9,607 research outputs found

    Robust Temporally Coherent Laplacian Protrusion Segmentation of 3D Articulated Bodies

    Get PDF
    In motion analysis and understanding it is important to be able to fit a suitable model or structure to the temporal series of observed data, in order to describe motion patterns in a compact way, and to discriminate between them. In an unsupervised context, i.e., no prior model of the moving object(s) is available, such a structure has to be learned from the data in a bottom-up fashion. In recent times, volumetric approaches in which the motion is captured from a number of cameras and a voxel-set representation of the body is built from the camera views, have gained ground due to attractive features such as inherent view-invariance and robustness to occlusions. Automatic, unsupervised segmentation of moving bodies along entire sequences, in a temporally-coherent and robust way, has the potential to provide a means of constructing a bottom-up model of the moving body, and track motion cues that may be later exploited for motion classification. Spectral methods such as locally linear embedding (LLE) can be useful in this context, as they preserve "protrusions", i.e., high-curvature regions of the 3D volume, of articulated shapes, while improving their separation in a lower dimensional space, making them in this way easier to cluster. In this paper we therefore propose a spectral approach to unsupervised and temporally-coherent body-protrusion segmentation along time sequences. Volumetric shapes are clustered in an embedding space, clusters are propagated in time to ensure coherence, and merged or split to accommodate changes in the body's topology. Experiments on both synthetic and real sequences of dense voxel-set data are shown. This supports the ability of the proposed method to cluster body-parts consistently over time in a totally unsupervised fashion, its robustness to sampling density and shape quality, and its potential for bottom-up model constructionComment: 31 pages, 26 figure

    Surface and Volumetric Segmentation of Complex 3-D Objects Using Parametric Shape Models

    Get PDF
    The problem of part definition, description, and decomposition is central to the shape recognition systems. In this dissertation, we develop an integrated framework for segmenting dense range data of complex 3-D scenes into their constituent parts in terms of surface and volumetric primitives. Unlike previous approaches, we use geometric properties derived from surface, as well as volumetric models, to recover structured descriptions of complex objects without a priori domain knowledge or stored models. To recover shape descriptions, we use bi-quadric models for surface representation and superquadric models for object-centered volumetric representation. The surface segmentation uses a novel approach of searching for the best piecewise description of the image in terms of bi-quadric (z = f(x,y)) models. It is used to generate the region adjacency graphs, to localize surface discontinuities, and to derive global shape properties of the surfaces. A superquadric model is recovered for the entire data set and residuals are computed to evaluate the fit. The goodness-of-fit value based on the inside-outside function, and the mean-squared distance of data from the model provide quantitative evaluation of the model. The qualitative evaluation criteria check the local consistency of the model in the form of residual maps of overestimated and underestimated data regions. The control structure invokes the models in a systematic manner, evaluates the intermediate descriptions, and integrates them to achieve final segmentation. Superquadric and bi-quadric models are recovered in parallel to incorporate the best of the coarse-to-fine and fine-to-coarse segmentation strategies. The model evaluation criteria determine the dimensionality of the scene, and decide whether to terminate the procedure, or selectively refine the segmentation by following a global-to-local part segmentation approach. The control module generates hypotheses about superquadric models at clusters of underestimated data and performs controlled extrapolation of the part-model by shrinking the global model. As the global model shrinks and the local models grow, they are evaluated and tested for termination or further segmentation. We present results on real range images of scenes of varying complexity, including objects with occluding parts, and scenes where surface segmentation is not sufficient to guide the volumetric segmentation. We analyze the issue of segmentation of complex scenes thoroughly by studying the effect of missing data on volumetric model recovery, generating object-centered descriptions, and presenting a complete set of criteria for the evaluation of the superquadric models. We conclude by discussing the applications of our approach in data reduction, 3-D object recognition, geometric modeling, automatic model generation. object manipulation, and active vision

    Part Description and Segmentation Using Contour, Surface and Volumetric Primitives

    Get PDF
    The problem of part definition, description, and decomposition is central to the shape recognition systems. The Ultimate goal of segmenting range images into meaningful parts and objects has proved to be very difficult to realize, mainly due to the isolation of the segmentation problem from the issue of representation. We propose a paradigm for part description and segmentation by integration of contour, surface, and volumetric primitives. Unlike previous approaches, we have used geometric properties derived from both boundary-based (surface contours and occluding contours), and primitive-based (quadric patches and superquadric models) representations to define and recover part-whole relationships, without a priori knowledge about the objects or object domain. The object shape is described at three levels of complexity, each contributing to the overall shape. Our approach can be summarized as answering the following question : Given that we have all three different modules for extracting volume, surface and boundary properties, how should they be invoked, evaluated and integrated? Volume and boundary fitting, and surface description are performed in parallel to incorporate the best of the coarse to fine and fine to coarse segmentation strategy. The process involves feedback between the segmentor (the Control Module) and individual shape description modules. The control module evaluates the intermediate descriptions and formulates hypotheses about parts. Hypotheses are further tested by the segmentor and the descriptors. The descriptions thus obtained are independent of position, orientation, scale, domain and domain properties, and are based purely on geometric considerations. They are extremely useful for the high level domain dependent symbolic reasoning processes, which need not deal with tremendous amount of data, but only with a rich description of data in terms of primitives recovered at various levels of complexity

    Segmentation Versus Object Representation - Are They Separable?

    Get PDF
    Relation between shape representation and segmentation is discussed to make an argument that they cannot be handled separately. Parameters that influence the selection of a particular shape representation scheme are identified and a control structure is proposed that employs shape models of different types and granularities in a coarse to fine strategy. The necessity of using different shape models is demonstrated by comparing object boundaries of volumetric models with actual occluding boundaries of objects in range images

    Research on Symbolic Inference in Computational Vision

    Get PDF
    This paper provides an overview of ongoing research in the GRASP laboratory which focuses on the general problem of symbolic inference in computational vision. In this report we describe a conceptual framework for this research, and describe our current research programs in the component areas which support this work

    Part-level object recognition using superquadrics

    Get PDF
    This paper proposes a technique for object recognition using superquadric built models. Superquadrics, which are three-dimensional models suitable for part-level representation of objects, are reconstructed from range images using the recover-and-select paradigm. Using interpretation trees, the presence of an object from the model database can be hypothesized. These hypotheses are verified by projecting and re-fitting the object model to the range image of the scene which at the same time enables a better localization of the object in the scene

    Superquadric representation of scenes from multi-view range data

    Get PDF
    Object representation denotes representing three-dimensional (3D) real-world objects with known graphic or mathematic primitives recognizable to computers. This research has numerous applications for object-related tasks in areas including computer vision, computer graphics, reverse engineering, etc. Superquadrics, as volumetric and parametric models, have been selected to be the representation primitives throughout this research. Superquadrics are able to represent a large family of solid shapes by a single equation with only a few parameters. This dissertation addresses superquadric representation of multi-part objects and multiobject scenes. Two issues motivate this research. First, superquadric representation of multipart objects or multi-object scenes has been an unsolved problem due to the complex geometry of objects. Second, superquadrics recovered from single-view range data tend to have low confidence and accuracy due to partially scanned object surfaces caused by inherent occlusions. To address these two problems, this dissertation proposes a multi-view superquadric representation algorithm. By incorporating both part decomposition and multi-view range data, the proposed algorithm is able to not only represent multi-part objects or multi-object scenes, but also achieve high confidence and accuracy of recovered superquadrics. The multi-view superquadric representation algorithm consists of (i) initial superquadric model recovery from single-view range data, (ii) pairwise view registration based on recovered superquadric models, (iii) view integration, (iv) part decomposition, and (v) final superquadric fitting for each decomposed part. Within the multi-view superquadric representation framework, this dissertation proposes a 3D part decomposition algorithm to automatically decompose multi-part objects or multiobject scenes into their constituent single parts consistent with human visual perception. Superquadrics can then be recovered for each decomposed single-part object. The proposed part decomposition algorithm is based on curvature analysis, and includes (i) Gaussian curvature estimation, (ii) boundary labeling, (iii) part growing and labeling, and (iv) post-processing. In addition, this dissertation proposes an extended view registration algorithm based on superquadrics. The proposed view registration algorithm is able to handle deformable superquadrics as well as 3D unstructured data sets. For superquadric fitting, two objective functions primarily used in the literature have been comprehensively investigated with respect to noise, viewpoints, sample resolutions, etc. The objective function proved to have better performance has been used throughout this dissertation. In summary, the three algorithms (contributions) proposed in this dissertation are generic and flexible in the sense of handling triangle meshes, which are standard surface primitives in computer vision and graphics. For each proposed algorithm, the dissertation presents both theory and experimental results. The results demonstrate the efficiency of the algorithms using both synthetic and real range data of a large variety of objects and scenes. In addition, the experimental results include comparisons with previous methods from the literature. Finally, the dissertation concludes with a summary of the contributions to the state of the art in superquadric representation, and presents possible future extensions to this research

    Analysis of Three-Dimensional Protein Images

    Full text link
    A fundamental goal of research in molecular biology is to understand protein structure. Protein crystallography is currently the most successful method for determining the three-dimensional (3D) conformation of a protein, yet it remains labor intensive and relies on an expert's ability to derive and evaluate a protein scene model. In this paper, the problem of protein structure determination is formulated as an exercise in scene analysis. A computational methodology is presented in which a 3D image of a protein is segmented into a graph of critical points. Bayesian and certainty factor approaches are described and used to analyze critical point graphs and identify meaningful substructures, such as alpha-helices and beta-sheets. Results of applying the methodologies to protein images at low and medium resolution are reported. The research is related to approaches to representation, segmentation and classification in vision, as well as to top-down approaches to protein structure prediction.Comment: See http://www.jair.org/ for any accompanying file

    An open-label, one-arm, dose-escalation study to evaluate safety and tolerability of extremely low frequency magnetic fields in acute ischemic stroke

    Get PDF
    Extremely low frequency magnetic fields (ELF-MF) could be an alternative neuroprotective approach for ischemic stroke because preclinical studies have demonstrated their effects on the mechanisms underlying ischemic damage. The purpose of this open-label, one arm, dose-escalation, exploratory study is to evaluate the safety and tolerability of ELF-MF in patients with acute ischemic stroke. Within 48 hours from the stroke onset, patients started ELF-MF treatment, daily for 5 consecutive days. Clinical follow-up lasted 12 months. Brain MRI was performed before and 1 month after the treatment. The distribution of ELF-MF in the ischemic lesion was estimated by dosimetry. Six patients were stimulated, three for 45 min/day and three for 120 min/day. None of them reported adverse events. Clinical conditions improved in all the patients. Lesion size was reduced in one patient stimulated for 45 minutes and in all the patients stimulated for 120 minutes. Magnetic field intensity within the ischemic lesion was above 1 mT, the minimum value able to trigger a biological effect in preclinical studies. Our pilot study demonstrates that ELF-MF are safe and tolerable in acute stroke patients. A prospective, randomized, placebo-controlled, double-blind study will clarify whether ELF-MFs could represent a potential therapeutic approach
    • …
    corecore