50,882 research outputs found

    Towards modelling group-robot interactions using a qualitative spatial representation

    Get PDF
    This paper tackles the problem of finding a suitable qualitative representation for robots to reason about activity spaces where they carry out tasks interacting with a group of people. The Qualitative Spatial model for Group Robot Interaction (QS-GRI) defines Kendon-formations depending on: (i) the relative location of the robot with respect to other individuals involved in that interaction; (ii) the individuals' orientation; (iii) the shared peri-personal distance; and (iv) the role of the individuals (observer, main character or interactive). The evolution of Kendon-formations between is studied, that is, how one formation is transformed into another. These transformations can depend on the role that the robot have, and on the amount of people involved.Postprint (author's final draft

    Methodology and themes of human-robot interaction: a growing research field

    Get PDF
    Original article can be found at: http://www.intechweb.org/journal.php?id=3 Distributed under the Creative Commons Attribution License. Users are free to read, print, download and use the content or part of it so long as the original author(s) and source are correctly credited.This article discusses challenges of Human-Robot Interaction, which is a highly inter- and multidisciplinary area. Themes that are important in current research in this lively and growing field are identified and selected work relevant to these themes is discussed.Peer reviewe

    An empirical framework for human-robot proxemics

    Get PDF
    The work described in this paper was conducted within the EU Integrated Projects COGNIRON ("The Cognitive Robot Companion") and LIREC (LIving with Robots and intEractive Companions) and was funded by the European Commission under contract numbers FP6- 002020 and FP7-215554.An empirical framework for Human-Robot (HR) proxemics is proposed which shows how the measurement and control of interpersonal distances between a human and a robot can be potentially used by the robot to interpret, predict and manipulate proxemic behaviour for Human-Robot Interactions (HRIs). The proxemic framework provides for incorporation of inter-factor effects, and can be extended to incorporate new factors, updated values and results. The framework is critically discussed and future work proposed

    "Involving Interface": An Extended Mind Theoretical Approach to Roboethics

    Get PDF
    In 2008 the authors held Involving Interface, a lively interdisciplinary event focusing on issues of biological, sociocultural, and technological interfacing (see Acknowledgments). Inspired by discussions at this event, in this article, we further discuss the value of input from neuroscience for developing robots and machine interfaces, and the value of philosophy, the humanities, and the arts for identifying persistent links between human interfacing and broader ethical concerns. The importance of ongoing interdisciplinary debate and public communication on scientific and technical advances is also highlighted. Throughout, the authors explore the implications of the extended mind hypothesis for notions of moral accountability and robotics

    Internet of robotic things : converging sensing/actuating, hypoconnectivity, artificial intelligence and IoT Platforms

    Get PDF
    The Internet of Things (IoT) concept is evolving rapidly and influencing newdevelopments in various application domains, such as the Internet of MobileThings (IoMT), Autonomous Internet of Things (A-IoT), Autonomous Systemof Things (ASoT), Internet of Autonomous Things (IoAT), Internetof Things Clouds (IoT-C) and the Internet of Robotic Things (IoRT) etc.that are progressing/advancing by using IoT technology. The IoT influencerepresents new development and deployment challenges in different areassuch as seamless platform integration, context based cognitive network integration,new mobile sensor/actuator network paradigms, things identification(addressing, naming in IoT) and dynamic things discoverability and manyothers. The IoRT represents new convergence challenges and their need to be addressed, in one side the programmability and the communication ofmultiple heterogeneous mobile/autonomous/robotic things for cooperating,their coordination, configuration, exchange of information, security, safetyand protection. Developments in IoT heterogeneous parallel processing/communication and dynamic systems based on parallelism and concurrencyrequire new ideas for integrating the intelligent “devices”, collaborativerobots (COBOTS), into IoT applications. Dynamic maintainability, selfhealing,self-repair of resources, changing resource state, (re-) configurationand context based IoT systems for service implementation and integrationwith IoT network service composition are of paramount importance whennew “cognitive devices” are becoming active participants in IoT applications.This chapter aims to be an overview of the IoRT concept, technologies,architectures and applications and to provide a comprehensive coverage offuture challenges, developments and applications
    • 

    corecore