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Surface and Volumetric Segmentation of Complex 3-D Objects Using Parametric
Shape Models

Abstract

The problem of part definition, description, and decomposition is central to the shape recognition
systems. In this dissertation, we develop an integrated framework for segmenting dense range data of
complex 3-D scenes into their constituent parts in terms of surface and volumetric primitives. Unlike
previous approaches, we use geometric properties derived from surface, as well as volumetric models, to
recover structured descriptions of complex objects without a priori domain knowledge or stored models.

To recover shape descriptions, we use bi-quadric models for surface representation and superquadric
models for object-centered volumetric representation. The surface segmentation uses a novel approach
of searching for the best piecewise description of the image in terms of bi-quadric (z = f(x,y)) models. It is
used to generate the region adjacency graphs, to localize surface discontinuities, and to derive global
shape properties of the surfaces. A superquadric model is recovered for the entire data set and residuals
are computed to evaluate the fit. The goodness-of-fit value based on the inside-outside function, and the
mean-squared distance of data from the model provide quantitative evaluation of the model. The
qualitative evaluation criteria check the local consistency of the model in the form of residual maps of
overestimated and underestimated data regions.

The control structure invokes the models in a systematic manner, evaluates the intermediate descriptions,
and integrates them to achieve final segmentation. Superquadric and bi-quadric models are recovered in
parallel to incorporate the best of the coarse-to-fine and fine-to-coarse segmentation strategies. The
model evaluation criteria determine the dimensionality of the scene, and decide whether to terminate the
procedure, or selectively refine the segmentation by following a global-to-local part segmentation
approach. The control module generates hypotheses about superquadric models at clusters of
underestimated data and performs controlled extrapolation of the part-model by shrinking the global
model. As the global model shrinks and the local models grow, they are evaluated and tested for
termination or further segmentation.

We present results on real range images of scenes of varying complexity, including objects with occluding
parts, and scenes where surface segmentation is not sufficient to guide the volumetric segmentation. We
analyze the issue of segmentation of complex scenes thoroughly by studying the effect of missing data
on volumetric model recovery, generating object-centered descriptions, and presenting a complete set of
criteria for the evaluation of the superquadric models. We conclude by discussing the applications of our
approach in data reduction, 3-D object recognition, geometric modeling, automatic model generation.
object manipulation, and active vision.
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ABSTRACT

SURFACE AND VOLUMETRIC SEGMENTATION OF COMPLEX
3-D OBJIECTS USING PARAMETRIC SHAPE MODELS

Alok Gupta
Supervised by Ruzena Bajcsy

The problem of part definition, description, and decomposition is central to the shape
recognition systems. In this dissertation, we develop an integrated framework for segmenting
dense range data of complex 3-D scenes into their constituent parts in terms of surface and
volumetric primitives. Unlike previous approaches, we use geometric properties derived
from surface, as well as volumetric models, to recover structured descriptions of complex
objects without a priori domain knowledge or stored models.

To recover shape descriptions, we use bi-quadric models for surface representation and
superguadric models for object-centered volumetric representation. The surface segmen-
tation uses a novel approach of searching for the best piecewise description of the image

in terms of bi-quadric (z = f(z,y)) models. It is used to generate the region adjacency

graphs, to localize surface discontinuities, and to derive global shape properties of the sur-
faces. A superquadric model is recovered for the entire data set and residuals are computed
to evaluate the fit. The goodness-of-fit value based on the inside-outside function, and the
mean-squared distance of data from the model provide quantitative evaluation of the model.
The qualitative evaluation criteria check the local consistency of the model in the form of
residual maps of overestimated and underestimated data regions.

The control structure invokes the models in a systematic manner, evaluates the inter-
mediate descriptions, and integrates them to achieve final segmentation. Superquadric and
bi-quadric models are recovered in parallel to incorporate the best of the coarse-to-fine and
fine-to-coarse segmentation strategies. The model evaluation criteria determine the dimen-
sionality of the scene, and decide whether to terminate the procedure, or selectively refine
the segmentation by following a global-to-local part segmentation approach. The control
module generates hypotheses about superquadric models at clusters of underestimated data
and performs controlled extrapolation of the part-model by shrinking the global model. As
the global model shrinks and the local models grow, they are evaluated and tested for
termination or further segmentation.

We present results on real range images of scenes of varying complexity, including ob-
jects with occluding parts, and scenes where surface segmentation is not sufficient to guide
the volumetric segmentation. We analyze the issue of segmentation of complex scenes thor-
oughly by studying the effect of missing data on volumetric model recovery, generating
object-centered descriptions, and presenting a complete set of criteria for the evaluation of
the superquadric models. We conclude by discussing the applications of our approach in

data reduction, 3-D object recognition, geometric modeling, automatic model generation,
object manipulation, and active vision.
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CHAPTER 1

Introduction

For visual discrimination, shape plays a very important role. Human beings exhibit re-
markable abilities to simplify the visual input without bringing in domain knowledge or
functionality into consideration. A robot using vision for navigation or recognizing objects,
has to similarly simplify the visual input to the level that is required for the specific task.
To simplify means to partition images into entities that correspond to individual regions,
objects and parts in the real world and to describe those entities only in detail sufficient
for performing a required task. Usually the first level of simplification entails obtaining
part descriptions based on the properties that are independent of the position, orientation,
scale and the work domain. Physical shape of an object is an important characteristic that
allows us to discriminate between two otherwise identical objects, for example a ball from
cube of same color and texture. Shape is the outward appearance or form of an object
defined by its boundaries and surfaces. It is therefore possible to model an object’s physical
shape by geometric primitives in terms of surfaces and volumes. The distinction between
surface and volume is only subtle in the sense that surface description captures the abstract
notion of a surface as curved or convex or planar, while the volume description gives a
higher-level description by combining the surface properties to give the bounding volume
as a box or a sphere. So, a piecewise-planar description of a box at surface level can be put
together to represent the global shape as a box. This indicates that surface models capture
local shape more accurately than volumetric models, while volume models are better at

describing global shapes by ignoring local details.

From the perspective of shape, objects in the real world represent a complex conglomer-
ation of primitive shapes. These primitive shapes can be considered as the building blocks
of the larger objects. An object of an arbitrarily complex shape can be decomposed into

1



2 1. Introduction

numerous pieces based on the primitives shapes. We would like the shapes to be primitive
enough to model as large a class of objects as possible. For other objects, only approximate
descriptions will suffice. The primary objective of a shape recognition system is to derive
a structured description of complex objects in terms of primitive shapes. The resulting de-
composition into parts is very useful for the high-level symbolic reasoning object-recognition
processes, which can attach domain specific labels to the parts, and reason at a level where
the visual input is structured in terms of primitives, rather than cope with the difficulties
of low-level vision and huge pile of unstructured data.

Since the shapes have to be recovered from raw data, it is not possible to invoke complex
models (models with hundreds of degrees of freedom) straight away. It is, however, feasible
and perceptually less ambiguous to use simpler but powerful models that can capture the
local and global properties of the object shapes, and provide a first approximation to the
more complex models. With computability, simplicity, and the utility of the shape repre-
sentation as our major concerns, we decided to use bi-quadrics and superquadrics as our
surface and volumetric models respectively. We develop a control structure to effectively
carry out the decomposition of complex objects in range images, and address the numerous
issues encountered in a data-driven bottom-up approach.

The dissertation is organized in the following manner. In this chapter, we formally define
the shape recognition problem, and give a philosophical overview of the problem. Shape
primitives, motivation for segmentation and our approach are discussed in chapter 2. The
surface segmentation procedure is described in chapter 3 and the aspects of integration of
surface information with superquadric model recovery are presented in chapter 4. Chapter
5 gives a detailed analysis of superquadric models and derives important results useful
for volumetric segmentation. The criteria for the evaluation of superquadric models are
discussed in chapter 6. The control module, which systematically recovers the superquadric
models, is described in chapter 7, and detailed results on real range data are given in chapter

8. Finally, we summarize our approach and discuss the future directions in chapter 9.

1.1 Statement of the Problem

The goal of this research is to recover structured shape descriptions of complex three-
dimensional objects in range images in terms of significant parts defined by a set of surface
and volumetric primitives without a priori knowledge about the object or the object do-

main. By “significant” we mean that the part boundaries are of physical, perceptual or



1.1 Statement of the Problem 3

geometric significance and that part decomposition is natural.

In addition to defining the problem as that of part-segmentation, it can also be viewed
as that of symbolic representation and data reduction by attaching symbols to data. Other
interpretations include geometric modeling and geometric reasoning, where knowledge in-
herent in the geometric primitives is used to model data.

The phrase “recover structured descriptions” summarizes our approach to the problem
of part-segmentation. Instead of matching stored models, the shape vocabulary should
include a continuum of shapes that can be recovered from the data. The description should
be structured, and obtained in terms of shape primitives without a priori knowledge about
the object or the object domain.

This brings in the vital issues of part definition, description and decomposition, each of
which addresses the very basis of our research. At the outset, it is important to note that
the problem of shape description and decomposition has proved to be extremely difficult
mainly because the researchers have either tackled each of the components separately or
limited their description to one primitive. We present arguments that the issue of part
description and part segmentation! are related and have to be considered together. This
observation leads us to propose surface and volumetric primitives for shape representation,
and the control structure to integrate them to obtain the final description.

The complete problem of shape recognition can be posed as a composition of following

fundamental subproblems :

1. What are parts and how are they defined?
2. What is the basis of decomposition of shape into parts?
3. How are part definition, description and decomposition related?

4. What types of geometric primitives and how many primitives are enough to generate

the desired part description?
5. What is the motivation for selecting a set of primitives and partitioning rules?

6. What are the processes that carry out these decompositions?

=1

What is the overall control strategy to arrive at a detailed description of complex

objects in terms of chosen primitives?

1\We will use the terms segmentation and decomposition interchangeably.



4 1. Introduction

(a) (b) (c)

Figure 1.1: 3-D parts: A cylinder (a) is a single volumetric part consisting of two surface
patches. The Box (b) is perceived as a single volumetric part, while three planar patches are
seen at surface level. The composite object (c) has two distinct volumetric parts, separated

by a concavity at the transversal join.

The first five questions constitute the problem analysis phase, where we attempt to
formalize the problem in the most general sense. The last two questions involve important
computational and integration issues that will determine the eventual robustness of the
system. In this chapter we lay the foundation of our work by giving a general definition of

the problem. Other issues are dealt with in detail in the subsequent chapters.

1.2 What are Parts?

Webster’s dictionary defines a part as one of the portions into which something is or is
regarded as divided and which together constitute the whole. Arnheim [1974] notes that
in a quantitative sense, any section of whole can be a part. But this definition does not
preserve structure. Partitioning by ignoring structure is not of much use in vision [Witkin
and Tenenbaum 1983, Hoffman and Richards 1985, Pentland 1987b, Arnheim 1974].

Part definition ultimately depends on the reliability, versatility and computability con-
straints imposed by the task of shape recognition and may not be unique [Hoffman and

Richards 1985]. It is therefore difficult to give a general definition of part in the context of
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shape recognition. However, a working definition would define a part as an easily describable
and recognizable portion of a complex shape that is invariant to minor changes in viewpoint
(figure 1.1). It brings the notion of description into part definition, emphasizing the fact
that two are interrelated. The idea of partitioning a complex object into describable parts is
not new in computer vision. It differs in the choice of primitives and the way segmentation
is carried out. Traditionally part definition has been either primitive-based or boundary-
based [Bennett and Hoffman 1987, Nevatia and Binford 1977, Hoffman and Richards 1985].
In the literature, primitive-based approaches [Agin and Binford 1973, Nevatia and Binford
1977, Soroka and Bajcsy 1978] have defined objects by cylindrical, polyhedral, conical or
spherical shapes. The objective of such systems is to fit parts of complex objects with models
in the shape vocabulary. Boundary-based approaches [Hoffman and Richards 1985, Bennett
and Hoffman 1987, Koenderink and vanDoorn 1982, Biederman 1985] define parts by out-
lining the boundaries on surfaces. Beiderman [1985] has emphasized the perceptual basis
for part decomposition based on Gestalt principles (nonaccidental properties of 2-D pro-
jection of 3-D objects). Others have imposed the requirement of continuity [Binford 1982]
and uniformity [Hoffman and Richards 1985]. In shape decomposition, one tries to follow
the principle of orderliness, which means - partitioning things in the simplest possible way.
Such partitioning normally reflects the structure of the physical world quite well due to the
principle of parsimony [Arnheim 1974].

Segmentation Versus Representation: Decomposition into parts, units or primi-
tives is the basis of scientific methodology. Because of the limits on how much information
we can process at a time, we have to simplify and view the world at various levels of
abstraction. Our objective is to decompose complex objects into the constituent parts
based on the shape. Many reasons have been advanced in favor of such a decomposition. A
recognition-by-parts approach is not sensitive to occlusion and is extremely powerful in han-
dling countless configurations of articulated objects. A description in terms of basic shape
primitives is more efficient, parsimonious in space consumption, and facilitates structured
description of the world. These arguments are supported by the principles of perceptual
organization [Biederman 1985].

In computer vision literature the partitioning of images and description of individual
parts is called segmentation and shape representation respectively. We have presented ar-
guments in [Bajcsy et al. 1990] that the problem of segmentation and representation are

related and have to be treated simultaneously. Since the analysis aspect of computer vision
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(a) (b)

Figure 1.2: Part versus detail: Perception of parts depends on scale of the part with
respect to the whole. The wrench shape (a) needs decomposition into parts (b). While the

jagged boundary on one side of the object (c¢) can be ignored as a detail. However, at a

finer scale, details become parts.

requires symbolic representation of data, for the models to correctly reflect the underlying

data it is imperative that the issue of representation be addressed during the process of seg-
mentation. Bennett and Hoffman [1987] have argued that a primitive based part definition
confuses the problem of part definition with the separate problem of part description. We
consider them to be interdependent; parts are defined the way they are described by shape
primitives. Our surface primitive implicitly defines the part boundaries on the smooth sur-
faces and thus includes the advantages of a boundary-based approach. In this context, it is
possible to view the local support enjoyed by the surface descriptions as achieving the goals
of a boundary-based approach, while preserving the descriptive power of the primitive-based

approaches. However, it might not always be possible to obtain complete primitive-based

description of arbitrary objects for all the parts. Volumetric primitives being influenced by
the global shape, may not account for all the surface details. Surface primitives ensure that
we obtain a part description at a level lower and less global than the volumetric primitive.
An important issue related to the part-whole relationships is the issue of par{ versus

detail . That a portion of the whole merits an independent description as a part or can be
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Figure 1.3: The hierarchy of representation: The volumetric model is a 3-D represen-

tation of the 2%-D range data.

considered a mere detail is a matter of scale in the bottom-up approach we are adopting.
In figure 1.2 the wrench appears to have parts while the wiggles on one side of the other
object appear to be details that do not need part level description. However by increasing
the scale of the wiggliness with respect to the size of whole we get them as significant parts.
Notice that the wrench can be decomposed into four parts instead of three. Ambiguities
in final description are common in part-segmentation without a priori knowledge, and the

strategy followed by the volumetric segmentation decides which description is preferred.

1.3 Shape Primitives

What are the shape primitives that adequately describe the data? How many primitives
are required? Since the objects in the world are of arbitrary complexity, it is not possible
to include primitives for all the different shapes as it will never be a complete set. Thus
we have to make a judicious choice of primitives that have the capability of describing
data at various levels (dimensions), so that description at some level is always possible
and computability of primitives is assured. For obtaining a global shape description from

single-viewpoint 3-D data requires addressing shape at following levels :
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>

1. Volumetric level : Primitives capable of modeling parts in three dimensions are

needed to describe global shape of parts.

2. Surface level : Surface primitives describe internal surface boundaries and surface

patches which are difficult to model with volumetric primitives, but are vital source

of information about recovering part structure.

This hierarchy of shape primitives (figure 1.3) allows us to obtain shape descriptions at
volumetric and surface levels. Figure 1.4 shows the hierarchy of descriptions for a machined
object. It is clear that no one primitive will always capture all the details of shape. For
example, if it is not possible to model parts with the selected volumetric primitive, an
approximation at volumetric level can be obtained, with more detailed description at surface
level. Thus, completeness requirement for a general representation is satisfied by obtaining
hierarchical descriptions.

Low-level models like contours and edges have low granularity (edge description in fig-
ure 1.4) and are too local to capture or make use of the gross structure of the world. They
are sensitive to local changes and difficult to put together in a global context. They are
useful when used with surface models. Our hierarchy of representation (figure 1.3) has only
implicit information about edges, and no explicit edge models are used.

The next level of shape description is achieved by describing local and overall surface
characteristics. Surfaces play important role in human perception of shape. A lot of effort
in computer vision has been spent on describing complex surfaces as piecewise continuous
patches. We have developed a new method for piecewise surface segmentation in terms of
variable-order (up to second-order) bi-variate polynomials.

Three dimensional primitives like generalized cylinders and cones, polyhedral models,
3-D Smoothed local symmetries [Brady 1983], and 3-D symmetric axis transform [Nack-

man and Pizer 1985] have been used by model based vision systems. However, the power
of representation varies from model to model. A model allowing deformations is likely to
describe objects with fewer primitives than a rigid model which will need more instances
to approximate the object. As we shall describe later, volumetric primitives are essential
to generate compact object-centered descriptions and to define global part-structure. Su-
perquadric models, our choice of volumetric primitives, generate object centered descriptions

by drawing local support from the surface primitives.
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Volumetric description:

Surface description:

Edge description:

Range image:

Figure 1.4: Edge-Surface-Volume representation of a complex object: NIST Object:

The hierarchy of shape primitives highlights different aspects of shape at different levels.
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1.4 The Segmentation Problem

The problem then is how to use the primitives to segment the objects into part-structures.
In the context of shape recognition, the problem of segmentation can be defined as matching
the right kind of shape model with the right parts of data in an image. This brings up the

crucial question of facilitating this matching process.

Each of the shape primitive can independently describe the data. The contour-based
segmentation is widely studied in pattern recognition and computer vision as 2-D shape
recognition problem [Pavlidis 1977, Shapiro 1980, Asada and Brady 1986]. Since we are
not explicitly dealing with 2-D segmentation, we are interested in approaches using dense
surface information for segmentation. Surface based approaches have been popular with
model-based vision systems, as they have local support, and allow 3-D objects to be modeled
as collection of surfaces. Volumetric models have proved to be most difficult to recover from
image data. Some researchers have used a combination of features to model domain specific
objects [Kuan and Drazovich 1985, Brooks 1983], exploiting the robustness achieved by
combining descriptions at different levels. To facilitate segmentation we believe that a
general purpose vision system needs volumetric and surface shape primitives. Difficulty in
recovering volumetric models in intensity images is experienced due to the loss of depth
information. But the problem has not proved to be any easier even with the availability of
depth information [Nevatia and Binford 1977, Kuan and Drazovich 1985, Solina 1987, Boult
and Gross 1987, Rao 1988, Soroka and Bajcsy 1978].

Model based vision systems match the available models in the model database with
hypothesized instances of models in the image data. Object models typically used in vision
are built as a structured hierarchy of primitive part-models. Since we are addressing the
problem at the level of shape-definition only, and not at the object-definition level, we do
not have the high-level models that restrict the part-models to a particular configuration.
Therefore, the typical model-based vision strategy is too restrictive to be of any use for
part segmentation. The essential difference between shape recognition problem and the
model-based approach is that we are looking for instances of part-models and not object-
models that constrain the part-models to configure in a known order. Consequently, we do
not have a notion of “object” as such, but only geometric parts. A cluster of points that
cannot be trivially broken into smaller cluster of points is considered an object by us. Thus,
neighborhood information provided by the dense 2%-D image data is vital in defining what

we mean by connectivity. 4-connectivity in the neighborhood of a pixel connects the pixel to
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the neighboring pixels. This formulation relieves us from generating elaborate neighborhood
representations like vornoi diagrams and lets us deal with the more important problem of

segmentation of data.

1.4.1 Segmentation in terms of Primitives

There are two basic strategies for segmentation:

1. Global-to-local: Proceed from coarse-to-fine discrimination by partitioning larger

entities into smaller.

2. Local-to-global: Start with local models and aggregate them into larger ones.

Both of these strategies are commonly used in computer vision [Ballard and Brown
1982, Pavlidis 1977] The advantage of the coarse-to-fine strategy is that one gets a quick
estimate about the volume or surface of the object which can be further refined under
control of some higher-level process which determines the adequacy of the description. The
advantage of this approach is that the amount of detectable detail can be obtained by
switching to a different kind of representation or to a finer scale. For example, to describe
smaller shape details one might have to go from volumetric to surface representation. At the
same time, the criteria for accepting a description can force further splitting of data to match
the model. The important idea that these methods convey is that progressive blurring of
images clarifies their deep structure. Object-centered descriptions like superquadric models
lend themselves especially well to such a strategy, since they describe convex bounding
volumes and any deficiency in the description at a desired scale can be modeled by either
negative volumes or by decomposing the data into parts. We have developed a control
structure that integrates various sources of information to make the coarse-to-fine strategy
feasible for superquadrics.

The second strategy, which goes from local to global, starts with local features and
incrementally builds larger representations. Models like bi-variate polynomials with good
extrapolation capabilities are the right choice for this approach. Although aggregation
of low-level models into models of larger granularity is difficult in presence of noise, it is
possible to accomplish it iteratively, by incrementally growing the model. We have developed
a new approach for the recovery of bi-variate polynomials (up to second-order) using a
region growing method based on iterative regression and a model selection method that

dynamically selects and allows only the “best” models for further growth.
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Figure 1.5: Examples of some complex objects: Range images of some of the test

objects showing the complexity of the segmentation task.
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1.5 The Control Flow for Volumetric Segmentation

Given the shape primitives and the modules to recover them, a control strategy is needed
to invoke, evaluate and integrate them. The control structure forms the heart of the shape
recognition system. The range of input data that we are considering is quite broad, as shown
in range images of complex objects in figure 1.5. The input to our system is a dense depth
map, scanned by an active range scanner from a single viewpoint. No information about
scanner geometry or viewpoint is assumed. Since we are dealing with objects of arbitrary

complexity, a general control structure is required.

The control flow of the SUPERSEG (SUPERquadric SEGmentation) system is shown in
figure 1.6. The bi-quadric surface segmentation and the recovery of the global superquadric
model is done independently and the descriptions are then integrated by the control mod-
ule. The most important component of the control module is its residual analysis module
which matches the current volumetric description with the given data. This matching gives
“difference measures” or the residuals that are then used to evaluate the models. While the
volumetric model gives a holistic explanation of the whole object it can miss details that
are beyond the scope of the model. An overall measure of goodness-of-fit, like the residual
from least-squares fit, or the distance measure does not always give an accurate evalua-
tion of the appropriateness of the volumetric model. Although models can have acceptable
overall goodness-of-fit, they need not be the acceptable representations of the object. This
argues for a measure other than the quantitative measure of goodness-of-fit. The qualitative
measures obtained by comparing the input data the recovered volumetric model can point
out the limitations of the volumetric model and suggest improvements in segmentation or

refinement in shape representation.

We shall describe later that both qualitative (local distribution of residuals) and quan-
titative measures {normalized deviation of data from the model) are necessary for the com-
plete evaluation of the volumetric models. Based on these measures the control module
will either accept the current level of description or generate hypotheses about potential
“parts”. The extraction of part-structure proceeds in a systematic global-to-local man-
ner, with global parts discarding the underestimated data and local models growing on the
discarded data. This in turn shrinks the global model and makes it converge on a part
of the object. Chapter 7 describes the issues involved in designing a control structure to

accomplish this.
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Figure 1.6: The control flow of the SUPERSEG system: A schematic diagram of the

integrated framework for surface and volumetric segmentation.
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1.6 Chapter Summary

We introduced the problem of surface and volumetric segmentation in the context of geomet-
ric part-description, and summarized our approach, which is coarse-to-fine at superquadric
level and fine-to-coarse at surface level. There are five components of the SUPERSEG
system: the bi-quadric surface segmentation module, the module extracting the surface
information for volumetric segmentation, the superquadric recovery module, superquadric
model evaluation and residual analysis, and the control module to systematically achieve the
volumetric segmentation. In the next chapter, we describe the individual shape primitives

and the issues involved in decomposing objects using them.



CHAPTER 2

Shape Primitives and Segmentation

In this chapter we analyze the shape primitives with the central idea of using them for part
segmentation. We then present the primitives that we have chosen, and address the issue

of segmentation using the individual primitives.

2.1 The Choice of Primitives

The choice of primitives can be guided by some general requirements such as a unique
decomposition into primitives, that the primitives cannot be further decomposed or that
the set of primitives is complete. Some of the shape representation criteria are designed
primarily to facilitate object recognition when models recovered from images are matched
to a model data base. Unfortunately, all those principles have not been applied to any
general shape representation scheme for 3-D objects. A review of computer vision literature
which reveals the large variety of geometrical primitives that were investigated for their
applicability to shape representation is a testimony to the difficulty of shape description [Besl
and Jain 1986]

Another discipline involved in representing shape is computer graphics, but from a syn-
thesis (generating) point of view. Some commonly used 3-D representations in graphics are
wire-frame representation, constructive solid geometry representation, spatial-occupancy
representation, voxel representation, octree representation, and different surface patch rep-
resentations. Splines are used for surface boundary representation. But requirements for
shape primitives in computer vision are different from the ones for computer graphics.
Shape primitives for computer vision must enable the analysis (decomposition) of shape.
Common shape primitives for volume representation are polyhedra, spheres, generalized

17
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cylinders, and parametric representations such as superquadrics. Different orders of sur-
face patches (planar, quadratic, cubic) are used for surface representation. For boundary
description one can use linear, circular or other second-order models for piecewise approxi-
mation, and higher-order spline descriptions. In the rest of this section we will discuss what

influences the selection of shape primitives in computer vision.

If only one shape primitive is chosen, the segmentation process is relatively simple. But
the resulting segmentation may not be natural! The data can be artificially chopped into
pieces to match the primitives. An example of such unnatural decomposition is when a
circle is represented piecewise with straight lines or when a straight line is represented with
circular segments. If the scene consists of both straight lines and circles, then neither straight
lines nor circles alone would enable a natural segmentation. A natural segmentation, on the
other hand, would partition an image into entities that correspond to physically distinct
parts in the real-world. A solution to such problems is to use more primitives. How many
primitives are required for segmentation of more complicated natural scenes is then the
crucial question. The larger the number of primitives, the more natural and accurate shape
description and segmentation is possible. But the larger the number of primitives, the more
complicated the segmentation process becomes. Finding the right primitive to match to
the right part of the scene leads potentially to a combinatorial explosion. This argues for

limiting the number of different shape models.

Another influencing factor on the number of different models is the level or granularity of
models. A large number of low-level models is required for scene description because of their
small size or granularity. Low-level models can fit to a large variety of data sets but bring
little prior information to the problem. Substantial manipulation is required to obtain
further interpretation of the data by aggregating low-level models into models of larger
granularity which correspond to real world entities. Such aggregation techniques often fail
because it is not possible to distinguish data from noise or account for missing data only on
the basis of local information. Higher-level models, on the other hand, are prescriptive in the
sense that they bring in more constraints and provide more data compression. Higher-level
models are not information preserving in the sense that they might miss some important
features because they cannot encompass those data variations within their parameterization.

A concise model which adequately describes the data will enable partitioning or seg-
mentation of images into right parts and ignore noise and details. Such a model will have
primitive shape models capable of describing shape at both low- and high-levels. In everyday

life, people use a default level of representation, called basic categories [Rosch 1978]. Basic
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categories seem to follow natural breaks in the structure of the world which is determined
by part configuration [Tversky and Hemenway 1984]. Shape representation on the part level
is then very suitable for reasoning about the objects and their relations in a scene. For part
level description in vision, a vocabulary of a limited number of qualitatively different shape
primitives [Biederman 1985] and different parametric shape models have been proposed.
Parametric models describe the differences between parts by changing the internal model
parameters. In computer vision, the most well known parametric models suitable for repre-
senting parts are generalized cylinders but superquadrics with global deformations seem to
have some important advantages when it comes to model recovery [Pentland 1986, Bajcsy
and Solina 1987]. It is sometimes possible to know a priori that a certain class of geometric
models is sufficient to describe observed data. Another possibility is to somehow evaluate
the complexity of the scene and the dimensionality of the objects in the scene. Knowing
the complexity of the scene can greatly simplify the control structure for segmentation and
shape recovery while knowing the dimensionality of objects simplifies the selection of shape

models.

The objective of a vision system, whether the goal is to avoid obstacles during nav-
igation, to manipulate objects with robotic grippers and hands or to identify objects by
matching them to a data base, is another constraint during shape model selection. For ob-
ject avoidance, only representation of occupied space is necessary, often allowing to largely
overestimate the size of obstacles. In addition to location and orientation, grasp planing for
robotic hands requires knowing more precisely the size and overall global shape of the ob-
ject. For object recognition, more specific, identifying features are needed. Different shape
primitives are better at representing different aspects of shape and at different scales. Vol-
umetric representation provides information on integral properties, such as overall shape,
enabling classification into elongated, flat, round, tapered, bent, and twisted primitives.
They can best capture the overall size and volume since they must make an implicit as-
sumption about the shape of the object hidden by self occlusion. Surface representation is
better at describing details that pertain to individual surfaces which can be part of larger
volumetric primitives. Surface primitives can differentiate planar surfaces versus curved
surfaces, concave versus convex, and smooth versus undulated surfaces. On the one hand,
occluding boundary representation is a local representation of curvature and surface near
the boundaries, on the other hand, by delineating the boundaries of an object from the

background. it defines the whole object.
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2.1.1 Criteria for Representation

The criteria for selection of primitives have been studied extensively by vision researchers
[Brady 1983, Marr 1982, Binford 1982]. The primitives should be invariant to rotation,
translation, and scale. Accessibility, defined as computability of the primitive is essential,
since our goal is to recover the structure from the input. Stability of the primitive with
respect to minor changes due to noise or viewpoint, with respect to scale and configuration
is important to generate consistent representations. While small changes in scale should
not create major changes in the description, a multi-scale representation should be possible.

The primitives should have local support, so that occluded parts can still be described.

Besides, primitives should balance the trade-off between data reduction and faithfulness
to measured data. They should be generic and data-dependent which is a compromise
between the complete knowledge based approach and the one where the primitives possess an
enormous number of degrees of freedom in order to model everything. Knowledge about the
constituents of the scene can make the segmentation process less dependent on noisy data,
thus more robust, but less general. On the other hand, methods that do not constrain their
primitives do not achieve any compression or symbolic description. While the number of
different scenes is non-countable, the number of spatial primitives (planar, convex, concave)
is relatively small. This enables us to build models and to find their instances in the scene.
It is important for the further processing that they correspond to meaningful segments in
terms of physical phenomena or in terms of natural qualitative description (planar, convex,
or concave shape, for example). In other words they should possess features which contain
perceptually significant information. They represent an intermediate stage in the process

of abstraction of information from early levels into successively more complex forms.

However, in all model based approaches we are restricted by the primitives, since they
cannot model evervthing present in the input data. Nevertheless, they can provide approx-
imate descriptions of data even if a model is not present in the vocabulary. For the regions
that cannot be accurately represented by the model vocabulary, (for example, if a surface
curves faster than the highest order model) it is important that the primitives can be easily
combined in a description of patchwise continuous combination of model primitives. In
this respect, surface models like bi-variate polynomials are better than volumetric models
like generalized-cylinders and superquadrics, since they have more local support and higher

fidelity to the underlying data.

Spatial primitives like curves and surfaces satisfy the above criteria. Additional criteria
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for primitive selection, as given by Besl [1988] are : 1) Models should approximate well
any smooth curve or surface of constant sign-of-curvature over a finite domain. 2) Models
should extrapolate accurately to arbitrary points outside the current domain. 3) Models
should interpolate between missing points inside the domain. 4) Models should be computed

efficiently. 5) Model representation should be compact.

2.2 Our Choice of Primitives

Based on the criteria outlined above, we chose bi-quadric shapes as the variable-order
surface models and superquadrics as the volumetric part-models. Bi-quadrics achieve 2%—D
clustering, while superquadrics achieve 3-D clustering of the 22-D data. Since our task
is part-segmentation, which is invariant to scale, size, translation, and orientation, we use
superquadrics as a general object-centered model for volumetric segmentation. For curved
surfaces of order greater than 2, the piecewise bi-quadric description may not be invariant
to orientation due to the fixed Z-axis orientation along the viewing direction. We use
the bi-quadric and superquadric models as general-purpose representations to exploit the
advantages of surface models and object-centered models. For objects with surface texture,
only a coarse segmentation is possible at volumetric level, while detailed segmentation can
be achieved at the surface level. In some cases, like the natural scenes, specialized models
like fractals need to be employed. Locally deformable models are appropriate for objects
with surface details (like human face), but usually require pre-segmented regions where they
can be applied. Due to their complexity and representational ambiguities (high degrees of
freedom) they are difficult to employ on raw data (if it requires more than one instance of
the model for its description) for the purpose of segmentation.

We will now introduce the bi-quadrics and superquadric models, and discuss the seg-
mentation issues as well as the past work in surface and volumetric segmentation using

these and other models.

2.2.1 The Surface Model: Bi-quadrics

A general parametric model f(a,x) can be represented as :

p(r)

fla,x) = > afi(x) (2.1)

=1

where fi(x) are basis functions defined on the image space Z, a is the parameter vector of
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Figure 2.1: Surface boundaries for part decomposition: (a) Surface discontinuities (Co
type) and tangent discontinuities (C type), planar and second-order patches. (b) Smooth
boundaries of perceptual significance, like the zero-crossing contours, are also useful as

partitioning rules.
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the model, and the vector x denotes a pixel location (z,y) € Z. p(r) is the number of terms
in the the model of order r. The input image data at x is given by a function in image
space 7 as g(x). The models we have chosen are the variable-order bi-variate polynomials

that are linearly parameterizable in the Euclidean space :

(r,a,x) = Z a;x' y (2.2)

+3<r

where the vector a is defined in the parameter space .A. Dimensions of the parameter space
depend on the order of the model r which is in our case restricted to 0 < r < 2. Thus our
model admits planar and bi-quadric surfaces. Surfaces of higher-order can introduce oscil-
lations, are computationally expensive, and are often unstable during the model-recovery
process. If the underlying surface is curving faster than a second-order patch, then it is
always possible to break the patch into smaller second-order patches. Qur algorithm for
model recovery and model selection takes care of this in a unique manner. Even if higher-
order models (say up to fourth-order as in Besl and Jain, 1988) are considered, there is
no guarantee that model will always fit the data, as is typical with any primitive based
approach. Instead, bi-quadric patches have nice properties that they can be used to merge
segmented descriptions in order to come up with more global descriptions like concave and
convex patches. Second-order patches give descriptions which are perceptually supported.
What is more, it is easy to do reasoning with them and to compute discontinuities. The final
description in terms of piecewise continuous second-order patches contains global informa-
tion about the scene that can be described qualitatively (like convex, concave patches) as
well as quantitatively (curvature, normals, etc.). The description has local support and can
be used to derive quantities and higher-level descriptions that are invariant to translation

and rotation (Guassian curvature, critical points, etc.).

Formulation of the Surface Segmentation Problem

The general segmentation problem is usually stated as follows [Horowitz and Pavlidis 1974,
Zucker 1976]. Given the set of all image pixels and a logical uniformity predicate P(-), find
a partition S of the image 7 in terms of set of regions R;, where each R; is the domain of a
model (primitive). Let Np be the number of regions in the segmented image, and let |R;|

be the number of pixels in the region R;. The following conditions must hold for the set 5:
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Np
URri=1 (2.3)
=1

where R; C Z for each i¢. Contrary to the conventional definition of segmentation, our

primitive based approach permits model domains to overlap partially, therefore

Ri(\R; #9, (2.4)
for ¢ # j in general. R; is a 4-connected set of pixels.
For all 7, the uniformity predicate
P(R;) = TRUE. (2.5)
If R; is adjacent to R;,
(2.6)

P(R;| JR;) = FALSE.

The uniformity predicate P(-) defines the conformity of all the points in R; to the global

model (primitive). We now examine the various approaches to surface segmentation.

Segmentation by Surface Descriptions

A large portion of computer vision literature is on different methods for surface reconstruc-
tion, representation and recognition. The reason for the widespread interest in surface-based
object recognition is that this fits well into the prevalent bottom-up approach in vision and
that surface is a much more tangible property than volume.

The field of range image segmentation has traditionally been explored by researchers
by studying invariant differential geometric properties of surfaces, followed by fitting sur-
face or volumetric models to the segmented data, or by using a geometric model to guide
the segmentation process. There are numerous methods performing the segmentation by
aggregating the local surface models like curvature, surface normals, etc. [Besl and Jain
1985, Hoffman and Jain 1987], or by detecting the surface discontinuities (Cp and C; dis-
continuities and smooth boundaries) [Fan 1988, Godin and Levine 1989, Smith and Kanade
1985].

Approaches based on local differential geometry are the most widely studied techniques
for surface segmentation [Brady et al. 1985, Asada and Brady 1986, Ponce and Brady
1984, Besl and Jain 1986, Sander and Zucker 1988, Liang and Todhunter 1990]. They
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range from local analysis of the surface to more global interpretation like peaks, pits and
passes (saddle points) on a surface [Nackman 1984]. Some of the drawbacks of differential
geometric approaches are that they are applicable only in a small neighborhood of the
surface and require extensive processing if a global model is to be used later (e.g. in Besl
and Jain, 1988 ). Although differential geometric quantities have nice invariant properties,
they invariably require smoothing of the data due to the sensor and quantization noise.
The undesirable side effect of uniform smoothing is that it alters the underlying surface by
smoothing the discontinuities which are vital for surface segmentation. There are several
application and sensor-dependent range image segmentation techniques that are not of
much interest to us since we are interested in a general algorithm. Besl and Jain [1985]

have summarized the field of 3-D segmentation in their excellent survey.

The methods based on aggregation of local properties cluster data into perceptually
or geometrically significant regions with or without considering the final representation in
terms of primitives. If a representation in the form of a parametric model is desired, then the
model is invoked after the initial clustering. Similarly, purely edge-based methods fit models
to closed regions implicitly defined by edges. The fundamental drawback of such approaches
is that they isolate the problem of segmentation from the issue of representation. In other
words, the model used for representation plays no role in the process of segmentation.
To obtain a meaningful segmentation, it is desirable to use the model (representation) to
guide the segmentation [Bajcsy et al. 1990, Faugeras and Hebert 1986, Besl and Jain
1988]. One of the motivations for our approach is illustrated in figure 2.2 showing an
object taken from [Fan 1988]. An edge-based method is unable to segment the two planar
surfaces (A and B) joined smoothly by the curved surface C, nor is a model available to
describe the union surface S (indicating that segmentation is necessary). Since our approach
combines model representation and segmentation, it can successfully segment such an object
(figure 3.8). Thus, edge information is implicit in our primitives. The edges of interest for
part segmentation are the Cy (step edges) and C; discontinuities (ramp edges), and the zero-
crossing contours on the curved surfaces, as shown in figure 2.1. The zero-crossing contours
decompose smooth surfaces into concave and convex parts, and are implicitly detected by
bi-quadric primitives.

Much work has been done on the problem of reconstructing piecewise-smooth surfaces
in one or more dimensions [Blake and Zisserman 1987, Mumford and Shah 1985, Terzopou-
los 1986, Poggio et al. 1985], which is posed as an optimization problem. In all these

approaches the data is weighted uniformly which means that the algorithms do not possess
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Figure 2.2: Object with smoothly merging sides: An example of an object that can
not be segmented by edge-based approaches.

the capabilities to adapt to different conditions in different parts of the image. The global
measure provided by the energy function is not able to tell which parts of the image are well
described in terms of the underlying models and which are not. Also it is difficult to see
how these approaches could be extended to subsequent stages of the vision problem without
using models with fewer degrees of freedom. Leclerc [1989] developed an interesting con-
cept which can compensate for some of these drawbacks by defining an objective function
that is based on the information theoretic notion of minimum length descriptions. Since
we want the final segmentation to be geometrically interpretive, such surface reconstruction

approaches do not directly relate to our requirements.

2.2.2 Volumetric Model: Superquadric Part-Models

Parametric models like generalized cylinders and their derivatives have been used as volu-
metric primitives by vision researchers because they give compact overconstrained estimate
of overall shape. This overconstraint comes from using models defined by a few param-
eters to describe a large set of 3-D points. The Volumetric primitives we are using are
the superquadric part-models. Superquadrics (figure 2.3) have been used in vision [Pent-
land 1986, Pentland 1987b, Solina 1987, Boult and Gross 1987] to represent natural part-
structure. Pentland [1987b] argues that superquadric part-models possess descriptive ade-

quacy though they do not account for every detail of the image data. Also, they are stable
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Figure 2.3: Superquadrics: volumetric primitives: Clockwise from top : ellipsoid,

cylinder, box, tapered and bent model, bent model, tapered model

with respect to scale, noise, and configuration. Solina [Solina 1987, Solina and Bajcsy 1990]
has developed a model recovery procedure to fit tapered and bent models to given data. Our
SUPERSEG system uses his formulation for the recovery of a single superquadric model for
a given set of 3-D points.

Generalized cylinders [Klingenberg 1978] proposed for use in vision by Binford [1971]
have been used as volumetric primitives for their rich vocabulary of shapes. However,
this vocabulary of shapes is very difficult to recover from vision data, thereby limiting
the actual vocabulary to simple linear-straight-homogeneous-cylinders. Deformable models
based on generalized cylinders [Terzopoulos et al. 1988, Koenderink and vanDoorn 1979] or
superquadrics [Terzopoulos and Metexas 1990] have the disadvantage that they too complex
and have so far shown to work only on pre-segmented data. The descriptions generated
by our method can be used as starting approximations for the complex deformable models.
Superquadric primitives can model only a subset of generalized cylinders shapes, a good
compromise for the representation and computational effectiveness. They are capable of
modeling global tapering and bending deformations, and are recovered effectively by a
stable numerical procedure.

Superquadrics are a family of parametric shapes with a rich vocabulary of part-models
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that encompass shapes ranging from cylinders and parallelepipeds to spheres. The represen-

tational power is further increased by introducing deformations like bending and tapering

along the major axis.
Definition : A superquadric surface is defined by a vector x sweeping a closed surface

in space by varying angles  and w in the given intervals :
ay cos®1(n) cos?(w) _

x(n,w) = | azcos(n)sin®2(w)

a3 sin®(n)
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Parameters ay, a9, and a3 define the superquadric size in x,y and z direction (in object
centered coordinate system) respectively. 7 is the squareness parameter in the latitude
plane and ¢; is the squareness parameter in the longitude plane. Based on these parameter
values superquadrics can model a large set of standard building blocks, like spheres, cylin-
ders, parallelepipeds and shapes in between. If both ¢; and £, are 1, the surface defines
an ellipsoid. Cylindrical shapes are obtained for £y < 1 and g5 = 1. Parallelepipeds are

obtained for both ¢ and ¢9 are < 1. We have restricted the model recovery procedure to

fit the models with 0 < 1,69 < 1.

Segmentation using Superquadrics
Many different methods for partitioning into volumetric primitives have been proposed in
computer vision. The common problem with all the volumetric primitives is that, though
they are quite rich representations, they are extremely difficult to recover from the real
image data. Superquadrics being convex models (except for the bent models), derive a
piecewise convex description of the global volume. Therefore, it is natural to consider them
as bounding volumes that combine information along convex discontinuities on the surface.
One of the drawbacks of the previous methods using superquadric models is that they are
unable to combine information along the convex discontinuities (and hence their examples
have smooth convex blobs as parts). This is due to the separation of the representation

stage from the segmentation process. We now present a review of some of the previous

approaches using superquadric models.
Solina [1987] has described a global-to-local method of segmentation using superquadric

recovery procedure. His goal was to decompose objects or scenes into parts which can
be represented with a single superquadric model enhanced with global deformations such

as tapering and bending. When several parts or objects made up of multiple parts were
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present, a suitable distance measure was used to decide which 3-D points should be included
in a particular volumetric model and which points should be excluded. The method works

on some examples, but not on an arbitrary complex object, since it is difficult to constrain

the minimization procedure to take part-structure into account.

Pentland [1988] has described a two-part procedure to recover segmented descriptions
of complex objects. His approach is first to recover part-structure by matched filtering and
maximum likelihood estimation, and then to describe parts by superquadrics using a least
squares procedure. Only occluding boundary data is used, though he noted that surface
information will be useful in extracting complete part-structure. The procedure is extremely
slow on sequential machines. Another method by Pentland [1987a] uses range data to recover
part-struture. The method works by skeletonizing the parts, recovering the models along
the skeleton (for efficiency’s sake), and then performing refinement of the initial models
by a gradient descent procedure. The final description is obtained by selecting the “best”
models among the global models. The method can account for occlusion of a model due to
other parts, and is inherently parallel, but it requires skeletonization (which was done by
hand) of the parts to be computationally feasible. This means that the method assumes
that coarse segmentation of the part-structure is available, which is a difficult problem in

case of range images (where parts may not appear in the silheoutte).

In a system developed for the purpose of automating the sorting of mail pieces for the
United States Postal Service, superquadrics were used only for modeling and classification,
while the segmentation of the postal scene was performed using edge-based methods [Gupta
et al. 1989b, Gupta et al. To appear, Bajcsy et al. 1990b]. The procedure segmented ob-
jects at jump boundaries, and recovered superquadrics for individual objects after reasoning
about the depth of the object from the available information. Ferrie et al [1989] also use
superquadrics only as a final modeling primitive, and not as a means to arrive at a segmenta-
tion. The surface segmentation is performed by following a differential-geometric approach
developed by [Sander and Zucker 1988], and edges are detected at surface intersections to
form closed convex patches. The convex patches are then modeled by superquadrics recov-
ered using Solina’s formulation. Due to the isolation of the modeling primitive from the
segmentation, the models may not correspond to the segmented data. The problems inher-
ent in such approaches is that a one-to-one correspondence between superquadric models
and the surface segmentation is assumed, which is not true in case of objects with planar

faces. This problem is also evident in the superquadric descriptions achieved by the pro-

cedure developed by Darrel et al [1990] . Our paradigm solves this problem by following
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a systematic global-to-local volumetric segmentation using the superquadrics to drive the
segmentation, and not just as final modeling primitives. Biederman [1987] , in his theory of
Recognition-By-Components has suggested an edge and volumetric primitive (generalized
cylinders) based approach for describing complex objects in intensity images. He however,

does not describe any procedure to recover such complex part-structure.

The process of obtaining superquadric models uses least squares minimization for re-
covery of model parameters. An important advantage for ease of model recovery is that
the superquadric surface is defined by an analytic function, differentiable everywhere. Su-
perquadric shapes form a subclass of shapes describable by generalized cylinders. Shape
deformations like bending and tapering can be defined with global parametric deformations.
Superquadrics with parametric deformations encompass a large variety of natural shapes
vet are simple enough to be solved for their parameters. Due to their built-in symmetry,
superquadric models predict the shape of occluded parts conforming with the principle of
parsimony - among several hypotheses select the simplest [Gombrich 1972]. Except for

bending, the shape vocabulary consists of convex objects.

An issue to be resolved by the control module is, how to deal with concavities, cavities,
and holes? Cavities form when a significant chunk of volume is taken away from the object
leaving a dent enclosed by the remaining object (bowl or cup). Solina [Solina 1987, Solina
and Bajcsy 1990] developed a recovery procedure to identify the presence of cavities in
segmented objects and model them as superquadrics. Concavities (a circular cut-out of
a box) form by a similar process but they are not enclosed completely by the object, so
they are visible in the 2-D projection of the object. If a model exists for a concavity
or hole (like for objects with cylindrical hole), it can be modeled as a negative volume.
For example, the circular cut-out can be modeled as a boolean subtraction of a box and
an elliptical cylinder, such that the points on the box that belong to the cylinder are
not considered as part of the model. The superquadric inside-outside function presents
a convenient formulation of negative volume. Thus, the descriptions can be combined in
the constructive solid geometry (CSG) sense, where superquadrics represent the primitive
models and the regularized intersection, union and subtraction are formulated in terms of the
inside-outside function. Our hierarchical representation of the superquadric part-structure
enables us to directly perceive the description as composed of CSG operations [Requicha
1980, Woodwark 1989, Kapur and Mundy 1989].
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2.3 Chapter Summary

The two shape primitives that we are using for part-segmentation are bi-quadrics and su-
perquadrics. In the next two chapters we describe a novel approach to surface segmentation
and techniques for using the surface information for volumetric segmentation. The recovery
procedure for one superquadric model for the given data is described in chapter 5. The

complete problem of performing volumetric part-segmentation is described in chapter 6
and 7.



CHAPTER 3

Surface Segmentation: The Search for

the Best Description

In this chapter, we present a novel method for surface segmentation in range images!.
Following our segmentation paradigm, we view surface segmentation as a local to global
aggregation process, needing various similarity criteria to achieve a coherent global descrip-
tion. Indeed, this global description is most usefully achieved in terms of global primitives
that are easy to extract and are useful for later processing. This can be accomplished in
two ways: one is to actively use the global model as the individual primitives are being
developed, in essence recovering the model as aggregation proceeds. The other way is to
use a local coherence measure to first classify the data and then use the fitting technique
to recover the model. The latter approach, though not limited by the global model at
the aggregation stage, essentially isolates the segmentation and the representation stages,
with the result that the final description might not correspond to the global model since it
plaved no part in the segmentation process. Besides, the outliers in the data set resulting
from misclassification may lead to disastrous results [Chen 1989]. A desirable approach is
to use both the local coherence measure and the global model to guide the segmentation,
corroborating our notion that the problems of segmentation and representation are not
separable [Bajcsy et al. 1990].

The uniqueness of our approach lies in defining surface segmentation as partitioning
the range data into primitive models by searching for the models as they are developed
evervwhere in the image, such that the description is best in terms of global shape and

error. By searching we mean fitting and selecting only those models that best describe the

IThe work described in this chapter was done jointly with Ale Leonardis.
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underlying data using the criterion function which takes into account the number of points
that are described by a particular model, its goodness-of-fit, and the structural complexity of
the model. The method performs data aggregation via model recovery in terms of variable-
order (up to second-order) bi-variate patches using iterative regression. Model recovery
starts simultaneously and independently at all the regions found to be globally coherent in
the initial neighborhood (seed regions). All the recovered models are potential candidates
for the final description. To make the method computationally feasible, it is necessary to
monitor region growing and discard superfluous regions even before they are fully grown.
The major novelty of this approach is the development of an extremely simple and robust
control structure that combines model extraction and model selection in a dynamic way,
allowing only the “best” models to develop further.

The procedure has three major components, viz. model recovery, model selection, and
the control structure that dynamically combines model recovery and selection. After dis-

cussing these components, we present results on real range images.

3.1 Segmentation and Model recovery

In this section we describe the process of recovering the primitives from the data. This
is performed by following the iterative regression approach, used for surface segmentation
by [Besl and Jain 1988] and for contour segmentation by [Chen 1989]. Our approach
differs from [Besl and Jain 1988] in the selection of initial estimates (seed regions), search
for connected compatible points, highest order of the polynomial; and from [Chen 1989] in
that we do not restrict the connected compatible region to a predefined size and update
the model’s order during region growing. Our method differs from the Random Sample
Consensus (Ransac) approach of Bolles and Fischler [1981] in that the seed regions are not

selected at random and the model is updated during region growing depending on the data.

3.1.1 Surface Fitting

Using the notation introduced in chapter 2, we now formulate the surface recovery problem.

The variable-order bi-variate polynomials, linearly parameterizable in the Euclidean space

are :

frax)= 3 ajz'y (3.1)

0<i+5<r
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where the vector a is defined in the parameter space A. Dimensions of the parameter space
depend on the order of the model r which is in our case restricted to 0 < r < 2. Thus our
model admits planar and bi-quadric surfaces.

A linearly parameterizable surface patch S(r,a,x) can be written as :

S(r.a,x)={(x,2) €T x Z|z=1H(r,a,x)} (3.2)

The squared-distance function from a data point g(x) to the surface S(r,a,x) is given by :

d*(r,a,x) = [g(x) — f(r,a,x)]? (3.3)

Let us take a topologically connected set of points D which is a subset of Z and define

the sum of the squared deviation (SSE) of the points from the surface S(r,a,x) :

A(ra, D)= Y d(r,a,%) (3.4)
X€D

Given a set of points D, the problem is to find the order r of the model and the param-
eters a which will minimize the SSE function x2(r,a, D). Using least-squares regression we

get :

2, 4 .2
LA, D) = ,a,D 3.5
x“(r.a,D) min X (r,a,D) (3.5)

We use the standard technique for solving the General Linear Least Squares Problem.
The solution is given in detail in Appendix A. The solution depends on the points in D.
If D is determined before the fitting takes place then the schema is called Classify-then-
Fit [Chen 1989]. As mentioned earlier, this approach essentially isolates the segmentation
and the representation stages, with the result that the final description might not correspond
to the global model since it played no role in the segmentation process. Qur approach is to
use both the local coherence measure and the global model to guide the segmentation. This
is achieved by an iterative procedure combining data classification and model fitting - the
iterative regression method - with an additional feature that during the process of model

recovery even the order of the model can be changed [Besl and Jain 1988].

3.1.2 The Model Recovery Algorithm

Surface segmentation starts at a seed region by iteratively growing it as outlined in algo-

rithm 3.1. The schematic diagram of the algorithm is shown in figure 3.1. An important
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Figure 3.1: Iterative regression approach to model-recovery: For one model.

problem in region growing method is how to select the seed regions to start the local to
global aggregation. It is even more critical in an iterative approach since the starting region
determines the initial estimates of the parametric models, which determine the entire course
of its growth. Placing the seed regions arbitrarily on the image cannot guarantee a complete
description of the image, since some of the regions can be left undescribed. Placing seed re-
gions intelligently, such that all the regions are covered requires a priori knowledge of those
parts, which is nothing but segmentation. This catch-22 problem can be solved either by
smart selection of the seeds by computing the primitive-related properties and placing the
seeds in the pre-processed image or by taking the brute-force approach of placing the seeds
everywhere in the image thereby ensuring that all the possibilities are considered. Besl and
Jain [1988] followed the former approach by computing the Gaussian-mean curvature sign
maps and selecting only the best patches as seeds. Their procedure involves smoothing
the image and computing second-order properties in the local neighborhood of every pixel
which is noise sensitive and computationally expensive. Also, uniform smoothing has a ma-
jor disadvantage of altering the underlying surface at the discontinuities, especially the C}

(surface normal) type, which are smoothed out to form high curvature continuous patches.
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1. Initial region D(®) (seed) is a small window whose size is determined on the basis of
scale considerations and can be adaptively changed depending on the data.

A first-order surface is fitted to the data in P(®). On the basis of results of different
statistical techniques (explained in §3.3) we make a decision whether all the data in
D) belong to the same surface. If they do, the procedure continues with the following

steps combining data classification and model fitting. Otherwise the model recovery
process is not initiated and the seed-region is rejected.

3. Set the order r to 0.

If the goodness-of-fit is not acceptable then set the order r
to 1.

Compute the initial estimates of parameters a(®) by fitting the data D(©) in

SO)(7,al® DO, The iterative data classification and model fitting consist of the
following three steps performed in a loop, till the region growing terminates.

3.1 D) is updated with all compatible points. This is achieved via extrapolation of
the current estimate S(s)(r,a,x). Compatible points are defined as :

C® = {x | d%(r,a,x) < C and x € 4_conn_neighborhood_of(D®) UC®))}  (3.6)

where C is the compatibility constraint, used as a local coherence measure. It
also acts as a scale parameter by effectively “smoothing” the data. Notice the
recursive definition of the compatible points C(*) (the set is initially empty) which
are connected to the current D{®) or to new compatible points C(*). The distance

of the connected compatible points from D{*) can be controlled by specifying the
additional condition in equation 3.6 that

(x is no further than k pixels from the nearest border point in D(s))

(3.7)
3.2 Based on D1 = DS)UCS), update the model, and compute the new goodness-
of-fit:
S(S+1)(r,a(s+1),D(s+l)) where ast1) = ajsil) (3.8)
The difference between the old and the new goodness-of-fit is :
Pt = \2(p al+D) Py _ 3 2(p a(8) D)) (3.9)

3.3 These two steps are followed by a decision making process :

i. If (Ct) = ) Goto step 3.3(iii).
ii. If (pt**+1 < Ty) continue with growing. Goto step 3.1.
iii. Update the order. r = r + 1. If (r > maz_order) Goto step 3.3(v)

Update model for new r. If error improves significantly continue with grow-
ing. Goto step 3.1.

iv.

v. D=Dlt) _ ¢l a= ap(s) Goto step 4.

4. Done with region growing. Store the model f(r,a,x) and the region of its extent D.

Algorithm 3.1: Recovery of one bi-quadric model.
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To avoid the problems related to smoothing and local curvature computation, we place
fixed size (7x7 or 5x5) seed regions in the image in a grid-like pattern of non-overlapping
windows. The seed regions are accepted based on a global coherence measure (step 2 of
the segmentation algorithm), which is the global chi-square error of the first-order least
squares fit. This should be less than a specified threshold. This constraint ensures that the
behavior of the seed is acceptable for the current extent of the region, and that it is not
placed on a discontinuity. However, it does not guarantee that a seed accepted for further
growth will always grow into an acceptable region, since the global coherence measure can
be satisfied on the low strength Cy and C; discontinuities. It is possible to incorporate a
planarity check that analyzes the distribution of the residuals to better constrain the seed
selection. Such a check is, however, not required because our method is not sensitive to bad
starting regions. Such seeds result in regions with high error that are better explained by
other well-behaved regions, and are discarded by the model selection procedure. Thus, the

complete model recovery procedure consists of the following two steps :

1. Place 7x7 seeds in a grid-like pattern. If the current attempt of placing a seed region
on a window is unsuccessful, then the next attempt is made in a 5x5 overlapping

window.

2. For each seed the model-recovery procedure (algorithm 3.1) is invoked.

Let Di(s) denotes the set of points which are used for the estimation of the parameters

a!® of the i-th model at the s-th iteration. Notice that the regions can overlap partially or

completely, so (D ﬂD;s)) # 0 in general.

3.1.3 Features of the Segmentation Algorithm

Thresholds: The thresholds for model acceptance and updating the order of the model

are determined empirically and kept constant for all the data from the same sensor.

Termination: The algorithm always terminates, since the monotonicity requirement for

growing regions holds :

pE) cpst c 1 (3.10)
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Figure 3.2: Noise distribution and the role of C.

Insensitivity to outliers: The iterative regression method is an efficient tool for data-
driven extraction of parametric features. Its main advantage is that the performance of
the fitting is constantly monitored. The procedure dynamically analyzes data consistency
allowing rejection of the outliers. The compatibility constraint, C, which is determined on the
basis of the statistical behavior of the sensor prevents the outlying points from being taken
into the fitting process (figure 3.2). This in an important feature since least-squares fitting
has undesirable sensitivity to outlying points, and measurement errors are not necessarily
normally distributed [Bajcsy et al. 1986].

Computational Complexity:

Initial estimate: The computational complexity for computing the first estimate is:

O(np?) + O(p*) (3.11)

where n = ||D|] is the number of points and p = ||a|| is the number of unknown coefficients.
Note that the number of coefficient is limited from above and is in our case less or equal to
6.

Let us explain the equation 3.11. We need np? multiplications to build the matrix
(XTX) and np multiplications to obtain the term (XTY). The computational complexity
required to obtain the solution vector a, and also the covariance matrix if needed, is of
the order of O(p?®). In case that n >> p, the computational complexity is O(n), which is

linearly proportional to the number of points.
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Updating the estimate: Let n’ denotes the number of points that are added to update

the estimate of the vector a. The computational complexity for updating the estimate is:

O(n'p?) + O(p°) (3.12)

We add a whole set of new points so the dominant factor in determining the computational
complexity becomes the updating of the terms (XTX) and (XTY). This can be effectively
achieved by storing the (XTX) size p x p and vector (XTY) size p x 1. The number of
the operations that is needed to update the first term is O(n'p?) and the second O(n'p). If

the number of updating points n’ >> p, then the procedure is asymptotically linear in the

number of newly added points.
The final output of the segmentation algorithm consists of all the recovered models that

are potential candidates for the final description of the data. Selection of the models is

achieved by maximizing a quadratic Boolean function described in the following section.

3.2 Model Selection

After all possible models are recovered we need an efficient procedure for selecting the
best description of the image. The growing procedure, as described in the previous section,

outputs many different regions of which many are partially or totally overlapped. Intuitively,

the method should select the models so that :
e the number of selected models is as small as possible,
o the size of each model (i.e, the cardinality of D) is as large as possible,

e the error measure between the original data and the recovered models is small.

Perhaps the closest in spirit to our approach to model selection is the one used by
Pentland [1990] . However, there are at least two major differences.

e The objective (saving) function is different since we deal with complex models and

not binary silhouettes. This gives us the opportunity to give more preference to
a particular description; for example the one which describes more points, or has

smaller error, or has a lower-order model.

¢ The objective function is not solved by the continuation method, where it is not clear

how to precisely adjust the steps of the scale parameter. We have developed a faster
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algorithm whose computational complexity is proportional to the number of selected

models and thus drastically speeds up the selection procedure.

3.2.1 Objective Function

Let us first analyze the objective function for one particular model describing the underlying

data. The objective function F' is a weighted linear combination of the following terms:
¢ Benefit: Number of points (n; =| D |) that are described by the i-th model.
e Cost: Error measure & = x? of the i-th model.

e Cost: Number of parameters (V;) that are needed to specify the particular model.

F(ml) = Klni - Kgfi - K3NZ' (3.13)

where F(m;) is the objective function that we want to maximize and is the function of
the model m;. n; corresponds to the number of points that are explained by the model
m;. &; is the error measure between the model m; and the data. N; denotes the number
of parameters for a particular model, which depends on the order of bi-variate polynomial
that models the data. Ky, Ky, K3 are weights which can be adjusted in order to give more
preference to a particular description; for example the one which describes more points, or
has smaller error, or has a lower order model.

Since many of the models overlap completely or partially, we have to design an objective
function that takes into account the interaction between different models. As in Pentland
[1990] , we consider only the pairwise overlaps in the final solution.

The objective function to be maximized for the selection of the “best” description for

multiple models has the following form :

€11 C1M my

Fom)=[my ... || : : (3.14)
cM1 CMM mas

F(in) = (] [Q] (] (3.15)

where 7; is a function of the presence of the model m;, having unit value for the presence
and 0 for the absence of the model in the final description. Diagonal terms express the

cost-benefit value for a particular model m;:
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cii = Kin; — Ka&i — K3 N; (3.16)

Off-diagonal terms handle the interaction between the overlapping models:

cij = (=KiT(mi, m;) + Ko 5)/2 (3.17)

where I'(m;, m;) =| D; (VD; | is the number of points that are explained by both models. &; ;
corrects the diagonal error terms in case that both models are selected. In the intersection

area where both models cover the data the smaller error is taken. The term §;; is

Zn, d? + ZnJ d? - max(zr(m,’,mj) dzz’ ZI‘(m,‘,mj) d?)

n; + n; — I‘(mi,mj)

Ej=6+&— (3.18)

K, K9, I’y are weights which can be adjusted in order to take into account the signal-
to-noise ratio of the image or to express a preference for a particular type of description.
I{7, which weights the number of points in the model is set to unity and Ko, K3 are set
relative to it.

Notice that the matrix is symmetric. Depending on the overlap of models, the matrix Q
can be sparse or banded, which can be used to reduce the computations needed to calculate
the value of F(m).

We would like to emphasize that in contrast with some other approaches, the models
that are wholly contained within the bigger models are not a priori discarded but are passed

to the selection procedure.

3.2.2 Optimizing the Objective Function - the Algorithm

The variables 7m; are Boolean and denote the presence or the absence of a model in the
final description. Since the function F(rh) is quadratic, the problem is known as Boolean
quadratic problem. Since the objective function is non-convex, the only way to determine
the models which maximize the value of the objective function F(m) is to calculate the
value for all the 2™ possible vectors m and choose the one which gives the highest value.
This algorithm is exponential in the number of models and thus computationally infeasible.
Several different approaches have been proposed to solve the problem faster. Pentland [1990]
devised a continuation method where he weights the negative diagonal terms in the matrix
Q by a factor k3 which forces the matrix to become diagonally dominant and thus negative
definite. The method is to first solve using a very large value of k3, and then, using the

previous solution as a starting point, progressively resolve using smaller and smaller values
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of k3, until the solution is reached. He does not mention how the factor k3, which can be
considered as a scale factor at which parts are recovered, is decreased. It is clear that there
is no guarantee that the global maximum will be found, but the reported experimental
results show that in most cases the algorithm performs well and gives the expected results.

The optimization is performed by a direct descent algorithm. We observed that if k3 is
decreased in large steps, the solution gets stuck at a local maximum which is significantly
lower than the solution reached by decreasing the parameter almost continuously. The

computational complexity of the method is proportional to:

(no. of steps of k3) x M x (evaluation of the matrix Q) (3.19)

where M is the number of models involved in a selection process. In evaluating the matrix
Q we exploited the fact that the matrix can be sparse and banded. Since the computational
complexity of the method depends on ks-steps, there is an obvious trade-off between the
accuracy of the solution and the speed.

While experimenting we made two observations on how the solution develops, which

allowed us to design a very efficient algorithm 3.2 that is based on two assumptions:

e Only one model is chosen at a time,

e Once a model is chosen it cannot be rejected.

Algorithm 3.2 is computationally inexpensive. The computational complexity of our

method is proportional to:
(number of models in the final description) x (evaluation of the matrix Q) (3.20)

The designed algorithm is an excellent compromise between speed and accuracy. Exper-
imental results show that in almost all the cases the algorithm performs well and gives good
results both quantitatively and qualitatively. We compared it to the continuation method
and except for very small steps of k3, where the results were the same, our algorithm selected
the models with the higher value of the objective function.

Thus, we now have a complete model recovery procedure that yields all the models in
the image, followed by the above model selection procedure which selects the best models
according to the global error, order, and the spatial extent of the region. The complete
procedure works as shown in Figure 3.3 (a). As a consequence of the selection process,

eventually very few of the regions emerge as acceptable descriptions of the data. However,
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1. Initial values: Vi m; = 0. The initial value of the objective function is 0.

2. do
old_value_of_objective_function = new_value_of_objective_function;
procedure.is-done = true;

for all the models do
find_model_contributing_most_to_the_objective_function;
new_value-of_objective_function = maximum_value_of_objective_function;

end_for

if (old-value_of-objective_function < new_value_of_objective_function)
Output( Selected model, Value of the objective function);
procedure_is_done = false;

end_if

while (not procedure_is_done).

Algorithm 3.2: Bi-quadric mode] selection.

instead of growing all the regions completely, it is desirable to discard regions as they grow.
Also, the computational cost of growing all the regions completely is prohibitive in most
cases. These observations suggest incorporating the selection procedure into the recovery
procedure to discard redundant and superfluous regions even before they are grown fully.

Our final algorithm described in the next section accomplishes this integration.

3.3 Dynamically Combining Model Recovery and Selection

After describing the two major components of our system, namely, the module for model
recovery, and the module for model selection, we now describe how they can be combined in
a dynamic way to obtain a fast and efficient method for image segmentation. As explained
earlier, to avoid the problems related to smoothing and local curvature computation, seed
regions are placed in globally coherent windows everywhere in the image, and models are
grown simultaneously and independently for all of them. This way all the regions are grown
to their full extent and then selected for the optimal description, as shown in Figure 3.3a.
Since the regions are selected by the optimization procedure after they are fully grown,
the resulting segmentation can be claimed to be the best piecewise continuous description
of the image. We call this procedure Recover-then-Select, for it grows all the regions fully

and then prunes them (discards the redundant ones). While the results of this procedure
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Range Image

Range Image +
+ Select Seed Regions
Select Seed Regions ¢
} Model Recovery
. — Partial recovery of
Model Recovery currently active models.
Complete recovery of .
all possible models. ¢
} Model Selection

Selection of models for

Model Selection optimal current description.

Selection of the models

for optimal description. }
| No Al active models
completely grown?,
Segmented image Yes
Segmented Image
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Figure 3.3: Model recovery and selection: (a): The Recover-then-Select paradigm. All
the models are fully recovered before model selection is invoked. (b): The Recover-and-
Select paradigm. Models are selected before they are fully grown, thereby reducing the

number of active models.

are optimal (we use the word optimal to signify the fact that optimization was performed
to extract the final regions and that the results are optimal in some sense, and by no
means imply that the global maximum was achieved by the procedure), the computational
complexity is prohibitive because all the regions are grown to the maximum before the best
among them are chosen. Surely, there must be a way to discard the regions after a few
iterations of region growing using the same model selection procedure (with conservative
weights, to accept multiple descriptions rather than losing a good one about which we
are not confident yet), so that only the active models are grown further. This procedure,

performed continuously in a loop (see figure 3.3b) is called Recover-and-Select.
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Feature Model selection invoked
Early Late
Description — Less reliable | + More reliable
Models remaining for further growth | — More + Fewer
Processing needed for initial growing | + Less — More
Matrix Q + Sparse — Dense

Table 3.1: Trade-offs in combining model recovery and model selection procedures.

3.3.1 Recover-and-Select

The incorporation of Recover-and-Select paradigm opens up a number of possibilities as
to the control of the region-growing procedure. It has the feature of growing only well-
behaved regions (in terms of convergence, error, number of compatible points) while at
the same time lowering the computational complexity of the procedure. There is a clear
trade-off in combining the model recovery module with the module for the selection of
the optimal current description. The more the regions are grown, the more reliable is the
description they give. But the initial growing is computationally expensive and also results
in a less sparse matrix Q. However, this reduces further processing since fewer models are
selected for further growth. On the other hand, if the growing process is interrupted by
the selection of currently optimal models at the early stages, the complexity of the early
processing is decreased and the matrix Q is sparse due to less overlapping. In this case fewer
models are rejected, increasing the complexity of the further processing. These tradeoffs
are summarized in Table 3.1. By properly balancing the two trade-offs a computationally

efficient algorithm is obtained.

During the very first iteration, model selection is invoked after all the regions are grown
only for a distance of k& = 20 pixels (equation 3.7 in step 3.1 of the segmentation algorithm)
from the seed. After that, the restriction on & is removed, and the model selection procedure
is invoked after every iteration of region growing (one iteration of the steps 3.1-3.3). We
have found that after the initial selection of regions, depending on the type of surfaces in the
image. less than 50% of the regions survive. The model selection weights are kept biased
to discard only the completely identical regions. Also, error is weighted more than the
order of the regions. Later in the procedure, however, the weights are changed to eliminate

duplicate regions describing a patch with considerable overlap and similar global error.



3.4 Example Surface Descriptions 47

3.4 Example Surface Descriptions

The Recover-and-Select paradigm was tested on a number of range images of scenes with a
combination of different kinds of surfaces. The method is straightforward and is computa-
tionally feasible on a sequential machine. All the examples were run on a SUN-4, with the
average execution time of less than 2 minutes. The program is twice as fast on an IBM-6000
RISC machine or a Sparcstation-2.

In this section we present a few examples that illustrate the most important aspects
of the surface segmentation algorithm. Results on other objects are displayed in chapter
8. The images were scanned using a structured lighting laser-scanner with approximately
1lmm/pixel spatial resolution and 1.5mm depth resolution. Due to the geometry of the
scanner, certain parts of the scene appear as shadow regions (with no data) in the Q%D
image representation. The compatibility constraint for all the range images was set to 4,
which corresponds to a quantization and sensor noise of £2 pixels. The algorithm was run
on the raw data without any preprocessing like uniform smoothing. Results are discussed
for each image below. All the results coded in gray-levels are grouped such that the top
row of the figure (from left to right) shows the original image, its 3-D perspective plot, the
reconstructed image from the piecewise continuous segmented patches, and the 3-D plot of
the reconstructed image. The images are displayed with the depth value at each pixel from
a reference plane appearing larger if the pixel is closer to the camera. The white square
in the patch indicates the seed region for that patch. The individual surface patches are
displayed in the second row of the figures in the order in which they were selected by the
model selection procedure, and are referred to below with their position in the row, counting

from left to right.
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(a) Range image. (b) Reconstructed image.
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(c) Seed regions. (d) Recovered patches.

(e) Refined planar patches.

Figure 3.4: Scene 1: The cylindrical surfaces are modeled as bi-quadric patches.
discontinuities at planar intersections are reliably recovered. Refinement of the patches is

done by using a technique described in the next chapter.
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3.4.1 Scenel

This range image consists of a triangular prism and two half-cylinders placed on a box
(figure 3.4). Three planar regions representing the box and the prism and two second-
order patches for the cylindrical objects are recovered, as shown in the bottom row of the
figure 3.4. The planar regions on the prism extend along the intersection with the box.
Using the procedure for region refinement described in chapter 4, the overlap due to the
intersection of the regions was removed and the results are shown in the last three images
in the bottom row. The line of intersection between the planes gives the surface-normal

(C7) discontinuities.
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3.4.2 Scene 2

This is a complex image for any surface modeling algorithm, primarily because of the
smooth boundaries (zero-crossing contours of the lines of curvature) between the convex
and concave patches forming the undulated portion of the scene. The individual patches
recovered for the image are shown in the middle row of figure 3.5, with the first four patches
describing the image almost completely.

The undulated portion is described as two convex and one concave regions intersecting in
the vicinity of the zero-crossing contours. Patch 5 is a first-order patch flanking the convex
second-order patch 3. Adding it to the final description increases the accuracy of description
of the convex patch which is curving faster than the bi-quadric surface. It is selected by
putting emphasis on the error term in the model-selection procedure. Patch 6 describes
the second-order region that smoothly merges into the planar patch. The merged region
is modeled partly by the planar patch and completely by patch 6, which is an acceptable
description. One significant result in this example is the approximate detection of the zero-
crossing contour by region-growing and not by curvature tracing, which is computationally
prohibitive and extremely sensitive to noise. Such a region based description is also useful
for qualitative description of the scene in terms of convex, concave and planar patches.

The third row in figure 3.5 shows some of the regions that were rejected during various
stages of the Recover-and-Select procedure. In most cases, these regions had bad starting
points which passed the seed-selection criterion. It shows that though the seed placement
is not perfect, the procedure is robust enough to reject the patches arising out of bad seeds
in favor of the patches that are well behaved in terms of the spatial extent, order, and the

global error.
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(a) Range image. (b) Reconstructed image.

(c) Recovered patches.

(¢) Some of the rejected patches.

Figure 3.5: Scene 2: Undulated surface smoothly merging into a planar surface: Segmen-
tation is achieved in terms of convex and concave parts of the surface. Some of the rejected

patches are shown in the bottom row.
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3.4.3 The Coffee-mug

The convex and concave portions of the body of the cup are recovered as individual second-
order patches, as shown in the first two images of the bottom row in figure 3.6. The handle
consists of very curved patches which are modeled piecewise for the given scale (which
directly relates to the compatibility constraint). According to the results, the missing parts
are better described pixelwise than as parametric patches (due to the scale consideration). It
should be noted that the jump (Cp) discontinuities are clearly delineated by the neighboring
regions.

It is possible to restrict the highest order during the model recovery to zeroth or first,
resulting in piecewise-constant and piecewise-planar descriptions respectively. This restric-
tion can be trivially imposed in the recover-and-select paradigm by changing the maz_order
value to 0 or 1 in step 3.3(iii) of algorithm 3.1. Starting with the same seed regions, the
piecewise constant and piecewise first-order descriptions are obtained for the coffee mug (fig-
ure 3.6). The piecewise-constant description is like equidistant contours or planar slices of
width determined by the compatibility constraint. The piecewise-planar description shows
a natural approximation of curved patches by planar patches. The extent of planar patches

(along the curvature) is determined by the compatibility constraint.
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Figure 3.6: The coffee-mug: Top: Range image and its 3-D plot. Center: Seed regions
and the bi-quadric segmentation. The highly curved handle is modeled as a combination

of the smaller patches. Bottom: The piecewise-constant (left) and piecewise-planar (right)

approximation of the curved surfaces.
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Figure 3.7: The car: Top: Range image. Bottom: Seed regions (left) and the final

segmentation (right). Surfaces constituting the car are neatly segmented.

3.4.4 The Car

The surfaces constituting the car in figure 3.7 (range image provided by USC) are seg-
mented neatly, even though the boundaries separating them are not sharp (as evident from
the placement of the seeds). The surface details on the side of the car are described by

overlapping patches.

3.4.5 Object with smoothly merging sides

As mentioned earlier, the second-order surface (region C) in figure 3.8 (taken from [Fan
1988)) is difficult to segment due to the absence of step or surface normal discontinuities.
Our method gives a clean separation of the curved surface (patch 2 in figure 3.8) from the
neighboring planar patches. Such a result a possible only because we search for the best

description everywhere in the image and allow the models to develop independently.
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Figure 3.8: Object with smoothly merging sides: Top: Range image and a sketch of
the object. Bottom: The seed regions and the final segmentation. The second-order patch

is segmented from the planar patches.
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3.5 Chapter Summary

We presented a novel approach for local to global data aggregation in terms of bi-quadric
patches. The iterative approach combining data classification and model fitting shows that
segmentation and modeling are not two independent procedures but have to be integrated.
Another important conclusion that we could draw from our work is that reliable segmen-
tation can only be achieved by considering many competitive solutions and choosing those
which reveal some kind of structure in terms of underlying models. lead to a good result,
and more global information is needed. Optimization that is performed on the level of
primitives rather than on a pixel level not only improves the performance enormously in
terms of computational complexity but also gives more reliable results.

The above examples show that our method gives acceptable segmentation of objects
into patches in most of the cases. The interpretation of these patches is straight forward,
with direct applications for surface modeling and detection of both, discontinuities and
smooth boundaries. The segmentation occurs at the surface normal discontinuities or at
the zero-crossing contour to divide the surface into convex and concave patches. In the
next chapter, we will analyze these descriptions to label surface discontinuities as convex
or concave, and also present methods to interpret the bi-quadric patches for further use in
volumetric segmentation.

During the course of experimentation, we observed that the method degrades gracefully
if the assumptions which are determined by the choice of primitives are not met. For
example, a geometric object like torus is described by numerous bi-quadric patches which
do not result in a simple description, signaling that different kind of primitives should be
invoked. Although the procedure is computationally feasible on a sequential machine, like
SUN-4, in order to exploit the inherent parallelism, the procedure has been implemented

on the Connection Machine.



CHAPTER 4

Deriving Surface Properties from

Bi-quadrics

So far we have a piecewise, and possibly overlapping segmentation of the range data into bi-
quadric patches. In order to use this description for the recovery of superquadric models, we
have to refine the segmentation and derive as much information about the surface attributes
as possible. The only relevant refinement that needs to be done concerns the overlapping of
the bi-quadric patches along their intersection curve. The important surface attributes are
region—adjacency information, edge localization, and determining if it is convex or concave,
major axis determination, and determining if the surface is convex is concave. In this
chapter we will derive analytical expressions to compute these important surface attributes
and discuss their relevance in superquadric fitting. We start with presenting our general
algorithm for the refinement of surface patches which is also used for determining edge-type

at the intersection of two patches.

4.1 Refining Regions Along Intersection Curves

The collection of models obtained by the Recover-and-Select strategy describes the image
in terms of primitives with minimum overlap such that all the parts of the image (where
seeds were placed) are described by at least one surface. There are two kinds of overlaps
that need to be treated differently.

The first kind occurs when two regions have significant amount of overlapping domain
due to the smoothness of the underlying data with no clear segmentation possible (as
in figure 3.5). It is not possible to resolve the overlapping portion without considering

57
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additional constraints or domain knowledge. In this case, the overlapping points are decided
by the volumetric segmentation described in chapter 7.

In this section, we are concerned with the overlapping points occurring due to the com-
patibility criteria employed during the region-growing process. The compatibility constraint
(C in equation 3.6) only accounts for conformity of the point to the model and not the shape
of the domain. Thus, the region A’s geometrical domain consists of all the points that sat-
isfy the compatibility constraint, including the points lying along the intersection curves of
all the regions that intersect with A. This can further result in two cases as illustrated in
figure 4.1. Region A and B are both planar patches, with area C consisting of the common
points between A and B. The intersection curves for the image of scene 1 are shown in

figure 4.2(a). Planar patches 1 and 2 intersect with planar patch 3, as also the second-order

patch 5. The two cases are:

1. Type I: Region A overflows into region B along the intersection curve (region C).
2. Type II: Region A and B overlap near the common boundary.

Although the type I overlap is geometrically correct, it is perceptually unacceptable, and
must be removed before the region A can be useful in any way. Type II overlap, on the other
hand, is mostly harmless, since it extends only a few points along the region boundary and
does not significantly alter the interpretation of the segmented regions. In fact, it provides
useful information about the connectivity of the regions and implicitly detects ramp edges
(which exist at the intersection) by distinguishing them from the step edges along which
two regions would never overlap.

Both types of overlaps can be resolved by a systematic procedure. Since the regions are
described analytically, it is possible to detect such cases and remove the extraneous points in
a clean manner. This is true for all kinds of intersections, including the intersections formed
by two second-order regions. The analytical computation of the intersection curve of two
quadric surfaces is quite involved and is well understood in CAD literature [Luh and Krolak
1965, Comba 1968, Mahl 1972, Levin 1976, Levin 1979]. Fortunately, the problem of two

intersecting bi-quadric surfaces is simpler, since the intersection is at most a second-order

curve lving in XY plane.
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(b)
Figure 4.2: Example of intersection cleaning on a real range image: (a): Output
of the Recover-and-select procedure for scenel. (b): Output after Refining patches 1, 2, 3

and 5 along the intersection curves.
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1. Determine the pixels p; that are on the intersection curve.
2. foreach(p;) do

Compute the normal to the curve.

Trace pixels along the normal on both sides of the curve, storing all the traced
pixels and looking for the first pixel on both sides that does not belong to the
overlapped region.

If (both end-pixels belong to the same region)

then /* Type I intersection */
Assign all the traced pixels to that region

else /* Type Il intersection */
Distribute the traced pixels between the two regions.

3. Intersection cleaning completed.

Algorithm 4.1: Region refinement along the intersection curve.

For two surfaces S(r,a,x) and S(7.b.x) of up to second-order, the intersection curve is

given by :

C(a,b,x) = Z ai,-:ciyj— Z bijl'iyj = (4.1)

1<i43&r 1<i45<r
Thus. given a point (z,y), it is possible to check if it lies on the intersection curve of the
two surfaces. The curve in equation 4.1 is planar and at most second-order. The analytical
form of the curve generator also gives the closed form solution for the normal to the curve,

which is used for refining the surface labeling.

The equation of the normal at (z,y) is given by :

NXY)=dX+VY + = (X - 9;)@ - (Y - y)E =1 (4.2)

dy dz
A surface normal check is performed in the overlapped portion of the two regions to
determine the type of overlap. If the average angle between surface normals is not significant
then there is a smooth overlap between the two regions, otherwise the two patches intersect
and need refinement along their intersection curve. We have devised an algorithm to refine
the overlapping regions formed at the line of intersection and to assign the points to the

right patch. For each pair of overlapping regions the steps in algorithm 4.1 are invoked.
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In figure 4.1, points in C that should only be labeled as belonging to B are assigned
to B (case I). For case II, points on the two sides of the intersection curve are distributed
between A and B by the algorithm. In figure 4.2, the intersection curves of regions 1, 2
and 5 with region 3 are cleaned to give the refined regions. This procedure has been tested
on numerous images with excellent results. The method of intersection tracing is also used

later in determining the type of edge at region intersections.

4.1.1 Another Method for Region Refinement

The post-processing described in this section is required because of the absence of the
constraints to limit the domain of the geometric patch. By definition, the domain extends
to all the pixels satisfying the geometric model. Another way to deal with this problem is to
prevent it from occurring in the first place. From the observation that intersection regions
are invariably narrow in width (determined by the value of the compatibility constraint),
we can prevent the geometric patches to grow into regions that are not sufficiently wide.
This has the effect of inhibiting the region growth along narrow appendages. It is simple to
incorporate such a check in the region growing process. We have implemented it by simply
requiring that every new pixel incorporated in the patch should have at least p pixels in its
5x5 neighborhood. The only drawback of this constraint is that it puts a non-zero lower

bound on the width of the acceptable regions.

4.2 Region Refinement by Relaxing Compatibility Constraint

Due to the iterative regression approach, a new point is included in the domain of the region
only if it satisfies the equation 3.6. Most of the data points that do not satisfy this strict
compatibility criterion can be included in the region by relaxing the compatibility constraint
C after the termination of the recover-and-select procedure. However, the surface parameters
are not reestimated to take those points into account. This has the effect of including the
missing points that narrowly miss the compatibility test, and giving clean segmentation
results. Another way could be to interpolate or extrapolate the surface patch to include

such points.
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4.3 Bi-quadric Surface Types

The bi-quadric surface segmentation consists of a piecewise description in terms of following

two types of patches expressed in their general form as:

1. Planar patches: Zeroth or first-order, represented as,

z=az +by+c

2. Curved patches: Second-order, represented in general form as,

z=ax?+ byt +cay+dztey+ f (4.3)

There are three types of curved bi-quadric patches, viz. elliptic paraboloid, hyperbolic
paraboloid, and the elliptic cylinder, as shown in figure 4.3. The surface type can be
determined from the sign of the quantities that are invariant with respect to the translation
and rotation transformations. For bi-quadrics, the sign of the following invariant quantity

determines the surface type :

2 2
I L I (4.4)
c/2 b 4

A second-order surface can therefore be classified as :
J >0 : Elliptic Paraboloid

J =0 : Parabolic Cylinder

J <0 : Hyperbolic Paraboloid (4.5)

Because there is no second-order term involving z in a bi-quadric surface, they belong
to the class of non-central quadrics. The general form of the bi-quadric surface has zy term
signifving the rotation of the X and Y axes in the world coordinate system (see figure 4.4).
In addition, the linear terms constitute the translation component. Since every bi-quadric
has a standard form without the cross-terms, it is possible to transform the general form

into the standard form and obtain the orientation information as a result.
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Elliptic Paraboloid Hyperbolic Paraboloid Parabolic Cylinder

Figure 4.3: The three bi-quadric surface types.

4.3.1 Transformation to Standard Form

The transformation is accomplished by translating and orienting the patch to remove the
linear and cross-multiple terms in the equation. Appendix B outlines the procedure to
reduce the bi-quadrics to their standard forms.

The standard forms of the three basic bi-quadric surfaces are given by:

Elliptic Paraboloid: z = — + =
a b

22 2

Hyperbolic Paraboloid: z = Pl
z? \
Parabolic Cylinder: z = P (4.6)

Based on the second-order coefficients, the surface types can be classified, as shown in
table 4.1. We are now ready to use the standard form of the three types of bi-quadrics to

derive the orientation and the type of surface embedding, to facilitate volumetric segmen-

tation.




64 4. Deriving Surface Properties from Bi-quadrics

a | v la'| > [/ [6'] > |a’| bi-quadric type
Type | Axis | Type | Axis

+ | + { concave | Y | concave | X | elliptic paraboloid
- | — | convex Y convex X
+ } — | concave | Y convex X | hyperbolic paraboloid
- | + | convex Y | concave | X
+ | 0 | concave | Y - - parabolic cylinder
~ 1 0 | convex Y - -

+ - - concave | X
0|+ - - convex X

Table 4.1: Axis and surface-type determination from the coefficients of the standard form

of the bi-quadrics.

Y Z X'

image
Coordinate > Y
System " 0 AZ .
. "' Xll
A 4
:/f/
X e Y
X )" {X',Y',Z') : Object Coordinate System

Figure 4.4: The Coordinate system for bi-quadric representation:The axis deter-
mination algorithm chooses X’ as the correct orientation for the surface since its projection

X" makes least angle with X.
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4.4 Aligning the Major Axis for Curved Objects

Curved objects in 3-D space are modeled by bi-quadrics (in 2%-D space) as one of the
three basic surface types. The restriction of a fixing Z-axis along the viewing direction
has a disadvantage that the curved surfaces like cylinders have no corresponding bi-quadric
model when their axis is not orthogonal to the viewing direction. The model then obtained
for the cylinders is either elliptic paraboloid or hyperbolic paraboloid, which is only an
approximation of the underlying surface. In addition to providing surface support to the
curved surfaces, these models have the information about the curvature of the surface.
This information can be used to derive the axis in 3-D space that corresponds to the bi-
quadric axis along which the surface curves the least or the most. This information is
helpful in orienting the major axis of the initial approximation for the superquadric model
recovery. For example, for the cylinders with greater diameter than height, this is the only
way to get the correct the major axis (shown for the two cylindrical parts in scene 1 in
figure 4.5). The superquadric axis placement follows the rule of thumb that the axis of least
inertia (corresponding to the largest eigenvalue of the moment matrix) is the major axis
(figure 4.5(b)). This heuristic is not true for cylinders with larger diameter than height, and
may result in a box-like model instead of a cylindrical model. Aligning the Z-axis using the
bi-quadric coefficients (figure 4.5(c)), as explained below, results in the initial model model

to converge quickly to a cylindrical shape.

Figure 4.4 depicts a scenario where a cylindrical object is modeled by a elliptic paraboloid.
The axis for which the coefficient in the standard form is larger, is the one along which the
surface has higher curvature, so the axis orthogonal to it is the right axis for the superquadric
major axis (Z direction). Referring to table 4.1, we note that if |a’| > |§|, then the chosen
bi-quadric axis is Y, and whichever axis in the object centered system makes least angle
with Y axis will be considered as the Z-axis for superquadric alignment. Thus, for cylindri-
cal shapes, we get the correct orientation by enforcing the axis direction to comply with the
bi-quadric curvature. This is extremely useful for the superquadric model recovery, because
the optimization procedure is unable to change the orientation of the model drastically if

the initial estimates of the orientation are not correct.

The surface-type information is also available from the standard form, as shown in
table 4.1. However, for hyperbolic paraboloids, additional processing is required if a concave
surface is modeled by them. The superquadric surface normal test or the Z-residuals derived

later can be used to determine if a patch is concave, and the model can be correctly oriented.
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(a) All range points.

(b) Z-axis aligned along the eigenvector with largest eigenvalue.

(c) Z-axis determined by bi-quadric orientation.

Figure 4.5: Major axis estimation for curved parts in Scene 1: The object centered
system is oriented along the eigenvectors. (a) Aligning the Z-axis along the eigenvector with
largest eigenvalue results in incorrect initial model which will never converge to a cylinder.

(b) Using the bi-quadric information to align the Z-axis gives the correct initial model which

converges quickly to a cylindrical model.
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4.5 Edge-type Determination

By edges we mean the embedding of the intersection curve on the two surfaces in 3-space.
An edge exist where the domains of two analytical surfaces intersect. Whether they meet
to form a convex edge or concave edge (in a global sense), is what interests us here. This
information is of great importance in later processing when regions connecting along concave
edges will discard any hypothesis predicting their union in a volumetric sense.

The property of convexity and concavity is a function of surface embedding and hence
an extrinsic second-order property. We have adapted the surface refinement method for
intersection cleaning to detect and label edges reliably. The procedure involves intersection
traversal like before and does ramp detection in a one-dimensional signal. A one-dimensional
mask, [1 -2 1], is applied in the neighborhood of every overlapping point to compute second-
order differences. A negative value indicates presence of a convex edge, while a positive
value indicates a concave edge. The procedure is given in algorithm 4.2. The method is
demonstrated on the NIST object in figure 4.6. The edge labeling is shown in the adjacency
graph in figure 4.7. The edge information is used to label the edges of the surface adjacency

graphs.

4.6 Surface Adjacency Graphs (SAGs)

The region adjacency graph is a simple graph (No self-loops or parallel edges), with nodes
representing each region and edges representing the edge-types between pairs of intersecting
regions. If two regions overlap (but do not intersect, as in two smoothly merging surfaces)
then they are marked as non-intersecting, and allowed the possibility of combination by
the globally convex volumetric model.If step edges exist between two regions, then there is
no edge between the nodes representing the surfaces. Thus, if we remove all the concave
edges from a SAG, we are left with graph (possibly disconnected, if parts connected only
along a concave edge) that only convex edges. This graph encodes information about the
consistency of surface level combinations, although this information may inhibit some of the
possible combinations at global level. We shall explain in chapter 7, how the information
about edges is used by the coarse to fine strategy of the control structure to allow for the
possibility of global combination of surfaces that form concave edges at their intersections.

The surface graph for the NIST object is shown in figure 4.7. An interesting aspect

of the SAG is that bv removing concave edges, it divides the data set into convex con-
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Figure 4.6: Edge-type determination for the NIST object: Top: The range image,
and its seed regions. Bottom: Surface segmentation and the C; (surface normal) edges
marked at the overlapping parts of the surfaces. Following a procedure similar to the

intersection cleaning, the edges are marked as convex or concave.




4.6 Surface Adjacency Graphs (SAGs) 69

1. Determine the pixels p; that are on the intersection curve.

2. foreach(p;) do

(a) convex_pixels = concave_pixels = 0.
(b) Compute the normal to the curve.

(¢) Trace pixels along the normal on both sides of the curve, storing all the traced
pixels and looking for the first pixel on both sides that does not belong to the
overlapped region.

(d) Apply [1-2 1] mask in the k neighborhood of p;.

(e) If (negative)
then
Embedding = CONVEX
convex-pixels = convex_pixels + 1
else
Embedding = CONCAVE
concave_pixels = concave_pixels + 1

3. If(concave_pixels > convex_pixels)
then Edge_embedding = CONVEX
else Edge_embedding = CONCAVE

Algorithm 4.2: Edge detection and labeling at two intersecting regions.

&
e ----- Concave edge

Convex edge

Figure 4.7: Surface adjacency graph (SAG) for the NIST object: The removal of
concave edges splits the graph into three connected components, corresponding to three

parts in the object.




70 4. Deriving Surface Properties from Bi-quadrics

nected components, which can be viewed as independent data sets. Thus a SAG is useful
for connected component analysis as well as for checking the combination hypotheses for

consistency.

4.7 Chapter Summary

We described techniques for the refinement of surface patches, so that the surface cluster-
ing can be used by the volumetric segmentation as the first approximation of the data.
The information contained in bi-quadric surface segmentation can be of immense use for
volumetric segmentation. In addition to providing the surface support, bi-quadrics contain
information about axis orientation for curved surfaces, convex component analysis for seg-
menting parts along concave discontinuities, and the embedding of the surface in 3-D space.
We derived the analytical expressions to compute these important surface attributes and
discuss their relevance in superquadric fitting. The analysis presented in this chapter is of
vital importance in designing the control strategy for volumetric segmentation described in

chapter 7.



CHAPTER 5

Superquadrics : Volumetric Part-Models

We now have a piecewise description of the range data in terms of bi-quadric patches.
However, our goal is to recover volumetric descriptions of data by clustering them into
piecewise-convex or combination of positive and negative convex parts. Superquadric mod-
els give volumetric object-centered descriptions of the object parts. In this chapter we will
describe the superquadric model, formulate the model-recovery problem, and derive some
results that are useful for obtaining the volumetric segmentation. We will first give the
definition of deformable superquadrics as given by Solina [Solina 1987, Bajcsy and Solina
1987, Solina and Bajcsy 1990], and then develop some useful results about the interpreta-
tion of the inside-outside function, computation of the true Euclidean distance, derivation
of the occluding contour generator on superquadrics, computing edges on superquadrics,

and the formulation of the superquadric recovery problem to provide volume, surface and
occluding-contour constraints.

5.1 Introduction

Superquadrics are a family of parametric shapes that have been used as primitives for shape
representation in computer vision [Pentland 1986, Solina 1987, Boult and Gross 1987] and

computer graphics [Barr 1981, Barr 1984]. Superquadrics are like lumps of clay that can be
deformed and glued together into realistic looking models.

Definition : A superquadric surface is defined by a vector x sweeping a closed surface

in space by varying angles 7 and w in the given intervals :

71
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&1 = 0.5

Figure 5.1: Superquadric shapes: Superquadric model vocabulary between 0.1 <=

g1 <=1.0and 0.1 <=¢3 <= 1.0.
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x(n,w) = | azcos®(n)sin®?(w)
as sin®(n)

Superquadric implicit equation can be derived from the above equation by eliminating

nand w :

€9

(G @) @) o

Parameters a1, a;, and a3 define the superquadric size in x, y and z direction (in object
centered coordinate system) respectively. ¢; is the squareness parameter in the latitude
plane and ¢ is the squareness parameter in the longitude plane. Based on these param-
eter values superquadrics can model a large set of standard building blocks, like spheres,
cylinders, parallelopipeds and shapes in between (figure 5.1).

If both ¢; and €3 are 1, the surface defines an ellipsoid. Cylindrical shapes are obtained

for £;7 < 1 and ¢, = 1. Parallelopipeds are obtained for both £; and ¢5 are < 1. We have
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restricted the model recovery procedure to fit the models with 0.1 < £1,¢62 < 1.0.

5.1.1 Applying Deformations to Superquadrics

The representational power of superquadrics increase further by applying various global
deformations on the basic model (incorporated by Solina [Solina 1987]). Deformations that
we have included in our vocabulary are tapering and bending. The tapering and bending
transformations applied to the vector x(n,w) in the forward direction are given below:
Tapering : Linear tapering along z axis transforms the superquadric (z,y,2) to (X,Y, Z)

by following transformation :

K,
X = fz(z)z where f.(2)= —;—4 +1
3

Y = f,(2)y where f,(z)= !;—gz +1
3

7=z (5.3)

where -1 < K, K, <1.

Bending : Bending deformation transforms the superquadric surface vector by following
transformation :
- . .1
X=z+4cosp(R-7), Y=y+sing(R-71), Z= snL,(E —-7).

Where r is the projection of z and y components onto the bending plane z — r :

= -1y 2 4 42

r = cos(a — tan™ (<)) /(2% + y?)

T
Bending transforms r into
R =k = cos(y) (k™! — ),

Where ~ is the bending angle

S (5.4)
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Figure 5.2: Deformed superquadric shapes: Tapered, bent, and tapered and bent

shapes for a cylindrical model (¢; = 0.1 and €2 = 1.0).

Combination of Tapering and Bending: The two independent deformations are
applied by computing the corresponding homogeneous transformation matrices. It is pos-
sible to apply both the transformations to a superquadric model one by one. since matrix
multiplication is not commutative, the order in which deformations are applied is impor-
tant. The model recovery procedure has adopted the following structure to transform an
object centered superquadric model to a deformed superquadric in general position and

orientation :

X = Translation(Rotation( Bending(Tapering(x)))) (5.5)

Thus bending and tapering introduce two parameters each in the final superquadric
equation, bringing total parameter count to 15. The tapered and bent shapes for a cylin-
drical model are shown in figure 5.2.

Computing the deformations in the reverse direction transforms a point (X,Y,Z) on a
deformed model into (z,y,2) on the basic superquadric model by satisfying the following

implicit equation of the deformed model :

X —cos(a)(R' — ') = Y —sin(a)(R' — 1) =) 7\
: S — ] =1 (56
( (]1:;: + 1)ay ) * ( (.IL‘LZ + 1)ay ) + ( ) (5.6)

kas

where:

VA

v = arctan( m

)

R’ = cos{a — arctan(%))\/X2 +Y?

o= \/Zz + (k=1 - RI)Q (5.7)
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5.2 Formulation of the Model Recovery Problem

The Modified Inside-outside Function: The inside-outside function for the superquadric
model can be modified by adding the exponent &; to the equation 5.2, to cancel out the

effect of low values of ¢; during the model recovery process [Solina 1987] :

rean=[[@F@T L] e

This modification does not alter the shape of the superquadric model, but significantly
improves the recovery of cvlindrical objects, The inside-outside function (IO function for
short) determines where a point lies relative to the superquadric surface. If F(z,y,z) = 1,
point (z,y, z) lies on the surface of the superquadric. If F(z,y,2) < 1, the point lies inside
and if F'(x,y,2) > 1, the point lies outside the superquadric.

Solina [Solina 1987] has formulated the superquadric model recovery problem in general
position and orientation by using Euler angles ¢, 8,9 to define the orientation and ps, py, p-
to define position of the superquadric in a world coordinate system. The optimization pro-

cedure minimizes the inside-outside function of deformed superquadrics in general position

given by :
GOF = \/ajaza3(R), (5.9)
where
1 X
R= ?\7 Z(F (‘Tvys Z;GI,a27a35517527¢707 wﬁpl‘apyvpz’I\lyrvl‘yyvkva) - 1) (5'10)
=1

Thus, the formulation imposes two constraints on the recovering model:

1. Volume Constraint: The ,/ajasa3 factor provides for the smallest volume satisfying

the surface constraint.

2. Surface Constraint: The condition that a point should satisfy the inside-outside

functions provides the constraint for a point to lie on the superquadric model.

When an arbitrary collection of points (non-convex) is presented to the above formula-

tion, and there is no model that will satisfy the surface constraint, the model averages out
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the inside-outside function value to leave certain points outside the model (¥ > 1, underes-
timated) and some inside the model (F < 1), overestimated. If the concavities (or convex
deficiencies) are significant, then cluster of points have values away from the ideal value of
1. T Goodness-of-fit is simply the normalized sum of the inside-outside function values at
all the points. To use this normalized value of F' for model evaluation, we have to assign
a meaning to it. In other words, what does it mean for a point to have a goodness-of-fit
value? It is certainly not related to the Euclidean distance in the sense that two equidistant
points from the superquadric model can have different inside-outside function value. We

now describe the significance of the goodness-of-fit measure based on the 10 function.

5.2.1 Interpretation of the Goodness-of-fit

The outermost exponent ¢; in the inside-outside function F' was added by Solina [Solina
1987] to cancel out the effect of ¢; in the equation. This modification resulted in better
recovery of cylindrical objects. Solina noted only the qualitative effect of the modification,
and no mathematical justification was given for it. We provide an explanation which gives
an intuitive meaning to the values of inside-outside function, and makes it possible to use
this measure for model evaluation.

Consider a superquadric S1 = (X1,Y], Z1) defined by explicit superquadric equations.
Take an arbitrary point P(z,y, z) in space, and scale the three axes of S; by a factor 8 such

that the point P lies on the scaled superquadric S = (X9, Y2, Z2) :

Bay cos(n) cos™? (w)

Sa(m,w) = | Bagcos (n)sin®2(w) (5.11)

Basz sin®(n)

We will prove that F' and § are related. The implicit form of S3(n,w) can be written

G G el =

Solving for § yields :

= |G+ @B o
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Figure 5.3: f-expansion and contraction of a superquadric model: left: expansion
for 8 = 1.2; right: contraction for 5 = 0.8.

It follows from the definition of F that :

F = 5% (5.14)

This result shows that the value of inside-outside function F for a point (z,y,z2) is
nothing but square of the factor by which the axes of superquadric §; have to be scaled to
make it pass through (z,y,z). This factor can be seen as the amount a superquadric has
to be expanded or contracted (figure 5.3) to make it pass through an arbitrary point in 3

space. This result provides an intuitive explanation for the values of F, with values > 1

indicating expansion and < 1 indicating dilation of the superquadric.

The obvious question to ask is if this explanation can be extended to the tapered or
bent models? Since tapering is defined in terms of a3 (the dimension along the major axis),
it is not possible to obtain a closed form solution for 5. So the above interpretation is
only approximately true for tapered models. For the models with bending deformation,
however, the interpretation is valid. Since the minimization problem is formulated in terms

of inside-outside function, its values are available with the model parameters, and does not
require explicit computation.
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5.3 Euclidean Distance Measure

The formulation of the superquadric recovery procedure in terms of minimization of inside-

outside function is not the same as the minimization of the distance function :

d=1/(z -2 + (y - ¥)) + (= - 22) (5.15)

Where d is the distance of a point (z,y,2) from the superquadric. So the Euclidean
distance is not computed at any stage of model recovery. It is important to note that
the inside-outside function and the distance measure are not related in the sense that two
points at the same distance from the superquadric surface do not have the same value of F
in general.

The distance of an arbitrary point in 3-D space from a given superquadric model is dif-
ficult to compute because of multiple solutions of the analytical formulation of the problem
as the non-linear root finding problem. Further, it is not possible to obtain a closed form
solution for the problem. We have posed it as a minimization problem, that iteratively
minimizes d for a given point and a given deformed superquadric. In any minimization
problem it is imperative to have a close initial approximation. Superquadric surfaces are
parameterized by 7 and w, and are convex for the points outside the model. Thus the
problem is formulated as :

Problem definition : Given (21,1, 21), minimize the following function of two vari-
ables :

d(m,w) = /((n,w) — ©1)* + (y(1,w) = 1) + (2(n,0) — 21)? (5.16)

Where 2(n,w), y(n,w), z(n,«) are the position vectors of the deformed superquadric

To ensure convergence to the right solution, a close initial approximation is obtained
by extending the expansion/contraction approach introduced in the previous section (fig-
ure 5.3). Corresponding to the point P(21,y1,21) in 3-D space, there is a point G(22, y2, 22)

on the original superquadric 97 :

Ty = xl/ﬁa

Y2 = yl/IBa

2y = z1/B. (5.17)
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Figure 5.4: Euclidean distance computation: The distance (PR) of a point P from the
model is determined using an initial guess (PG) based on B-expansion/contraction. The
point G lies on the straight line connecting the point P and the origin of the model. The
superquadric recovery formulation corresponds to the distance PG and not to PR. Excepling
the spherical model] (bottom left), where points G and R coincide, PG is an overestimation

of the real distance PR.
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The point G in Cartesian coordinate system can be written as G(7,w) in the parametrized
form. Thus, initial approximation of 7 and w is easily obtained. If the superquadric in con-
sideration is deformed then deformations are ignored since we are interested in only an
initial approximation. This method essentially traces the locus of 7 and w on superquadrics
by varying 3 but keeping other parameters constant. Thus the points P and G correspond
to the same 7 and w values, and G is likely to be very close to the point R(nl,wl) such that
R is the point closest to P. Figure 5.4 gives examples of initial guess to find the minimum
distance on different superquadric shapes.

The objective is to find R. The function d of two variables is minimized given the initial
approximation n and w, using a gradient-descent method. The method requires only func-
tion values, a finite-difference method is used to estimate the gradient internally. Though
d is differentiable at all points (even with deformations), we have found that supplying
external gradient values does not speed up the iterative process in general. The method
was found to be accurate up to sixth decimal place for experimental data. We can settle for
lower accuracy for faster convergence. The method has been successfully tested on deformed
superquadrics.

The optimization function represented in equation 5.16 is convex for the points lying
outside the superquadric model. For the points inside the model, distances are also min-
imized in two orthogonal directions past the edge of the model, since the presence of a
strong edge is the reason for non-convexity of the distance function. Two methods for the

computation of superquadric edges are described later in the chapter.

5.4 Apparent Contours of Superquadrics

Definition: The Contour-generator (or occluding contour) defined as the locus of the
points (a closed curve) on the superquadric surface where the surface normal vector is
perpendicular to the viewpoint vector.

Let V. = (V;,V,, V) be the viewpoint vector, and N = (ngz,ny,n.) be any surface
normal vector (see appendix B for surface normal computation). The occluding contour is

then given by :

V.N=0 (5.18)

We now derive a closed form solution for the contour generator on a non-deformed

superquadric surface :
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Veng + Vyny + Von, =0 (5.19)
Substituting for N gives :
2—~¢£1 2—e; V‘U 2—¢€ : 2—¢ VZ r2—¢
~= cos“®1(n) cos* T (w) + =< cos” T (n)sin“ T2 (w) + —sin“ " (n) =0 (5.20)
ay ag as
Solving for n gives the closed form solution for generating the apparent contour
V V 1
2=—c
n = tan™! (-—2-3- (— cos? %2 (w) + —Lsin?” 52(w)>> "L (5.21)
V, a9
When V, = 0, the contour generator becomes:
V
w = tan~ & and —7/2<n<w/2. (5.22)
(11V

For the degenerate case (V, = V,, = 0) the contour is given by n = 0; —7 < w < 7.

Figure 5.5 shows the apparent contours of non-deformed box and cylidrical superquadric

models generated by the above equation. Unfortunately, there is no closed form solution for

a general deformed superquadric, as the surface normal vector N has to undergo deformation
by the following rule (derived by [Barr 1984]) :

N =det337VIN (5.23)

where J is the Jacobian of the deformed superquadric. To trace the apparent contour of
a deformed superquadric, we have to vary the angles n and w systematically, and accumulate
points on the contour in such a way that a closed contour is formed (shown for a tapered
box in figure 5.5). This contour can be orthographically projected on the image coordinate
system to make comparisons with the image contour
Due to the closed form of the the 5.21, it can be used to derive an objective function to
provide the occluding contour constraint during the model recovery. The constraint would
force the occluding contour points (if known in advance) to lie along the occluding contour
of the model. We tested such a formulation by adding it to the optimization function in

equation 5.9, but did not observe any significant improvement in convergence. The reason

being that the equation 5.21 is valid only when a point lies on the superquadric model

For the points away from the surface of the model, there is no closed form solution for the

surface normal and hence a general formulation is not possible
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P

!

Figure 5.5: Apparent contours of superquadrics: Shown for a box and a cylinder, and
a tapered box. Left: The superquadric model; right: The occluding contour superimposed

on the model.
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5.5 Superquadric Edges

By limiting the shape parameters between 0.1 and 1.0, the analyticity of the superquadric
surface is maintained. Thus, there are no C'; (surface normal) discontinuities, but the points
of high curvature represented by the shape factor can be considered as “analytical edges.”
We now present an algorithm for edge extraction on deformable superquadrics. On a non-
deformed superquadric, the two 2-D cross-section contours (corresponding to 7 = 0 and
w = 0), contain complete information about edges. Of course, existence of an edge depends
on what we consider an edge. Typically, a shape parameter value of more than 0.5 indicates
smooth surface, otherwise an edge exists. Interestingly, the edges do not change in terms
of angles (although their location changes), when tapering and bending deformations are
applied to the model. This means that we need only consider the non-deformed case to
extract angles corresponding to the edge location. An edge exists where the curvature is
maximum or equivalently the rate of change of curvature is zero. Since the superquadric
equation is differentiable everywhere on the surface, the first, second and third derivatives
are computed and plugged into the 2-D curvature and rate of curvature equations :
z'y" — y"z’
- (22 4 y2)3/2

L ((L"2 + y/2)3/2(z/y/// _ ylxlll) _ %(m/yn _ y'z") (z’2 n y’2)(2:c'm” + 2y'y")
k= (22 4 y2)3 (5.24)

Curvature and the rate of change of curvature values along the 7 = 0 contour for 0 <

w < /2, are shown for £ = 0.1 & ¢, varying between 0.1 and 1.0 in figure 5.6. Six angles
(2 for n and 4 for w) are required to completely describe edges for a general superquadric

model. Edges for a box, its deformations, and a cylinder are shown in figure 5.7.

5.5.1 Superquadric Edges from Occluding Contour

The superquadric model and its edges in figure 5.7(a) lead to an interesting observation.
Notice that the edges exist at the occluding contour of the model. The question then arises,
can we use the closed-form formulation of the occluding contour in equation 5.21 to directly
derive the n and w instead of taking the curvature-based approach? The answer, fortunately,
is yes, thereby providing us with an elegant method to determine superquadric edges. Also,
since the edge locations do not change when deformations are applied, the equation 5.7 is

adequate to compute edges in general.
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Curvature
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Figure 5.6: Superquadric curvature: Curvature (top) and the rate of change of curvature

(bottom) along the n = 0 contour for 0 < w < 7/2,fore; =0.1& 0.1 <&, < 1.0,
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Figure 5.7: Superquadric edges: Edges of (a) a non-deformed box, (b) its tapered model,

(c) its tapered and bent model, and (d) a cylinder. Same edge angles were used to compute
edges on the deformed models.
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The edge angle 7. can be obtained from the equation 5.20 by making w = 0:

V. Ve . oo
— cos2_51(n) + —Z gin? “1(n) = 0.
ay as

1
V. \Z=e1
e = tan™! ((—“’3 “”>2 1), w = 0. (5.25)

ay Vz
The other edge angle w,, is obtained by making n = 0 in the equation 5.20:

V,
Ye cos? %2 (w) + —Lsin® "2 (w) = 0.
o az

V 2

s

we = tan™! L2 , n=0. (5.26)
alVy

A corner exists at (7e,we). Equations 5.25 and 5.26 give the analytical solutions for

computation of edges (or high curvature contours) and corners for a superquadric model.

5.6 Recovery of a Superquadric Model on Range Data

The model recovery algorithm as formulated by equation 5.9 starts with fitting an ellipsoidal
shape on 3-D points and converges on a shape that minimizes the least-squares error. A
stepwise description of the procedure is given in algorithm 5.1. The coordinate systems
are shown in figure 5.8. Recovery occurs in world coordinate system, whose origin is at
the centroid of the data points and oriented the same way as the image coordinate system.
This has the effect of starting iterations with (0,0,0) position vector for the object centered
system, which was empirically found to converge faster. The initial ellipsoidal model for the
NIST object, and the model after 15 iterations are shown in figure 5.9. Clearly, the global
model is unacceptable as a volumetric description of the NIST object, and reflects the need
for further segmentation.

Solina [Solina 1987] showed that the solution space is convex near the optimal solution,
and the model generally converges to perceptually acceptable shapes. We have found the
procedure to be stable numerically, but having difficulties in recovering cylindrical shapes
when the Z-axis (axis along az dimension) is not aligned along the axis of the cylinder. The
method also converges faster if the initial orientation is close to the final one, specially when
the data is not complete or symmetric due to occlusion. We will address these problems later
in the context of volumetric segmentation and provide efficient solutions to the problem of

model orientation and Z-axis determination.
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Image
Coordinate Y
System 0

(X,Y,Z) : World Coordinate System
(X',Y',Z') . Object Coordinate System

Figure 5.8: Image, World and Object coordinate systems: The representation and

recovery space for representation and segmentation.

Figure 5.9: Recovery of the superquadric model: NIST object. Left: The initial
ellipsoidal model is oriented along the eigenvectors of the moment matrix. Right: The

model after 15 iterations of the Levenberg-Marquardt method.
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5. Superquadrics : Volumetric Part-Models

1. Convert range image points from Image coordinate system (ICS) z = f(z,y) to World
coordinate system f(z,y,z) = 0, centered at the object centroid and oriented as image

coordinate system (figure 5.8).

2. Compute eigenvectors and eigenvalues of the moment matrix of the 3-D points. Orient
the Z-axis of the superquadric along the eigenvector with least moment of inertia.

3. Object centroid gives position (p, py, p; ), and the eigenvectors give orientation (Euler)
angles (¢,w, ) placing the object coordinate system (OCS) with respect to the world
coordinate system (WCS).

4. Compute extremities of 3-D points in OCS to estimate the size parameters (a1, az, as)
of the initial estimate of the superquadric Sp.

5. Set &1 = g9 = 0 (ellipsoid), K, = K, = 0 (nro initial tapering), and k¥ = 0.0001,a =0
(no initial bending).

6. Enable desired deformations. (Tapering in our case).

7. Perform iterative non-linear minimization (Levenberg-Marquardt method, [Press et
al. 1988]). Termination is decided by m (maximum number of iterations), and the

least-squares error:

(a) The first or second time error decreases marginally:

(Error(S;-1) ~ Error(.S;)) < 0.1,
the procedure terminates even if 1 < m.

(b) Procedure terminates if,
for some n > m, Error(S,) < Emins
where E;, = Min(Error(Sg). .. Error(S,,)).

8. Model recovery done.

Algorithm 5.1: Recovery of one superquadric model on range data.
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5.7 Chapter Summary

After describing the deformable superquadrics as defined by Solina [Solina 1987, Bajcsy and
Solina 1987], we developed some useful results about interpretation of the inside-outside
function, computation of the true Euclidean distance, derivation of the occluding contour
generator on superquadrics, computing edges on superquadrics, and formulated the su-
perquadric recovery problem to provide volume and surface constraints. Using this formu-
lation, a model for the given set of points can be obtained. In our global to local approach
for volumetric segmentation this model gives the first volumetric estimate of the data-set.
In the next chapter we analyze the global model for its adequacy in describing the data,

and develop an exhaustive set of criteria to completely evaluate the model.



CHAPTER 6

Criteria for Superquadric Model

Evaluation: Residual Analysis

We now have a fine-to-coarse surface segmentation procedure and a procedure to recover the
global superquadric model for the given data. Consequently, for the given data set, we have
the piecewise bi-quadric description and a global superquadric model. The superquadric
model recovery formulation lacks the segmentation capability. All our efforts from this
chapter on are directed towards developing a control structure that will segment the given
data set by constant evaluation of the intermediate superquadric approximations of the
data and by using the information from the biquadric segmentation and other geometric
constraints.

In this chapter we begin the design of the control flow of the volumetric segmentation,
so that the procedure can recognize the correct strategy for approaching the segmentation
problem starting with the global superquadric model. We first present a set of criteria for
the complete evaluation of a superquadric model and then demonstrate how they can be

generated, evaluated and used by the volumetric segmentation module.

6.1 Criteria for Model Evaluation

A superquadric model obtained by least-square fitting the inside-outside function is an over-
constrained estimation of data, with more constraints than parameters. Like any parametric
approach the goal is to describe a large chunk of data by a few parameters. The recovery
procedure assigns equal weight to each point, no matter where the point lies in 3-D space,
with the central goal of satisfying the volume and surface constraints. As discussed in the
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previous chapter, the superquadric recovery procedure is formulated to provide :

1. Volume Constraint: The \/ajazaz factor provides for the smallest volume satisfying

the surface constraint.

2. Surface Constraint: The condition that a point should satisfy the inside-outside

functions provides the constraint for a point to lie on the superquadric model.

Our definition of volumetric segmentation imposes acceptance criteria for the recovered
models, which must be satisfied before a model is considered to be adequate for the given
data. These acceptance criteria reflect the scale considerations and specify how much of error
can be tolerated in the final description. The acceptance criteria dictate that all the data
points must correspond to the model within the given error tolerance. When an arbitrary
collection of points (non-convex in general) is presented to a single-model formulation, and
there is no model that will satisfy the surface constraint, the model averages out the inside-
outside function value to leave certain points outside the model (F > 1, underestimated)
and some inside the model (F < 1, overestimated). If the concavities (or convex deficiencies)
are significant, then clusters of points have values significantly different from the ideal value
of 1. In such cases, the recovered model is not a satisfactory description of the underlying
data, and the presence of such clusters signals the need for decomposition of data into
smaller pieces to satisfy the modeling constraints.

Thus, it is imperative that the model be fully analyzed, both qualitatively (using local
distribution of residuals) and quantitatively (using global error measures), to aid in further
course of action. As will be discussed later, the existence of residuals and their distribution
is key to developing a systematic segmentation procedure. We have identified the following

measures for model evaluation in the context of the shape recognition problem :

Quantitative Measures: Deviation of data points from the model surface can be mea-

sured by the following two methods (illustrated in figure 6.1):

1. Goodness-of-fit (G) measure based on the inside-outside (I0) function (without the
volume factor). In figure 6.1(b), the IO function value corresponds to PG and not to
the minimum distance PR. A 0.1 value of F indicates 10% expansion/contraction of

the model and is generally a good cut-off for evaluating the quality of a fit.

2. Average deviation along Z direction: In figure 6.1(a), the distance of point P from

the model is PP’ along Z while the minimum distance is PP”. PP’ is usually an
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Figure 6.1: Computation of deviation of a point from the superquadric model:
(a) The Z-residual is computed along the viewing direction in the image coordinate system.
PP’ is the distance along Z, while PP” is the minimum distance. (b) The IO residual is

based on the inside-outside function, measuring the distance corresponding to PG and not
PR.
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overestimation of PP”. A value of 2 to 3 pixels is a good threshold for considering a

fit acceptable at individual points.

These thresholds were determined from the empirical observations of the fits, and taking
into account the quantization and sensor noise. However, relying on these thresholds for the
evaluation of a recovered model can be misleading. Quantitative measures are normalized,
global, and least-squares numerical values of the measuring quantity. Thus, a high value
of the average deviation indicates a bad fit, although a good value may not always be due
to a good fit. An acceptable global error can result from models with local details that
are averaged out in the global consideration. Sometimes these details may need negative
volume descriptions or further segmentation. This necessitates analysis of the type and the
distribution of residuals. An example of such a case is shown in figure 6.2, where the data
points in region 5 are overestimated by the global model having an acceptable global error-
of-fit. Region 36 shows the points that are estimated within the error tolerance, and region
27 shows the overestimation of the boundary of the object in Z direction. The residual
of region 5 can trigger further segmentation or provide for the negative volume fitting.
Thus, local residuals and their distribution contains useful information about the quality
of segmentation. Therefore, in order to evaluate individual residual regions, we present the

following qualitative measures.

Qualitative Measures: The deviation of individual points from the model can be used
to generate maps of the residuals to form clusters of points with identical description by

the superquadric model:

1. 10O residual-map: Classifies clusters of points that are outside, inside or on the model

in terms of the inside-outside function.

2. 7 residual-map: Classifies clusters of points that are outside, inside or on the model

when analyzed along the viewing (or scanning) direction.

3. ED residual-map: Classifies clusters of points along the direction of the true Euclidean

distance.

We discuss each one of these methods separately in next section. First, we need to
describe all the different types of clusters (regions) that can be generated in a residual

map. Residuals are computed by projecting the model in the image coordinate system, and
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Surface underestimation

Exact description

Contour overestimation

Surface overestimation
Acceptable occluding region

Occluding region overestimation

Figure 6.2: The object with missing volume: Top: Range image and its 3-D plot.
Center: The global model and its Z-residual. The missing volume results in local residuals
but the global model has acceptable error-of-fit. Bottom: Legend for the interpretation of

the residuals, used throughout the dissertation.
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making comparisons between data points and the model surface using one of the 10, Z or

ED measures. For illustration, we present the IO residual-map and the Z residual-map of

the global model for the composite object (figure 6.3), and Z residual-map for the NIST

object (figure 6.4). The six types of clusters are :

1.

Surface underestimation (s-under): The model surface underestimates the point
(leaves it outside) when viewed along Z direction or in the IO sense. Regions 41 and
48 represent exist as s_under regions in both Z-residual and IO-residual maps of the

composite object (figure 6.3).

. Surface overestimation (s_over): The model surface overestimates the point (leaves

it inside) when viewed along Z direction or in the 10 sense. Points that appear to be
underestimated in IO sense can actually appear overestimated along Z, because of the
directionality constraint of the Z residuals. For example, the underestimated region
for the composite object in figure 6.3 has a number of points hidden behind the model
that appear to be overestimated along Z (region 14) but are underestimated in the

inside-outside sense.

Acceptable description (s_exact): The model estimates the data points within the
specified tolerance. Again, due to the non-directionality of the IO function, some of
the points that are modeled by the hidden side of the model (the side that is not visible
from the viewing direction) will be labeled as acceptable, whereas the Z-residual map
will show them as overestimated. Due to the presence of parts, the NIST object and
the composite object have small s_exact regions, while the global model for the object
in figure 6.2 is a good approximation for the majority of the surface points (region
36).

. Contour overestimation (c_over): Due to the symmetry and shape constraints

of the rigid model, the projection of the model on the image coordinate system can
result in overestimation of the silhouette of the data. These regions predict extra data
which does not exist in the image. Region 46 in Z-residuals of the global model for
the NIST object is such a region. Note that c_over is similar in both Z-residuals and

10-residuals (regions 6 and 9, and 7 and 11 respectively).

Acceptable Occluding regions (occ_ok): When data is decomposed to arrive at
a piecewise description, it is desirable to allow the volumes of the models to occlude

each other such that the occluded model underestimates or ezactly describes the data
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Figure 6.3: The composite object: Top: The range image, the global model, and its

projection. Bottom: The Z residual-map and the IO residual map.
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i

Figure 6.4: The NIS ?bject: Top: The range image and the projection of the global

model; Middle: The global model and the Z residual map for the global model; Bottom:

The model for the base of the object and its Z residual map showing occluding regions
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points that do not belong to the model. For example, the base in the NIST object
shown in the bottom row of figure 6.4 underestimates the points belonging to the
other parts. The occ_ok regions (47 and 90) are labeled to show that the occlusion
is acceptable and that those residuals should not adversely affect the model for the

base.

6. Occluding region overestimated (occ_over): Regions where the model overesti-
mates the data points not belonging to it. It is clear that this is undesirable and

therefore counts against the model during evaluation.

6.2 Residual Analysis

The residuals generated by comparing the recovered model on the given data form the basis
of our coarse-to-fine volumetric segmentation approach. The residuals of the superquadrics
can be referred to as the deficiency in describing the convexity of the object. We now de-
scribe methods of generating the residuals based on the inside-outside function (IO-residual
maps) and those based on the point-to-point correspondence along the viewing direction
(Z-residual maps). Euclidean distance can be used in IQ-residual maps instead of the

inside-outside function value.

6.2.1 Residual Analysis by Inside-Outside Function

The inside-outside function value corresponds to the expansion/contraction factor J3 for the
given point, and therefore is not described along a fixed direction. As described earlier, its
direction is along the line connecting the point with the center of the model. An important
consequence of this is that the point can associate itself with the surface not wvisible from
the viewing direction. Although it is a strong indication of the presence of concavities, it
can be misleading in the case of thin objects. Together with the analysis along the viewing
(Z) direction, it provides a check for the existence of concavities or combination of concave
surfaces (in global sense). Clusters of points that are correctly modeled according the 10-
residual map but are overestimated according to the Z-residual map, belong to the hidden
the side of the model, and therefore need to be discarded if a convex combination of surfaces
is desired. This check is similar to the surface normal check for the detection of concavities,
but does not require explicit computation of additional quantities like surface normals. The

quantity of deviation at individual points can be the real Euclidean distance instead of the
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inside-outside value, although the latter is available as part of the recovery procedure while

the former requires explicit computation.

Generating the I0 Residual-map: The analytical formulation of the inside-outside
function allows for an inexpensive computation of this map at the data points. This gives
io_s_over, io_s_exact, and io_s_under regions. For the io_c_over regions, where su-
perquadric predicts data (along the viewing direction), we need to compute the projection
of the superquadric occluding contour in the image coordinate system following the proce-

dure described in chapter 5.

6.2.2 Residual Analysis Along the Viewing (Z) Direction

Since we are aiming to describe the single viewpoint data, it is clear that we want to mini-
mize the modeling error along the Z direction. This fact, however does not contradict the
formulation of the superquadric recovery in terms of the IO function, since any formula-
tion assumes that the data is inherently describable by the superquadrics without requiring
segmentation. Hence, even with the Z-distance formulation of the superquadric recovery,
segmentation will still be required. Thus we isolate the recovery procedure and the residual
analysis formulation to achieve best results.

Given that we want the Z-distance residual, let us define underestimation of surface
as the points that are outside of the visible superquadric surface, and overestimation of
the surface as the points that are inside the visible surface (beyond a certain acceptable
z_tolerance value). Additionally, the non-existent points that are described by the su-
perquadric, are due to the symmetry constraint (if a superquadric model does not exist) or

the presence of concavities.

Generating the Z residual-map: For the purpose of comparing the superquadric model
with given surface points to generate a difference map, we have to compute the distance of
every given point from the superquadric surface along the given direction. There are two

ways to accomplish this:

1. Compute the distance analytically, if possible, else numerically.

2. Reconstruct the superquadric surface in the scanner coordinate system and then per-

form point by point comparison in z direction to compute the difference map.
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Due to the absence of a closed-form analytical solution to compute the distance of a
point from a superquadric surface (even when the vector along which the distance is to
be computed is given), we backproject the model into the scanner coordinate system and
make point by point comparison to generate the residual map. This approach has many
advantages over a numerical method that only computes the distance of a point from the
superquadric model. A complete backprojection along the viewing direction gives us an

immediate assessment of the extrapolation of the model into non-existent data.

6.3 Residual Clustering for Further Processing

Following the above analysis. each pixel can be marked to be of the basic six types. To use
these individual points as clustered units, it is important to label the connected pixels as a
single cluster. A 4-connected neighborhood is used to enforce pixel connectivity in a cluster.
The resulting labeling produces clusters of each type, so that they can all be referenced as
units. Once we have the clustered residuals they can be treated as a graph structure and

their connectedness at cluster level can be determined.

6.3.1 Residual Adjacency Graphs (RAGs)

A region-adjacency graph is constructed with each node representing a region and edges

labeled according to the following relationships between a pair of regions:

1. Connection between two valid non-c_over regions.

2. Connection between two valid regions (one is c_over).
3. Connection with an invalid region (region too small).
4. Comnnection with a background/hole region.

5. Connection with an occluding region.

A region is valid if it has more than a minimum number of points (usually 1 or 2).
Figure 6.6 shows it for the global model of scene3 (figure 6.5) containing 4 clusters of
data. The RAG encodes connectivity information of the residual regions, and therefore
can be used to break isolate data clusters that are not connected in the image. This can
be easily accomplished by removing the edges corresponding to cases 2 (one of the region

is c_over) and 4. and analvzing the graph for connected components. Although similar
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Figure 6.5: The global model for Scene 3: The range image and its global model.

in concept to the surface adjacency graph (SAG) described earlier, the RAG is generated
for every new data-set. Thus RAG dynamically changes as the models evolve and data
clusters become disconnected during the segmentation process, but are actually connected
in the SAG sense. Therefore, we need the RAG description even though surface graphs
can do the same initial decomposition. The RAG for scene3d breaks the scene into four
independent parts and initiates independent models on each one of them. Notice that
during the connected-component analysis, the edges connecting with occluding regions are
not removed. It has the advantage of providing continuity of data along occluded regions, as
also isolating the regions that are solely formed of occluded points. We will later show that
during the second iteration for scene3, such a case occurs with the global model describing

the handset of the phone.

6.3.2 Using the Residuals for Superquadric Evaluation

Having described the 6 types of residuals and methods of generating them, we now discuss
the issue of using them to evaluate a model. For a data set of cardinality n, we know
the number of points that are exactly described, underestimated, and overestimated. The
absolute numbers are not of much use in evaluation, since they are size dependent. To
enforce scaleability and size invariance, we use the relative measures. This information
is stored as percentage of data that is exactly described, overestimated or underestimated.

Various thresholds can be put on these fractions to define the acceptance criteria. Similarly,
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Acceptable Description

Surface Underestimation

Contour Overestimation

Surface Overestimation

Figure 6.6: Residual adjacency graph (RAG) for Scene 3: Top: Z-residual map for
the global model of Scene3, and its RAG (bottom). Connected component analysis gives

four independent clusters for further processing.
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the c_over can be studied relative to the original data. Usually there is a 10 to 20%
c_over regions due to noisy data near the edges and due to the fact that superquadric
only approximately follow the boundaries of real data. A 20% value means that in order
to describe 100 points in data, an overestimation of 20 points occurred in volumetric sense.
Similarly, an acceptance condition for occ_over regions can be enforced. A combination
of these conditions gives the acceptance criteria to the control module, and defines the
termination conditions for the model recovery.

In addition to the residuals for the entire data, residuals for individual surfaces can also
be obtained to further refine the acceptance criteria. The residuals are computed only for the
domain of the biquadric surface included in the superquadric model. Thus, an acceptable
model will describe all its constituent surfaces with high confidence. It is also possible to
selectively enforce the thresholds, for example, some of the surfaces (eg. smaller than a
fixed size) can be ignored during the evaluation, while others can be given more weight.
Together with the globally-relative acceptance criteria outlined above, the surface-relative

criteria form a comprehensive criteria for superquadric model evaluation.

6.4 Chapter Summary

Given a recovered superquadric model, we developed a set of criteria for complete su-
perquadric evaluation. Both quantitative, as well as the qualitative measures are required
to exhaustively evaluate a superquadric model. Residual analysis forms the basis of the
global to local volumetric segmentation, and in the next chapter we present the issues

involved in accomplishing it.



CHAPTER 7

Volumetric Segmentation: The Control
Flow

We continue with the design of the volumetric segmentation module in this chapter. The
description available at this stage is in the form of the piecewise bi-quadric patches along
with the information about the surface-type, orientation and edges. Also available is the
global superquadric model and a set of criteria to exhaustively evaluate it given the original
dataset. The main task of the control structure for volumetric segmentation can be defined
as systematically integrating surface descriptions with the global-to-local superquadric re-
covery approach, evaluating the intermediate descriptions, and deciding on the strategies
for segmentation.

We begin this chapter by addressing the important issues in superquadric-based volu-
metric segmentation of real range data obtained from a structured lighting range scanner.

We will then discuss the control structure for integrated segmentation procedure in detail.

7.1 Issues in Volumetric Segmentation

7.1.1 What are Superquadrics Modeling?

Surfaces have more local support and hence provide reliable intermediate-level clustering in
terms of bi-quadrics. Unfortunately, the analytical correspondence between biquadrics and
superquadrics is minimal since biquadrics belong to the class of non-central quadrics while
superquadrics are more appropriately non-linear deformations of ellipsoids which belong to

the class of central quadrics!. In chapter 4, we established some correspondence between

!The appropriate term for superquadrics is superellipsoids since they do not cover general quadrics.
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the two for the purpose of axis alignment for curved objects. Essentially, we look at a
superquadric model as not only a surface description, but also as an object-centered volu-
metric description describing a convex cluster of points as close as possible to its surface. For
example, a superquadric with ¢y = €2 = 0.1 gives a convex combination of planar patches
that actually meet at Cy (surface normal) discontinuities. But from the superquadric point
of view, the discontinuity is smoothed out, since the model is differentiable everywhere.
An important ramification of this unique formulation is that our approach to segmentation
departs from the standard feature-based techniques and generalized cylinder-based formu-

lations.

7.1.2 Superquadric Recovery Formulation for Segmentation

An important difference between model-based approaches and our formulation lies in how
models are matched or recovered. Since our models represent a continuum of shapes, the
techniques relating to stored model matching are not useful. Instead of matching a stored
model, we allow the model to recover all its parameters starting from a basic ellipsoidal
shape. The formulation is based on surface and volumetric constraints and not on any
features like edges. The reason being that the local continuity analysis is of little use in
invoking a globally differentiable superquadric model. As mentioned earlier, the edges of a
superquadric model have to be viewed as high curvature contours or as occluding contours.
Thus, an edge-based approach has to be formulated in terms of occluding contours, providing
the surface constraint and the occluding contour constraint. As noted before, the occluding
contour formulation does not improve the model recovery capability. In any case, no matter
how the model recovery is formulated, the most difficult aspect of using the recovery-based
formulation is that the domain of the model (data points for which the model has to be
recovered ) has to be defined before the model is recovered. This rules out any possibility of
segmentation during the model recovery phase.

Therefore segmentation has to performed by a process that is separately formulated.
Skeletonization is a popular approach [Nevatia and Binford 1977, Pentland 1987b, Tes-
zopoulos et al. 1988, Rao 1988], but is sensitive to occlusion and requires the knowledge of
internal boundaries for complex objects. The difficulties involved in a reliable detection of
internal boundaries in range images renders them impractical for our use. In the absence
of any domain knowledge we want to provide for the possibility of occlusion due to parts,
and handle it in a perceptually significant manner. Besides, skeletonization works best for

curved surfaces and in general it is ambiguous and distracting when the volume consists of
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planar surfaces.

7.1.3 Coping with the Missing Information

Data can be absent due to occlusion with other parts, and shadows cast due to the scanner
geometry. Shadows due to scanner geometry are considered as missing data and the model
is allowed to predict data on them. In the context of residual analysis, it was mentioned
that occlusion due to other parts in the scene can be handled easily by considering the
residuals for those points to be acceptable. However, occlusion can prevent a part from
constraining the model to get its right size and position, although shape and orientation

are less sensitive to occlusion.

An additional source of missing data in single view data is self-occlusion. An object
in general position and orientation gives an idea of its volume or global shape. If the self-
occlusion is such that it hides the volume of the object, then the view is degenerate and
additional data or reasoning is required to get volume estimates. Given a non-degenerate
view, superquadrics fill in the missing data by imposing symmetry constraints. There are
no other options available because superquadrics are symmetric models, and available data
constrains the model and predicts a symmetrical hidden shape. This is not a problem if the
object is to model the available data and the object in consideration is indeed symmetric
in superquadric sense. In fact, this only predicts the hidden side of the object and is the
best guess given the single view. Additionally, it provides pointers for where to look for
additional information by predicting the existence of information. A secondary procedure
can verify the prediction by manipulation or imaging the hidden side if possible, depending
on the application. Generally speaking, self-occlusion is not a problem if the viewpoint
is non-degenerate for the data, but in a complex scene objects can be in their general or
degenerate viewing position (along a given viewing direction) and hence it is not possible
to make the general viewpoint assumption for all the parts in general. This means that
the possibility of existence of degenerate views of parts has to be taken into account when
analyzing the scene. The degeneracy of the view affects different kinds of objects differently.
A box appears as just a plane, resulting in a flat “volumetric” model. A cylinder, on the
other hand, poses such problem only if viewed head-on, in which case only the cross-section
information is available. If the curved surface is visible, then the cross-section information

of a cylindrical object can be extracted from the surface curvature by the superquadrics.
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Figure 7.1: Orientation of the object coordinate system: The eigenvectors give a
moment based estimation of the orientation (left). Orienting it along one of the surfaces is

a better estimate for the least-squares based optimization procedure (right).

7.1.4 Orienting the Initial Superquadric Model

As a rule of thumb, the initial model (the ellipsoid) is oriented along the eigenvectors of the
moment matrix, and the Z axis is aligned along the eigenvector with maximum eigenvalue
(corresponding to least axis of inertia). The model is sensitive to the selection of the Z axis
(axis along az dimension) in the object-centered coordinate system for cylindrical models,
requiring that cylinders curve only along the Z axis. In addition, it is helpful to orient the
model as close to its final orientation as possible. Due to the least-squares-based recovery
process, and the initial axis estimation using eigenvectors of the moment matrix (which is
biased due to the self-occlusion in single view data), the optimization procedure can get
stuck at the local minima. Instead, if the model is oriented such that it corresponds to one of
the constituent surfaces (with the assumption that the orientation of any one of the surfaces
is also the most likely final orientation), the recovery procedure exhibits quick convergence
to the correct model? (figure 7.1). We have empirically tested this heuristic and found it to
give consistently better solution than the uncorrected one. Since the initial guess is close
to the final orientation, the model convergence is also improved. The problem of selecting
the Z-axis in case of curved surfaces is resolved by biquadric surfaces. Algorithm 7.1 gives
the general approach for the orientation of the object coordinate system with respect to a

known world coordinate system.

?We use the words “correct” and “acceptable” based on the study of residuals, and not on our subjective

evaluation.
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1. Compute eigenvectors and eigenvalues of the moment matrix for the 3-D points in
world coordinate system. Orient the object centered system along the eigenvectors.

2. If (single curved patch)
then

Align Z-axis along the axis with least coefficient in the standard form of the
biquadric.

else if (single planar patch)

then Align Z-axis along the eigenvector with maximum eigenvalue.
else /* cluster of paiches */

Orient the object coordinate system in the same sense as the coordinate

system of the largest patch in the cluster. If curved surfaces present then
prefer that orientation (to correctly align the Z axis).

Algorithm 7.1: Orientation and 7 axis placement of the initial superquadric model.

7.1.5 Surface Support for the Superquadric Data

The volumetric segmentation procedure considers only those data points that have bi-
quadric surface support. The support is exhibited by the inclusion of a point in one or
more surface patches. The logic behind this requirement is that if a data point cannot
gather surface support then it can be excluded from the volumetric consideration as well.
It also has the desirable effect of leaving out the outliers (filtered by the iterative regression

approach of biquadric recovery) that can be distracting for the least-squares procedure for
the superquadric recovery.

7.2 The Strategy for Volumetric Segmentation

A schematic diagram of our approach for volumetric segmentation is shown in figure 7.2.
The surface and superquadric recovery modules are applied independently to the range
data. The surface segmentation is refined to obtain surface patches that can be used by
the volumetric segmentation, and surface adjacency, edge-type, and surface orientation
information are extracted from the standard form of the biquadrics. Surface segmentation
is considered final in the sense of 2-12;-D description. Residuals defined in the previous chapter
are generated for the global superquadric model.

The objective of the control module is to evaluate the global superquadric model and
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Figure 7.2: The Control Flow of the SUPERSEG system: An integrated approach

for surface and volumetric segmentation.
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devise the appropriate strategy to either segment the data by hypothesizing part-models as
indicated by the residuals, or terminate the procedure, or generate negative volume descrip-
tions. The segmentation at surface level can be used to guide the volumetric segmentation,
but when to rely on surface information, and what surface information to use is not clear at
a first glance. Depending on whether or not to invoke surface information, there are three

basic strategies:

1. For every surface model one superquadric model is recovered. This strategy has
been most popular with researchers interested only in using superquadrics for final
modeling of a segmented description arrived at by using techniques not involving the
superquadric model. Thus the superquadric model may or may not be the right model
for the segmented data. This is the weakest strategy to follow, but we will describe

the advantages of integrating it as part of a more complex strategy.

2. Segmenting the object at concave discontinuities found during the segmentation, and
recovering a superquadric model for each convex component. This is not a general
strategy, and will not always work since it assumes that surface segmentation is final
in volumetric sense as well, and groups of surfaces can be combined together to form
a volume. However, we want the control structure to identify the situations in which
it will work, so that it can make use of the surface information to derive the correct

segmentation.

3. By following a global to local approach, driven solely by residual analysis, and without
the help of surface patches, it is possible to generate part hypotheses at the s_under
regions, place local superquadrics (part models) there, and let them grow (extrapolate)
as the global model shrinks by discarding the points that were underestimated by the

earlier fit.

The third strategy is the most general one. However, it is too slow and tends to generate
more false hypotheses than if surface information was also taken into account. Crucial
information that surfaces provide is the existence of step edges and the concave surface
normal discontinuities, as also the orientation of individual surface patches, which is of
crucial importance in orienting the part (seed) superquadric models placed on s_under
regions. We will first explain the three strategies as independent methods and then describe
the integration of their best features to obtain a general control structure. We will illustrate

the results of following these strategies for the composite object in figure 7.3.



112 7. Volumetric Segmentation: The Control Flow

7.2.1 Strategy 1: One Superquadric Model for Every Bi-quadric Surface

If the biquadric surface segmentation is complete at the superquadric level in the sense of
1-to-1 correspondence between the biquadric and superquadric surfaces, then there is no
more segmentation necessary at the superquadric level. A superquadric model can then be
recovered for each bi-quadric surface patch. Cases where this will work include: Curved
surface patches where each patch provides enough information to constrain the superquadric
recovery. This is not a general strategy, as it does not allow convex combination across
convex discontinuities, and hence admits a small class of objects. The other researchers using
the superquadric modeling methods [Ferrie et al. 1989, Pentland 1987b, Darrell et al. 1990,
Terzopoulos and Metexas 1990] have made the assumption that a 1-to-1 correspondence
exists between the surface descriptions and superquadric models and thus are not able to
handle volumetric parts (like boxes) with convex discontinuities.

The result of fitting one model for every surface to the composite object gives an unre-
alistic looking description shown in figure 7.3 (bottom left). The description for the NIST
object is shown in figure 7.4. However, this strategy can be used by the general segmentation

procedure for the following purposes:

1. Some of the planar patches are described by the biquadric recovery procedure as
second-order polynomials. This can be due to the distortion of data or noise in a tilted
planar surface. Planar surfaces require different consideration than curved surfaces,
and hence it is necessary to be confident about the fact that a surface is second-order
or planar. The strategy-1 provides an unambiguous planarity check by computing the
dimensions of the data in the surface domain by following the superquadric fitting
procedure. This approach is similar to the approach based on computing eigenvectors
of the moment matrix for planarity check [Hoffman and Jain 1987], but performs
better because it also gives an estimate of the size and shape of the surface to make a
decision about the planarity of the patch. For this test, we keep the Z-axis along the
shortest axis (along the axis of maximum inertia). Thus, if the a3 dimension of the
object is small then it can concluded that the patch is globally planar. The surfaces
labeled 1,3, and 4 in the composite object (figure 7.3) result in flat superquadric

models, while the curved surface gives a box-like model.

2. By fitting a superquadric to every surface, we get an estimation of the global orienta-
tion of the patch in 3-D. This information is not present in the biquadric parameters

because the Z-axis is fixed for biquadric patches. The surface orientation information
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Figure 7.3: The composite object: Top: Range image, bi-quadric seed regions. bi-
quadric segmentation. Center: The global model and its Z-residual map. Bottom: Left:
Result of strategy 1: One superquadric model for every surface. Right: Result of strategy

3: Shrinking the global model.
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can be used in orienting the initial estimates of superquadrics hypothesized by the
control module if the surface is included in part or completely by the hypothesized

model, as explained earlier and shown in figure 7.1.

3. Surfaces patches can also provide starting data regions for growing or extrapolating
the superquadric models. Although, extending the surface patches in this manner
will not work in general because the patch may not correspond to any superquadric

crossection.

4. Recovering a superquadric model for every surface gives an intermediate description,
which is final in surface sense but not in the sense of the optimal volumetric descrip-

tion.

The primary reason that we do not consider this description as the final description, even
for the patches that have superquadric models at surface level (for example the composite
object), is that it does not maximize the positive volume of the data. The box in the
composite object is better represented as one volume rather than two “flat” volumes. Thus,
the control structure enforces the minimum volume constraint for a given set of <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>