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Abstract

This paper proposes a technique for object recognition using superquadric built models.

Superquadrics, which are three-dimensional models suitable for part-level representation of

objects, are reconstructed from range images using the recover-and-select paradigm. Using in-

terpretation trees, the presence of an object from the model database can be hypothesized.

These hypotheses are verified by projecting and re-fitting the object model to the range image

of the scene which at the same time enables a better localization of the object in the scene.

� 2004 Elsevier Inc. All rights reserved.
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1. Introduction and motivation

In computer vision many different models have been used for describing various

aspects of objects and scenes. Part-level models are one way of representing 3D ob-

jects, when particular entities that they describe, correspond to perceptual equiva-

lents of parts. Therefore, several part-level shape models are required to represent
an articulated object. Such descriptions are suitable for path planning or manipula-

tion, but they are sometimes not exhaustive enough to represent all the necessary de-

tails needed in object recognition.

To obtain part-level description of a scene the image has to be partitioned into

segments corresponding to individual parts, and a part model for each of these
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segments has to be recovered. If the two tasks are separated, segmentation does not

take into account the shapes that part models can adopt. To avoid this problem, seg-

mentation and recovery can be combined, so that images can only be segmented into

parts which are instances of selected part models. To achieve concurrent segmenta-

tion and shape recovery, the recover-and-select paradigm can be used.
One of the more popular types of volumetric models are superquadrics [1–5].

They are volumetric models that represent standard geometrical solids as well as

shapes in between and are defined by only 11 parameters [6].

In this paper, recognition of structured 3D objects is investigated. Parts of an ob-

ject form a structure, that distinguishes it from any other object. For the task of rec-

ognition of such objects, the relations between parts, the object�s structure, are

therefore even more important than the shape of the parts itself.

1.1. Segmentation and recovery of superquadrics

Pentland [3] was the first who used superquadrics in the context of computer vi-

sion. However, Solina and Bajcsy�s method [5] for recovery of superquadrics from

pre-segmented range images became more widespread [2].

Several methods for segmentation with superquadrics have been developed. A

tight integration of segmentation and model recovery was achieved [7] by combining

the ‘‘recover-and-select’’ paradigm [8,9] with the superquadric recovery method [5].
The paradigm works by independently recovering superquadric part models every-

where on the image, and selecting a subset which gives a compact description of

the underlying data. Segmentor is an object-based implementation of the ‘‘recover-

and-select’’ segmentation paradigm using superquadrics and other parametric mod-

els [10]. Superquadrics, their mathematical properties, recovery from images and

their applications are presented in detail in [2].

1.2. Motivation and related work

The applicability of the Segmentor system has been explored in several contexts,

in particular for reverse engineering [11]. Segmentation and shape modelling of

smooth and regular man-made objects with Segmentor is fairly stable, if the objects

can be easily represented with superquadric shapes. Segmentation of rough, natural

shapes which are not very close to ideal superquadric shapes is less reliable. The su-

perquadric models cannot expand as easily on rough surfaces and complex shapes as

on smooth regular objects, which results generally in over-segmentation. Automatic
adaptation of the granularity of models to the scale/roughness of the scene is in the

context of superquadrics still unresolved [12]. Despite those deficits we decided to

test the applicability of the Segmentor system for object recognition of articulated

objects in complex scenes.

Our aim was to investigate the possible use of part-level descriptions obtained by

the Segmentor system for recognition of articulated objects. We hypothesized that

the configuration of parts and their rough shape should provide enough constraints

for successful matching with the models of known objects. The recognition system
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would search for matches between scene and model parts, a procedure known as

model-based matching. The object hypotheses can be subsequently verified by fitting

the object model directly to the range data (Fig. 1). Such recognized objects could be

further used for higher level reasoning, such as developed by Chella et al. [13]. As a

means for scene understanding they used the notion of conceptual space, to link be-
tween subconceptual information (in the form of superquadrics) and symbolically

organized knowledge.

Superquadrics have been used in several computer vision systems. Raja and Jain

[4] tried to relate superquadrics and geons, part primitives introduced by Biederman
Fig. 1. Overview of the object recognition system.
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[14]. They investigated recognition of geons from superquadrics fitted to range data,

but did not deal with object made of those parts. Dickinson et al. [1] used superquad-

rics as modelling primitives to construct objects. The recognition is based on aspects,

which are used to model the superquadric parts. Aspects are recovered from an im-

age, and aspect hierarchy is used to infer a set of volumetric primitives and their con-
nectivity relations. The verification of object hypothesis is then basically topological

verification of the recovered graph.

Since superquadrics are part-level descriptions, an object recognition system that

searches for matches between parts in the scene and parts of the modelled object can

be used [1]. One of the first such methods by Nevatia and Binford [15] uses a rela-

tional graph structure to represent an object. The recognition then becomes a matter

of matching two graphs. The 3DPO vision system developed by Bolles and Horaud

[16] uses a ‘‘local feature focus’’ method for constraining the size of the solution
search space. Kim and Kak [17] used bipartite matching for fast rejection of inappli-

cable models, and a combination of bipartite matching and discrete relaxation to

prune the possible object hypotheses. Grimson [18] developed the ‘‘interpretation

tree’’ method. He arranged all possible matches of scene part with model part in a

tree structure—an interpretation tree. The problem of recognition is to find consis-

tent interpretations without exploring all possible ways of matching the scene and

model parts, which was done using geometric constraints. A nice introduction to in-

terpretation trees for use in computer vision can be found in [19].
2. Part-level object recognition system

The output of the Segmentor system is a set of recovered superquadrics, which

represents the parts of the input scene. On this set the search for feasible interpreta-

tions of the stored model is employed. When an interpretation is found, it can be ver-

ified by projecting the object model into the scene.
The system we propose consists of the following three steps:

(1) perform range image segmentation and superquadric recovery using the Segmen-

tor, resulting in a set of N superquadric parts,

(2) search for feasible interpretations of the selected model in the set of N recon-

structed superquadrics, based on part by part match using interpretation trees,

and

(3) verify hypothesized interpretation by using the structural properties of models

and by projecting object models into the range image of the scene.
The second and third steps can be interleaved, to quickly eliminate wrong

hypotheses.

2.1. Object model

If an object is to be recognized by the system, the system must have a model of the

object. In the proposed system the object is modelled on two levels. On the first level,

object�s parts are modelled with superquadrics that define the part�s size and shape,
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such as the superquadrics in Fig. 2B (see also Fig. 8B). On the second level the part

structure is described by defining the connections between parts, such as connections

in Fig. 2B (see also Fig. 8B). One part is given the central role in the object�s model.

To the central part the object position and general orientation can be assigned. Other

parts are connected to their ‘‘parents parts’’ by a joint. Vector rij denotes the position
of joint connecting parts i and j relative to the center of part i. Therefore, to define a

joint two vectors rij and rji are needed.

There are two types of joints: rigid and flexible. Rigid joints contain besides po-

sitional parameters, predefined (constant) rotational parameters, denoted by rota-

tional matrix Ri, and therefore rigidly �glue� the two parts together. The object in

Fig. 2, for example, contains two rigid joints. Flexible joints, however, do not have

fixed rotational parameters, but can be assigned any value from a given interval for

rotating the connected parts into the right configuration. Such flexible joints connect
parts of non-rigid objects such as the figurine in Fig. 8. Of course, the values of ro-

tational parameters could also be constrained, as, for example, would be the case of a

human arm [20], which can only move in certain ways, but this is beyond the scope of

our work.

In this paper, rij stands for the joint position connecting parts i and j, as described
above, ci is the center of the superquadric that matches, or should match part i, R is a

ZYZ rotation matrix, and /i, hi, and wi are rotation angles for part i.
Since we focused our work on the recognition phase, we built the models manu-

ally by measuring the parts and approximating the superquadric and other parame-

ters for each part and joint (e.g., Fig. 2).

2.2. Superquadrics

Superquadrics are a family of volumetric models, which were first introduced in

computer graphics by Barr [6] and later gained popularity in computer vision [1–

5,7]. Basic superquadric shapes are compact representation of 3D shapes as they
Fig. 2. Simple object (A) and its model (B).
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are described by only 11 parameters (a1; a2; a3 [size], �1; �2 [shape], tx; ty ; tz [trans-
lation], /; h; w [rotation]). The surface of a superquadric in local coordinate frame

is defined by
sðg;xÞ ¼
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sz
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with superquadric surface points satisfying the equation F ðx; y; zÞ ¼ 1. Fig. 3 shows

some superquadric shapes.

2.3. Superquadric recovery with the segmentor system

Let us briefly describe the Segmentor system [2,10] for range image segmentation

and superquadric recovery. The system uses the recover-and-select paradigm [9] in

the segmentation process. The input to the system is a range image, captured by

the range scanner in our lab (see Section 3 for the setup). In the first step, initial

(seed) descriptions are placed everywhere on the range image (see Fig. 4A). A de-
scription consists of a set of range points and a corresponding model, in this case

a superquadric model. The next step is a growing stage (compare Figs. 4A–D as

models grow in size). To each description new points are added, that are close to

the model, and a new model is reconstructed on this extended set of range points.

After several growing stages, several models may completely or partially overlap.

That is the moment when the selection takes place (compare Figs. 4A–D as the num-

ber of models decreases). Using the minimum description length criterion a subset of

descriptions are selected, that produce the simplest description of the range image.
Growing and selection stage can be interleaved in order to speed-up the process.

2.4. Model matching

The output of the Segmentor system is therefore a set of N superquadrics, which

compose the scene. We will call them scene parts. One can easily imagine the process
Fig. 3. Some basic superquadric shapes.



Fig. 4. Superquadric recovery with the Segmentor system: (A) placed superquadric seeds, (B) after two

growing stages and selection, (C) after 6 growing stages and selection, and (D) after 14 growing stages

and selection.
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of recognizing an object as matching scene parts with part models of the stored body

model. All possible matches arranged in a tree structure are called an interpretation

tree [18]. Nodes in an interpretation tree represent a match between a part of the

scene and a part of the model. The search for correct interpretation begins at the root

of the interpretation tree. The root expands to all possible matches for the first model

part. At the first level of interpretation tree search, every one of N scene parts is

therefore matched to the first model part. From a given node, the search continues
in depth only if the match represented by that node is consistent, i.e., if the two parts

represented by that node are similar. On a given level of the interpretation tree

search, the corresponding model part is matched to all scene parts from the set of

N parts, except the ones that have already been matched on some higher levels of

the tree.

In depth-first search, which was used in our system to examine the interpretation

tree, the order of model parts as they pertain to the depth of the tree can be
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important for finding an interpretation quickly. The parts that are reconstructed

more consistently and from more viewpoints should be closer to the tree root. The

system thus searches more probable interpretations first. One can, of course, easily

implement many other enhancements, such as tree pruning, where two parts are

matched only if they are in the right distance to the parts already matched. Best-first
search could also be implemented by sorting the matches based on part similarity.

In real scenes some parts of an object may be hidden to the viewer and some oc-

cluded by other objects or parts. Also, the part detector can miss some parts or in-

troduce some spurious ones. To enable the system to deal with such cases, a fictitious

scene part that matches every model part is introduced. A match between this ficti-

tious scene part and a model part is called a wildcard match and is simply appended

to the list of scene parts.

When the search through the interpretation tree reaches a leaf one gets a consis-
tent interpretation. But because the constraints involved in match consistency test

are local in nature, the interpretation does not have to make sense globally. In gen-

eral, there is no guarantee that a found interpretation makes global sense. These in-

terpretations must therefore be taken only as hypotheses. For most problems one

can come up with a test for global consistency which discards wrong hypotheses,

a process called interpretation verification.

Algorithm 1 (see Appendix A) outlines the model matching procedure used in the

system.

2.5. Match consistency

As mentioned above, if an object is present in some scene, it should consist of the

same parts as the object�s model. In reality, of course, the parts are not exactly the

same, but should be similar enough. The comparison between two superquadric

parts, should therefore be tolerant to slight (or great) changes in part shape and size.

Superquadric parameters cannot be used directly for comparison of two superquad-
rics because several sets of parameters can lead to the same size and shape of a part

[2]. Therefore when comparing scene part fj with model part mi, a set of constraints

T i is used to determine the part similarity (i.e., match consistency), which is depen-

dent on superquadric recovery on the model part mi. In this paper, ðmi; sjÞ denotes a
match between model part i and scene part j. A consistent match ðmi; sjÞ (where

matches for parts m0 to mi�1 are consistent) means, that the search can continue with

the next match ðmiþ1; sjÞ at next level iþ 1 of the interpretation tree, whereas an in-

consistent match ðmi; sjÞ stops further search in depth and continues with the next
match ðmi; skÞ on the same level i of the interpretation tree.

A basic constraint, that can be included in every part�s constraint set T i, is a vol-

ume constraint V iðV Þ : V 2 ½V min
i ; V max

i �. If a volume V of a scene part is within the

model�s part interval, V min
i 6 V 6 V max

i , the two parts represent a possible match.

Superquadric recovery on some shapes is not reliable and produces many (two or

more) overlapping superquadrics, that correspond to a single model part. In those

cases, the volume constraint can be extended to V0
iðV Þ : ð9sq 2 Si ^ ð

P
centerðsqÞ2Si

VsqÞ 2 ½V 0min
i ; V 0max

i �Þ _ ð9sq 2 Si ^ V 2 ½V min
i ; V max

i �Þ, as follows:
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• if there are any superquadrics, whose centers are less than some distance Si from
the center of the considered superquadric, the sum of their volumes

P
Vsq (includ-

ing the volume of the considered superquadric) should be in the predefined inter-

val V 0min
i 6

P
Vsq 6 V 0max

i . Distance Si can be assigned a value of the perimeter of

the largest sphere, that can fit into the model part being matched.
• if there are no other superquadrics at such a distance, the part�s volume V should

be in the usual interval V min
i 6 V 6 V max

i .

The two cases are dealt with separately (with different values), because the shared

space of the superquadrics is not taken into account.

For parts with reliable superquadric reconstruction, such as the parts of the object

in Fig. 2, size and shape along minimal inertia axis can be used. The size constraint is

defined as Si;lða0lÞ : a0l 2 ½amin
i;l ; amax

i;l �, l ¼ 1; 2; 3. Similarly, the shape constraint is de-

fined as Hi;mð�0Þ : �0m 2 ½�min
i;m ; �max

i;m �, m ¼ 1; 2. Constraints can be computed as follows:
first, inertial moments along x; y; z axes are computed for part fj, and sorted. Next, a0l
is assigned the ak parameter that corresponds to the lth lowest inertial moment value

(e.g., when inertial moment along y axis is lowest, a01 :¼ a2, since a2 is the size along y
axis). �01 is assigned the �1 parameter when inertial moment along x or y axis is small-

est, and �2 when inertial moment along z is smallest. �02 is assigned the remaining �
parameter. For parts with a very reliable reconstruction the volume difference [21]

constraint could be used in order to match parts to shape and size as accurately

as needed. The volume difference constraint was not implemented in our system
though, because of its high time complexity.

Note that the properties used above are unary. When including a scene part in an

interpretation, there are possibly other parts already included. In order to reduce

the search space, binary (n-ary) constraints, such as distance between two parts,

can be introduced into the part matching procedure. The distance constraint

Di;jðdÞ : d 2 ½dmin
i;j ; dmax

i;j � is based on distance d between the centers of scene super-

quadrics that represent parts mi and mj.

The purpose of part match consistency is to prune the interpretation tree, leading
to faster interpretation discovery. The constraints involved should be adjusted so

that the part matching procedure rejects as many unsuitable parts, while accepting

any possible part matches that may appear in scene reconstructions. In this way

the system does not ‘‘overlook’’ any objects and finds them quickly.

2.6. Interpretation verification

Interpretation verification means that the system should answer the question:
‘‘Does the given set of parts really represent the object X?’’

First, the system can reject interpretations that include too many wildcard

matches, by setting a threshold P on the real interpretation size. For example, if

the object is a part of a fence with twenty iron poles welded to a frame (24 parts

altogether), the object could be recognized even if 16 poles are missing, thus a

threshold P ¼ 8 parts (one-third of model parts) would be reasonable. On the other

hand when recognizing the figurine from Fig. 8, three matched parts (approxi-

mately one0third of model parts) does not necessarily indicate the object�s
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presence. One would expect at least five matched parts to be sure of the object�s
presence. By rejecting interpretations that include too few real matches, the system

may therefore reject some correct interpretations (false negatives), but it will reject

many more wrong ones (false positives), since the probability that some parts will

randomly form a structure similar to the structure of the object decreases as num-
ber of matched parts increases. The threshold P can be set to some fraction of the

number of model parts and depends on the modelled object as well as on the ap-

plication. For most objects the threshold P can be set to around half of the number

of model parts.

Second, for a given interpretation, the hypothetical object position and part con-

figuration can be computed. We focused our work on articulated objects consisting

of elongated parts with unreliable reconstructions, that are joined near the longer

ends. Using that assumption, the configuration can be computed efficiently. Let
the part�s main axis be the axis of minimal inertia [2,22]. Our analysis of such objects

showed that the main axes of scene parts are well aligned with true main axes of the

object model parts. When a joint is configured so that it connects two parts, the fol-

lowing rotation of the subordinate part is the rotation that aligns its main axis with

the main axis of the matched scene part:
RX!s : / ¼ arctan �sx
sy ; h ¼ p

2
; w ¼ arctan

ffiffiffiffiffiffiffiffi
s2xþs2y

p
sz ;

RY!s : / ¼ 0; h ¼ arctan sz
�sx ; w ¼ arctan

ffiffiffiffiffiffiffiffi
s2xþs2z

p
sy ;

RZ!s : / ¼ arctan
sy
sx
; h ¼ arctan

ffiffiffiffiffiffiffiffi
s2xþs2y

p
sz ; w ¼ 0;

ð3Þ
where R... is a ZYZ rotation matrix, /, h, and w are rotation parameters and

s ¼ ½sx; sy ; sz�T is a scene part�s unit main axis vector rotated in the local coordinate

frame of the part superior to the part being configured. In the general case, the

object�s configuration is hard to determine due to inherent rotational ambiguity of

superquadrics. For computing the configuration, custom procedures tailored to

particular objects, or types of objects, would have to be developed.
After an object model is approximately configured to its interpretation, this con-

figuration can serve as the basis for the third step in the interpretation verification.

The individual superquadric part of the object model can then be fitted to those re-

gions in the range image that correspond to their position given by the approximated

configuration. To fit individual superquadric models to such part regions the stan-

dard fitting method was used [5]. The fitting function [2,10]
GðKÞ ¼ a1a2a3
XN
i¼1

F �1ðxi; yi; ziÞð � 1Þ2; ð4Þ
where F is the superquadric implicit function from Eq. (2) and ½xi; yi; zi�T the point i
from the range image region was minimized only for the position and orientation

parameters, i.e., K ¼ ðtx; ty ; tz;/; h;wÞ, while the size (a1; a2; a3) and shape (�1; �2)
parameters were fixed to the values of the tested model part superquadric. The

position and orientation parameters of the tested superquadric were used in the
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minimization as initial parameters. For model parts with reliable reconstructions, the

interpretation is rejected, if the error of the fitting function [2,10] is greater than

threshold E ¼ 2:5 (the same as used in range image segmentation). For parts with

unreliable reconstruction, the model superquadric is fitted in the same way, but the

interpretation is rejected if the poles (points where the main axis pierces the super-
quadric surface) move more than a threshold Di.

The final interpretation therefore consists of the object model whose configuration

in 3D has been refined by fitting each superquadric of the object model to its corre-

sponding region in the range image.

Rigid joints are then further verified for consistency. Due to the rotational ambi-

guity of superquadrics, we did not deal thoroughly with joint rigidity, but rather

compared the angle between the two main axes.

There is another aspect of interpretation verification, namely the feasibility of the
object�s configuration. If an articulated object is set by the interpretation process into

a non-feasible configuration, the verification process should reject it. This paper does

not deal with configuration feasibility, but this could be applied to the system

presented by defining sets of valid intervals for joint rotation parameters. The joint

rotation parameters extracted from the final interpretation would then be compared

to those sets thus determining if self-penetration and other non-feasible poses have

occured.

2.7. A simple example

Let us look at a simple example of interpretation search in a greater detail. The

input scene and its range image are depicted in Fig. 5, in which we search for the sim-

ple test object seen in Figs. 2 and 6B. The parts of the test object are labelled A, B,
and C. The first step of the recognition process is superquadric recovery using the

Segmentor system. The superquadric reconstruction on scenes such as the one in

Fig. 5, where all parts can be perfectly modelled by superquadrics, is very reliable.
For each scene part one superquadric is reconstructed, which describes the corre-

sponding scene part very well, and there is almost no overlapping. The result can

be seen in Fig. 6A. Parts in the reconstruction are labelled 0–5. The threshold P
on real interpretation size is set to 2 (the interpretation must include at least 2 parts).

Next, the search for possible interpretations begins using interpretation trees. The

interpretation tree for finding the test object is shown in Fig. 7. The search begins at

the root. The root expands into nodes representing matches between model part A
and scene parts from 0 to 5. First, part A is compared to part 0. Since part A is a
cylinder and part 0 is a block, the match is not consistent and the search does not

continue in depth. It rather proceeds on the same level by visiting the right sister

node and comparing parts A and 1. Again, this match is discarded due to part shape

mismatch. Visiting right sister node on the same level, the search continues by com-

paring part A with part 2. Size and shape approximately match, so that the search

can continue in depth, by searching for a match for model part B. The comparison

to scene part 0 delivers a consistent match, since the size and shape match. Contin-

uing one level deeper, matches for model part C are searched. The first node yields a



Fig. 5. Simple scene (A) containing the object from Fig. 2 and the corresponding range image (B).

Fig. 6. (A) Superquadric reconstruction of the scene from Fig. 5 and (B) labelled model from interpreta-

tion verification.
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consistent match between parts C and 1. Since this is a leaf node, a consistent inter-

pretation ðA;B;CÞ ¼ ð2; 0; 1Þ is obtained.
Although the parts have pairwise the same size and shape, a glance at Fig. 6 can

tell that the recovered parts ð2; 0; 1Þ do not represent the object in question, since

their configuration is wrong. This is why every consistent interpretation derived by

the interpretation tree must be verified using the properties of the whole object.
The parts in the interpretation should conform to the same structure as parts that



Fig. 7. Interpretation tree for scene in Fig. 5.
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compose the model. The system can verify if the configuration occupied by the scene

parts in the interpretation corresponds to the model using structural information de-

scribed in Section 2.1.
The first step in the process of verifying the interpretation ðA;B;CÞ ¼ ð2; 0; 1Þ is

putting a threshold P on its size. Since the interpretation includes three real matches,

it passes the first test. Next, the configuration of the hypothesized object is compared

to the object�s model. Scene part labelled 1 is too distant from part 2, so the inter-

pretation is rejected, and the search continues at the right sister node, with interpre-

tation ðA;B;CÞ ¼ ð2; 0; 3Þ. When comparing the hypothesized configuration with the

model, the distances between part centers match. But since the joints in the object are

rigid, the joint rotations of the hypothesized object do not match the modelled ones,
because the model parts A and B are slightly tilted whereas scene parts 2 and 0 are

perpendicular. If both joints were flexible, the configuration would match, the rota-

tional parameters would be computed, and the superquadric part fitting would pro-

ceed. Since the hypothesized object�s configuration would be accurate, the

superquadric parts of the model would not move or rotate much in the process of

fitting, and the interpretation would succeed.

Let us skip forward in the interpretation tree search until the interpretation

ðA;B;CÞ ¼ ð2; 0;#Þ is found. After trying all possible matches for model part C,
there is also a possibility, that the part in question is missing (is occluded, or the re-

construction is not appropriate). The hash sign (#) in the interpretation stands for a

wildcard, that is a fictitious part that matches every model part. A wildcard match is

simply appended (at the end) of the list of scene parts. Interpretation

ðA;B;CÞ ¼ ð2; 0;#Þ is thus consistent, but fails again on structural verification.

For the purpose of demonstration, let us imagine that part 0 is occluded from the

scene. The interpretation tree search would then lead to interpretation

ðA;B;CÞ ¼ ð2; 3;#Þ, which is structurally sound, and also represents the best inter-
pretation for the scene.

The search continues with three more consistent interpretations, which fail on

structural verification, until the correct interpretation ðA;B;CÞ ¼ ð2; 3; 0Þ is found.
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3. Experiments

We decided to use human figures as generic articulated test objects for our recog-

nition task. We were not interested in the specific problem of modelling the human

form and do not want to compete with dedicated human form capture systems,
although it should be mentioned that systems using superquadrics for modelling

humans do exist [23].

Since the work space of our range scanner is rather small (see next subsection), we

decided to use toy figurines instead. We selected figurines representing ‘‘Commander

Data’’ from the Star Trek series (Fig. 8A). Their arms and legs are flexible and the

figurines can thus be configured into many different poses.

3.1. Experimental setup

The experimental setup for the system was as follows: range images were obtained

by the structured light range scanner from our lab. Its main components are an

ABW LCD projector for projecting the structured light sequence onto the scene, a

Sony XC-75CE camera for capturing the image sequence, and Linux based software

[24] that controls the projector and camera, and generates the range image from the

captured sequence. A range image is an array of 450� 450 elements signifying the

distance between the element and the camera. The work space of the scanner is about
25� 25� 20 cm, so that objects larger than that can not be scanned as a whole. It

takes the scanner about ten seconds to capture a range image.

Captured range images were processed with the Segmentor system [2,10]. On a

400MHz PC, the processing took from 1:30 (simple scenes) to 3:00 h (complex

scenes).

The resulting sets of superquadric descriptions were processed with the recogni-

tion system as described in the previous sections. The system was implemented in

C++, and the processing times for some examples can be seen on Table 1. Tables
Fig. 8. Toy figurine (A) is modelled in two levels (B): superquadric part models define the size and shape

of individual parts (grey models) while the structural level (vectors rij) defines how parts are connected to

each other.



Table 1

Processing times for some input sets

Input Model parts Scene parts Objects Comp. time (s)

H-object 1, Figs. 5 and 6 3 6 1 2.9

H-object 2, Fig. 9 3 8 1 3.4

Toy figurine 1, Fig. 11 10 183 2 48.7

Toy figurine 2 10 121 2 42.5
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3 and 4 show constraints and verification parameters� values that were used in the

experiments, respectively.

We built the model of the figurine manually. The model consists of superquadrics

(Fig. 8B). Each superquadric represents one of the major body parts: head, torso, a

pair of upper arms and forearms, and a pair of thighs and shanks. Due to the limited

scale of parts which can be recovered on the selected range image resolution by the

Segmentor, the model does not include distinct models of hands and feet. Each body

part is described by a superquadric of a particular size and shape. The torso is given
a central role in the model. The head and upper arms and legs are attached to it via

joints (Fig. 8B). For each of those parts the joint position in relation to the center of

the part itself (ri1) and to the center of the torso (r1i) is defined. Similar is true for

lower extremities. The parameter values for all parts were obtained by measuring

the figurine and are listed in Table 2.

The figurine is interesting in several ways. It is fairly realistic and naturally shaped

and therefore cannot be perfectly modelled by superquadrics. Since the surfaces are

not smooth, the reconstruction of superquadrics on their range images is less stable.
There can be several superquadrics reconstructed on a single scene (object) part, or a

single superquadric can span over several scene (object) parts. The flexibility of body

joints makes the matching problem even more complex than if the object part con-

figuration would be rigid.
Table 2

Model parameters for toy figurine object from Fig. 8

No. Part a1 a2 a3 �1 �2 Volume

0 Head 8 8 10 0.7 1.0 3185

1 Torso 14 10 15 0.3 0.9 13077

2, 4 Upper armx 5 5 13 0.1 1.0 2027

3, 5 Thighx 7 7 17 0.3 1.0 4995

6, 7 Forearmx 5 5 10 0.1 1.0 1559

8, 9 Shankx 6 6 17 0.3 1.0 3670

Joint positions

r10 ¼ ½0; 0; 15�T; r01 ¼ ½0; 0;�10�T; r12 ¼ ½15; 0; 8�T; r21 ¼ ½0; 0; 7�T;
r13 ¼ ½5; 0;�22�T; r31 ¼ ½0; 0; 7�T; r14 ¼ ½�15; 0; 8�T; r41 ¼ ½0; 0; 7�T;
r15 ¼ ½�5; 0;�22�T; r51 ¼ ½0; 0; 7�T; r26 ¼ r47 ¼ ½0; 0;�9�T;
r62 ¼ r74 ¼ ½0; 0; 10�T; r38 ¼ r59 ¼ ½0; 0;�14�T; r83 ¼ r95 ¼¼ ½0; 0; 17�T

x ¼ f1; 2g.
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3.2. Constraint values and verification parameters

Reconstructions of superquadrics on range images of the object taken in different

poses and from different viewpoints differ greatly. The exception is the head since the

analysis of superquadric reconstructions of the human body showed that the head
was the most consistently reconstructed body part. At the same time, the head is also

the only part that does not change significantly its relative position in relation to the

torso. It was therefore reasonable for the head part to use in part matching beside the

volume constraint also the size S and the shape H constraints, to early on reject as

many unsuitable parts as possible.

Superquadrics reconstructed on the torso region differ the most from the torso�s
model superquadric. On this region several possibly overlapping superquadrics can

be recovered, which can partially extend even into regions belonging to extremities.
Thus, the extended volume constraint V0 was used for the torso part.

Table 3 lists the constraint values, while Table 4 lists verification parameters used

for the figurine object. Values were defined on the basis of thirty superquadric recon-

structions of the object�s range images.
4. Results

Let us first present an example recognition of the simple object from Fig. 2. Figs.

9A–D show the scene, the superquadric reconstruction of the scene, the best hypoth-

esized interpretation and the verified interpretation, respectively. The interpretation
Table 3

Match consistency test values for the toy figurine object from Fig. 8

No. Part Constraints Constraint values

0 Head T 0 ¼ fV0;S0;1;S0;2;S0;3;

H0;1;H0;2g
V min
0 ¼ 1000, V max

0 ¼ 6000, amin
0;1 ¼ 6:5,

amax
0;1 ¼ 15, amin

0;2 ¼ 5, amax
0;2 ¼ 11, amin

0;3 ¼ 3,

amax
0;3 ¼ 9, �min

i;1 ¼ 0:5, �max
i;1 ¼ 1:4,

�min
i;2 ¼ 0:4, �max

i;2 ¼ 1:5

1 Torso T 1 ¼ fV0
1;D1;0g V min

1 ¼ 3500, V max
1 ¼ 14000,

V 0min
1 ¼ 5500, V 0max

1 ¼ 20000, S1 ¼ 12,

dmin
1;0 ¼ 16; dmax

1;0 ¼ 27

2, 4 Upper arm T ð2j4Þ ¼ fVð2j4Þ;Dð2j4Þ;1g V min
ð2j4Þ ¼ 300, V max

ð2j4Þ ¼ 6500

dmin
ð2j4Þ;1 ¼ 14; dmax

ð2j4Þ;1 ¼ 31

3, 5 Thigh T ð3j5Þ ¼ fVð3j5Þ;Dð3j5Þ;1g V min
ð3j5Þ ¼ 500, V max

ð3j5Þ ¼ 8000

dmin
ð3j5Þ;1 ¼ 20; dmax

ð3j5Þ;1 ¼ 34

6, 7 Forearm T ð6j7Þ ¼ fVð6j7Þ;Dð6j7Þ;ð2j4Þg V min
ð6j7Þ ¼ 300, V max

ð6j7Þ ¼ 3500

dmin
ð6j7Þ;ð2j4Þ ¼ 7; dmax

ð6j7Þ;ð2j4Þ ¼ 23

8, 9 Shank T ð8j9Þ ¼ fVð8j9Þ;Dð8j9Þ;ð3j5Þg V min
ð8j9Þ ¼ 300, V max

ð8j9Þ ¼ 4000

dmin
ð8j9Þ;ð3j5Þ ¼ 9; dmax

ð8j9Þ;ð3j5Þ ¼ 38



Fig. 9. Interpretation of a simple scene: (A) intensity image of a scene, (B) input range image with super-

imposed reconstructed superquadrics, (C) superquadrics selected for the hypothesis, (D) verification by re-

fitting superquadrics of the model to corresponding segments in the range image.

Table 4

Values of interpretation verification parameters used in the experiments

Meaning Variable Value

Interpretation size threshold P 5

Maximum pole rotation thresholds D1 3

D2;D3;D4;D5 11

D6;D7 6

D8;D9 7
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found is a valid one, consisting of matches for all object parts, which are configured

correctly.

As previously mentioned, the recognition system was tested using the figurine

object on two types of scenes:
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• scenes containing only one figurine in different configurations and

• complex scenes containing one or two figurines along with a large number of other

parts.

With the first set of test images we wanted to test systematically the system�s per-
formance for isolated figurines. The figurine was configured into seven different
poses and for each pose, range images from eight different viewpoints were captured,

which makes a total of 56 images.

Fig. 10 shows one of the results, while Table 5 summarizes the recognition results.

The object was detected in 39 cases. In 24 of those cases, the model computed from

the best interpretation fitted the object very well. An interpretation included on the

average 7.2 real matches. The object was not detected in 17 cases. In 9 of those cases,

the reason for the failure was a singular object configuration as seen from that par-

ticular viewpoint. Due to occlusion, some parts, mainly the torso or the head, were
not recovered properly, thus leading to a part configuration, which was later rejected

when superquadric refitting was done. In the 8 other cases of failure the best inter-

pretation found included less than five real matches, and was therefore rejected.

The system�s performance was also tested on 20 different complex scenes. Com-

plex scenes included several appearances of the figurine, as well as many unknown
Fig. 10. Single figurine scene: (A) the input range image with superimposed reconstructed superquadrics,

(B) superquadrics selected for the hypothesis, and (C) verification by refitting superquadrics of the model

to their corresponding segments in the range image.

Table 5

Results of recognition on 56 scenes consisting of only one object

Total number of scenes: 56

Object detected Object not detected

39 17

Model fit Cause

Good Poor Occluded head or torso Too few real matches

24 15 9 8



Fig. 11. Interpretation of a complex scene: (A) intensity image of a scene, (B) input range image with su-

perimposed reconstructed superquadrics, (C) superquadrics selected for two hypotheses, and (D) verifica-

tion by refitting superquadrics of the model to corresponding segments in the range image.
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objects (Fig. 11). Nevertheless, there were no false positive recognitions of the hu-

man form, although there were many at least partially misleading part configura-

tions. It is much harder to test a complex scene in a systematic fashion because of
so many possible variables. One can observe that the reconstructions of the support-

ing surfaces in complex scenes were not appropriate, because such surfaces cannot be

modelled well by superquadrics.
5. Conclusions

In this paper, we have investigated if superquadric-based shape decomposition
can be used for recognition of articulated objects. The system is based on interpre-

tation trees. We have shown, that despite very rough and sometimes unstable part
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descriptions of natural shapes, superquadrics can be used in an object recognition

scheme by introducing complex and sometimes model specific verification rules.

The system can handle flexible articulated objects that cannot be perfectly modelled

by superquadrics which is demonstrated by the recognition of the human figurine.

Our approach should be useful for any kind of articulated objects with a clear part
configuration.

The system could be improved in many ways. Best-first search could be imple-

mented in order to inspect best interpretations (regarding part matches and/or scene

part distances) first. Constraints could be added to limit the search based on object�s
size, so that the search would not include too distant scene parts. There is also a pos-

sibility for a parallel implementation of the whole system, including the segmentation

and recovery stage which is currently the most time consuming part of the system.

If several models are used by the system, the obvious solution would be to use a
separate interpretation tree for each object. But one can also come up with a single

interpretation tree, which is especially useful in case that many objects share some

parts. Nodes in such a tree would also carry the information about which object they

can match. A node would expand to nodes representing all possible matches for all

objects possibly matched by that node. After arriving to a leaf, the interpretation

should be verified for all objects included in the leaf node. In case that none of

the objects share the same part, the interpretation tree would consist of interpreta-

tion trees of all objects put side by side, all connected only to a single root node.
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Appendix A

Algorithm 1. Interpretation tree search

// Stack—stack of nodes to be expanded

// Interp—list of consistent part matches that form an interpretation

// MaxSize—currently maximum interpretation size

// sizeðInterpÞ—no. of real part matches in Interp
// root—label for tree root

// consistentðX ; T Þ—returns TRUE when X is a root, or X is a wildcard match, or

X is T consistent real part match

// verifyðInterpÞ—returns TRUE when Interp is sound

Stack ¼ ½root�; Interp ¼ ½�;MaxSize ¼ 0;
WHILE (Stack not empty)

pop next match X ¼ ðfj;mkÞ from Stack
determine the set of constraints T for part mk
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IF (consistent(X ,T ) AND max. possible interpret. size PMaxVel)
add X in Interp;
IF (leaf reached)

IF (verify(Interp))
save Interp;
MaxSize ¼ sizeðInterpÞ
ENDIF

ELSE /* not a leaf, but still consistent */
push ðW ;mkþ1Þ on Stack
FOR i ¼ 1 . . .N
IF (part fi not in Interp)

push ðfi;mkþ1Þ on Stack
ENDIF
ENDIF

ENDIF
ENDWHILE
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