@njit.edu.

https://digitalcommons.njit.edu/
https://digitalcommons.njit.edu/theses
https://digitalcommons.njit.edu/etd
https://digitalcommons.njit.edu/theses?utm_source=digitalcommons.njit.edu%2Ftheses%2F1713&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/210?utm_source=digitalcommons.njit.edu%2Ftheses%2F1713&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.njit.edu%2Ftheses%2F1713&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.njit.edu/theses/1713?utm_source=digitalcommons.njit.edu%2Ftheses%2F1713&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@njit.edu

Copyright Warning & Restrictions

The copyright law of the United States (Title 17, United
States Code) governs the making of photocopies or other

reproductions of copyrighted material.

Under certain conditions specified in the law, libraries and
archives are authorized to furnish a photocopy or other

reproduction. One of these specified conditions is that the
photocopy or reproduction is not to be “used for any

purpose other than private study, scholarship, or research.”
If a, user makes a request for, or later uses, a photocopy or
reproduction for purposes in excess of “fair use” that user

may be liable for copyright infringement,

This institution reserves the right to refuse to accept a
copying order if, in its judgment, fulfillment of the order

would involve violation of copyright law.

Please Note: The author retains the copyright while the
New Jersey Institute of Technology reserves the right to

distribute this thesis or dissertation

Printing note: If you do not wish to print this page, then select
“Pages from: first page # to: last page #” on the print dialog screen

The Van Houten library has removed some of the
personal information and all signatures from the
approval page and biographical sketches of theses
and dissertations in order to protect the identity of
NJIT graduates and faculty.

ABSTRACT

A DATA GATHERING TOOLKIT FOR
BIOLOGICAL INFORMATION INTEGRATION

by
Munira Lokhandwala

SYSTERS is a biological information integration system containing protein sequences

from many protein databases such as Swiss-Prot and TrEMBL and also protein sequences

from complete genomes available at Ensembl, The Arabidopsis Information Resource,

SGD and GeneDB. For some protein sequences their encoding nucleotide sequences can

be found in their corresponding websites. However, for some protein sequences their

encoding nucleotide sequences are missing.

The goal of this thesis is to. collect all nucleotide sequences for the protein

sequences in SYSTERS and store them in a common database. There are two cases. The

first case is that if the nucleotide sequences can be found, we collect them and put them

in our database. The second case is that if the nucleotide sequences are missing, we use

back-translation and use TBLASTN to search the nucleotide sequences and store them in

our database.

A DATA GATHERING TOOLKIT FOR
BIOLOGICAL INFORMATION INTEGRATION

by
Munira Lokhandwala

A Thesis
Submitted to the Faculty of

New Jersey Institute of Technology
in Partial Fulfillment of the Requirements for the Degree of

Master of Science in Bioinformatics

Department of Computer Science

May 2006

APPROVAL PAGE

A DATA GATHERING TOOLKIT FOR
BIOLOGICAL INFORMATION INTEGRATION

Munira Lokhandwala

Dr. Jason Tsong Li Wang, Thesis Advisor 	 Date
Professor, Department of Computer Science, NJIT

Dr. Marc Qun Ma, Committee Member 	 Date
Assistant Professor, Department of Computer Science, NJIT

Dr. Vincent Oria, Committee Member 	 Date
Assistant Professor, Department of Computer Science, NJIT

ACKNOWLEDGMENT

I would like to express my deepest appreciation to Dr. Jason Tsong-Li Wang, my advisor,

for providing the initial spark that helped me get over the fear of learning and new

challenging topics in the field of Bioinformatics. He not only served as my thesis advisor,

but also constantly gave me support, encouragement, assistance and guidance in my

research work. His recommendations and suggestions have been invaluable for the

project development. Special thanks are given to Dr. Qun Ma and Dr. Vincent Oria for

actively participating in my committee.

Finally, I wish to thank Ms. Junilda Spirollari, Ms. Maria Moutafis and Mr. Yang

Song who helped me at various phases of the project.

vi

To my parents and my brother for their-unconditional love and support and to my friends
who have stood by me all throughout my life.

TABLE OF CONTENTS

Chapter 	 Page

1 INTRODUCTION 	 1

2 DESCRIPTION OF TOOLS 	 3

2.1 NCBI-BLAST 	 4

2.2 QBLAST 	6

2.3 Biological Databases 	 9

2.3.1 SYSTERS 	9

2.3.2 GenBank 	11

2.3.3 UniProtKB/SwissProt and UniProtKB/TrEMBL 	11

2.3.4 SGD 	 13

2.3.5 EBI and EMBL 	13

2.4 PERL 	14

2.4.1 Regular Expressions 	15

2.4.2 LWP Modules 	 15

3 THE PROGRAM FOR DATA COLLECTION 	 18

3.1 Before The Program 	18

3.2 Flow Of The Program 	27

3.3 Program Description 	31

3.4 Benefits and Limitations 	 60

3.5 Running Time Analysis 	 61

4 RESULTS AND SCREENSHOTS 	

vii

TABLE OF CONTENTS
(Continued)

Chapter 	 Page

APPENDIX THE CODE 	 73

REFERENCES 	 87

viii

LIST OF TABLES

Table 	 Page

3.1 	Analysis of the Manual Extraction and the Program 	61

ix

LIST OF FIGURES

Figure 	 Page

2.1 	Hierarchy resulting from the SYSTERS procedure 	10

3.1 	Providing the TBLASTN program with the tributyltin chloride 	 19
resistance protein sequence in FASTA format 	

3.2 	The TBLASTN intermediate result page: The request ID is mentioned 	20
in the textbox and the query sequence is given above it 	

3.3 	The TBLASTN intermediate waiting page: This displays the search 	21
status which is 'searching' in this case and the time since the
sequence was submitted 	

3.4 	The NCBI BLAST graphic display: Red bars indicate the most similar 	22
sequences to the query sequence, pink bars indicate sequences which
are less similar. Rolling over the mouse on the red bar displays
D16369 Alteromonas sp. M-1 tbf A gene, tributyltin chloride re...
S = 345 E = 3.9e-93 signifying that this is most similar sequence to the
query sequence 	

3.5 	The NCBI BLAST hit list: The hit list is ordered according to the 	 23
Score and the E-value 	

3.6 	The alignments reported by TBLASTN: The image displays the first 	25

hit of the results The score equals 345 bits and the E value is 4e-93.
The percent identities equal 85% (178/207) indicating that is a very
good hit. The positives field has the value of 182/207 (87%)
indicating that 87% of the residues are identical or similar and the
gaps field has the value 1/207 (0%) indicating that there are no gaps.
The frame field refers to the Open Reading Frames (ORFs) and in
this case it is the 3rd ORF on the forward strand. The query
sequence range is from 1...206 and the subject sequence range is
from 990...1610 	

3.7 	Back-translated DNA sequence: The figure shows the raw DNA 	 26
sequence and the highlighted portion indicates the back-translated
DNA sequence of the corresponding input protein (query) sequence

3.8 	Flowchart to demonstrate the working of the program 	27

LIST OF FIGURES
(Continued)

Figure 	 Page

3.9 	Flowchart to demonstrate the working of the swissprot subroutine 	28

3.10 Flowchart to demonstrate the working of the SGD subroutine 	29

3.11 	Flowchart to demonstrate the working of the tblastn subroutine 	30

3.12 The Swissprot protein web page for the http://ca.expasy.org/uniprot/ 	37
Q9UEB4 URL which is obtained as result when the URL is passed
as a request to the HTTP::Request object. The highlighted portion is
the primary accession number which is extracted from the web
page 	

3.13 The Swissprot protein webpage when the page results into the 	 38
410 Gone' error 	

3.14 A part of the Swissprot protein web page which highlights the 	 39
Genomic DNA Coding Sequence hyperlink, the URL of which
is extracted from the HTML source code of the page and is used to
obtain the nucleotide sequence web page 	

3.15 A part of the Swissprot protein web page which highlights the 	 39
mRNA Coding Sequence hyperlink, the URL of which is extracted
from the HTML source code of the page and is used to obtain
the nucleotide sequence web page 	

3.16 The EBI-EMBL nucleotide sequence web page which is obtained as 	41
a result of passing the coding sequence URL as a request to the
HTTP::Request object 	

3.17 The EMBL-EBI nucleotide sequence web page which highlights the 	42
nucleotide sequence that is extracted from the HTML source code of
the page using the regular expression 	

3.18 The SGD protein web page for the http://db.yeastgenome.org/ 	 44
cgi-bin/locus.pl?sgdid=S0000433' URL which is obtained as result
when the URL is passed as a request to the HTTP::Request object.
The highlighted portion is the Systematic Name which is extracted
from the HTML source code of the web page using regular
expressions 	

xi

LIST OF FIGURES
(Continued)

Figure 	 Page

3.19 The SGD nucleotide sequence web page which is obtained as a result 	46
of passing the coding sequence URL, http://db.yeastgenome.org/
cgi-binigetSeq?seq=YBR229C&flank1=0&flankr=0&map=n3map,
as a request to the HTTRequest object 	

3.20 The SGD nucleotide sequence web page which highlights the 	 47
nucleotide sequence that is extracted from the HTML source code
of the page using the regular expression mentioned above 	

3.21 Part of the HTML source code of the intermediate results page: 	 49
It highlights the Request Id (RID) and the Remaining Time Of
Execution (RTOE) which is extracted from the sources using
regular expressions 	

3.22 The intermediate waiting page of TBLASTN: The status of the 	 52
program is shown as Waiting and also the RID is specified,
which indicates that TBLASTN is searching for results for the
RID mentioned 	

3.23 The results page obtained from the QBlast system. It highlights 	 54
the alignment part of the page that is extracted using regular
expressions. Only the first hit is displayed as the hitlist_size
parameter in the put query is set to one 	

3.24 The alignment section of the Blast results page highlighting the 	 56
accession number of the nucleotide sequence as well as the
subject range or the target sequence range which are extracted from
the page using regular expressions and this information is used to
obtain the back-translated DNA sequence 	

3.25 The final result obtained from the QBlast system. It highlights 	 58
the nucleotide sequence result which is obtained from the QBlast
system. The nucleotide sequence is extracted from the page using
regular expressions and the final output result is printed with the
protein sequence following the DNA sequence 	

xii

LIST OF FIGURES
(Continued)

Figure 	 Page

4.1 (a) The start of the program. User inputs the file name to be executed 	 63
and the database and the accession number are displayed. In this case
the database shortcut matches the condition to the 'swissprot'
subroutine and the merged URL is mentioned. Also the program
checks if the primary accession number and the accession number
from the insert statements have matched 	

4.1 (b) The figure displays the resulting back-translated DNA sequence for 	63
the first protein sequence in the file. It also shows the immediate
execution of the next protein sequence 	

4.1 (c) This figure displays the database and accession number of the 	 64
second protein sequence in the file along with the merged URL. It
also displays the results for the second protein sequence 	

4.1 (d) The figure displays the second protein sequence along with its 	 64
corresponding back-translated DNA sequence indicating that the
DNA sequence has been obtained from the Swissprot/TrEMBL
database. It also indicates that the file has completed execution
and the program has terminated 	

4.2 	This figure represents the output file 'resutls_out.txt to which all 	 65
the results obtained from the program are written to. The output
file specifies how many protein sequences are present in the file
along with the number of back-translated DNA sequences extracted
from each of the databases. In this case it indicates that there are two
protein sequences in the file and two back-translated DNA sequences
have been obtained from the SWISSPROT/TrEMBL database 	

4.3 (a) The start of the program. User inputs the file name to be executed 	67
and the database and the accession number are displayed. In this
case the database shortcut matches the condition to the 'SGD'
subroutine and the first merged URL is mentioned. The systematic
name and the URL formed after merging the systematic name is
printed 	

LIST OF FIGURES
(Continued)

Figure 	 Page

4.3 (b) This figure is the continuation of the program for the 	 67
Saccharomyces Cerevisiae protein sequence. It displays the
protein sequence in FASTA format and the corresponding
back-translated DNA sequence 	

4.3 (c) This figure shows the termination of the program for the 	 68
Saccharomyces Cerevisiae protein sequence 	

4.4 (a) The start of the program. User inputs the file name to be executed 	 69
and the database and the accession number are displayed. In this
case the database shortcut does not match either to the condition
of the 'swissprot' or of the 'SGD' subroutine and the tblastn
subroutine is invoked 	

4.4 (b) Displays the execution of the tblastn program stating that the 	 70
program is searching the nucleotide database for entries
corresponding to the protein sequence and once the search is
complete it retrieves the results. Along with this the accession
number of the nucleotide sequence is displayed and even the
information regarding the start and end positions of the subject
or target sequence is printed 	

4.4 (c) This figure displays the protein sequence and the resulting DNA 	 70
sequence for the first sequence in the file 	

4.4 (d) This figure shows the immediate execution of the second sequence 	71
in the file and shows all the corresponding information that is
needed to extract the DNA sequence 	

4.4 (e) This figure partially displays the output of the second sequence in 	 71
the file and the partial execution of the third sequence 	

4.4 (f) The last figure displays the results of the third sequence in the file 	 72
and indicated that the file has completed execution and the program
has terminated. All of these screenshots are used to demonstrate
the flow of execution of tblastn 	

xiv

LIST OF TERMS

Alignment
Representation of two or more protein or nucleotide sequences where homologous amino
acids or nucleotides are in the same columns while missing nucleotides area replaces with
gaps.

Amino Acid
The fundamental block of building proteins. There are 20 naturally occurring amino acids
in animals and around 100 more found only in plants.

Arabidopsis Thaliana
Known by its common name, thale cress, this mustard weed is a favorite organism for
plant genetics and molecular biology. It was the first plant with a complete genomic
sequence

Basepair (bp)
Any possible pairing between bases in opposing strands of DNA or RNA. Adenine pairs
with thymine in DNA or with uracil in RNA; and guanine pairs with cytosine.

Bioinformatics
The application of computational techniques to the management and analysis of
biological information.

BLAST
Basic Local Alignment Search Tool, or BLAST, is an algorithm for comparing biological
sequences, such as the amino-acid sequences of different proteins or the DNA sequences.
A BLAST search enables a researcher to compare a query sequence with a library or
database of sequences, and identify library sequences that resemble the query sequence
above a certain threshold.

Complement
The complement of a DNA sequence is the sequence on the other strand. For example,
the complement of ACCCGT is TGGGCA.

DDBJ
DNA Data Bank of Japan.

DNA
Deoxyribonucleic acid; the genetic material of living things.

Drosophila melanogaster
The common fruit fly. This is one of the most famous organisms for genetic research and
was one of the first animals whose complete genomic sequence was determined.

xv

EBI
European Bioinformatics Institute. The European homologue of the NCBI in the US.

EMBL
European molecular biology laboratories. Maintain the EMBL database, one of the major
public sequence databases.

Ensembl Project
A European project devoted to the annotation of the human genome.

Entrez
The search and retrieval system that integrates information from the National Center for
Biotechnology (NCBI) databases. These databases include nucleotide sequences, protein
sequences, macromolecular structures, whole genomes, and MEDLIN, through PubMed.

E-value
Expectation value. Given a database and the score of a hit, the E-value tells you how
many times you could have expected such a result just by chance. In sequence analysis,
good E-values must be very low (around 10-5 or even lower).

Exons
The protein-coding sequences DNA sequences of a gene.

Gene
The fundamental physical and functional unit of heredity. A gene is an ordered sequence
of nucleotides located in a particular position on a particular chromosome that encodes a
specific functional product (i.e. a protein or RNA molecule).

GeneBank
A population of organisms, each of which carries a DNA molecule that was inserted into
a cloning vector. Ideally, all of the cloned DNA molecules represent the entire genome of
another organism. Also called gene library, clone bank, bank library. This term is
sometimes also used to denote all of the vector molecules, each carrying a place of the
chromosomal DNA of an organism, prior to the insertion of these molecules into a
population of host cells.

Hit
Refers to a sequence similar to your query that you find while conduction a database
search.

Introns
The sequence of DNA bases that interrupts the protein coding sequence of a gene; these
sequences are transcribed into RNA but are edited out of the message before they are
translated into protein.

xvi

Messenger RNA
An RNA molecule carrying the information that, during translation, specifies the amino
acid sequence of a protein molecule.

NCR!
National Center for Biotechnology Information. A component of the U.S. national
Institute of Health dedicated to bioinformatics research, software development, and the
service and maintenance of leading public resources such as the GenBank (sequences)
and PubMed (bibliography) databases. The United States' homologue of the EBI in
Europe.

NIH
National Institute of Health (USA).

Non-coding Sequences
All sequence that do not encode protein. This includes introns, regulatory sequences (e.g.
MARs, LCRs, enhancers, promoters) and genomic repeats.

NR
The Non Redundant Protein database, which contains all the putative protein sequences
contained in the nucleotide databases. Its European equivalent is TrEMBL.

Nucleotide
A subunit of DNA or RNA consisting of a nitrogenous base (adenine, guanine, thymine,
or cytosine in DNA; adenine, guanine, uracil, or cytosine in RNA), a phosphate molecule,
and a sugar molecule (deoxyribose in DNA and ribose in RNA). Thousands of
nucleotides are linked to form a DNA or RNA molecule.

Open Reading Frame
A series of DNA codons, including a 5' initiation codon and a termination codon, that
encodes a putative or known gene. A part of a DNA sequences without Stop codons, thus
allowing the (putative or real) translation of a protein sequence.

PDB
Brookhaven Protein Data Bank. A database and format of files which describe the 3D
struc ture of a protein or nucleic acid, as determined by X-ray crystallography or
nuclear magnetic resonance (NMR) imaging. The molecules described by the files are
usually viewed locally by dedicated visualizing software, but can sometimes be
visualized on the world wide web.

PIR
Protein Information Resources. An annotated protein database similar to SWISSPROT.
PIR is also the name of a sequence format similar to FASTA.

xvii

Polymorphism
Alternative forms of genes and other sequences. They are often constituted of punctual
mutations, similar to SNP.

Protein
A molecule composed of one or more chains of amino acids in a specific order; the order
is determined by the base sequence of the nucleotides in the gene coding for the protein.
Proteins are required for the structure, function and regulation of cells, tissues and organs,
each protein having a specific role (e.g. hormones, enzymes, antibodies)

Protein Database
Contains protein sequence data from the translated coding region from DNA sequences in
GeneBank, EMBL and DDBJ as well as protein sequences submitted to Protein
Information Resources (PIR), SwissProt, Protein Research foundation and Protein Data
Bank (PDB).

Protein Profile
A tool for visualizing a particular property (hydropathy, charge, local composition, and
so on) along a sequence by using a sliding windows technique.

PSI-BLAST
Position-Specific Iterative Blast. An iterative search using the BLAST algorithm. A
profile is built after the initial search, which is then used in subsequent searches. The
processes may be repeated, if desired with new sequences found in each cycle, used to
define the profile.

Query
Question asked when searching a database. If you make a similarity search, your query is
a sequence. If you use SRS or Entrez, your query is a keyword. More complicated queries
may involves several keywords, field restricted searches, and limits(such as dates).

RNA
A molecule chemically similar to DNA that plays a central role in protein synthesis. The
structure if RNA is similar to that of DNA but it is less stable. It is a poly nucleotide that
has Ribose Sugar and Uracil as one if its pyrimidines.

Similarity
Percent of similar amino acids in the alignment of two sequences. Two amino acids are
similar if they have physicochemical properties.

Six-Frame Translation
Translation of a stretch of DNA taking into account three forward translations and three
reverse translations, arising from the three possible reading frames of an uncharacteristic
stretch of DNA.

xviii

SNP
Single Nucleotide Polymorphism. SMP's are point mutations observed when comparing
different genomes of the same specie.

SRS
Sequence retrieval system. The system used at the EBI to search databases with
keywords. It is similar to Entrez at NCBI.

Strand
A linear series of nucleotides that are linked to each other by phosphodiester bonds.

SWISS-PROT
A non-redundant protein sequence database thoroughly annotated and crossed referenced.

Transcript
An RNA molecule that has been synthesized from a specific DNA template.

Transcription
The process of RNA sequences that is catalyzed by RNA polymerase that uses a DNA
strands as a template.

Translation
The process if protein synthesis in which the amino acid sequence of a protein is
determined by mRNA mediated by tRNA molecules and carried out on ribosomes.

TrEMBL
Short for Translation EMBL, which contains all the putative protein sequences contained
in the nucleotide databases. Its U.S. equivalent is NR.

xix

CHAPTER 1

INTRODUCTION

"Bioinformatics is the study of information content and information flow in

biological systems and processes. It has evolved to serve as the bridge

between observations (data) in diverse biologically related disciplines and

the deviations of understanding (information) about how the systems or

processes function and subsequently the application (knowledge)."

Murthy

In the emerging field of Bioinformatics it is become necessary to create various kinds of

information and database resources which store all kinds of data pertaining to the needs

of biologists, bioinformaticians, research scientists and students. There are many such

data resources that store various kinds of bioinformatics related data like sequence

information and whole genomes and also provide software tools for performing various

tasks such as comparing sequences, building phylogenetic trees, performing alignments

etc. which helps to simplify the work of biologists in handling and analyzing vast data.

Technologies such as genome-sequencing, microarrays, proteomics and structural

genomics have provided 'parts lists' for many living organisms, and researchers are now

focusing on how the individual components fit together to build systems. Thus, there is

an ongoing and growing need to collect, store and curate all this information in ways that

allow its efficient retrieval and exploitation.

Also with the growth in the field of information technology, computer based tools

now play an increasingly critical role in the advancement of biological research. With the

advent of the World Wide Web and fast Internet connections, the data contained in the

1

2

databases and the many special-purpose tools and programs can be accessed quickly,

easily and cheaply from any location in the world. The Internet has become a tool of

critical importance to the biologist and scientist working in genomic and molecular

biology. Via this mode the scientist and the biologist all around the world can share their

findings, ideas and thoughts and thus, it has become a unifying force which helps to bind

the biological community. But in any growing field there is always a need for different

and new ideas.

This project aims to propose an innovative idea for data collection from Internet

resources. It is an automated system which retrieves the back-translated DNA sequence

given its corresponding protein sequence. The mechanism behind it involves connecting

to various online data web servers and retrieving the genomic DNA coding sequences, if

they are provided by the websites, or else connect to the TBLASTN program provided by

the NCBI-BLAST at the NCBI website, which compares a protein sequence with a

nucleotide database and obtains the back-translated DNA sequence. The protein

sequences for which the DNA sequences are determined are obtained from the SYSTERS

database which is a protein family database and performs large-scale protein clustering

based on sequence similarity. The program which performs this task of data gathering has

been coded using the PERL scripting language. PERL is favored by Bioinformaticians

because it has a very good at handling String Operations and Regular Expressions. One

of the most exciting things about being involved in computer programming and biology

is that both fields are rich in new techniques and results.

CHAPTER 2

DESCRIPTION OF TOOLS

2.1 NCBI-BLAST

The Basic Local Alignment Search Tool (BLAST) is a sophisticated software package, a

service of the National Center for Biotechnology Information (NCBI), which finds

regions of local similarity between sequences. The program compares nucleotide or

protein sequences to sequence databases and calculates the statistical significance of

matches. BLAST can be used to infer functional and evolutionary relationships between

sequences as well as help identify members of gene families.

BLAST is fast, reliable and flexible and can be adapted to many sequence

analysis scenarios. It comes in variations to help query different type of sequences

(nucleotides and proteins) against different databases. The different programs that come

under the BLAST family are blastn, blastp, blastx, tblastn and tblastx. Of all these

programs, the TBLASTN program has been used for the efficient retrieval of back-

translated DNA sequences as it compares a protein query sequence against a nucleotide

sequence database dynamically translated in all six reading frames. The QBlast's URL

API has been used for the purpose of submitting requests to the TBLASTN program, the

description of which is given in the next section. The description of tblastn is as follows:

TBLASTN (Translating BLAST) is a program of the BLAST family of programs

and is described as "protein vs. translated database". It is useful for finding protein

homologs in unannotated nucleotide data. TBLASTN identifies transcripts, potentially

from multiple organisms, similar to a given protein, mapping a protein to genomic DNA.

3

4

A TBLASTN search allows you to compare a protein sequence to the six-frame

translations of a nucleotide database. There are three reading frames on the (+) strand

also known as the direct strand and the other three reading frames are on the opposite

strand known as the reverse strand. Each of these six possible translations yields a

different protein. When tblastn compares a protein sequence with a DNA sequence it

does everything and automatically turns any DNA sequence into six proteins. This way,

TBLASTN takes care about the orientation or the frame of the DNA sequences in the

databases and always outputs the sequence in the right orientation.

It can, thus, be a very productive way of finding homologous protein coding

regions in unannotated nucleotide sequences such as expressed sequence tags (ESTs) and

draft genome records (HTG).

2.2 QBLAST

The QBLAST system is a queuing system implemented for both basic and advanced

BLAST which offers rapid reformatting of search results and enhances server

performance by reducing the connection time with each user. QBLAST is not a new

BLAST algorithm but it simply offers a modular approach that separates the search step

from the output formatting step.

Before QBLAST was implemented an output format had to be specified prior to

running a BLAST search. QBLAST saves the results under a Request ID number, which

is then used to retrieve them in the desired formats. For secure data retrieval, Request IDs

are unique numbers which are randomly generated and are not issued in sequential order.

5

Therefore, it is not possible for users to change any digit in their Request ID and receive

the results of another person's search.

In order to initiate a search using the new QBLAST system a sequence query is

entered in the Search text area and the BLAST button is pressed. A Formatting page

reporting the Request ID and showing all the display options is then returned. At this

point, one can wait for the search to finish, or jot down the Request ID and use it to call

up the results later. In this way, one can view the results immediately by pressing the

format button and the results will be displayed as soon as the search is completed, or, one

can also view the results later by going to "Click here to retrieve results if you already

have a Request ID" and entering the Request ID number. The QBLAST system allows

the results of very big files to be stored for 30 minutes after which they are deleted.

However, most of the results obtained are stored in for 24 hours. The URL API which has

been used to perform all the above mentioned functions has been described in detail

below.

The QBlast's URL API is a standardized application program interface for

accessing the NCBI QBLAST system. It uses direct HTTP-encoded requests to NCBI

web server. These encoded requests are directed to the NCBI cgi-bin program:

http://www.ncbi.nlm.nih.gov/blast/Blast.cgi

In order to issue an URLAPI command the program needs to:

Make a connection to port 80 to NCBI web server. Using telnet in UNIX the
following command will have to be given

telnet www.ncbi.nlm.nih.gov 80

6

• And then send the following commands to the port:

o POST /blast/Blast.cgi HTTP/1.0

o User-Agent: Hi_there

o Connection: Keep-Alive

o Content-type: application/x-www-form-urlencoded

o CMD—Put&QUERY=555... etc

These commands are sent to the NCBI web server using PERL modules in the program.

All the examples stated below are given in PERL.

Searching the NCBI QBLAST system consists of two major steps.

• The first step is called "Put", and it puts the query sequence with the appropriate
search parameters into the QBLAST system.

• The second step is called "Get" and it formats the results with specified format
parameters.

Listed below is an example how the put and the get steps work in the QBLAST

system. For using the tblastn program to query the database for the back-translated DNA

sequence pertaining to a particular protein sequence against the 'nr' database which is the

default database for the tblastn program the put command for this part of the URL API

will be as follows.

http://www.ncbi.nlm.nih.gov/blast/Blast.cgi?\

CMD=Put&QUERY=$protein_sequence&DATABASE=nr&HITLIST_SIZE=1&FILTE
R=L&PROGRAM=tblastn&SERVICE=plain

In the 'url-encoded' format the '?' means the start of a list of parameters, which

is followed by a list of name-pairs separated with ' &'. "CMD=Put" means that a new

search is going to be put into the QBLAST system. The query parameter specifies the

7

sequence query that has to be sent to the QBLAST system. This parameter can take

values such as, accession numbers, gi(s) or sequences in FASTA format like

"QUERY=MEDASAGPPPVDDGEVPAAPADSSPLNDAPASSGAEPGDGGYDEGEP
LDNEQAGPADVEG".

The database parameter specifies the database name that is to be searched for

against the input query sequence(s). The hitlist_size parameter specifies the number of

hits that need to be retained from the result set. It takes a valid integer as input value and

the default value for this parameter is 500. The next parameter that is the filter parameter

is to specify the sequence filter identifier. It takes the values "L" for Low Complexity,

"R" for Human Repeats and "m" for Mask for Lookup. There is no default value of this

parameter that is this parameter has to be explicitly mentioned and it is possible to

specify more than one filter in the URL request. The program parameter specifies. the

name of the blast program that is to be used. The values this parameter can take are

blastn, blastp, blastx, tblastn and tblastx. The next parameter that is the service parameter

specifies what type of blast service needs to be performed. The values taken by this

parameter are plain, psi, phi, rpsblast, megablast. The default value of this parameter is

plain.

The output of the Tut' command will be a valid HTML page, the contents of

which may be ignored except the following important section:

<!--QBlastInfoBegin
RED = 954517067-8610-1647
RTOE = 207

QBlastlnfoEnd
-->

This portion of the output is special as it contains the Request Identifier (RID) and

the estimated Request Time of Execution in seconds (RTOE) for the search. The RID is

8

different for every search, and is a mandatory parameter for the next step which is

formatting the BLAST results.

In order to get the results for a given RID using the default format parameters the

following URL has to be used:

http://www.ncbi.nlm.nih.gov/blast/Blast.cgi? \
CMD=Get&RID=954517013-7639-11119&FORMAT_TYPE=HTML&NCBI_GI=yes

Where "CMD=Get" gets formatted results from the QBlast system which are

retrieved for the query in the put command. The rid parameter is a mandatory field for

the get command and specifies the request id of the request. The value of this parameter

should be a valid ID and every time a request is given a unique request ID gets generated.

The parameter format_type specifies the type of formatting that the result page would

have and be displayed in. The ncbi_gi parameter specifies if the NCBI Gene Id should be

displayed or no.

If the search is not yet complete, this will produce output in the following format

with Status equal to "WAITING":

<!--QBlastlnfoBegin
Status=WAITING

QBlastInfoEnd
-->

If the results are completed, the output will show the formatted results with status

information like the following, with Status=READY:

<!--QBlastInfoBegin
Status=READY

QBlastInfoEnd
-->

<formated output here>

9

In order to use the QBlast system only one or two threads can be used to submit

jobs. A new job can only be submitted once the IUD is got back from the server of the

previously submitted job. Initiating many threads at the same time could lead to the

flooding of the server and in this case the server may block access to the scripts trying to

do so.

2.3 Biological Databases

Biological databases are web sites that organize, store and disseminate files that contain

information consisting of literature references, nucleic acid sequences, protein sequences

and protein structures. To analyze sequence information is to assemble it into central and

shareable resources such as databases which effectively are a convenient and efficient

way of storing vast information. Some of the databases that are being extensively used

for the purpose of this project are mentioned below.

2.3.1 SYSTERS

SYSTEMatic Re-Searching (SYSTERS) is a huge online resource of protein families. It

uses a collection of graph-based algorithms to hierarchically partition a larger set of

protein sequences into homologous families, superfamilies and subfamilies annotated

with sequence information from various other resources.

10

Figure 2.1 Hierarchy resulting from the SYSTERS procedure.

Clustering in SYSTERS is done in two ways. First, a single linkage tree is

constructed based on the pairwise E-values obtained from the database searches.

Superfamilies are derived from this tree based on a specific superfamily cutoff E-value

for every superfamily. Second, a superfamily distance graph is constructed for every

superfamily including only E-values equal to the superfamily cutoff. Splitting this graph

recursively at weighted minimal cut sites, results in a collection of protein families (also

called clusters).

The current SYSTERS cluster set which is SYSTERS release 4 contains 969,579

non-redundant sequences (and annotations of 1,168,542 redundant sequences) from the

sequence databases which are Swiss-Prot and TrEMBL and the complete genome

databases which are ENSEMBL (Anopheles gambiae, Caenorhabditis briggsae,

Caenorhabditis elegans, Drosophila melanogaster, Danio rerio, Fugu rubripes, Homo

sapiens, Mus musculus), The Arabidopsis Information Resource Database, SGD i.e

Saccharomyces cerevisiae and GeneDB i.e. Schizosaccharomyces pombe. These

databases are sorted into 158,153 disjoint clusters.

11

2.3.2 GenBank

GenBank is the DNA database from the National Center for Biotechnology Information

(NCBI); NCBI is a division of National Library of Medicines, located at National

Institutes of Health (NTH) in Bethesda, Maryland. It incorporates sequences from

publicly available sources, mainly from directed author submissions and large scale

sequencing projects. In order to help ensure comprehensive coverage the resource

exchanges data with both the European Molecular Biology Laboratory (EMBL) and

DNA Data Bank of Japan (DDBJ). NCBI maintains sequence information from every

organism, every source and all types of sequence related information such as DNA

sequences — from mRNA to cDNA clones to expressed sequence tags, high throughput

genome sequencing data and information about sequence polymorphisms.

As per the current statistics, there are approximately 59,750,386,305 bases in

54,584,635 sequence records in the traditional GenBank divisions and 63,183,065,091

bases in 12,465,546 sequence records in the WGS division as of February 2006.

In order to search a DNA sequence entry in the GenBank database, a text-based

query to search the annotations associated with that DNA sequence can be used or else a

search can also be performed by sequence analysis and database searching, BLAST, to

compare a query DNA or protein sequence to a sequence database.

2.3.3 UniProtKB/SwissProt and UniProtKB/TrEMBL

UniProtKB/Swiss-Prot is a curated protein sequence database which strives to provide a

high level of annotation (such as the description of the function of a protein, its domain

structure, post-translational modifications, variants, etc.), a minimal level of redundancy

and high level of integration with other databases. Swiss-Prot was produced

12

collaboratively by the department of Medical Biochemistry at the University of Geneva

and EMBL. However, over a period of time the collaboration moved to the Swiss

Institute of Bioinformatics (SIB) and the UniProtKB/Swiss-Prot database, as it is now

called, is now been maintained by the he UniProt Consortium, a collaboration between

SIB and the Department of Bioinformatics and Structural Biology of the Geneva

University, the European Bioinformatics Institute (EBI) and the Georgetown University

Medical Center's Protein Information Resource (PIR).

The UniProtKB/TrEMBL database was created as a computer-annotated

supplement of UniProtKB/Swiss-Prot that contains the translations of all coding

sequences present in DDBJ/EMBL/GenBank nucleotide sequence database and also

protein sequences extracted from the literature or submitted to UniProtKB/Swiss-Prot,

which are not yet integrated into UniProtKB/Swiss-Prot.

UniProtKB/Swiss-Prot provides cross-references to external data collections such

as DNA sequence entries in the DDBJ/EMBL/GenBank nucleotide sequence databases,

2D and 3D protein structure databases, various protein domain and family

characterization databases, posttranslational modification (PTM) databases, species-

specific data collections, variant databases and disease databases. UniProtKB/Swiss-Prot

is regularly enhanced in its content and format to adequately mirror new findings. It is

gradually being enhanced by the addition of a number of features that are specifically

intended for researchers working on human genetic diseases, such as, links to human gene

databases as well as to many gene-specific mutation databases.

13

The UniProtKB/Swiss-Prot protein knowledgebase contains 215741 entries and

the UniProtKB/TrEMBL protein database contains 2737104 sequence entries comprising

880249930 amino acids.

2.3.4 SGD

The Saccharomyces Genome Database (SGD) project collects information and maintains

a database of the molecular biology of the yeast Saccharomyces cerevisiae. This database

includes a variety of genomic and biological information and is maintained and updated

by SGD curators. The SGD also maintains the S. cerevisiae Gene Name Registry, a

complete list of all gene names used in S. cerevisiae. The SGD is funded by the National

Human Genome Research Institute at the US National Institutes of Health. The SGD is in

the Department of Genetics at the School of Medicine, Stanford University. The wealth

of information describing the genes and proteins of S.cerevisiae has both necessitated and

made possible the creation of SGD's new Genome Snapshot, a constantly updated

overview of the genome. By making accessible lists of Uncharacterized ORFs, it points

researchers to some of the many intriguing questions that remain to be answered about

the yeast genome and biological processes. Finally, Genome Snapshot documents the

characterization of the genome, both by tracking annotation of ORFs to GO terms and by

tracking increases in the number of Verified ORFs.

2.3.5 EBI and EMBL

The European Bioinformatics Institute (EBI) was established in 1994 with its

headquarters in Heidelberg, Germany. It is a non-profit academic organization that forms

part of the European Molecular Biology Laboratory (EMBL). The EBI is a centre for

14

research and services in bioinformatics. The Institute manages databases of biological

data including nucleic acid, protein sequences and macromolecular structures. The

Campus also houses the Wellcome Trust Sanger Institute, making it one of the world's

largest concentrations of expertise in genomics and bioinformatics. Accessibility to all

the data and tools without any restrictions, development of standards to promote data

sharing, maintaining comprehensive and up-to-date data sets and making the data and

tools portable are some of the services provided by EBI-EMBL.

2.4 PERL

Practical Extraction and Reporting Language (PERL) is a popular programming

language that is been extensively used in areas such as bioinformatics and web

programming. It is ideally suited for writing programs that goes through mountains of

data to just extract the information that is needed.

Perl can deal with information in ASCII text files or flat files which are exactly the

kinds of files in which much important biological data appears like in the case of

GenBank. Perl makes it easy to process and manipulate long sequences such as DNA

and proteins. It also makes it convenient to write programs that controls one or more

other programs. However, the only limitation to Perl programming is the speed with

which the program executes. In the case of speed of execution, Perl is pretty good but not

the best. Other programming languages such as C are preferred to Perl. A program

written in C typically runs two or more times faster than the comparable Peri program.

The most common problem found in bioinformatics is parsing BLAST output. The

result of a BLAST search is often a multimegabyte file full of raw data. By writing a

15

simple program in Peri the process of looking for critical information, which can help in

obtaining other results, in the BLAST page, can become a fairly easy task.

2.4.1 Regular Expressions

Peri has many features that set it apart from other languages. Of all those features, one of

the most important is its strong support for regular expressions. These allow fast, flexible

and reliable string handling. Regular Expressions are tiny programs in their own special

language, built inside Perl. This is because these programs have only one task: to look at

a string and say if it matches or it doesn't match.

The regular expression, often called a pattern in Perl, is a template that matches or

doesn't match a given string. The given pattern divides that infinite set into two groups:

the ones that match and the ones that don't. A pattern may match one possible string; two

or three, a hundred or an infinite number. It may match all strings except for one, except

for some or again except for an infinite number.

2.4.2 LWP Modules

The Library for World Wide Web in Perl (LWP) is a set of Perl modules and object-

oriented classes for getting data from the Web and for extracting information from

HTML. It also helps to perform operations such as fetching the web pages, extracting

information from them using regular expressions, submitting forms and authentication.

A URL is constructed for the page that needs to be fetched, an HTTP request is

made for it and the HTTP response is decoded, then the HTML document is parsed to

extract the information that is needed. LWP aids in doing this and makes this task much

easier for the user.

16

2.4.2.1 URI::Escape. 	The URI:Escape module used as part of this program

provides the uri_escape() function to help build URLs.

2.4.2.2 LWP::UserAgent. The LWP::UserAgent is a class implementing a web user

agent. LWP::UserAgent objects can be used to directly dispatch web requests or it can be

subclassed for application specific behavior. It brings together the HTTP::Request,

HTTP::Response and the LWP::Protocol classes that form the rest of the core of libwww-

perl library.

In normal use the application creates a LWP::UserAgent object, and then

configures it with values for timeouts, proxies, name, etc. It then creates an instance of

HTTP::Request for the request that needs to be performed. This request is then passed to

one of the UserAgent's request() methods, which dispatches it using the relevant protocol,

and returns a HTTP::Response object.

There are methods for sending the most common request types: get(), head() and

post(). The request() method of the LWP::UserAgent class processes the content of the

response in the 'in core' variant which stores the content in a scalar 'content' attribute of

the response object and is suitable for small HTML replies that might need further

parsing.

The LWP::UserAgent has a lot of functions associated with it. However, only

those functions which have been used in the program are going to be discussed below.

$ua = LWP::UserAgent->new(): This class method constructs a new

LWP::UserAgent object and returns a reference to it.

$ua->request($request): This class method processes a request, including

redirects and security. This method may send several different simple requests.

17

The $request should be a reference to a HTTP::Request object with values defined for at

least the method() and uri() attributes. The content is stored in the response object itself.

$ua->agent([$product_id]): This class method Gets/sets the product token that is

used to identify the user agent on the network. The agent value is sent as the "User-

Agent" header in the requests.

2.4.2.3 HTTP::Request::Common. 	The HTTP::Request::Common module

constructs common HTTP:Request objects. This module provides functions that return

newly created HTTP::Request objects. The HTTP::Request::Common has a lot of

functions associated with it. However, only those functions which have been used in the

program are going to be discussed below.

GET $url: The get() function returns an HTTP::Request object initialized with

the "GET" method and the specified URL. The get(...) method of LWP::UserAgent exists

as a shortcut for $ua->request(GET ...).

2.4.2.4 HTTP::Response. 	Response objects are returned by the request()

method of the LWP::UserAgent. A response consists of a response line, some headers,

and a content body. Instances of this class are usually created and returned by the

request() method of an LWP::UserAgent object. The HTTP::Request::Common has a lot

of functions associated with it. However, only those functions which have been used in

the program are going to be discussed below.

$r->content: This class method gets/sets the raw content and it is inherited from

the HTTP::Message base class.

$r->status line: This class method returns the string "<code> <message>". If the

message attribute is not set then the official name of <code> substituted.

CHAPTER 3

THE PROGRAM FOR DATA COLLECTION

3.1 Before the Program

The initial task of manually collecting the back-translated DNA sequences from

TBLASTN was very time consuming and a very tedious job. It required extracting the

protein sequences in FASTA format from the SYSTERS database, submitting them to the

TBLASTN program on NCBI, making note of the subject range (nucleotide sequence

range) from the results produced by TBLASTN, going to the nucleotide sequence web

page by hitting on the link provided on the results page and extracting the back-translated

DNA sequence from the entire nucleotide sequence mentioned. Only the non-redundant

protein sequences from the SYSTERS database are being used for this purpose. One such

sequence from the SYSTERS database pertaining to cluster ID 139621 will be used to

state an example of the manual process using TBLASTN. This is the tributyltin chloride

resistance protein sequence of the Alteromonas sp. and it is the first entry in the cluster. It

belongs to the SWISSPROT protein database and the accession number of this protein is

P32820 and its EMBL accession number is D16369. Its FASTA representation is given

below.

>SPR1P32820ITBTA_ALTSM (207 AA) Possible tributyltin chloride resistance protein
[Alteromonas sp. (strain M-1)
MYNNALHGIYLTQITWMKSARAEPYLYYIVTEVEKRNLPIELALMPLIESDFNAS AYSHKHASGLWQLTPAIAKYFKVQISPWYDGRQDVIDSTRAALNFMEYLHKRF

DGDWYHAIAALNLGEGRVLRAISNIKNKANPLIFQLKTAQNQSVRAKRTSCGTII
KKPKNAFPAILNSPTIAVLPVDCAVILDNRKQWQQLEIFKPMV

18

19

The TBLASTN program is available on the NCBI web site at

ww.ncbi.nlm.nih.gov/BLAST. After connecting to the TBLASTN web page, via the link

already mentioned, the protein sequence (query sequence) is pasted into the Search text

area on the page. The TBLASTN Search box accepts a number of different types of input

and automatically determines the format. It accepts sequences in FASTA format, bare

sequences that is sequences without the FASTA definition line and identifiers or

accession numbers.

Figure 3.1 Providing the TBLASTN program with the tributyltin chloride resistance
protein sequence in FASTA format.

20

With all the parameters set to their default values and the database option set to

'nr' (protein database), the protein sequence is then submitted to the BLAST system by

clicking on the BLAST button on the page.

After clicking on the BLAST button an intermediate page, that is, the formatting

BLAST page opens which gives the Request ID (RID) of the query and allows the user to

set the formatting options. A unique RID is generated for every request that is submitted

to the BLAST system.

Figure 3.2 The TBLASTN intermediate result page: The request ID is mentioned in the
textbox and the query sequence is given above it.

21

Upon setting the formatting options and clicking on the FORMAT button a new

browser window opens which specifies the estimated time remaining for TBLASTN to

compute and display the results.

Figure 3.3 The TBLASTN intermediate waiting page: This displays the search status
which is 'searching' in this case and the time since the sequence was submitted.

As soon as the search is complete, TBLASTN displays the results in this new

window titled "results of BLAST" and contains all the sequences, also known as hits,

which are similar to the input query sequence along with the E-value and the Score.

BLAST provides a graphic display on the results page which helps to visualize

the results and specifies where the query is similar to the other sequences. Each bar

represents the portion of another sequence which is similar to the query sequence and

specifies the region where the similarity occurs. Red bars indicate the most similar

sequences to the query sequence, pink bars indicate sequences which are less similar,

green bars indicate matches that are not good at all and the black and blue bars indicate

matches which have the worst scores (poor alignments that have nothing in common and

are biologically insignificant). Red, pink and green are usually considered as good hits.

22

The good part of the graphic display is that it helps to see that some matches do not

extend over the complete length of the sequence. It is good for discovering domains. If

the mouse is rolled over on the bars then the name of the corresponding sequence appears

in a window on top of the display and clicking on any bar would result in displaying the

corresponding alignment. Depending on the server that is used this display changes a lot.

Figure 3.4 The NCBI BLAST graphic display: Red bars indicate the most similar
sequences to the query sequence, pink bars indicate sequences which are less similar.
Rolling over the mouse on the red bar displays D16369 Alteromonas sp. M-1 tbt A gene.
tributyltin chloride re... S = 345 E = 3.9e-93 signifying that this is most similar sequence
to the query sequence.

23

The hit list part of the output also provides useful information to the user. It tells

whether the sequence looks like something already in the database and whether it is a

good hit. A hyperlink of the sequence accession number and name is specified which

links to the database entry that contains the sequence. A description of the sequence is

mentioned which comes from the sequence annotations. The bit score is specified which

measures the statistical significance of the alignment. The higher the bit score, the more

similar are the two sequences. Bit scores below 50 are unreliable and are not considered

as good hits. The E-value or the expectation value is the most important measure of

statistical significance. The lower the E-value. the more similar are the two sequences.

Score t
Sequences producing significant alignments: (Bits) Value

gi│303494│dbj│D16369.1│ALTTBTA 	Alteromonas sp. 	M-1 tbt A gene, 	t _345 4e-93
gi│46914303│emb│CR378672.1│ 	Photobacterium profundum SS9; 	segmen 159 3e-37
gi│76873893│emb│CR954246.1│ 	Pseudoalteromonas haloplanktis st... 150 le-34

gi│71143482│gb│CP000083.1│ 	Colwellia psychrerythraea 34H, 	comple 141 9e-32
gi│56178122│gb│AE017340.1│ 	Idiomarina loihiensis L2TR, 	complete 140 le-31

gi│9656789│gb│AE004295.1│ 	Vibrio cholerae 01 biovar altar str... 138 7e-31

gi│46913430│emb│CR378669.1│ 	Photobacterium profundum SS9; 	segmen 137 2e-30

gi│91983532│gb│AE016795.2│ 	Vibrio vulnificus CMCP6 chromosome I 137 2e-30
gi│37509034│dbj│BA000037.2│ 	Vibrio vulnificus Y2016 DNA, 	chromos 137 2e-30
gi│59478708│gb│CP000020.1│ 	Vibrio fischeri ES114 chromosome 	I, 	c 134 le-29

gi│89949249│gb│CP000282.1│ 	Saccharophagus degradans 2-40, 	comple 132 5e-29
gi│24371479│gb│AE014299.1│ 	Shewanella oneidensis MR-1, 	complete 132 5e-29

gi│45437263│gb│AE017137.1│ 	Yersinia pestis biovar Medievalis 	... 132 7e-29
gi│21960007│gb│AE013910.1│ 	Yersinia pestis KIM section 310 of 	41 132 7e-29
gi│51587641│emb│BX936398.1│ 	Yersinia pseudotuberculosis IP32953 132 7e-29
gi│15979072│emb│AJ414146.1│ 	Yersinia pestis strain C092 complete 132 7e-29

gi│47118310│dbj│BA000031.2│ 	Vibrio parahaemolyticus RIND 2210... 131 9e-29

gi│36784324│emb│BX571862.1│ 	Photorhabdus luminescens subsp. 	1... 130 2e-28

gi│83630956│gb│CP000155.1│ 	Hahella chejuensis KCTC 2396, 	complet 130 3e-28

gi│84778498│dbj│AP008232.1│ 	Sodalis glossinidius str. 	'morsitans 129 3e-28
gi│91713371│gb│CP000302.1│ 	Shewanella denitrificans 0S217, 	compl 129 4e-28

gi│49609491│emb│BX950851.1│ 	Erwinia carotovora subsp. 	atroseptic 129 4e-28

gi│27479637│gb│AF346500.2│ 	Photorhabdus 	luminescens strain 91... 126 4e-27

gi│41292│emb│X60739.1│ECDNIR 	E.coli dniR gene, 	involved in he... 126 4e-27
gi│71066702│gb│AE016828.2│ 	Coxiella burnetii RSA 493, 	complete g 125 6e-27

gi│66270661│gb│AE017282.2│ 	Methylococcus capsulatus str. 	Bath, 	c 124 1e-26

gi│82913762│ref│XM 723652.1│ 	Plasmodium yoelii 	yoelii 	str. 	11... 124 le-26
gi│16418742│gb│AE008706.1│ 	Salmonella typhimurium LT2, 	sectio... 124 2e-26

gi│16501496│emb│AL627266.1│ 	Salmonella enterica serovar Typhi... 124 2e-26
gi│56126533│gb│CP000026.1│ 	Salmonella enteric& subsp. 	enteric... 124 2e-26
gi│29140506│gb│AE014613.1│ 	Salmonella enterica subsp. 	enteric... 124 2e-26
gi│62126203│gb│AE017220.1│ 	Salmonella enteric& subsp. 	enteric... 124 2e-26

Figure 3.5 The NCBI BLAST hit list: The hit list is ordered according to the Score and
the E-value.

24

TBLASTN then displays the alignments below the hit list. The first line of the

alignment contains a hyperlink of the accession number and the name of the

corresponding nucleotide. The percent identity is a more concrete substitute for the E-

value. The 'positives' field gives a measure of the fraction of residues that are either

identical or similar and the 'gaps' field shows residues that are not aligned. The length

specifies the length of the alignment, indicating the length of the two sequences that have

been aligned by the BLAST system. The frame field specifies the reading frame that the

sequence is translated in, on both the plus and minus strands.

In TBLASTN the query sequence is translated in three frames on both the plus

and minus strands. On the plus strand, the reading frame is computed relative to the start

of the plus strand. Reading frame 1 starts at position 1 and reading frame 2 starts at

position 2 and similarly reading frame 3 starts at position 3. On the minus strand, the

reading frame is calculated relative to the reverse complement of the plus strand, that is -

1 corresponds to the last letter and -2 corresponds to the second-to-last position and

similarly reading frame -3 starts at the third-to-last letter. 'Query' indicates the query

sequence and 'Sbjct' indicates the hit or the subject sequence. The line between the two

sequences suggests the alignment between both of them. It contains a (+) sign for similar

amino acids, a letter for the identical residues and a space for mismatches. The XXXXX

regions are known as low-complexity segments wherein the BLAST system

automatically masks the region with of identical residues with Xs. This masking occurs

only in the query sequence. The numbers at the sides of the sequences indicate the range

of the match on the query sequence and on the hit sequence.

25

The range of the hit sequence is what is considered to get the back-translated

DNA sequence from the nucleotide page. This range is noted and is very essential to the

program. Below is the result that TBLASTN produces for the input query sequence. Here

information about the raw DNA sequence is mentioned but there is no information about

the coding regions, intron/exon and reading frame. The pairwise alignment of the query

and the translated nucleotide sequence shows broad areas of similarity.

>gi│303494│dbj│D16369.1│ALTTBTA 	Alteromonas ep. M-1 tbt A gene, tributyltin chloride resistance
Length=1802

Score = 	345 bits 	(885), 	Expect = 4e-93
Identities = 178/207 	(85%), 	Positives = 182/207 	(87%), 	Gaps - 	1/207 	(0t)
Frame = +3

Query 1 MYNNALHGIYLTQITWMKSARAEPYLYYIVTEVEKRNLPIELALMPLIESDFNASAYSHK 60
MYNNALHGIYLTQITWMKSARAEPYLYYIVTEVEKRNLPIELALMPLIESDFNASAYSHK

Sbjct 990
MYNNALHGIYLTQITWMKSARAEPYLYYVITTEVEKRNLPIELALMPLIESDFNASAYSHK

1169

Query 61 HASGLWQLTPAIAKYFKVQISPWYDGRQDVIDSTRAALNFMEYLHKRFDGDWYHAIAALN 120
HASGLWQLTPAIAKYFKVQISPWYDGRQD 	+ F 	+ 	 ++LN

Sbjct 1170
HASGLWQLTPAIAKYFKVQISPWYDGRQDRNRQYPGCVEFYGIFTQTL*W*LVSRYSSLN

1349

Query 121 LGEGRVLRAISNIKNKANPLIFQLKTAQ-NQSVRAKRTSCGTIIKKPKNAFPAILNSPTI 179
LGEGRVLRAISNIKNKANPLIFQLKTAQ NQSVRAKRTSCGTIIKKPKNAFPAILNSPTI

Sbjct 1350
LGEGRVLRAISNIKNKANPLIFQLKTAQTNQSVRAKRTSCGTIIKKPKNAFPAILNSPTI

1529

Query 180 AVLPVDCAVILDNRKQWQQLEIFKPMV 	206
AVLPVDCAVILDNRKQWQQLEIFKPMV

Sbjct 1530 AVLPVDCAVILDNRKQWQQLEIFKPMV 	1610

Figure 3.6 The alignments reported by TBLASTN: The above image is the first hit of
the results The score equals 345 bits and the E value is 4e-93. The percent identities equal
85% (178/207) indicating that is a very good hit. The positives field has the value of
182/207 (87%) indicating that 87% of the residues are identical or similar and the gaps
field has the value 1/207 (0%) indicating that there are no gaps. The frame field refers to
the Open Reading Frames (ORFs) and in this case it is the 3rd ORF on the forward strand.
The query sequence range is from 1...206 and the subject sequence range is from
990...1610.

Clicking on the hyperlink in the alignment section of the results page opens the

nucleotide web page which displays the raw DNA sequence or the mRNA sequence that

is the sequence from where the back-translated DNA sequence can be obtained, of the

corresponding protein. Of all the results that are displayed only the first hit is considered

26

as this usually represents the most similar sequence to the input query sequence. The first

hit always has a higher score and a less expected value and is the result that is favored

from all the other results.

From the figure mentioned above, it is noted that the translation of the protein

sequence began at position 990 in the DNA sequence and it ended at position 1610. The

DNA sequence between these two positions is the region that has got translated into the

corresponding protein and is thus the back translated sequence. The

>gi│303494│dbj│D16369.1│ALTTBTA hyperlink links to entry of the corresponding DNA

sequence in the NCBI database and the result which is obtained is mentioned below.

ORIGIN
1

61
121
181
241
301
361
421
481
541
601
661
721
781
841
901

aagcttgatg
caaaccgtaa
ggcgctgacg
tttgagccag
tttggcgctc
ggctagtcca
caggtactgg
cttgaatcaa
caaccatgac ctcatgcggt

gaagtaaaac
aaggaactgt
ctttaggtta
tatccgattt
cttcacaacc
tgagcaaata

ttcaaagttg
agactttgaa
tgattatgat
atttaaaagc
ctgcagcagc
gtaccaccaa
taaaaaagat
atggcaatta
acaacttata
tagattagac
ttacaacagg
taaattcaac
gccgcattca
tgccattagt
tgatattaaa
gctcccttaa

cagtattagg
gagcgttaac
gacgaagcag
ccagcaagtt
cggctagtcc
agccaaaatc
gggaaaagaa
tgtaaatcta
actcagttag
gcggtctgaa
aaaagcactt
tacaagtcat
ttttttcgga
gttaatttta
gctaaccaaa
ggtcctcaga

tttaggtgat
taaattcagg
ccgacgttgg
gcaactagcg
agtaccacca
ccgtttgccg
tttattgttc
cttattgcgc
agccacaagg
tcaatcacac
aacttatcgc
tcttaactca
gtagtttagt
tccggttgtg
tattgttgtt
aactcgatga

tctagctatg
tgccagacgg
attgaggcgc
gtcaagttgt
aagccaaaat
gctagagcct
gcgtagagaa
tcgaatttcc
attttgccgc
cattagcaag
gtcgctataa
cgctatgtta
acgtgacctt
aaacacaccc
aaagaacaaa
tgtgtggcac

aatttttctg
ttatcatcac
attaaatgcg
atcaatgcca
cccgtttgcc
taagcttaga
gttagattgg
cattttcgtg
attcaccgtt
tggcgagagt
agatcaattt
aagtaaccta
taaatcgatt
gaacagccct
acgaaaatat
gatccgagcc

961 agttacatt tgccaatcta gccacccaga tgtacaacaa cgcattgcat ggtatttatc
1021 tcacccaaat tacatggatg aaatcagcgc gtgctgagcc ttacctttat tatatagtca
1081 cagaggttga aaagcggaac ttacccatag aattagcatt aatgccgcta attgaaagtg

1141 tttaacgc cagtgcctat tcgcacaagc atgcatctgg actttggcaa ttaacgcctg
1201 ccattgctaa atattttaaa gtgcaaatat ccccttggta tgacggacgt caggaccgta
1261 agacagta cccgggctgc gttgaatttt atggaatatt tacacaaacg ctttgatggt
1321 tggtatc acgctatagc agccttaact taggtgaagg ccgtgtactt agagcaatta
1381 gtaatataaa aaacaaggca aacccactga tttttcaact taaaaagcca caaacaaacc
1441 tcagtacg tgccaaaagg actagctgcg gcacaattat taaaaagcca aaaaatgctt
1501 cctgcaat tttaaacagc ccaacaattg cagtattgcc tgttgactgc 	 gctgttattt

1561 tagataaccg aaagcaatgg cagcaacttg aaatctttaa accaatggtg aaatctttaa accaatggtg tgactcgctt
1621 tggcccaggc aatatgatgc gccccacact gtgttccagt gtgaacaaac acaatttaaa
1681 gacatgctcg ctaatcttga ttccaatgat tatagtcagt ggcaacacta cagtaaaacg
1741 tggtgatagt taagtgttat agcgaaacgc tacaaagtag gtattagcca agctcaaagc

1801 tt

Figure 3.7 Back-translated DNA sequence: The above figure shows the raw DNA
sequence and the highlighted portion indicates the back-translated DNA sequence of the
corresponding input protein (query) sequence.

3.2 Flow of the Program

Figure 3.8 Flowchart to demonstrate the working of the program.

Figure 3.9 Flowchart to demonstrate the working of the swissprot subroutine,
28

Figure 3.10 Flowchart to demonstrate the working of the SGD subroutine.

Figure 3.11 Flowchart to demonstrate the working of the tblastn subroutine.

31

3.3 Program Description

This program performs the task of retrieving and collecting back-translated DNA

sequences for proteins which are obtained from the SYSTERS database. It overrides the

manual extraction of the back-translated DNA sequences from TBLASTN as mentioned

above. Besides TBLASTN it also has the added feature of collecting the back-translated

DNA sequences (coding sequences) from other databases and the various web resources

available. The program has been coded using the PERL scripting language.

The program begins by asking the user to input the file name in .sql format of the

file in which the protein sequences are stored. These protein sequences have been

obtained from the SYSTERS database and are stored in the file in the form of insert

statements. An example of the insert statements is given below:

INSERT INTO p̀rotein` (p̀id ,̀ àccno ,̀ l̀ength ,̀ s̀equence ,̀ òrganism ,̀ t̀axon_id`̀)
VALUES (510187,'ENSCBRP00000012998',208,'>CBIENSCBRP00000012998 (208
AA) Gene:ENSCBRG00000010527 Clone:c010001328 Contig:c010001328.1.46180
Chr:cb25.fpc1570 Basepair:10448 Status:known
IIVVTPTYKRMTRIADMLRMANTLSHVKDLHWIVIEDGNKTIPAVQDILDRTGLP
YTYQAHKTALGYPRRGWYQRTMALKLIRSNTSQILGQDHQEGVVYFGDDDNSY
DIRLFTDYIRNVKTLGIWAVGLVGGTVVEAPKVVDGKVTAFNVKWNPKRRFAV
DMAGFAVNLKVVLNSDAVFGTSCKRGGGAPETCLLEDMGLEREDIEP','Caenorha
bditis briggsae',6238);

The filename is collected from the user through the command line and is assigned

to a variable 'protein_file_name'. Any newline character at the end of the file name is

then removed and the file is opened. The newline character is removed with the use of the

following regular expression:

s/ \ s / / gs

A filehandle, with the same name as that of the file, is associated with the file for

readability and the file is read into another variable as one single string. A filehandle is a

32

nickname for the file that is used in the program and is a temporary name assigned to a

file. If the file does not open due to any errors then the program exits printing the

corresponding information on to the screen. After the file is read it is closed. Another file,

'results_out.txt', is created as the output file to which the results of the program are

written to. This file also has a filehandle associated with it. Again if this file does not

open due to any errors then program terminates execution printing the corresponding

message on to the screen.

A split operation is then performed on the string that stores the entire file. The

split operation is performed at the index of the ';' to separate the insert statements which

are then stored in an array, 'seq_data'. The length of this array is then determined and is

assigned to the variable len_seq_data' which is written to the output file to specify the

number of sequences in a given file.

The insert statements stored in the 'seq_data' array are then accepted one at a time

by a 'for' loop and are executed by the program. Once the 'for' loop executes, the first

step is to obtain sequence part the insert statement. Regular Expressions have been used

to perform this operation. The two regular expressions that have been used are given

below.

/'(> . * \n]((([A-Z a-z].*\n)+).*))','/mg

/'(>.*\n((1A-Z a-z]).*).*)','/mg

These two regular expressions are used depending on what pattern matches to the insert

statements. The first regular expression is used to match an insert statement with two or

more lines of the sequence part which is as follows:

33

INSERT INTO 'protein' ('pid', 'accno', 'length'. 'sequence', 'organism'. 'taxon_ici.)
VALUES (510206,'Q8JH19',199,'>TRE׀Q8JH19׀Q8JH19 (199 AA) Beta-1,3-
glucuronyltransferase-3-like protein (Fragment) [Brachydanio rerio (Zebrafish) (Danio
rerio)]
MRLKLKTVFVLYFMVSLFGLLYALMQLGQRCDCRDHEQSKDQQISQLKGELQK
LQEHIKTSELSKKTDVPRIYVITPTYARLVQKAELTRLSHTFLHVPQLHWIVVEDA PQQTQLVSDFLSASGLTYTHLNKLTPKERKLQEGDPNWLKPRGAEQRNEGLRWL

RWMGSTVHGKEAAALEEAVVYFADDDNTYSLQLFEE','Danio rerio',7955);

The second regular expression is used to match insert statements which only have one

line of the sequence part which is as follows:

INSERT INTO p̀rotein` (p̀id ,̀ àccno ,̀ l̀ength .̀ s̀equence ,̀ òrganism ,̀ t̀axon_id)̀
VALUES (510506,'Q9QVI1',18,'>TRE׀Q9QVI1׀Q9QVI1 (18 AA) Sucrase-alpha-
dextrinase subunit beta, S-D subunit beta (Fragment) [Rattus sp]
IKLPSNPISELRVEVKYH','Rattus sp.',10118);

Both these regular expressions are used to extract the protein sequence in FASTA

format (highlighted in grey + yellow) which is written to the 'results_out.txt' file as

output, along with the back-translated DNA sequence, to the user and the raw protein

sequence (highlighted in yellow), without the FASTA definition line, to submit it as

query to the QBLAST system. Both these sequences are then assigned to their respective

variables and are stored as strings. Any whitespace characters in the strings are then

removed.

After this step, the database shortcut and the accession number from the protein

sequence in FASTA format are obtained and are assigned to the variables 'db' and

'accno' respectively in order to determine which database was the sequence originally

obtained from and stored and clustered in SYSTERS. Three regular expressions are

mentioned depending upon which pattern matches to the protein sequence in FASTA

format.

34

If the protein sequence in FASTA format is as the one given below:

>TRE׀Q9QVI1׀Q9QVI1 (18 AA) Sucrase-alpha-dextrinase subunit beta, S-D subunit
beta (Fragment) [Rattus sp]
IKLPSNPISELRVEVKYH

Then the regular expression,

/>(.*)\│(.*)\│.*/mg

is used to extract the database shortcut (highlighted in grey) and the accession number

(highlighted in yellow) from the sequence.

If the protein sequence in FASTA format is as the one given below:

>MM ENSMUSP00000036910 	(202 	AA) 	Gene:ENSMUSG00000036479
Clone:9.26000001-27000000 Contig:9.26000001-27000000 Chr:9 Basepair:26824291
Status:known
MPKRRDILAIVLIVLPWTLLITVWHQSSLAPLLAVHKDEGSDPRHEAPPGADPRE
YCMSDRDIVEVVRTEYVYTRPPPWSDTLPTIHVVTPTYSRPVQKAELTRMANTL
LHVPNLHWLVVEDAPRRTPLTARLLRDTGLNYTHLHVETPRNYKLRGDARDPRI
PRGTMQRNLALRWLRETFPRNSTQPGVVYFADDDNTYSL

Then the regular expression,

/>(.*)\│(.*) \(\d/mg

is used to extract the database shortcut (highlighted in grey) and the accession number

(highlighted in yellow) from the sequence.

And if the protein sequence in FASTA format is as the one given below:

>CE׀C47F8.4 (248 AA) Gene:C47F8.4 Clone:C47F8 Contig:AL009246.1.1.21816 Chr:I
Basepair:12325371 Status:known
MVIVVTPTYKRITRIPDMTRLANTLAHVENLHWLVVEDGYGIVPEVRQMLERTN
LSYTYMAHKTAKGYPSRGWYQRTMALRYIRSSSAKILGKQRNGAVVYFADDDN
AYDVRLFTDYIRNVNTLGVWAVGLVGGVVVEAPKVVNQKVTAFNVRWALSRR
FAVDMAGFAINLKLILNSDAVFGTDCKRGEGAPETCLLEDMGLKMEDIEPFGYD
ATKVRDIMVWHTKTSPPEIEQTDQPIDSLGYFVEY

35

Then the regular expression,

/>(.*) \ │ (. * \ . \ d +) \ (\ d / m g)

is used to extract the database shortcut (highlighted in grey) and the accession number

(highlighted in yellow) from the sequence.

Once the database shortcut and the accession numbers are obtained, the database

shortcut is then matched against the SWISSPROT and SGD databases, to access the

database in which the protein sequence is stored and accordingly the subroutines are

invoked. Only these two databases have been coded for as the coding sequences were

readily available on their websites for the corresponding protein sequences. So, if the

database shortcut matches to 'TRE', 'SPR' or 'SPU' then the 'swissprot' subroutine is

invoked and the accession number of the sequence, the protein sequence in PASTA

format and the raw protein sequence are passed as parameters to it. If the database

shortcut matches to 'SC' then the 'SGD' subroutine is invoked and the insert statement,

stored in the .sql file, along with the protein sequence in PASTA format and the raw

protein sequence are passed as parameters to it. Else, if both these matches don't take

place then the subroutine 'tblastn' is invoked and the protein sequence in FASTA format

along with the raw sequence, are passed as parameters to it. Two counters, one each for

the 'swissprot' subroutine and the 'SGD' subroutine, are also mentioned to indicate how

many back-translated DNA sequences have been obtained from each of these databases.

Now moving on to the description of the subroutines, we first have the 'swissprot'

subroutine. This subroutine, as mentioned above, takes the accession number, the protein

sequence in FASTA format and the raw protein sequence as parameters. The protein

sequence in FASTA format and the raw protein sequence are moreover used to be passed

36

as parameters to the 'tblastn' subroutine in case the 'swissprot' subroutine fails at

any step. The most important part is the accession number that is passed to this

subroutine. This accession number is assigned to the variable 'acc_no'.

A new LWP::UserAgent object is then created and a reference to it is made and

assigned to 'ua_swissprot' and the UserAgent object is assigned an identity, Agent03.

The URL for swissprot is then formed in order to connect to it and fetch the web page of

the corresponding protein sequence. The URL to link to swissprot is

'http://ca.expasy.org/uniprot/' at the end of which the accession number has to be

appended in order to complete the URL. This is achieved by merging the accession

number parameter that is passed to the subroutine to the URL to get the complete merged

URL of the webpage that needs to be fetched. For example, the merged URL would look

something like this, 'http://ca.expasy.org/uniprot/Q9UEB4'. The merged URL is then

assigned to the 'merge_url' variable. After this step, a new HTTP::Request object,

'req_swissprot', is created where in the URL is passed to the GET command of the

HTTP::Request object. The UserAgent request method is then called and the

HTTP::Request object is passed to it as a request. This is assigned to the

HTTP::Response object, 'res_swissprot'.

37

Figure 3.12 	The Swissprot protein web page for the
http://ca.expasy.org/uniprot/Q9UEB4 URL which is obtained as result when the URL is
passed as a request to the HTTP::Request object. The highlighted portion is the primary
accession number which is extracted from the web page.

The UNIPROTKB/SWISSPROT AND UNIPROTKB/TrEMBL website at times

results into error when the sequence is not found, that is it no longer exists in the

database. It results into the '410 gone' error and is caught using the status_line() method

of the HTTP::Response object. In case of this error the tblastn subroutine is invoked and

once the tblastn subroutine gets executed the next iteration is performed.

38

Figure 3.13 The Swissprot protein webpage when the page results into the '410 Gone'
error.

If there is no error, then the content of the webpage is checked to see if there is a

primary accession number (highlighted in blue in Figure 3.8) present on the page. This is

done by using the following regular expression.

/Primary accession number<.*\n.*(.*)<\/b>/m

If the regular expression does not get matched to the content of the web page then

the tblastn subroutine is invoked. However, if the primary accession number is present

then it is extracted and assigned to the variable 'a_no'. This accession number is then

matched to the accession number of the protein sequence which is passed as a parameter

to the 'swissprot' subroutine. This is done because at times a protein sequence has one

primary accession number and a number of secondary accession numbers indicating that

parts of this protein also encode for other genes besides the gene encoded by the whole

protein. If the two accession numbers do not match, it means that the wrong page has

been fetched and the tblastn subroutine is invoked. If the two accession numbers match

39

the content of the web page is further parsed to check if there is a corresponding coding

sequence present for the protein sequence. The coding sequence is given as a

Genomic_DNA or an mRNA entry on the protein sequence web page and it is

hyperlinked to the nucleotide web page as shown in the Figures 3.10 & 3.11 below.

Figure 3.14 A part of the Swissprot protein web page which highlights the Genomic
DNA Coding Sequence hyperlink, the URL of which is extracted from the HTML source
code of the page and is used to obtain the nucleotide sequence web page.

Figure 3.15 A part of the Swissprot protein web page which highlights the mRNA
Coding Sequence hyperlink, the URL of which is extracted from the HTML source code
of the page and is used to obtain the nucleotide sequence web page.

The coding sequences for the mRNA hyperlink as well as for the Genomic_DNA

hyperlinks are the same when compared to each other. Therefore, the regular expressions

in the 'if' condition can either match to the Genomic_DNA coding sequence or the

mRNA coding sequence on the protein web page. The two regular expressions are given

as follows:

40

/ \d; -; Genomic_DNA.*\[CoDingSequence<\/a>\]/mg

/\d; -; mRNA.*\[CoDingSequence<\/a>\]/mg

If the patterns do not match either entry then the tblastn subroutine is invoked. If the

match occurs then the regular expressions extracts the URL of the website where the

coding sequence is located.

After visiting many protein sequence web pages and their corresponding coding

sequences it has been concluded that the URL mainly links to the EBI-EMBL website

and the program has been coded to get the nucleotide sequence from this website. If the

URL links to any other website then the tblastn subroutine is invoked and executed.

The URL is stored in the variable 'temp_swissprot1'. The URL to the EBI-EMBL

website is given as follows in the HTML source of the protein sequence web page.

http://www.ebi.ac.uk/cgi-bin/dbfetch?db=emblcds&id=AAC 04618

The URL address is then edited and corrected by the substitute operation to substitute the

'&' by '&' to give the URL,

http://www.ebi.ac.uk/cgi-bin/dbfetch?db=emblcds&id=AAC04618

which is the URL that links to the EBI-EMBL nucleotide web page specifying the

sequence ID and the database as the EMBL coding sequence database.

Once the URL has been determined that it links to the EBI-EMBL website a new

LWP::UserAgent object is created and a reference to it is made and assigned to 'ua_ebi'

and the UserAgent object is assigned an identity, Agent04. The URL which links to EBI-

EMBL nucleotide web page is assigned to 'ebi_url'. After this step a new HTTP::Request

object, 'req_ebi', is created and the URL is passed to the GET command of the

HTTP::Request object' The UserAgent request method is then called and the

41

HTTP::Request object is passed to it as a request. This is assigned to the

HTTP::Response object, 'res_ebi'. The content of the response object which is obtained

as a result from the request is assigned to 'temp_ebi'. The content which is received in

the response object is the nucleotide web page from EBI-EMBL.

Figure 3.16 The EBI-EMBL nucleotide sequence web page which is obtained as a result
of passing the coding sequence URL as a request to the HTTP::Request object.

This HTML page is then parsed to obtain the coding sequence. The sequence part

of the page is extracted using the following regular expression and is shown in Figure

3 . 1 6:

/ (S Q . *\n+ 	(.*\n+)+)\/\//mg

42

Figure 3.17 The EMBL-EBI nucleotide sequence web page which highlights the
nucleotide sequence that is extracted from the HTML source code of the page using the
regular expression mentioned above.

This intermediate result is stored in the variable 'temp_ebi1'. Once the sequence

is stored in the 'temp_ebi1' variable substitute operations are performed on the variable

removing any whitespace characters, line number and any other text besides a, c, t, g' The

coding sequence obtained is then stored as a single string 'dna_seq' which forms the final

back-translated DNA sequence from the swissprot subroutine' The back-translated DNA

sequence along with its corresponding protein sequence in FASTA format are then

written to the output file 'results_out.txt' as well as printed on the console as the final

result. A flag is mentioned that the back-translated DNA sequence is obtained from

Swissprot/TrEMBL.

The second subroutine is the 'SGD' subroutine which is written to extract the

coding sequences for the protein sequence from the Saccharomyces Genome Database.

To this subroutine the insert statement, the protein sequence in FASTA format and the

raw protein sequence are passed as parameters. The protein sequence in FASTA format

43

and the raw protein sequence are moreover used to be passed as parameters to the

'tblastn' subroutine in case the 'swissprot' subroutine fails at any step.

The insert statement for the SC entry is used to extract the accession number as

it is not mentioned in the FASTA definition line of the protein sequence. The insert

statement for an SC entry is as follows and is assigned to 'prot_seq'

INSERT INTO p̀rotein` (`pid`, àccno`, `length`, s̀equence`, `organism`, t̀axon id`)
VALUES (516549:SO004650(NR SC:SW-N116 YEAST)',1113,1>SC
│NR_SC:SW-N116 YEAST (1113 AA) SW:N116 YEAST Q02630 saccharomyces cerevisiae

(bakerVs yeast). nucleoporin nup116/nsp116 (nuclear pore protein nup116/nsp116).
11/1997; PIR:S28925 nuclear pore complex protein NSP116 -
MFGVSRGAFPSATTQPFGSTGSTFGGQQQQQQPVANTSAFGLSQQTNTTQAPAF
GNFGNQTSNSPFGMSGSTTANGTPFGQSQLTNNNASGSIFGGMGNNTALSAGSA
SVVPNSTAGTSIKPFTTFEEKDPTTGVINVFQSITCMPEYRNFSFEELRFQDYQAG
RKFGTSQNGTGTTFNNIERLKKNPNSKFESYDADSGTYVFIVNHAAEQT','Sacchar
omyces cerevisiae',4932);

The accession number of the protein sequence (highlighted in yellow) is extracted

from the insert statement using the following regular expression,

and is assigned to the variable 'prot_acc_no'. After this step a new LWP::UserAgent

object is created and a reference to it is made and assigned to 'ua_ebi' and the UserAgent

object is assigned an identity, Agent05. The URL of the SGD website to link to it is then

formed in order to connect to it and fetch the web page of the corresponding protein

sequence. The URL to link to SGD is 'http://db.yeastgenome.org/cgi-

bin/locus.pl?sgdid=' at the end of which the sgdid parameter takes the accession number

and it has to be appended in order to complete the URL. This is achieved by merging the

accession number stored in 'prot_acc_no' to the URL to get the completed merged URL

of the webpage that needs to be fetched. For example, the merged URL would look

something like this, 'http://db.yeastgenome.org/cgi-bin/locus.pl?sgdid= S0000433'. The

44

merged URL is then assigned to the 'merge_url' variable. After this step a new

HTTP::Request object, 'req_yeastgenome', is created where in the URL is passed to the

GET command of the HTTP::Request object. The HTTP::Request object is then passed

to the request method of the UserAgent object to send a request to the desired URL and

get a response. The response which is obtained from the request sent is stored in the

HTTP::Response object 'res_yeastgenome'.

The content stored in the response object is assigned to the variable

temp_yeastgenome. The content of 'temp_yeastgenome' is the SGD HTML page which

contains the protein sequence.

Figure 3.18 The SGD protein web page for the http://db.yeastgenome.org/cgi-
bin/locus.pl?sgdid= S0000433' URL which is obtained as result when the URL is passed
as a request to the HTTP::Request object. The highlighted portion is the Systematic
Name which is extracted from the HTML source code of the web page using regular
expressions.

45

The HTML page is then parsed to get the Systematic Name (highlighted in purple

in figure 15) of the protein which is used in the formation of the URL to the web page of

the coding sequence. Some of the protein pages have the alias feature after the systematic

name and some of the pages have the feature type entry after the systematic name is

specifies. Thus, two regular expressions have been used to match the two conditions and

if the patterns match then systematic name of the protein sequence is extracted from the

content. The two regular expressions that have been used for this purpose are as follows:

The systematic name is assigned to the variable 'temp1_yeastgenome'. If the patterns do

not match the regular expressions then the tblastn subroutine is invoked.

Once the systematic name is obtained then another LWP::UserAgent object is

created and the UserAgent is given an identity as Agent 06. The URL to connect to and

fetch the corresponding nucleotide\coding sequence is then formed. The URL to link to

the 	nucleotide 	web 	page 	is 	'http://db.yeastgenome.org/cgi-

bin/getSeq?seq=YBR229C&flankl=0&flankr=0&map=n3map'. This URL is then broken

into three parts. The first part 'http://db.yeastgenome.org/cgi-bin/getSeq?seq=' is

assigned to variable 'yeastgen_url' and the third part ' flankl=0&flankr=0&map=n3map'

is assigned to the variable 'yeastgen_url_merge'. The middle part is the systematic name

which is obtained from the regular expressions mentioned above. These three parts are

then merged to form the complete URL and it is assigned to the variable

'yeastgen_merged_url'.

46

After this step, a new HTTP::Request object, 'req_yeastgen', is created where in

the URL is passed to the GET command of the HTTP::Request object. The

HTTP::Request object is then passed to the request method of the UserAgent object to

send a request to the desired URL and get a response. The response, which is obtained

from the request sent, is stored in the HTTP::Response object 'res_yeastgen'.

The content of the 'res_yeastgen' object is an HTML source code of the SGD

nucleotide/coding sequence web page.

Figure 3.19 The SGD nucleotide sequence web page which is obtained as a result of
passing 	the 	coding 	sequence 	URL, 	http://db.yeastgenome.org/cgi-
bin/getSeq?seq=YBR229C&flankl=0&flankr=0&map=n3map, as a request to the
HTTP::Request object.

From this content the sequence part of the page is extracted using regular

expressions. Firstly, it uses an 'if condition to determine if the web page has a nucleotide

sequence contained in it. If the sequence is not found or the webpage results into any

47

errors then the tblastn subroutine is invoked. However, if the regular expression is

matched to the pattern on the web page then the sequence part of the web page is

extracted. The following regular expression is used to perform this operation.

Figure 3.20 The SGD nucleotide sequence web page which highlights the nucleotide
sequence that is extracted from the HTML source code of the page using the regular
expression mentioned above.

Any whitespace character is removed using the substitution operation and the

final back-translated DNA sequence is obtained as a single string. The DNA sequence is

usually in uppercase letters and is converted to lowercase letters and assigned to the

variable 'dna_sequence'. The value stored in 'dna_sequence' along with its

corresponding sequence in FASTA format is then written to the file and also printed out

onto the console as the final output. A flag is mentioned that the back-translated DNA

sequence is obtained from yeastgenome.

48

Finally, the program description ends with the description of the tblastn

subroutine. This subroutine is called a couple of times throughout the program. The

tblastn subroutine is called at any time the other routines fail to execute a certain step.

This is the most important part of the program. This is the subroutine which connects to

the NCBI Blast program TBLASTN, sends the query request to it, processes the request

and returns the final result. The tblastn subroutine as mentioned before takes in the

protein sequence in FASTA format and the raw protein sequence as parameters. One

more thing to note is that before every tblastn routine call is made a wait period of two

minutes is mentioned. This is because the QBLAST system requires that between every

two request there should be a minimum gap of at least one minute.

In the beginning of the sub routine a flag variable is initialized. The use of this

variable is described later. A new LWP::UserAgent object, 'ua_tblastn', is created and

the UserAgent is given an identity as Agent 01. The put command of the URL API is

formed and is assigned to the variable 'args'. The query parameter of the command

specifies the raw protein sequence which is passed to the subroutine. The database

parameter specifies the nucleotide database with which the query sequence is compared.

The 'hitlist_size' parameter indicates that only the first hit is to be returned from the

result set and the program parameter specifies that the tblastn program of the BLAST

family is to be executed. The put command is as follows

CMD=Put&QUERY=$_[0]&DATABASE=nr&HITLIST_SIZE=1&FILTER=L&EXPE
CT=1&FORMAT_TYPE=HTML&PROGRAM=tblastn&CLIENT=web&SERVICE=plain&NCBI GI=on&PAGE=nucleotides";

After the put command is formed, a new H FIP::Request object, 'req_tblastn' is

created and the put command stored in args is passed to the get method of the class. The

49

HTTP::Request object is then passed to the request method of the UserAgent object

which in turn passes the command to the QBLAST system and gets a response' The

response is stored in the HTTP::Response object, 'res_tblastn' The URL API put

command when sent via the request object invokes the blast'cgi script and the tblastn

program begins execution'

The response that is obtained and stored in the response object is the intermediate

result page which allows the user to set the formatting options' However, the result of this

page is not displayed on the output screen' All the formatting options that the user needs

to set can be set in the put command of the QBlast URL API. From the content of this

page, which is the HTML source code of the intermediate results page stored in the

'res_tblastn', the request ID and the remaining time of execution are extracted using the

following regular expressions:

Figure 3.21 Part of the HTML source code of the intermediate results page: It highlights
the Request Id (RID) and the Remaining Time Of Execution (RTOE) which is extracted
from the sources using the above mentioned regular expressions.

50

The tblastn program issues a unique RID for every request that is passed to it. It

calculates the remaining time of execution (RTOE) which is an estimate amount of time

that the program needs to produce the results. During this time the input query is being

processed and the tblastn program searches for the results against the nucleotide database

GENBANK. These values are stored in the corresponding variables, 'rid' and 'rtoe'. The

program is then made to wait for the time period value stored in 'rtoe'. While the

intermediate page state is true the program creates a new HTTP::Request object,

'req_tblastn', which overrides the previous 'req_tblastn' request object. Through this

object a URL is passed as a request to the QBLAST system. This URL is the link to the

intermediate waiting page of TBLASTN. The request ID is passed as a parameter and the

output pertaining to that request ID is stored in the HTTP::Response object. This

response is then parsed in order to obtain the status if the query. If the status on the page

is shown as waiting then the program print the statement 'Searching'. This page is

refreshed after sometime and each time it is refreshed, that is as long as the while

statement is true, the search takes place. If the status results in FAILED then the protein

sequence along with the error message, 'Search failed;please report to

blast-help@ncbi.nlm.nih.gov.\n' is written to the output file and the program exits the

subroutine. If the status results in UNKNOWN then the protein sequence along with the

error message, 'Search expired.\n' is written to the output file and the program exits the

subroutine. However, if the status displays ready, it means that the search has ended and

TBLASTN is now ready to display the results and the if condition also checks to see if

there are any hits present for the input query sequence or there are no hits present.

51

If there are hits present then message, 'Search complete, retrieving results...', is

printed on the console and the program execution is forced out if the while loop with the

'last' statement. At this point the flag is turned to 1. However, if no hits are found then

the protein sequence in FASTA format along with the message, `No hits found', is

written to the output file. The program control then exits the 'while' loop and the next

iteration begins. If none of the above conditions mentioned are fulfilled then the program

reaches the end of the while loop where the message 'if we get here, something

unexpected happened' is printed on the output screen. The program reaches this point if

there is no RID specified for the input query sequence, that is, when an empty string is

(no input query sequence) is passed to the program and the tblastn program cannot

specify an RID, or when the NCBI BLAST program blocks access to user.

52

Figure 3.22 The intermediate waiting page of I BLASTN: The status of the program is
shown as Waiting and also the RID is specified, which indicates that TBLASTN is
searching for results for the RID mentioned.

Therefore, if there are results returned by the tblastn program then the flag is set

to I and the program continues execution to retrieve the back-translated DNA sequence

for the input protein sequence. A new HTTP::Request object, 'req_tblastn', is created and

via the request object the get command of the URL API is passed to the QBLAST system

specifying the URL and the Request ID to get the results pertaining to that RID. The

URL sent is as follows,

53

http://www.ncbi.nlm.nih.gov/blast/Blast.cgi?CMD=Get&FORMAT_TYPE=Text&RID=

$rid

where '$rid' is substituted by the value of the Request ID stored in it.

The HTTP::Request object is then passed to the request method of the UserAgent

object to send a request to the desired URL and get a response. The response which is

obtained from the request is stored in the HTTP::Response object, 'res_tblastn'.

The response content of 'res_tblastn' is the blast results page which gives the

results pertaining to the input query sequence. This is the web page which contains the

NCBI BLAST graphic display along with the hits and alignments sections. However, the

page content obtained from the QBlast system differs from the actual web page (Figure

20). The content is assigned to a variable 'tblastn_results_page'.

The response that is obtained from the QBLAST system and stored in

'tblastn_results_page' is an HTML web page which is parsed to obtain the accession

number of the raw nucleotide sequence. Also the start and end positions of the subject

sequence or the nucleotide sequence are extracted. In order to obtain this, only the

alignment section of the result page is extracted using the regular expressions

s / . ^ALIGNMENTS//ms

s/^ 	Database:.*//

54

Figure 3.23 The results page obtained from the QBlast system. It highlights the
alignment part of the page that is extracted using the above mentioned regular
expressions. Only the first hit is displayed as the hitlist_size parameter in the put query is
set to one.

55

The above two regular expressions indicate that the page material till the word

alignments and below the word database is removed and only the section between these

two words is kept. This part of the page is then assigned to the variable 'temp4'.

If there is more than one alignment suggested for a particular input query

sequence, then only the first alignment is taken into consideration. This is obtained by

performing a split operation at the index of the word 'Score' and the alignments are

stored in an array, 	From the array, only the first alignment is considered and further

operations are performed on the string using regular expressions to obtain the accession

number of the raw nucleotide sequence and the subject range. The regular expression that

is used to extract the accession number is:

/^>.*\│(.*)\.\d+\│/gm

The subject range is obtained by first performing a join operation on the subject lines of

the alignment and assigning it to the variable 'protein'.

join (" , (Sseq_tblastn =~ /^Sbjct.*\n/gm))

After this step, another join operation is performed where the first number (start position)

and the last number (end position) are extracted and joined together by '.'''

join('..', (protein =~ /(\d+).*\D(\d+)/s))

This is string is assigned to the variable 'subject range'. A split operation is then perform

on this variable at the index of '..' to separate the start and end positions and store the

values in the array, 'start_end'.

56

dbj:AK175910.1: Arabidopsis thaliana mRNA for putative ferritin subunit precursor

complete cds, clone: 	RAFL22-57-B22 Length=1039

Score = 	407 hits (1045), 	Expect = 2e-111
Identities = 253/253 (100%), Positives = 253/253 <100•r.), Gaps = 0/253 (00
Frame = +1

Query 1
MLHKASPAXXXXXXXXXXXXXXFPPSRNSSNLLFSPSGSRFSUQAAKGTNTKSLTGXXXX 60
MLHKASPALSLLSSGYTGGGNLFPPSRNSSNLLFSPSGSRFSUQAAKGTNTKSLTGUUFE

Sbjct SS
MLHKASPALSLLSSGYTGGGNLFPPSRNSSNLLFSPSGSRFSUQAAKGTNTKSLTGUUFE 234

Query 61 XXXXXXXXXXLUPTTPFUSLARHKFSDDSESAINDQINUEYNUSYUYHALYAYFDRDNUG 120
PFEEUKKEMELUPTTPFUSLARHKFSDDSESAINDQINUEYNUSYUYHALYAYFDRDNUG

Sbjct 235
PFEEUKKEMELUPTTPFUSLARHKFSDDSESAINDQINUEYNUSYUYHALYAYFDRDNUG 414

•Query 121 LKGFAKFFNDSSLEERGHAEMFMEYQNKRGGRUKLQSILMPUSEFDHEEKGDALHAMELA 180
LKGFAKFFNDSSLEERGHAEMFMEYQNKRGGRUKLQSILMPUSEFDHEEKGDALHAMELA

Sbjct 415
LKGFAKFFNDSSLEERGHAEMFMEYQNKRGGRUKLQSILMPUSEFDHEEKGDALHAMELA 594

Query 181 XXXXXXXXXXXXXXQSUGUKNNDUQLUDFUESEFLGEQUEAIKKISEYUAQLRRIGKGHG 240
LSLEKLTNEKLLKLQSUGUKNNDUQLUDFUESEFLGEQUEAIKKISEYUAQLRRIGKGHG

Sbjct 595
LSLEKLTNEKLLKLQSUGUKNNDUQLUDFUESEFLGEQUEAIKKISEYUAQLRRIGKGHG 774

•Query 241 UWHFDQMLLNDEV 	253 UWHFDQMLLNDEV

Sbjct
775 UWHFDQMLLNDEV 	813

Figure 3.24 The alignment section of the Blast results page highlighting the accession
number of the nucleotide sequence as well as the subject range or the target sequence
range which are extracted from the page using the above mentioned regular expressions
and this information is used to obtain the back-translated DNA sequence'

The array values are then stored in the individual variables 'temp_start' and

'temp_end'. These values are then compared to each other. If the value of the

'temp_start' is smaller than the value of 'temp_end' then the back-translated DNA

sequence in on the plus strand and the 'temp_start' value is assigned to 'start_position'

and the 'temp_end' value is assigned to the 'end_position' variables' However, if the

value of 'temp_start' is greater then the value of 'temp_end' then the nucleotide sequence

is located on the minus strand and the 'temp_start' value is assigned to 'end_position'

and the 'temp_end' value is assigned to the 'start_position' variables. The values in the

variables are reversed in order to read the nucleotide sequence from the NCBI nucleotide

web page.

After all the information that is needed to obtain the back-translated DNA

sequence is obtained, a new LWP::UserAgent object, 'ua_genbank', is created and the

57

UserAgent is given an identity as Agent 02. A new HTTP::Request object, 'req_genbank'

is created and a connection is made to the GenBank nucleotide web page by passing the

URL information to the get method of the class. The URL that is used to connect to

GenBank is as follows:

http://www.ncbi.nlm.nih.gov/entrez/viewer.fcgi?txt=yes\&list_uids=$acc_no\&db=n.

The '$acc_no' is substituted by the accession number value stored in it, which is obtained

from the BLAST results page.

The H 11 P::Request object is then passed to the request method of the UserAgent

object to send a request to the URL and get a response. The response which is obtained is

stored in the HTTP::Response object, 'res_genbank'.

The content of the 'res_genbank' object is the HTML nucleotide webpage. This

HTML page is parsed to extract the nucleotide sequence. This is the entire nucleotide

sequence from which the back-translated DNA sequence needs to be extracted. This is

done by using the regular expressions given below:

s / . *ORIGIN//ms

58

ORIGIN

1 gttttacaga gactatgctc ttcgttcctt tctctctcta gatcttaagc ccaaatgttg
61 cacaaggctt ctcccgctct ctctctcttg agctccggct acaccggcgg tggaaatctg
121 tttcctccgt cgagaaattc gtcgaatctt ctgttttctc cgagtggatc caggttttct
181 gttcaggcgg cgaaaggaac gaacacgaag tcgttaaccg gagttgtatt cgaacctttt
241 gaggaggtga agaaagaaat ggagctcgtt cccactaccc cttttgtttc tctcgctcgc
301 cacaagttct ccgacgattc tgaatctgcc atcaacgatc agatcaacgt ggagtacaac
361 gtctcgtatg tctaccatgc cctgtatgcc tactttgaca gagacaatgt cggcttgaaa
421 ggtttcgcca agttttttaa cgattcgagt cttgaagaac gaggtcatgc tgagatgttt
481 atggagtatc agaacaagcg tggtgggaga gtgaagctgc agtctatttt gatgcccgtc
541 tctgagtttg atcacgagga gaagggagat gcattgcatg cgatggagct tgcattgtct
601 ttggagaaac ttacaaatga aaagcttctg aagttacaaa gtgttggtgt gaagaacaat
661 gatgttcagc tggttgattt tgtagaatct gagtttctag gtgagcaggt cgaagctatc
?21 aagaaaatct cagagtacgt tgcacagcta agaagaatag gaaagggtca tggagtgtgg
781 cattttgatc aaatgcttct caatgatgag gtttaaggaa ggagagttca gcttctgagt
841 ttgatgacaa tcttccttgt gctatatggc accgttctat ctctataacg acgtctctaa
901 gtttggtcgg agaaaagtgt tcttgctcgt tctttctttt ctttgttttt ggttaaccga
961 atgcttgtga gtgtgtactt aataatgtaa ctcgtagtct gataataaat gcaagtccca
1021 ctgtttcaga aaaaaaaaa

Figure 3.25 This is the final result obtained from the QBlast system. It highlights the
nucleotide sequence result which is obtained from the QBlast system. The nucleotide
sequence is extracted from the page using regular expressions and the final output result
is printed with the protein sequence following the DNA sequence.

59

First, everything on the web page till the word 'origin' is removed and the

resulting string is stored in the variable 'temp5'. The string value stored in 'temp5' is

then assigned to an array 'seq_genbank'. Each line from the array is then taken and any

whitespace characters or line numbers are removed. In this fashion, all the lines from the

array are taken one at a time; they are refined and are merged to the previous line to form

one long continuous string of the DNA sequence. This value is then assigned to the

variable 'line_seq'.

Once the DNA sequence is refined, the PERL program then makes use of the

substr() function in order to get the back-translated DNA sequence.

substr($line_seq, $start_position-1, $end position-($start_position-1))

The DNA sequence, stored in the variable line_seq', is passed to the substr() function

along with the start and end positions obtained from the BLAST results page. The

substr() function takes in these three parameters and chops the 'line_seq' string from the

indiex of the 'start_position' value to the 'end_position' value. The nucleotide sequence

between these two values is the final back-translated DNA sequence and is assigned to

the variable 'finaldna'.

The value stored in 'final_dna' along with its corresponding sequence in FASTA

format is then written to the output file and also printed out onto the console as the final

output. However if the nucleotide sequence is located on the minus strand then the

reverse complement of the DNA strand is calculated and that sequence along with the

FASTA protein sequence is given as output. A flag is mentioned that the back-translated

DNA sequence is obtained from TBLASTN.

60

3.4 Benefits and Limitations

As it is seen from the above descriptions that before the automated system was

implemented in order to gather the back-translated DNA sequences from the various web

servers and databases it was a very tedious job to manually search and extract the back-

translated DNA sequences. In this case, the program does all the dirty work of connecting

to various web servers and detecting if the DNA sequences for the protein sequences are

available or not. It first searches in the databases and if the coding sequences are not

present then it connects to TBLASTN, executes the program and gets the results. A lot of

time is saved at the user end to extract the same information manually. It saves the efforts

of browsing web pages and look for coding sequences and if the DNA sequences are not

found in the databases then it saves the efforts of connecting to TBLASTN and executing

the protein sequence. Therefore, the results are obtained more quickly.

There are some limitations to the program too. The program does not code for all

databases. That is the program has been coded only to search in the UniProtKB/SwissProt

and the UniProtKB/TrEMBL databases and the SGD database. There are a lot of other

data resources from which the protein sequences are obtained and clustered in SYSTERS,

like Ensembl, but these databases do not provide easy access to the coding sequence.

Thus, more modules can be added to the program to incorporate more data resources to

fetch back-translated DNA sequences from.

61

3.5 Running Time Analysis

Table 3'1 Running Time Analysis of the Manual Extraction and the Program

Sequences Execution Time

Manual Extraction
10 sequences (4 from

tblastn, 4 from swissprot &
2 from SGD)

~20 mins @ 11 Mbps

Extraction using the Perl
Script

10 sequences (4 from
tblastn, 4 from swissprot &

2 from SGD)

~8 mins @ 1 1 Mbps with a
one min gap between two

TBLASTN requests

The table above provides a rough estimate of the amount of time it would take to

extract the sequences manually by visiting the web sites and putting them together in a

file, and the amount of time it would take to gather the same data by running the Perl

script. The sequences that have been used for this analysis are chosen so that they are

found in the web databases and the subroutines do not fail at any stage. In case, the

subroutines fail and the tblastn subroutine is invoked then the program will take a longer

time to execute.

For a larger number of sequences, it takes more time for execution. it also

depends on the sequences that are being searched for. If more of the protein sequences

being searched for are from Swissprot or SGD and there are a few sequences that are

executed by TBLASTN, then the program takes less time to compute the results as, only

the sequences obtained from TBLASTN take time to execute. On the other hand, if there

are more number of sequences to be executed by TBLASTN and few sequences that

come from the other databases, then the program will take a longer time to compute the

results. However, in any case the program is a faster alternative to manual extraction.

CHAPTER 4

RESULTS AND SCREEN SHOTS

In this section the results that are obtained from the program are going to be discussed.

From the initial insert statement how the accession number and the database shortcut is

extracted is discussed in the program description section. Also how the protein sequence

in FASTA format and the raw protein sequence are obtained is also discussed in the

program description section.

If the database shortcut matches to 'TRE', 'SPR' or 'SPU' then the 'swissprot'

subroutine is executed which connects to the SWISSPROT/TrEMBL website and gets the

corresponding back-translated DNA sequence. As an example, the following protein

sequence entries are taken to demonstrate the output results. The protein sequences are

stored in the file called seq.sql

INSERT INTO p̀rotein` (p̀id ,̀ àccno ,̀ l̀ength ,̀ s̀equence ,̀ òrganism ,̀ t̀axon_id)̀
VALUES (510708,'Q64660',85,'>TRE│Q64660│Q64660 (85 AA) Ferritin H subunit
(Fragment) [Cavia (guinea pigs)]
ASYVYLSMSYYFDRDDVALKNFAKYNLHQSHEEREHAEKLMKLQNQRGGRIFL

QDIKKPDRDDWENGLNAMECALHLEKSVNQSL','Cavia',10140);
INSERT INTO p̀rotein` (p̀id ,̀ àccno ,̀ l̀ength ,̀ s̀equence ,̀ òrganism ,̀ t̀axon_id')
VALUES (510706,'P29389',185,'>SPR P293891FRIH_CRIGR (185 AA) Ferritin heavy
chain (Ferritin H subunit) [Cricetulus griseus (Chinese hamster)]
TTTALTTASPSQVRQNYHQDSEAAINRQINLELYASYVYLSMSCYFDRDDVALK
NFAKYFLHQSHEEREHAEKLMKLQNQRGGRIFLQDIKKPDRDDWESGLNAMEC
ALHLEKSVNQSLLELHKLATDKNDPHLCDFIETHYLNEQVKSIKELGDHVTNLRK
MGAPEAGMAEYLFDKHTLGHSES','Cricetulus griseus',10029);

The command /usr/local/bin/Perl tblastn.pl is used to execute the program.

62

63

Screenshots:

Figure 4.1 (a) The start of the program. User inputs the file name to be executed and the
database and the accession number are displayed. In this case the database shortcut
matches the condition to the 'swissprot' subroutine and the merged URL is mentioned.
Also the program checks if the primary accession number and the accession number from
the insert statements have matched.

Figure 4.1 (b) The figure displays the resulting back-translated DNA sequence for the
first protein sequence in the file. It also shows the immediate execution of the next
protein sequence.

64

Figure 4.1 (c) This figure displays the database and accession number of the second
protein sequence in the file along with the merged URL. It also displays the results for
the second protein sequence.

Figure 4.1 (d) The figure displays the second protein sequence along with its
corresponding back-translated DNA sequence indicating that the DNA sequence has been
obtained from the Swissprot/TrEMBL database. It also indicates that the file has
completed execution and the program has terminated.

65

The results are also written to the 'results_out.txt' file. The screenshot for which is given

below

Figure 4.2 This figure represents the output file 'results_out.txt' to which all the results
obtained from the program are written to. The output file specifies how many protein
sequences are present in the file along with the number of back-translated DNA
sequences extracted from each of the databases. In this case it indicates that there are two
protein sequences in the file and two back-translated DNA sequences have been obtained
from the SWISSPROT/TrEMBL database.

Now, if the database shortcut matches to 'SC' then the 'SGD' subroutine is

executed which connects to the SGD website and gets the corresponding back-translated

DNA sequence. As an example, the following protein sequence entry is taken to

demonstrate the output results. The protein sequence is stored in the file called seq.sql

66

INSERT INTO `protein` (`pids, `accno`, `length`, `sequence`, `organism`, `taxon_id`)
VALUES (516538,'S0003060(NR_SC:SW-N145_YEAST)',1317,'>SC│NR_SC:SW-
N145_YEAST (1317 AA) SW:N145_YEAST P49687 saccharomyces cerevisiae
(bakerVs yeast). nucleoporin nup145 (nuclear pore protein nup145). 2/2003; PIR:A54831
nuclear pore complex protein NUP145 - yeast (Saccharo
MFNKSVNSGFTFGNQNTSTPTSTPAQPSSSLQFPQKSTGLFGNVNVNANTSTPSPS
GGLFNANSNANSISQQPANNSLFGNKPAQPSGGLFGATNNTTSKSAGSLFGNNN
ATANSTGSTGLFSGSNNIASSTQNGGLFGNSNNNNITSTTQNGGLFGKPTTTPAG
AGGLFGNSSSTNSTTGLFGSNNTQSSTGIFGQKPGASTTGGLFGNNGASFPRSGET
TGTMSTNPYGINISNVPMAVADMPRSITSSLSDVNGKSDAEPKPIENRRTYSFSSS
VSGNAPLPLASQSSLVSRLSTRLKATQKSTSPNEIFSPSYSKPWLNGAGSAPLVDD
FFSSKMTSLAPNENSIFPQNGFNFLSSQRADLTELRKLKIDSNRSAAKKLKLLSGT
PAITKKHMQDEQDSSENEPIANADSVTNIDRKENRDNNLDNTYLNGKEQSNNLN KQDGENTLQHEKSSSFGYWCSPSPEQLERLSLKQLAAVSNFVIGRRGYGCITFQH

DVDLTAFTKSFREELFGKIVIFRS SKTVEVYPDEATKPMIGHGLNVPAIITLENVYP VDKKTKKPMKDTTKFAEFQVFDRKLRSMREMNYISYNPFGGTWTFKVNHFSIW

GLVNEEDAEIDEDDLSKQEDGGEQPLRKVRTLAQSKPSDKEVILKTDGTFGTLSG
KDDSIVEEKAYEPDLSDADFEGIEASPKLDVSKDWVEQLILAGSSLRSVFATSKEF
DGPCQNEIDLLFSECNDEIDNAKLIMKERRFTASYTFAKFSTGSMLLTKDIVGKSG
VSIKRLPTELQRKFLFDDVYLDKEIEKVTIEARKSNPYPQISESSLLFKDALDYME
KTSSDYNLWKLSSILFDPVSYPYKTDNDQVKMALLKKERHCRLTSWIVSQIGPEI
EEKIRNSSNEIEQIFLYLLLNDVVRASKLAIESKNGHLSVLISYLGSNDPRIRDLAE LQLQKWSTGGCSIDKNISKIYKLLSGSPFEGLFSLKELESEFSWLCLLNLTLCYGQI

DEYSLESLVQSHLDKFSLPYDDPIGVIFQLYAANENTEKLYKEVRQRTNALDVQF
CWYLIQTLRFNGTRVFSKETSDEATFAFAAQLEFAQLHGHSLFVSCFLNDDKAAE
DTIKRLVMREITLLRASTNDHILNRLKIPSQLIFNAQALKDRYEGNYLSEVQNLLL
GSSYDLAEMAIVTSLGPRLLLSNNPVQNNELKTLREILNEFPDSERDKWSVSINVF
EVYLKLVLDNVETQETIDSLISGMKIFYDQYKHCREVAACCNVMSQEIVSKILEK NNPSIGDSKAKLLELPLGQPEKAYLRGEFAQDLMKCTYKI','Saccharomyces

cerevisiae',4932);

The command /usr/local/bin/Perl tblastn.pl is used to execute the program.

67

Screenshots:

Figure 4.3 (a) The start of the program. User inputs the file name to be executed and the
database and the accession number are displayed. In this case the database shortcut
matches the condition to the 'SGD' subroutine and the first merged URL is mentioned.
The systematic name and the URL formed after merging the systematic name is printed.

Figure 4.3 (b) This figure is the continuation of the program for the Saccharomyces
Cerevisiae protein sequence. It displays the protein sequence in FASTA format and the
corresponding back-translated DNA sequence.

68

Figure 4.3 (c) This figure shows the termination of the program for the Saccharomyces
Cerevisiae protein sequence.

The results are also written to the 'results_out.txt' file similar to the ones shown

above for the swissprot example. The screenshot of the text file in this case is not shown

as it is similar Figure 4.2 with the only exception that the number of sequences in the file

is one and there are zero protein sequences from SWISSPROT/TrEMBL and TBLASTN

and there is one sequence obtained from the SGD database.

If the database shortcut do not match to any of the shortcuts mentioned above then

the 'tblastn' subroutine is executed which connects to the NCBI-BLAST program

TBLASTN to get the corresponding back-translated DNA sequence. As an example, the

following protein sequence entries are taken to demonstrate the output results. The

protein sequences are stored in the file called seq.sql

69

INSERT INTO `protein` (`pids, `accno`, `length`, `sequence`, `organism`, `taxon_id`)
VALUES (510590,'ENSP00000297625',217,'>HS│ENSP00000297625 (217 AA)
Gene :ENSG00000164976 C lone: AL356494 Contig:AL356494'13.1'83750 Chr:9
Basepair:34540243 Status:known
FSLAEVRVGYQSQNISCFFRLVDRDSVWGYDLGLRSLIPAVLTVSMLGYPFILPD
MVGGNAVPQRTAGGDVPERELYIRWLEVAAFMPAMQFSIPPWRYDAEVVAIAQ
KFAALRASLVAPLLLELAGEVTDTGDPIVRPLWWIAPGDETAHRIDSQFLIGDTLL
VAPVLEPGKQERDVYLPAGKWRS YKGELFDKTPVLLTDYPVDLDEIA YFTWAS','
Homo sapiens',9606);
INSERT INTO `protein` (`pids, `accno`, `length`, `sequence`, `organism`, `taxon_id`)
VALUES (510688,'ENSMUSP00000025563',182,'>MM│ENSMUSP00000025563 (182
AA) Gene:EN SMUSG00000024661 Clone:19'9000001-10000000 Contig: 19'9000001 -
10000000 Chr:19 Basepair:9320883 Status:known
MTTASPSQVRQNYHQDAEAAINRQINLELYASYVYLSMSCYFDRDDVALKNFA
KYFLHQSHEEREHAEKLMKLQNQRGGRIFLQDIKKPDRDDWESGLNAMECALH
LEKSVNQSLLELHKLATDKNDPHLCDFIETYYLSEQVKSIKELGDHVTNLRKMG
APEAGMAEYLFDKHTLGHGDES','Mus musculus',10090);
INSERT INTO `protein` (`pids, `accno`, `length`, `sequence`, `organism`, `taxon_id`)
VALUES (510719,'SINFRUP00000151380',177,'>FR│SINFRUP00000151380 (177 AA)
Gene:SINFRUG00000142595 	Clone:scaffold_1408 	Contig:scaffold_1408

Chr:Chr_scaffold_1408 Basepair:11700 Status:known
MSSQVRQNFHQDCEAAINRQINLELYASYVYLSMSYYFDRDDQALHNFAKFFRH
QSHEEREHAEKLMKMQNQRGGRIFLQDVRKPERDEWGSGMEALECALQLEKSV
NQSLLDLHKMCSDHNDPHLCDFIETHFLDEQVKSIKELADWVTNLRRMGAPQN
GMAEYLFDKHTLGKESS','Takifugu rubripes',31033);

The command /usr/local/bin/Perl tblastn.pl is used to execute the program'

Screenshots:

Figure 4.4 (a) The start of the program. User inputs the file name to be executed and the
database and the accession number are displayed. In this case the database shortcut does
not match either to the condition of the 'swissprot' or of the 'SGD' subroutine and the
tblastn subroutine is invoked'

70

Figure 4.4 (b) Displays the execution of the tblastn program stating that the program is
searching the nucleotide database for entries corresponding to the protein sequence and
once the search is complete it retrieves the results. Along with this the accession number
of the nucleotide sequence is displayed and even the information regarding the start and
end positions of the subject or target sequence is printed.

Figure 4.4 (c) This figure displays the protein sequence and the resulting DNA sequence
for the first sequence in the file.

71

Figure 4.4 (d) This figure shows the immediate execution of the second sequence in the
file and shows all the corresponding information that is needed to extract the DNA
sequence.

Figure 4.4 (e) This figure partially displays the output of the second sequence in the file
and the partial execution of the third sequence.

Figure 4.4 (f) The last figure in this group displays the results of the third sequence in
the file and indicated that the file has completed execution and the program has
terminated. All of these screenshots are used to demonstrate the flow of execution of
tblastn.

The results are also written to the 'results_out.txt' file similar to the ones shown

above for the swissprot and the SGD example. The screenshot of the text file in this case

is not shown as it is similar Figure 4.2 with the only exception that the file contains three

sequences and there are zero protein sequences from SWISSPROT/TrEMBL and SGD

and the number of sequences obtained from the execution of the TBLASTN program is

three.

APPENDIX

THE CODE

A Data Gathering Toolkit. for Biological Information Integration
Munira Lokhandwala

This program helps to gather back-translated DNA sequences for given
protein sequences using PERL as the programming language

#!/usr/local/bin/perl

#Include all the modules
use URI::Escape;
use LWP::UserAgent;
use HTTP::Request:Common qw(POST);
use IO::Handle;

#To flush the 10 handle
autoflush STDOUT 1;

#Initializing variables
my $dna_seq;
my $swiss_ctr = 0;
my $yeast_ctr = 0;
my $tblastn_ctr = 0;

#Ask the user to provide the file name in .sql format of the file in which the protein sequences are stored.
#These protein sequences are obtained from the SYSTERS database and are stored in the form of insert
#statements. The filename is collected from the command line and is assigned to the variable
#protein_file_name.

print STDOUT "Please input the Sequence Filename in .sql Format:\n";
my $protein_file_name = <STDIN>;

#Remove any new line character at the end of the file name
chomp ($protein_file_name);

#Open the file and associate the file handle PROTEIN_FILE_NAME with it for readability. If the file does
#not open due to any errors print the information given below and exit

unless (open(PROTEIN_FILE_NAME, $protein_file_name)) #Begin unless

print STDOUT "Cannot open file \"$protein_file_name\"\n\n";
exit;

} #End unless

#Read from the file and remove any white space characters such as a space, tab or newline character to
#make it a one long continuous string of characters and assign it to the variable prot_seq

73

74

while (my $text = <PROTEIN_FILE_NAME>) #Begin while
{

$text =—s/\s//gs;
$prot_seq = $prot_seq.$text;

} #End while

#After the file has been read this command is given to close the file
close PROTEIN_FILE_NAME;

#The split operation is performed at the index of';' to separate the insert statements and store them in an
#array seq_data
my @seq_data = split (/,\d+\);/, $prot_seq);

#The length of the array is determined and is assigned to the variable len_seq_data
my $len_seq_data = @seq_data;

#Create a file to store the output. Assign the file name to the variable output_file
my $output_file = "results_out.txt";

#Open the file and associate the file handle OUTPUT_FILE with it. Also if the file does not open due to
#any errors print the information given below and exit
unless (open(OUTPUT_FILE, ">>$output_file"))#Begin unless

print "Cannot open file \"$output_file\" to write to!!\n\n";
exit;

} #End unless

#To autoflush the file handle
autoflush OUTPUT_FILE 1;

#Print out the length of the seq_data array to determine the number of sequences in a #given file
print OUTPUT_FILE "\n\nNumber of Sequences in this File is: $len_seq_data\n\n";

#Take in one insert statement at a time from the seq_data array
foreach my $i (@seq_data) #Begin foreach

#Initializing variables
my $seq = ";
my $sequence = ";

#Regular Expression to obtain the sequence part of the insert statement the sequence is obtained in
#FASTA format to print it along with the back-translated DNA sequence as output. Also the raw
#protein sequence without the FASTA definition line is also obtained to submit it as query to the
#QBLAST system. The regular expressions given below are used to obtain both these sequences.
#The two if conditions are given depending on what pattern matches to the insert statement

if ($i =~ P(>.*[\n]((([A-Z].*\n)+).*))','/mg) # Begin if

$seq = $2; 	 # Raw protein sequence
$sequence = $I; 	# Protein sequence in FASTA format

#

 Any whitespace character is removed from the raw protein sequence
$seq 	s/\s//gs;

} # End if
if ($i =~ /(>.*\n(([A-Z]).*).*)','/mg)# Begin if

75

$seq = $2;
$sequence = $1;

} # End if

#The Raw protein sequence is assigned to the variable protein_sequence
my $protein_sequence = $seq;

#lnitializing variables
my $db = ";
my $accno = ";

The database shortcut and the accession number from the protein sequence in FASTA format are
#obtained and are assigned to the variables db and accno respectively in order to determine which
#database was the sequence originally obtained from and stored in SYSTERS. Three if conditions

#are mentioned depending upon which pattern matches to the protein sequence in FASTA format.

if ($sequence =~ />(.*)\I(.*)\│.*/mg) 4 Begin if

$db = $ 1; 	# Shortcut to database
$accno = $2; 	# Accession number

}# End if

if ($sequence =~ />(.*)\I(.*) \(\d/mg) # Begin if

$db = $1;

$accno = $2;
} # End if 	
if ($sequence =~ />(.*)\I(.*\.\d+) \(\d/mg) # Begin if

$db = $1;
$accno = $2;

} # End if

print STDOUT "\n\nThe Database Is: $db\n";
print STDOUT "\nThe Accession Number Is: $accno\n\n";

#The below if conditions match the database name and according to the match invoke the
corresponding subroutines. if the database shortcut matches to TRE, SPR, or SPU then the

#swissprot subroutine is invoked and the accession number of the sequence, the protein sequence
#in FASTA format and the raw protein sequence are passed as parameters. if the database shortcut
#matches to SC then the SGD subroutine is invoked and the insert statement along with the

#protein sequence in FASTA format and the raw protein sequence are passed as parameters. else
#the subroutine tblastn is invoked and the protein sequence in FASTA format along with the raw

sequence are passed as parameters.

if (($db eq "TRE") ($db eq "SPR") ($db eq "SPU")) 4 Begin if

&swissprot($accno, $sequence, $protein_sequence);

#This is the counter to indicate how many back-translated DNA sequences are obtained

swissprot/TrEMBL database
$swiss_ctr = $swiss_ctr + 1;

} # End if
elsif ($db eq "SC") # Begin elsif

&SGD($i, $sequence, $protein_sequence);

76

#This is the counter to indicate how many back-translated DNA sequences are obtained
#from SGD database
$yeast_ctr = $yeast_ctr I;

} # End elsif
else

sleep 180;
&tblastn($sequence, $protein_sequence);

End else
End foreach

#This is the counter to indicate how many back-translated DNA sequences are obtained from the NCBI
#TBLASTN program
$tblastn_ctr = $len_seq_data - ($swiss_ctr $yeast_ctr);

print OUTPUT_FILE "\n\nThe Number of Sequences From SWISSPROT/TrEMBL are: "Sswiss_ctr;
print OUTPUT_FILE "\n\nThe Number of Sequences From SGD are: ".$yeast_ctr;
print OUTPUT_FILE "\n\nThe Number of Sequences From TBLASTN are: "$tblastn_ctr;

close OUTPUT_FILE;

End of program
print "\n\nThe File Has Completed Execution And This Is The End Of The Program \n\n";

Exit the program
exit;

Subroutines

#This is where the swissprot subroutine begins. It takes in the accession number, the protein sequence in
#FASTA format and the raw protein sequence as parameters.

sub swissprot

#Initializing variables
my $acc_no = $_[0]; 	 4 Accession number
my $prot_seq = _[1]; 	 # Protein sequence in FASTA format
my $protein_seq = $_[2]; 	4 Raw protein sequence

#A new LWP::UserAgent object is created and the UserAgent is given an identity as Agent 03
#my $ua_swissprot = LWP::UserAgent->new;

$ua_swissprot->agent("Agent03");

#This is the URL of the UniProtKB/Swiss-Prot and the UniProtKB/TrEMBL website, This URL
#when merged with the accession number of the protein sequence displays the web page of the
#protein sequence from where the link to the coding sequence is obtained

my $swissprot_url = "http://ca.expasy.org/uniprot/";
my $merge_url = $swissprot_url.$acc_no; 	# The merged URL

#A new HTTP::Request object is created and the merged URL is passed to the get method of the
#class. The HTTP::Request object is then passed to the request method of the UserAgent object to

77

#send a request to the desired URL and get a response. The response which is obtained from the
#request is stored in a H I I P::Response object

my $req_swissprot = HTTP::Request->new(GET => $merge_url);
my $res_swissprot = Sua_swissprot->request($req_swissprot);

#if the page results into a 410 gone error then that is caught by the status_line method of the
#HTTP::Response class and the tblastn subroutine is invoked

if ($res_swissprot->status_line eq "410 Gone") # Begin if
{

sleep 120;
&tblastn($pro_seq, $protein_seq);
next;

} # End if

#The content of the HTTP::Response object is obtained by the content method of the
#HTTP::Reponse class and it is assigned to a variable & is stored as one continuous string. The
#content in this case is the HTML source of the swissprot protein web page

my $temp_swissprot = $res_swissprot->content;

#if there is a primary accession number present on the page then the code is further executed after
#the if statement else the tblasm subroutine is invoked

#Begin if 	
if($temp_swissprot =~ /Primary accession number<.*\n.*(.*)<Vb>/m)

my $a_no = $1;

#if the primary accession number matches the secondary accession number then the code
#is further executed after the if statement else the tblastn subroutine is invoked

if($a_no eq $acc_no) # Begin if

the coding sequence is present on the webpage then the HTML content of the
#page is parsed and the link to the web page of the nucleotide sequence is
#extracted using regular expressions. if the coding sequence is not present then
#the tblastn subroutine is invoked to get the back- translated DNA sequence

if (($temp_swissprot =~ /\d; -; Genomic_DNA.*\[CoDingSequence<\/a>\]/mg) II ($temp_swissprot =~ /\d; -; mRNA.*\[CoDingSequence<\/a>\]/mg)) # Begin if
{

my $temp_swissprot1 = $1;

$temp_swissprotl =~ s/&/&/g;
my $temp_swissprot2 = $temp_swissprot I ;

if the link to the coding sequence is determined then another
#connection is made to nucleotide web page using the coding sequence

#URL. if the link to the coding sequence is not determined then the
#tblastn subroutine is invoked and executed

78

if ($temp_swissprot 	m/http:\/\/www\.ebi\.ac\.uk\//g)

#Another LWP::UserAgent object is created with identity
#Agent04.
my $ua_ebi = LWP::UserAgent->new;
$ua_ebi->agent("Agent04");

#The URL in this case is the URL of the coding sequence
obtained from the swissprot protein web page

my $ebi_url = $temp_swissprot2;

#A new HTTP::Request object is created and the coding
#sequence URL is passed to the get method of the class. The
#H 1 I P::Request object is then passed to the request method
#of the UserAgent object to send a request to the desired URL
#and get a response. The response which is stored in the
#H 1 I P::Response object

my $req_ebi = HTTP::Request->new(GET => $ebi_url);
my $res_ebi = $uaebi->request($req_ebi);
#The content of the HTTP::Response object is obtained and
#it is assigned to a variable. The content in this case is the
#HTML source of the EBI #nucleotide/coding sequence #webpage

my $temp_ebi = $res_ebi->content;

#From the HTML source the sequence part of the page is then
#extracted using regular expressions. Any whitespace
#characters and numbers are removed and the sequence is

assigned to a variable.
$temp_ebi =~ /(SQ.*\n+ (.*\n+)+)\/\//mg;
my $temp_ebi I = $1;

$temp_ebi I =~ s/SQ.*//gm;
$temp_ebi I =~ s/[^actg]//gm;

#This is the final back-translated DNA sequence obtained
#from swissprot and EBI
$dna_seq = $temp_ebi I ;

#print statements are then executed to print the protein
#sequence in FASTA format and the correspoding back-
#translated DNA sequence on the console as well as write it to
#the output file, results_out

print "\n\nThe protein sequence is:\n\n".$prot_seq."\n\n";
print OUTPUT_FILE "\n\nThe protein sequence

is:\n\n".$prot_seq."\n\n";

print "And the corresponding DNA sequence from
Swissprot/TrEMBL is:\n\n".$dna_seq."\n\n";
print OUTPUT_FILE "And the corresponding DNA sequence
from Swissprot/TrEMBL is:\n\n".$dna_seq."\n\n";

End if
else # Begin else

79

sleep 180;
&tblastn($protein_seq, $prot_seq);

} # End else
} # End if
else # Begin else

sleep 180;
&tblastn($protein_seq, $prot_seq);

} # End else
} End if
else 4 Begin else

sleep 180;
&tblastn($protein_seq, $prot_seq);

End else
} # End if
else # Begin else

sleep 180;
&tblastn($protein_seq, $prot_seq);

} # End else
End sub

This is where the SGD subroutine begins. It takes in the insert statement, the protein sequence in FASTA
#format and the raw protein sequence as parameters.

sub SGD

my $prot_seq = $_[0]; 	 # insert statment
my $seq =]; 	 # protein sequence in FASTA format
my $p_seq = $_[2]; 	 # raw protein sequence
my $dna_sequence;

#The if condition checks to see if there is an accession number mentioned in the insert statmenent
#and if is present it extracts the accession number assigns it to a variable using regular

#expressions. However, if the accession number is not mentioned then the tblastn subroutine is #invoked

if ($prot_seq 	/\(\d+,'(.*)\(.*\)'/m) # Begin if

my $prot_acc_no = $1;

4A new LWP::UserAgent object is created and the UserAgent is given an identity as
#Agent 05
my $ua_yeastgenome = LWP::UserAgent->new;
$ua_yeastgenome->agent("Agent05");

#This is the URL of the SGD website to link to it. This URL when merged with the
#accession number of the protein, which is obtained as above from the insert statment,
#sequence displays the web page of the protein sequence. From this page the systematic
#name of the protein is obtained which helps to determine the coding sequence
my $yeastgenome_url = "http://db.yeastgenome.org/cgi-bin/locus.pl?sgdid=";

#This is URL merged with the accession number
my $merge_url = $yeastgenome_url.$prot_acc_no;

80

#A new HTTP::Request object is created and the merged URL is passed to get method of

#the class. The HTTP::Request object is then passed to the request method of the
#UserAgent object to send a request to the desired URL and get a response. The response

#which is obtained from the request is stored in the HTTP::Response object

my $req_yeastgenome = HTTP::Request->new(GET => $rnerge_url);
my $res_yeastgenome = $ua_yeastgenome->request($req_yeastgenome);

The content of the HTTP::Response object is obtained and it is assigned to a variable.

#The content in this case is the HTML source of the SGD protein web page
my $temp_yeastgenome = $res_yeastgenome->content;

#There are two pattern matches in order to obtain the systematic name of the portein. if
#either of them match to the HTML source content then the systematic name is extracted

#from the content and is assigned to a variable. else if neither of the patterns match then
#the tblastn subroutine is invoked
if ($temp_yeastgenome =~ /Systematic Name.*"top">(.*)<\/td><\/tr><\/table>.*Alias/m)

{
$temp I _yeastgenome = $1 ;

elsif ($temp_yeastgenome =~ /Systematic
Name.*"top">(.*)<\/td><\/tr><\/table>.*Feature Type/m)

$temp1_yeastgenome = $1;

else

sleep 120;
&tblastn($seq, $p_seq);

}

#Once the systematic name is extracted A new LWP::UserAgent object is created and the
#UserAgent is given an identity as Agent 06
my $ua_yeastgen = LWP::UserAgent->new;
$ua_yeastgen->agent("Agent06");

#This is the URL of the SGD website where the coding sequence for the corresponding
protein sequence can be obtained. However the systematic name has to be merged with

#the URL in order to complete it. This URL when merged with the systematic name of
#the protein sequence displays the web page of the coding sequence.

my $yeastgen_url = "http://db.yeastgenome.org/cgi-bin/getSeq?seq=";

my $yeastgen_url_merge = "&flankl=0&flankr=0&map=n3map";
my $yeastgen_merged_url = $yeastgen_url.$temp1_yeastgenome.$yeastgen_url_merge;

#A new HTTP::Request object is created and the merged URL is passed to the get
#method of the class. The HTTP::Request object is then passed to the request method of
#the UserAgent object to send a request to the desired URL and get a response. The
response which is obtained from the request is stored in the HTTP::Response object

my $req_yeastgen =HTTP::Request->new(GET => $yeastgen_merged_url);
my $res_yeastgen = $ua_yeastgen->request($req_yeastgen);

81

#The content of the H I I P::Response object is obtained and it is assigned to a variable.
#The content in this case is the HTML source of the SGD nucleotide/coding sequence
#webpage
my $temp_yeastgen = $res_yeastgen->content;

#From the HTML source the nucleotide sequence part of the web page is then extracted
#using regular expressions. if the nucleotide sequence is not found on the page then the
#tblastn subroutine is invoked. Any whitespace characters and numbers are removed and
#the sequence is assigned to a variable.
if ($temp_yeastgen =~ 	/<pre>>.*\n(([ACTG].*\n)+)<\/pre>/m) # Begin if

$temp1 veastgen = $ I ;
$temp1_yeastgen =~ s/\n//g;

$dna_sequence = $temp1_yeastgen;

#This is the final back-translated DNA sequence obtained from SGD
Sdna_sequence =~ tr/ATCG/atcg/;

#print statements are then executed to print the protein sequence in FASTA
#format and the corresponding back-translated DNA sequence on the console as
#well as write it to the output file, results out

print STDOUT "\n\nThe protein sequence is:\n\n".$seq."\n\n";
print OUTPUT_FILE "\n\nThe protein sequence is:\n\n".$seq."\n\n";

print STDOUT "And the corresponding DNA sequence from YeastGenome
is:\n\n".$dna_sequence."\n\n";
print OUTPUT_FILE "And the corresponding DNA sequence from
YeastGenome is:\n\n".$dna_sequence."\n\n";

} # End if
else # Begin else

sleep 120;
&tblastn($seq, $p_seq);

End else
1 4 End if
else # Begin else

sleep 120;
&tblastn($seq, $p_seq);

1 } # End else
} # End sub

#This is from where the tblastn routine begins. It takes in the protein sequence in FASTA format and the
#raw protein sequence as parameters.

sub tblastn

my $flag = 0; 	 # Flag is set
my $prot_seq = $_[1]; 	 # Protein sequence in FASTA format

#A new LWP::UserAgent object is created and the UserAgent is given an identity as Agent 01
my $ua_tblastn = LWP::UserAgent->new;
Sua_tblastn-> agent("Agent01");

82

#The put command of the URL API is formed and is assigned to the variable args. The query
#parameter specifies the raw protein sequence. Database specifies the nucleotide database with

#which the query sequence is compared. The hitlist_size indicates that only the first hit is to be
#returned from the result set and the program specifies that tblastn is to be executed.

my $args =
"CMD=Put&QUERY=$_[0]&DATABASE=nr&HITLIST_SIZE=1&FILTER=L&EXPECT=1&FORMAT
TYPE=HTML&PROGRAM=tblastn&CLIENT=web&SERVICE=plain&NCBI_Gl=on&PAGE=nucleoti

des";

#A new HTTP::Request object is created and put command that is formed and assigned to args is
#passed to the get method of the class. The HTTP::Request object is then passed to the request
#method of the UserAgent object which in turn passes the command to the the QBLAST system
#and get a response. The response is stored in the HTTP::Response object

my $req_tblastn = HTTP::Request->new(POST => http://www.ncbi.nlm.nih.gov/blast/Blast.cgi");
$req_tblastn->content_type ("application/x-www-form-urlencoded");
$req_tblastn->content($args);
my $res_tblastn = $ua_tblastn->request($req_tblastn);

From the response that is obtained from the QBLAST system, the RID and the remaining time of
#execution are determined and are assigned to their corresponding variables. The content of this
#HTTP:Response object is the tblastn intermediate result page where the formatting options can
#be set

$res_tblastn->content 	1^ RID = (.*$)/m;
my $rid=$1;

$res_tblastn->content =~ /^ RTOE = (.*$)/m;
my $rtoe=$1;

#The program is made to halt in an intermediate state till tblastn does not complete execution and
#send the results
sleep $rtoe;

#while the program is in the intermediate state till the time of execution is completed a new
#H 	I I P::Request object is created and the get command of the URL API is passed to the QBLAST
#system specifying the request ID of the input query request The HTTP::Request object is then
#passed to the request method of the UserAgent object to send a request to the desired URL and
#get a response. The response which is obtained from the request is stored in the HTTP::Response
#object

while (true) # Begin while

sleep 5; 	# Another 5 seconds delay is specified
$req_tblastn = HTTP::Request->new(GET =>

"http://www.ncbi.nlm.nih.gov/blast/Blast.cgi?CMD=Get&FORMAT_OBJECT=SearchInfo&RID=$rid");
$res_tblastn = $ua_tblastn->request($req_tblastn);

#The content of this HTTP:Response object is the tblastn intermediate waiting page
#which specifies the status of the current request being processed, the Request ID for
#which is passed. From this response that is obtained from the QBLAST system, the
#status of execution is determined and depending upon the status the different if

conditions are executed.

$response = $res_tblastn->content;

83

#if the status is shown as WAITING then the print statement 'Searching...'
#is execute to display to the user that the search is taking place
if ($res_tblastn->content =~ / \tStatus=WAITING/m) # Begin if

print STDOUT "Searching...\n";
next;

1 # End if

#if the status results in FAILED then the protein sequence along with the error message is
#written to the output file and the program exits the subroutine

if ($res_tblastn->content =~ /\tStatus=FAILED/m) 4 Begin if
{

print OUTPUT_FILE "\n\nThe protein sequence is:\n\n".$prot_seq."\n\n";
print OUTPUT_FILE "Search $rid failed;please report to blast-

help\@ncbi.nlm.nih.gov.\n";
$flag = 0;
last;

} # End if

#if the status results in UNKNOWN then the protein sequence along with the error
#message is written to the output file and the program exits the subroutine
if ($res_tblastn->content =~ /\tStatus=UNKNOWN/m) # Begin if

print OUTPUT_FILE "\n\nThe protein sequence is:\n\n".$prot_seq."\n\n";
print OUTPUT_FILE "Search $rid expired.\n";
$flag = 0;
last;

} # End if

#and if the status results in READY, that is the search is complete, then it checks to see if
#any hits are returned or there are no hits pertaining to the query sequence. if there are

#hits then the flag is set to I and the program, control leaves while loop and if there are no
#hits found then the protein sequence along with the error message is written to the
#output file and the program exits the subroutine
if ($res_tblastn->content =~ /\tStatus=READY/m) # Begin if

if ($res_tblastn->content =~ /\tThereAreHits=yes/m) 4 Begin if

{
print STDOUT "Search complete, retrieving results...\n";
$flag = 1;
last;

} # End if
else # Begin else

print OUTPUT_FILE "\n\nThe protein sequence
is:\n\n".$prot_seq." \n\n";
print OUTPUT_FILE "No hits found.\n";
$flag = 0;
last;

End else
4 End if

#if none of the above conditions are fulfilled the program control reaches this part and it
#indicates that there is something unexpected happened with the execution of tblastn.
#When NCBI blocks access to the code this part of the code is executed

84

print "\n\nif we get here, something unexpected happened.\n\n";
} # End while

#if there are any hits to the input query sequence then the flag is set to I and the program begins
#executing at this point

if ($flag == 1) # Begin if

#A new H I 1 P::Request object is created and the get command of the URL API is passed
#to the QBLAST system specifying the request ID to get the results pertaining to the
#RID. The H Ii P::Request object is then passed to the request method of the UserAgent
#object to send a request to the desired URL and get a response. The response which is
obtained from the request is stored in the HTTP::Response object

$req_tblastn = HTTP::Request->new(GET =>
"http://www.ncbi.nlm.nih.gov/blast/Blast.cgi?CMD=Get&FORMAT_TYPE=Text&RID=$rid");
$res_tblastn = $ua_tblastn->request($req_tblastn);

#The content of this HTTP:Response object is the blast results page which gives the
#results pertaining to the input query sequence. The NCBI BLAST graphic display along
#with the hits and alignments sections are mentioned on this web page. The content is
assigned to a variable as a string

my $tblastn_results_page = $res_tblastn->content;

#From the response that is obtained from the QBLAST system, the accession number of
#the nucleotide sequence is extracted and assisgned to a variable. Also the start and, end
#positions of the subject sequence or the nucleotide sequence is extracted. To do this
#only the alignment section of the result page is taken and further operations are
#performed using regular expressions to obtain what is needed to get the back-translated
#DNA sequence from the nucleotide web page

my $temp0 = $tblastn_results_page;
$temp0 =~ /^>.*\|(.*)\.\d+\|/gm;
$accno = $ 1;

my $temp I = $tblastn_results_page;
$temp 1 =— s/.*^ALIGNMENTS//ms;
my $temp2 = $temp 1;

my $temp3 = $temp2;
$temp3 =~ s/^ Database:.*//ms;
my $temp4 = $temp3;

my @arr = split (/Score/, $temp4);
my $len = @arr;
my $seq_tblastn = @arr[1];

my $protein = join (" , ($seq_tblastn =~ /^Sbjct.*\n/gm));
my $subject_range = join('..', ($protein =~ /(\d+).*\D(\d+)/s));
my @start_end = 	$subject_range);

my $temp_start = $start_end[0];
my $temp_end = $start_end[1];

85

my $start_position;
my $end_position;

#if the value of the start position is lesser than the value of the end position then the back-
#translated DNA sequence in on the plus strand. However if the value of the start position

greater then the value of the end position then the nucleotide sequence is located on
#the minus strand. In this case, in order to read the nucleotide sequence from the web

#page the values of the start and end positions are reversed

if ($temp_start < $temp_end) # Begin if
{

$start_position = $temp_start;
$end_position = $temp_end;

} # End if
else # Begin else to reverse the values.

$start_position = $temp_end;
$end_position = $temp_start;

End else

#A new LWP::UserAgent object is created and the UserAgent is given an identity as
#Agent 02
my $ua_genbank = LWP::UserAgent->new;
$ua_genbank->agent("Agent02");

#A new H I I P::Request object is created and the URL to the GenBank nucleotide web
#page is passed to the get method of the class. The 	I P::Request object is then passed
#to the request method of the UserAgent object to send a request to the desired URL and
#get a response, The response which is stored in the HTTP::Response object

my $req_genbank = HTTP::Request->new(GET =>
"http://www.ncbi.n1m.nih.gov/entrez/viewer.fcgi?txt=yes\&Iist_uids=$acc_no\&db=n");

my $res_genbank = $ua_genbank->request($req_genbank);

#The content of the HTTP::Response object is obtained and it is assigned to a variable.
#The content in this case is the HTML source of the NCBI #nucleotide webpage
my $temp5 = $res_genbank->content;

#From the source of the webpage the nucleotide sequence is obtained using the regular
expressions given below. This is the entire nucleotide sequence from which the
back-translated DNA sequence needs to be extracted. This part of the page is stored in an #array

$temp5 =~ s/.*ORIGIN//ms;
my @seq_genbank = $temp5;

#Initializing variables
my $d_seq;
my $line_seq = ";

#each line from the array is then taken, the whitespace characters are removed along with
#any line numbers and the all the lines are merged together and stores it as a one long
#continuous string. This string is #assigned to the variable line_seq

foreach my $line2 (@seq_genbank)

86

chomp($line2);

$d_seq = $line2;
$d_seq 	=~ s/[^acgt]//g;
$line_seq .= $d_seq;

#To obtain the back-translated DNA sequence ranging from the start position to the end
#position the substr function is used to extract the part of the DNA sequence between the
#start and end positions from the string stored in line_seq and assigns the back-translated
#DNA sequence to the final_DNA variable

my $final_DNA = substr($line_seq, $start_position-1, $end_position-($start_position-1));

#In case the back-translated DNA sequence lies on the minus strand
if ($start_position > $end_position) # Begin if

#Print the protein sequence in FASTA format from the .sql file

print "\n\nThe protein sequence is:\n\n".$prot_seq."\n\n";
print OUTPUT_FILE "\n\nThe protein sequence is:\n\n".$prot_seq."\n\n";

#Calculating the reverse complement
#Copying the intermediate DNA result into a new variable
#Subsititute all the bases by their complement using the tr function
#A -> T, T -> A, C -> 0, -> C.

my $revcom = reverse $final_DNA;
$revcom =~ tr/ACGTacgt/TGCAtgca/;

#Print the reverse complement back-translated DNA sequence obtained from
#TBLASTN
print "And the corresponding DNA sequence from TBLASTN
is:\n\n".$revcom."\n\n";
print OUTPUT_FILE "And the corresponding DNA sequence from TBLASTN
is:\n\n".$revcom."\n\n";

else

#Print the protein sequence in FASTA format from the .sql file
print "\n\nThe protein sequence is:\n\n".$prot_seq."\n\n";
print OUTPUT_FILE "\n\nThe protein sequence is:\n\n".$prot_seq."\n\n";

#Print the back-translated DNA sequence obtained from tblastn
print "And the corresponding DNA sequence from TBLASTN
is:\n\n".$final_DNA."\n\n";
print OUTPUT_FILE "And the corresponding DNA sequence from TBLASTN
is:\n\n".$final_DNA."\n\n";

REFERENCES

[1] DW. (1999, May). NCBI News: QBLAST Provides Quick Reformat Feature. NCBI,
MD. [Online]. Available:

lm.nih.gov/Web/Newsltr/Summer99/qblast.html

[2] NCBI. (2002, Oct.). BLAST: QBlast's URL API User's Guide. NCBI, MD. [Online]
Available: http://www.ncbi.nlm.nih.govlblast/Doc/urlapi.html.

[3] Jean-Michael Claverie and Cedric Notredame, Bioinformatics for Dummies.
Hoboken, New Jersey: Wiley, John & Sons, Incorporated, 2003.

[4] C.S.V Murthy, Bioinformatics. Mumbai, India: Himalaya Publishing House, 2003.

[5] A. Krause, J. Stoye and M. Vingron, "The SYSTERS protein sequence cluster set,"
Nucleic Acids Research, vol. 28(1), pp. 270-272, Jan. 2000.

[6] Antje Krause, Hannes Luz, Eike Staub, Jens Stoye, Heiko Schmidt, Martin Vingron,
Thomas Meinel, Pierre Nicodeme and Marc Rehmsmeier. (2006, Feb.).
SYSTERS Database Searching and Clustering. MPI for Molecular Genetics
Computational Molecular Biology, Germany. [Online]. Available:
http://systers.molgen.mpg.de/cgi-bin/info.pl#systersinfo.

[7] Genetic Sequence Data Bank. (2006, Apr.). NCBI-GenBank Flat File Release 153.0.
GenBank, NCBI, MD. [Online]. Available:
ftp://ftp.ncbi.nih.gov/genbank/gbrel.txt.

[8] Brigitte Boeckmann, Amos Bairoch, Rolf Apweiler, Marie-Claude Blatter, Anne
Estreicher, Elisabeth Gasteiger, Maria J. Martin, Karine Michoud, Claire
O'Donovan, Isabelle Phan, Sandrine Pilbout and Michel Schneider, "The SWISS-
PROT protein knowledgebase and its supplement TrEMBL in 2003," Nucleic
Acids Research, vol. 31(1), pp. 365-370, Jan. 2003.

[9] Swiss-Prot Protein Knowledgebase and TrEMBL Computer-Annotated Supplement
to Swiss-Prot. (2006, May). Swiss-Prot Protein Knowledgebase Release 49.6
Statsitics. SwissProt/TrEMBL, Geneva. [Online]. Available:
http://ca.expasy.org/sprot/relnotes/relstat.html

[10] Swiss-Prot Protein Knowledgebase and TrEMBL Computer-Annotated Supplement
to Swiss-Prot. (2006, May). UniProtKB/TrEMBL Protein Database Release
32.6 Statsitics. SwissProt/TrEMBL, Geneva. [Online]. Available:
http://www.ebi.ac.uk/swissprot/sptr stats/index.html.

[11] ELG. (2005 Dec.). UniProtKB/Swiss-Prot. SwissProt/TrEMBL, Geneva. [Online].
Available: http://www.expasy.org/sprot/sprot _details.html.

87

88

[12] Amos Bairoch, Rolf Apweiler, Cathy H. Wu, Winona C. Barker, Brigitte
Boeckmann, Serenella Ferro, Elisabeth Gasteiger, Hongzhan Huang and Rodrigo
Lopez. (2005, Jan.). The Universal Protein Resource (UniProt). Nucleic Acids
Research. [Online]. 33, Database Issue: D154-D159. Available:
http://nar.oxfordjournals.org/cgi/reprint/33/suppl_1/D154.

[13] Jodi E. Hirschman, Rama Balakrishnan, Karen R. Christie, Maria C. Costanza,
Selina S. Dwight, Stacia R. Engel, Dianna G. Fisk, Eurie L. Hong, Michael S.
Livstone, Robert Nash, Julie Park, Rose Oughtred, Marek Skrzypek, Barry Starr,
Chandra L. Theesfeld, Jennifer Williams, Rey Andrada, Gail Binkley and Qing
Dong. (2006, Jan.). Genome Snapshot: a new resource at the Saccharomyces
Genome Database (SGD) presenting an overview of the Saccharomyces
cerevisiae genome. Nucleic Acids Research. [Online]. 34, Database Issue: D442-
D445. Available: http://nar.oxfordjournals.org/c2i/reprint/34/suppl_1/D442.

[14] Scott McGinnis and Thomas L. Madden. (2004, Jul.). BLAST: at the core of a
powerful and diverse set of sequence analysis tool. Nucleic Acids Research.
[Online]. 32, Web Server Issue: W20-W25. Available:
http://www.pubmedcentral .ov/picrender.fcg,i?artid=441573&blabtvpe=pdf.

[15] Ian Korf, Mark Yandell and Joseph Bedell, BLAST. Sebastopol, CA: O'Reilly,
2000.

[16] James Tisdall, Beginning Perl For Bioinformatics. Sebastopol, CA: O'Reilly, 2001.

[17] Randal L. Schwartz, Tom Phoenix and Brian D Foy, Learning Pen, 3rd ed.
Sebastopol, CA: O'Reilly, 2001.

[18] FBI Support. (2006, Feb.). EMBL-EBI: About the EMBL-EBI. EMBL-EBI, UK.
[Online]. Available:

http://www.ebi.ac.uk/Information/AboutEBI/ about ebi.html.

	A data gathering toolkit for biological information integration
	Recommended Citation

	Copyright Warning & Restrictions
	Personal Information Statement
	Abstract
	Title Page
	Approval Page
	Biographical Sketch
	Acknowledgement
	Dedication
	Table of Contents (1 of 2)
	Table of Contents (2 of 2)
	Chapter 1: Introduction
	Chapter 2: Description of Tools
	Chapter 3: The Program for Data Collection
	Chapter 4: Results and Screen Shots
	Appendix: The Code
	References

	List of Tables
	List of Figures (1 of 5)
	List of Figures (2 of 5)
	List of Figures (3 of 5)
	List of Figures (4 of 5)
	List of Figures (5 of 5)

	List of Terms (1 of 5)
	List of Terms (2 of 5)
	List of Terms (3 of 5)
	List of Terms (4 of 5)
	List of Terms (5 of 5)

