87 research outputs found

    An Overview of MCC and Its Research

    Get PDF
    Viewgraphs on Microelectronics and Computer Technology Corporation (MCC) are presented. The MCC is a cooperative enterprise whose mission is to strengthen and sustain America's competitiveness in information technologies. Their objective is excellence in meeting broad industry needs through application-driven research, development, and timely deployment of innovative technology. Research programs include: software technology; VLSI/computer aided design; packaging/interconnect; electronic applications of high temperature superconductors; and advanced computing technology

    Advanced information processing system for advanced launch system: Hardware technology survey and projections

    Get PDF
    The major goals of this effort are as follows: (1) to examine technology insertion options to optimize Advanced Information Processing System (AIPS) performance in the Advanced Launch System (ALS) environment; (2) to examine the AIPS concepts to ensure that valuable new technologies are not excluded from the AIPS/ALS implementations; (3) to examine advanced microprocessors applicable to AIPS/ALS, (4) to examine radiation hardening technologies applicable to AIPS/ALS; (5) to reach conclusions on AIPS hardware building blocks implementation technologies; and (6) reach conclusions on appropriate architectural improvements. The hardware building blocks are the Fault-Tolerant Processor, the Input/Output Sequencers (IOS), and the Intercomputer Interface Sequencers (ICIS)

    High Level Synthesis of Neural Network Chips

    Get PDF
    This thesis investigates the development of a silicon compiler dedicated to generate Application-Specific Neural Network Chips (ASNNCs) from a high level C-based behavioural specification language. The aim is to fully integrate the silicon compiler with the ESPRIT II Pygmalion neural programming environment. The integration of these two tools permits the translation of a neural network application specified in nC, the Pygmalion's C-based neural programming language, into either binary (for simulation) or silicon (for execution in hardware). Several applications benefit from this approach, in particular the ones that require real-time execution, for which a true neural computer is required. This research comprises two major parts: extension of the Pygmalion neural programming environment, to support automatic generation of neural network chips from the nC specification language; and implementation of the high level synthesis part of the neural silicon compiler. The extension of the neural programming environment has been developed to adapt the nC language to hardware constraints, and to provide the environment with a simulation tool to test in advance the performance of the neural chips. Firstly, new hardware-specific requisites have been incorporated to nC. However, special attention has been taken to avoid transforming nC into a hardware-oriented language, since the system assumes minimum (or even no) knowledge of VLSI design from the application developer. Secondly, a simulator for neural network hardware has been developed, which assesses how well the generated circuit will perform the neural computation. Lastly, a hardware library of neural network models associated with a target VLSI architecture has been built. The development of the neural silicon compiler focuses on the high level synthesis part of the process. The goal of the silicon compiler is to take nC as the input language and automatically translate it into one or more identical integrated circuits, which are specified in VHDL (the IEEE standard hardware description language) at the register transfer level. The development of the high level synthesis comprises four major parts: firstly, compilation and software-like optimisations of nC; secondly, transformation of the compiled code into a graph-based internal representation, which has been designed to be the basis for the hardware synthesis; thirdly, further transformations and hardware-like optimisations on the internal representation; and finally, creation of the neural chip's data path and control unit that implement the behaviour specified in nC. Special attention has been devoted to the creation of optimised hardware structures for the ASNNCs employing both phases of neural computing on-chip: recall and learning. This is achieved through the data path and control synthesis algorithms, which adopt a heuristic approach that targets the generated hardware structure of the neural chip in a specific VLSI architecture, namely the Generic Neuron. The viability, concerning the effective use of silicon area versus speed, has been evaluated through the automatic generation of a VHDL description for the neural chip employing the Back Propagation neural network model. This description is compared with the one created manually by a hardware designer

    Shuttle Ground Operations Efficiencies/Technologies (SGOE/T) study. Volume 2: Ground Operations evaluation

    Get PDF
    The Ground Operations Evaluation describes the breath and depth of the various study elements selected as a result of an operational analysis conducted during the early part of the study. Analysis techniques used for the evaluation are described in detail. Elements selected for further evaluation are identified; the results of the analysis documented; and a follow-on course of action recommended. The background and rationale for developing recommendations for the current Shuttle or for future programs is presented

    Appendix B: Rapid development approaches for system engineering and design

    Get PDF
    Conventional processes often produce systems which are obsolete before they are fielded. This paper explores some of the reasons for this, and provides a vision of how we can do better. This vision is based on our explorations in improved processes and system/software engineering tools

    Appendix C: Rapid development approaches for system engineering and design

    Get PDF
    Conventional system architectures, development processes, and tool environments often produce systems which exceed cost expectations and are obsolete before they are fielded. This paper explores some of the reasons for this and provides recommendations for how we can do better. These recommendations are based on DoD and NASA system developments and on our exploration and development of system/software engineering tools

    New Technologies for Space Avionics, 1993

    Get PDF
    The report reviews a 1993 effort that investigated issues associated with the development of requirements, with the practice of concurrent engineering and with rapid prototyping, in the development of a next-generation Reaction Jet Drive Controller. This report details lessons learned, the current status of the prototype, and suggestions for future work. The report concludes with a discussion of the vision of future avionics architectures based on the principles associated with open architectures and integrated vehicle health management

    Fourth Conference on Artificial Intelligence for Space Applications

    Get PDF
    Proceedings of a conference held in Huntsville, Alabama, on November 15-16, 1988. The Fourth Conference on Artificial Intelligence for Space Applications brings together diverse technical and scientific work in order to help those who employ AI methods in space applications to identify common goals and to address issues of general interest in the AI community. Topics include the following: space applications of expert systems in fault diagnostics, in telemetry monitoring and data collection, in design and systems integration; and in planning and scheduling; knowledge representation, capture, verification, and management; robotics and vision; adaptive learning; and automatic programming

    First Annual Workshop on Space Operations Automation and Robotics (SOAR 87)

    Get PDF
    Several topics relative to automation and robotics technology are discussed. Automation of checkout, ground support, and logistics; automated software development; man-machine interfaces; neural networks; systems engineering and distributed/parallel processing architectures; and artificial intelligence/expert systems are among the topics covered
    • …
    corecore