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ABSTRACT

Relation between shape representation and segmentation is discussed to make an argu­
ment that they cannot be handled separately. Parameters that influence the selection of a par­
ticular shape representation scheme are identified and a control structure is proposed that
employs shape models of different types and granularities in a coarse to fine strategy. The
necessity of using different shape models is demonstrated by comparing object boundaries of
volumetric models with actual occluding boundaries of objects in range images.
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1 INTRODUCTION

When vision is used for moving through the environment, for manipulating or for recog­
nizing objects, it has to simplify the visual input to the level that is required for the specific
task. To simplify means to partition images into entities that correspond to individual regions,
objects and parts in the real world and to describe those entities only in detail sufficient for
perfonning a required task. For visual discrimination, shape is probably the most important
property. After all, line drawings of scenes and objects are usually sufficient for description
and subsequent recognition. In computer vision literature this partitioning of images and
description of individual parts is called segmentation and shape representation. Segmentation
and shape representation appear to be distinct problems and are treated as such in most com­
puter vision systems. In this paper we try to disperse this notion and show that there is no
clear division between segmentation and shape representation. Solving anyone of those two
problems separately is very difficult. On the other hand, if anyone of the two problems is
solved first, the other one becomes much easier. For example, if the image is correctly
divided into parts, the subsequent shape description of those parts gets easier. The opposite is
also true - when the shapes of parts are known, the partitioning of the image gets simpler.
Since neither of them can be easily solved in isolation, at least not on the first try, we argue
that they should interact to guide and correct each other. Hence, segmentation and shape
recovery should not be studied separately. The complete visual interpretation problem is even
more complex because the initial data acquisition process should not be separated from the

later segmentation and shape representation. How data acquisition can interact with the
interpretation stage is investigated in computer vision under the heading of active vision [3].
In this paper we concentrate only on the interaction between segmentation and shape represen­
tation, assuming an image taken from a particular viewpoint is given.

A more fonnal problem definition of the topic of this paper is the following. Given an
arbitrary spatial arrangement of static, three dimensional solids, imaged by a noncontact sen­
sor, answer the following three questions:

1. What are the geometric primitives that (possibly uniquely) describe the data?
2. What are the processes that carry out this decomposition?
3. What is the overall control strategy to explain the measured data?

While the first two questions represent the analysis aspect of the problem, the last one can be
explained as the synthesis or integration of the whole system.

In the rest of the paper we assume that a complete depth map of a scene is given. Obtain­
ing a depth map is one of the stated goals of low level vision modules, such as stereo and
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shape from shading. The computation of the depth map or 21hD sketch was once considered
to be the harder part and that image intetpretation from there on would be easy. Although

dense and accurate depth maps are now available from laser range scanners, the intetpretation

of those images is still difficult. A depth map as the starting point, obtained either with a laser

scanner or from low level image techniques on gray level images, does not simplify neither

segmentation nor shape recovery in any large extent. For the examples in this paper we use

range images taken from a single viewpoint [24]. Due to self occlusion, not all points on the

surface of an object are given. Since the supporting surface is fixed, range points from the

support can be easily removed at the start of scene interpretation.

When the necessity for interaction between segmentation and shape representation is ack­
nowledged, control strategies that implement this strategy in a vision system become impor­

tant The influencing factors on the design of the control strategy are the goal of the vision
system, the scene complexity and the dimensionality of the objects in the scene. Typical goals

of a vision system are locating obstacles in a scene for mobile robot navigation, enabling

manipulation with robot hands or identifying objects by matching recovered shape descrip­

tions to a given data base. The complexity problem is to find out whether the scene contains a

single convex object, a non-convex object consisting of parts, or more then one object. Scene
classification according to its complexity can greatly simplify the control structure for

interpretation. Establishing dimensionality is to find out if a scene can be interpreted only in

tenns of volumetric models, flat-like models or rod-like models. Global measures such as
center of gravity and moments of inertia give such estimates. The importance of dimensional­
ity parameters is that, depending on the dimensionality, different geometric primitives come

into play. For example, in the case of a scene with flat-like objects only, surface primitives

should be sufficient and no volumetric primitives would be required. A segmentation system

for intensity images that uses such adaptable parameters, provided by the user and computed

from the image data, is described in Anderson et al [1].

Depending on all those influencing factors, different geometric parameters can be used

for shape discrimination to recover volumetric, surface or boundary properties. One of the

hardest problem that the computer vision community has tried to solve during the last 20 years

is the extraction of geometric shape properties. The rest of the paper is organized as follows:

problems and issues in selecting the type of shape primitives are in section 2, section 3 is on

segmentation, and section 4 on the overall control structure. In section 5 we compare the

actual occluding boundaries of objects in range images to the boundaries of volumetric
models fitted to the data to point out the different scope of those models. Section 6 is a sum­
mary.
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2 THE ROLE OF SHAPE PRIMITIVES

Decomposition into parts, units or primitives is the basis of scientific methodology.
Because of the limits on how much infonnation can we process at a time, we have to simplify
and view the world at various levels of abstraction. In shape decomposition, one tries to fol­
low the principle of orderliness, which means partitioning things in the simplest possible way.
Such partitioning nonnally reflects the structure of the physical world quite well due to the
principle of parsimony [2]. The choice of primitives can be guided by some general require­
ments such as a unique decomposition into primitives, that the primitives cannot be further
decomposed or that the set of primitives is complete. Some of the shape representation cri­
teria are designed primarily to facilitate object recognition when models recovered from
images are matched to a model data base. 'For a discussion of different criteria for shape
representation we refer the reader to [9]. Unfortunately, all those principles have not been
applied to any general shape representation scheme for 3-D objects. A review of computer
vision literature which reveals the large variety of geometrical primitives that were investi­
gated for their applicability to shape representation is a testimony to the difficulty of shape
description [5]. Another discipline involved in representing shape is computer graphics, but
from a synthesis (generating) point of view. Some commonly used 3-D representations in
graphics are wire-frame representation, constructive solid geometry representation, spatial­
occupancy representation, voxel representation, octree representation, and different surface
patch representations. Splines are used for surface boundary representation.

In early days of computer vision, most shape primitives were borrowed from computer
graphics. But requirements for shape primitives in computer vision are different from the
ones for computer graphics. Foremost, shape primitives for computer vision must enable the
analysis (decomposition) of shape. Common shape primitives for volume representation are
polyhedra, spheres, generalized cylinders, and parametric representations such as superqua­
drics. Different orders of surface patches (planar, quadratic, cubic) are used for surface
representation. For boundary description one can use linear, circular or other second order
models for piecewise approximation, and higher order spline descriptions. In the rest of this
section we will discuss what influences the selection of shape primitives in computer vision.

If only one shape primitive is chosen, the segmentation process is relatively simple. But
the resulting segmentation may not be natural! The data can be artificially chopped into pieces
to match the primitives. An example of such unnatural decomposition is when a circle is
represented piecewise with straight lines or when a straight line is represented with circular
segments. If the scene consists of both straight lines and circles, then neither straight lines nor
circles alone would enable a natural segmentation. A natural segmentation, on the other hand,
would partition an image into entities that correspond to physically distinct parts in the real
world. A solution to such problems is to use more primitives. How many primitives are
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required for segmentation of more complicated, natural scenes is then the crucial question.

The larger the number of primitives, the more natural and accurate shape description and seg­

mentation is possible. But the larger the number of primitives, the more complicated gets the

segmentation process. Finding the right primitive to match to the right part of the scene leads

potentially to a combinatorial explosion. This argues for limiting the number of different

shape models.

Another influencing factor on the number of different models is the level or granularity

of models. A large number of low level models is required for scene description because of

their small size or granularity. Low level models can fit to a large variety of data sets but

bring little prior infonnation to the problem. Hager [13] calls low level models descriptive as

opposed to prescriptive and are as such used mostly in data-driven vision systems. Substantial

manipulation is required to obtain further interpretation of the data by aggregating low level

models into models of larger granularity which correspond to real world entities. Such aggre­

gation techniques often fail because it is not possible to distinguish data from noise or account

for missing data only on the basis of local infonnation. Higher level models, on the other

hand, are prescriptive in the sense that they bring in more constraints and provide more data

compression. But higher level models might miss some important features because they can­

not encompass those data variations within their parametrization. A concise model which

adequately describes the data will enable partitioning or segmentation of images into "right"

parts and ignore noise and details beyond the scope of the task.

In everyday life, people use most of the time a default level of representation, called

basic categories [22]. Basic categories seem to follow natural breaks in the structure of the

world which is detennined by part configuration [25]. Shape representation on the part level

is then very suitable for reasoning about the objects and their relations in a scene. For part

level description in vision, a vocabulary of a limited number of qualitatively different shape

primitives [7] and different parametric shape models have been proposed. Parametric models

describe the differences between parts by changing the internal model parameters. In com­

puter vision, the most well known parametric models suitable for representing parts are gen­

eralized cylinders but superquadrics with global defonnations seem to have some important

advantages when it comes to model recovery [20,4].

It is sometimes possible to know a priori that a certain class of geometric models is suffi­

cient to describe observed data. Another possibility is to somehow evaluate the complexity of

the scene and the dimensionality of the objects in the scene. Knowing the complexity of the

scene can greatly simplify the control structure for segmentation and shape recovery while

knowing the dimensionality of objects simplifies the selection of shape models.

The objective of a vision system, whether the goal is to avoid obstacles during naviga­

tion, to manipulate objects with robotic grippers and hands or to identify objects by matching
them to a data base, is another constraint during shape model selection. For object avoidance,

only representation of occupied space is necessary, often allowing to largely overestimate the

size of obstacles. In addition to location and orientation, grasp planing for robotic hands
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Figure 1. Top left is a laser range image of a cube. Top right is a superquadric
volumetric model recovered by least-squares fitting of a parametric function to the
3-D points. This model gives probably the best overall explanation of- the imaged
object, an explanation, that most human observers would likely agree with. A closer
examination by following the occluding contour reveals, however, that some points
are missing from the lower right comer of the cube. Bottom left is a line approxima­
tion that closely follows the local shape of the occluding boundary. From this edge
model alone is quite difficult to conclude that the object is roughly shaped as a cube.
This difficulty is due to the faily low level of line models which bring very little prior
infonnation to the interpretation problem. Volumetric models, on the other hand, are
of larger granularity. By bringing additional infonnation in fonn of internal
parametrization such volumetric models constrain the recovery problem and find a
plausible solution.

requires knowing more precisely the size and overall global shape of the object. For object
recognition, more specific, identifying features are needed. Different shape primitives are
better at representing different aspects of shape and at different scales. Volumetric representa­
tion provides infonnation on integral properties, such as overall shape, enabling classification
into elongated, flat, round, tapered, bent, and twisted primitives. They can best capture the
overall size and volume since they must make an implicit assumption about the shape of the
object hidden by self occlusion. Surface representation is better at describing details that per­
tain to individual surfaces which can be part of larger volumetric primitives. Surface
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primitives can differentiate planar surfaces versus cUlVed surfaces, concave versus convex,
and smooth versus undulated surfaces. Boundary representation lies, in scope, somewhere
between volumetric and surface representation. On one hand, it is a local representation of
CUlVature and surface near the boundaries, on the other hand, by delineating the boWldaries of
an object from the background, it defmes the whole object.

Coming back to the problem of segmentation, which is to match the right kind of shape
model with the right parts of data in an image, brings up the question of facilitating this
matching process. Instead of a combinatorial search, one should find a way of determining
from the data, which models to use where. A possible way to cut the search is by using a
coarse to fine strategy. To fmd such a shortcut leads back to the question in the title of this
paper - is segmentation separable from shape representation? By now it should be clear that
the segmentation process and its results depend on the selected shape primitives. To facilitate
segmentation we believe that for a general purpose vision system one needs volumetric, sur­
face and boundary shape primitives.

If one accepts the need for multiple representations, one has to have a control strategy to
bring all of them together. But first, one has to decide what is needed for segmentation.

3 SEGMENTATION PROCESS

There are two basic strategies for segmentation:

1. Proceed from coarse to fine discrimination by partitioning larger entities into smaller.
2. Start with local models and aggregate them into larger ones.

Both of these strategies have been used in the past [11, 19]. The advantage of the coarse to
fine strategy is that one gets first a quick estimate about the volume/boundary/surface of the
object which can be further refined under control of some higher level process which deter­
mines how much details on wishes to know. The disadvantage of this approach is that the
amount of detectable detail is not always sufficient without switching to a different kind of
representation. For example, to describe smaller shape details one might have to go from
volumetric to surface representation. This progression of looking at data at different scales is
more fonnalized in scale-space [26] and in different multiresolution signal decomposition
techniques [17]. The important idea that these methods convey is that progressive blurring of
images clarifies their deep structure [15]. Large scale structure constrains the structure at finer
levels so that adding details only entails adding infonnation and does not require changing the
larger structure. Although these multiresolution techniques do not correspond to structural
decomposition of images into parts, one assumes that the same principle applies there, also.
When a part model must be subdivided into smaller parts to gain finer resolution it should not
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affect the original partitioning. In that sense, backtracking to change prior decisions would

not be necessary.

The second strategy, which goes from local to global, starts with local features and incre­

mentally builds larger representations. This can be an advantage or disadvantage at the same

time. Some details could help the classification process early on by excluding any hypothesis

that clearly does not include such particular details. On the other hand, keeping track of too

many details at once can lead to a combinatorial explosion. As already mentioned, aggrega­

tion of low level models into models of larger granularity is difficult in presence of noise or

when data is missing. It is also necessary to ignore details that cannot be represented in the

next higher level of representation. Recovering from mistakes or erroneous aggregations by

rearranging the low level models in new ways should be possible.

Both methods of segmentation, top-down and bottom-up have their benefits and prob­

lems. Both methods should be used in a general vision system and the question is how to

combine them in a fruitful way. Another possible way of dividing segmentation methods is

by the type of shape primitives they use. The following three subsections are on segmentation

using volumetric, boundary, and surface representation.

3.1 Segmentation using volumetric representation

Although many different methods for partitioning into volumetric primitives exist, we

shall focus only on two examples that typify such use of volumetric primitives. The first one

is the work by Binford and Nevatia [18] who used generalized cylinders for describing parts

of objects. They start from local edge models, cross sections and aggregate them into parts,

each of them represented with a generalized cylinder. Many improvements of this basic

method exist, both by the original authors and others - ACRONYM being probably the most

well known system [10]. This is an example of a strategy going from local to global aggre­

gates.

An example of the global to local method of segmentation is the superquadric fitting

method by Solina [23]. Here the goal is to decompose objects or scenes into parts which can

be represented with a single superquadric model enhanced with global defonnations such as

tapering and bending. Since a superquadric surface can be described with an analytic func­

tion, an iterative least-squares minimization of a fitting function can be used for shape

recovery. Consider a depth map of an arbitrary scene. The initial model is an ellipsoid in the

right position, orientation and of the right size to cover all of the 3-D points. During the

least-squares minimization, the shape of the initial model starts to change so that the given

range points would lie on or close to the surface of the model. If the model can reject and

accept 3-D points, the model can actively search for a better fit, resulting in a recursive subdi­

vision of the scene into parts. The simplest case is when only a single part is present in the
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scene. Then the model must incorporate all of the points. When several parts or objects made
up of multiple parts are present, a suitable distance measure must be used to decide which 3-D
points should be included in a particular volumetric model and which points should be
excluded. This question has not yet been successfully solved. The same problem of sensi­
tivity and robustness, however, is present in the aggregation method where the setting of the
similarity parameters for joining features into larger entities must be robust enough to bridge
small gaps in measurements due to noise and imperfect fit, yet sensitive enough to distinguish
between different parts.

Given some complexity measures for the scene, the segmentation process can be changed
accordingly. In the one-object scenario one can first fit a volumetric model and then analyze
how well the model fits the data and adjust the shape and defonnation parameters for a better
fit. If several objects are present, one should apply segmentation to each cluster individually.
In the difficult case, when a heap of objects is given with multiple occlusions, one might con­

centrate only on the top most object and treat it in the same way as in the one object scenario.

3.2 Segmentation using boundary identification

The segmentation process using boundary infonnation is based on the detection of
discontinuities both in depth values as well as in orientation. Given discontinuities in depth
and orientation, similar adjoining segments can be merged and curve fitting, using splines or
some other piecewise model can be perfonned. Partitioning that corresponds to the human
notion of parts can be achieved using changes in curvature of the occluding boundary to detect
concavities which indicate part boundaries [14]. Occluding contours playa large role in

human perception. Strong spatial impressions arise from seeing only silhouettes of objects in a

general orientation. Koenderink relates this to the capability of inferring from occluding
boundaries the shape of the near lying surface [16]. Ramachandran [21] shows how boun­
daries influence also the interpretation of shaded surfaces. When infonnation from shading
underdetennines the interpretation, infonnation from borders helps to resolve ambiguity
throughout the image.

3.3 Segmentation using surface primitives

A large portion of computer vision literature is on different methods for surface recon­
struction. A recent ovelView of different surface reconstruction approaches can be found in
[8]. The reason for the widespread interest in surface reconstruction is that this fits well into
the prevalent bottom-up approach in vision and that surface is a much more tangible property
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then volume. Surface segmentation can be based either on merging similar local surface
models, or by defming region boundaries in tenns of differential geometry [6]. The aggrega­
tion process begins with small local neighborhoods which are then combined if they are simi­
lar in depth values, surface nonnal values or some curvature measurements. The result is a
scene segmented into surface regions with similar surface characteristics. The difficulty with
both surface segmentation approaches is that it is sensitive to local variations which are not
important but are difficult to eliminate unless the larger context is taken into account. Since
this larger context can be much easier accounted for by volumetric models, it should be here
where the surface, volume and boundary segmentation could cooperate. We have imple­
mented such segmentation process in Gupta [12] .

4 CONTROL STRUCTURE

The problem that we wish to address in this section can be stated in the following way.
Given that we have all three different modules for extracting volume, surface and boundary
properties, how should they be invoked, evaluated and integrated? There are two extreme
possibilities. The first one is to apply all tbree modules simultaneously. The second is to
apply them strictly in a predetennined sequence. In the parallel approach conflicting
hypothesis can arise that would have to be resolved. The sequential method may lead the seg­
mentation process in a wrong direction so that backtracking would sometimes be necessary.
A combined approach where all three methods could interact would not be so vulnerable.
This opens up the problem of evaluating and comparing infonnation embedded in models
built by different aggregation methods. What do you do if different types of models do not
mutually reinforce each other? In such cases, one would nonnally prefer models of smaller
granularity that are less prescriptive - models that closely follow the data in the image. But
this has to be distinguished from the case when the information that could give rise to low
level models is not present. A good example are the well known phenomena of illusory con­
tours in human perception. We can perceive solid shapes although a large part of boundary
lines physically do not exist. In conflicting situations infonnation has to be reorganized and
the control system adapted. Anderson et al [1]. designed an adaptive system for 2-D segmen­
tation of intensity images based on on the general assumption that the gradient value at region
borders exceeds the gradient within regions. An adaptive control system that has to reconcile
conflicting shape models might use also some result from the recent study of active reduction
of uncertainty in multi-sensory systems [13].

To incorporate the best of the coarse to fine and fme to coarse segmentation strategy we
propose to perfonn volume and boundary fitting in parallel, followed by surface description.
The volumetric shape recovery that we have in mind is a global, holistic method going from
very coarse to fine fitting on the part level while boundary detection and description which is
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local by the nature of the data can guide segmentation. These two processes are complemen­

tary in the approach of explaining the data, accounting for global position, orientation, size

and shape such that the local boundary confinns with the boundary obtained from the
volumetric fitting. Surface modeling is necessary for representing details that cannot be
encompassed by part-level volumetric models. Surface fitting can be used also to reaffinn
segmentation into parts by testing the surface continuity or discontinuity between parts.

The global control program must have many parameters and thresholds that would have
to be predetennined or, if possible, adjusted during the process. Some of those parameters are

the following:
- the size (or range of sizes) of the local neighborhood for local processing,
- the size (or range of sizes) of volumetric models,

- the number (or range) of expected segmented units,
- all the thresholds (for partitioning and aggregation),

- the level of details that we wish to explain.

5 RESULTS

We applied the volumetric shape recovery procedure [23] to a set of range images of sin­
gle objects (Figures 2, 3 and 4). The contour obtained by tracking the occluding boundary and

the contour of the recovered volumetric model are compared in all cases. While the
volumetric model gives a holistic explanation of the whole object it can miss details that are
beyond the scope of the model. An overall measure of goodness of fit, like the residual from
least-squares fit [23], does not always give an accurate evaluation of the appropriateness of the

volumetric model. Although models can have about the same overall goodness of fit, like the

volumetric models in Figures 2 and 3, they can be more or less acceptable representations of
the actual object Comparing the local boundary of range points with the boundary of the
recovered volumetric model can point out the aberrations of the volumetric model and suggest

improvements in segmentation or refmement in shape representation. When boundaries do

not coincide, preference should be given to actual boundary in the range image, but the possi­

bility of missing data (Le. occlusion) must be considered also. For example, the actual
occluding boundary in Figure 2 is without doubt a better representation of the object while the
actual boundary shown in Figure 1 probably differs from the boundary of the volumetric
model because of missing range data.
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Figure 2. Range image of a block with a circular cutout. Top left is the original
range image. Top right is the best fitting volumetric model. Bottom left is a the
line-approximation of the occluding contour as seen from top. Bottom right is the
comparison of the occluding boundary with the boundaries of the volumetric model
from above. The circular cutout was not accounted for by the volumetric model.
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Figure 3. Range image of a block with a jagged edge. Top left is the original range
image. Top right is the best fitting volumetric model. Bottom left is the line­
approximation of the occluding contour as seen from top. Bottom right is the com­
parison of the occluding boundary with the boundaries of the top volumetric model.
Since the differences between the two outlines are small in comparison with the
overall size of the object the jagged edge could be brushed away as a detail.
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Figure 4. Top left is the original range image of a wrench. Top right is the best fit­
ting volumetric model. Bottom left is the line-approximation of the occluding con­
tour as seen from top. Bottom right is the comparison of the occluding boundary
with the boundaries of the top volumetric model. The two boundaries coincide in
only part of the image alerting to the fact that the object consists of more then one
part.

6 SUMMARY

In this paper we discuss some general issues concerning shape representation and seg­
mentation in computer vision. The selection of shape models should be guided by the task of
the vision system, the complexity of the scene and the dimensionality of objects in the scene.

We argue that shape representation and segmentation should not be approached separately.
By picking a particular shape model we restrict the possible ways of partitioning or segment­
ing an image. Volumetric, boundary and surface models represent different types of features
and at a different scale. In a general vision system, all three types of shape models should be

used. We propose a control structure for such a general system which follows a coarse fo fine
strategy. It starts with recovery of volumetric models, constrained by occluding contours for
segmentation. In order to describe fmer details that cannot be encompassed with volumetric
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models, one has to switch to surface representation. We show some examples of how compar­

ing the occluding boundaries can guide or correct the recovery of volumetric models. In the

discussion of control structure, we stress the importance of checking not only the global good­

ness of fit of the applied shape models but also the local alignment in order to correct or refine

the representation. The control system should also adapt to different task requirements and

complexities of the scene.
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