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Surface and Volumetric Segmentation of Complex 3-D Objects Using Parametric Surface and Volumetric Segmentation of Complex 3-D Objects Using Parametric 
Shape Models Shape Models 

Abstract Abstract 
The problem of part definition, description, and decomposition is central to the shape recognition 
systems. In this dissertation, we develop an integrated framework for segmenting dense range data of 
complex 3-D scenes into their constituent parts in terms of surface and volumetric primitives. Unlike 
previous approaches, we use geometric properties derived from surface, as well as volumetric models, to 
recover structured descriptions of complex objects without a priori domain knowledge or stored models. 

To recover shape descriptions, we use bi-quadric models for surface representation and superquadric 
models for object-centered volumetric representation. The surface segmentation uses a novel approach 
of searching for the best piecewise description of the image in terms of bi-quadric (z = f(x,y)) models. It is 
used to generate the region adjacency graphs, to localize surface discontinuities, and to derive global 
shape properties of the surfaces. A superquadric model is recovered for the entire data set and residuals 
are computed to evaluate the fit. The goodness-of-fit value based on the inside-outside function, and the 
mean-squared distance of data from the model provide quantitative evaluation of the model. The 
qualitative evaluation criteria check the local consistency of the model in the form of residual maps of 
overestimated and underestimated data regions. 

The control structure invokes the models in a systematic manner, evaluates the intermediate descriptions, 
and integrates them to achieve final segmentation. Superquadric and bi-quadric models are recovered in 
parallel to incorporate the best of the coarse-to-fine and fine-to-coarse segmentation strategies. The 
model evaluation criteria determine the dimensionality of the scene, and decide whether to terminate the 
procedure, or selectively refine the segmentation by following a global-to-local part segmentation 
approach. The control module generates hypotheses about superquadric models at clusters of 
underestimated data and performs controlled extrapolation of the part-model by shrinking the global 
model. As the global model shrinks and the local models grow, they are evaluated and tested for 
termination or further segmentation. 

We present results on real range images of scenes of varying complexity, including objects with occluding 
parts, and scenes where surface segmentation is not sufficient to guide the volumetric segmentation. We 
analyze the issue of segmentation of complex scenes thoroughly by studying the effect of missing data 
on volumetric model recovery, generating object-centered descriptions, and presenting a complete set of 
criteria for the evaluation of the superquadric models. We conclude by discussing the applications of our 
approach in data reduction, 3-D object recognition, geometric modeling, automatic model generation. 
object manipulation, and active vision. 
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ABSTRACT 

Alok G u p t a  

Supervised by Ruzena Bajcsy 

The problem of part definition, description, and decomposition is central to  the shape 
recognition systems. In this dissertation, we develop an integrated framework for segillellting 
dense range data  of complex 3-D scenes into their constituent parts in terms of surface and 
volumetric primitives. Unlike previous approaches, we use geometric properties derived 
from surface, as well as volulnetric models, to recover structured descriptions of complex 
objects without a priori domain knowledge or stored models. 

To recover shape descriptions, we use bi-quadrzc models for surface representation and 
supcrqucrclric models for object-centered volumetric representation. The surface segmen- 
tation uses a novel approach of searching for the best piecewise description of the inlage 
in t e r ~ u s  of bi-quadric ( 2  = f ( z ,  3)) models. It is used to generate the region adjacency 
graphs, to  localize surface discontinuities, and to derive global shape properties of the sur- 
faces. A superquadric model is recovered for the entire data set and residuals are coniputcd 
to  evaluate the fit. The goodness-of-fit value based on the inside-outside function, and the 
mean-squared distance of data from the model provide quantitative evaluation of the model. 
Tlle qualitative evaluation criteria check the local consistency of the model in the form of 

residual maps of overestiinated and underestimated data  regions. 
The control structure invokes the models in a systematic manner, evaluates t l ~ e  inter- 

mediate descriptions, and integrates them to  achieve final segmentation. Superquadric and 
bi-quadric models are recovered in parallel t o  incorporate the best of tlle coarse-to-fine and 
fine-to-coarse segmentation strategies. The model evaluation criteria deterrniile the dimen- 
sionality of the scene, and decide whether to terminate the procedure, or selectively refine 
the segnlelltatioll by follo\ving a global-to-local part segmentation approach. The control 
module generates hypotheses about superquadric models a t  clusters of underestimated data 
and performs controlled extrapolation of the part-model by shrinking the global model. As 
the global model shrinks and the local models grow, they are evaluated and tested for 

termination or further segmentation. 
V'e present results on real range images of scenes of varying complexity, includiilg 011- 

jects wit11 occluding parts, and scenes where surface segmentation is not sufficiellt t o  guide 
the ~o lumet r i c  segmentation. \ \ e  analyze the issue of segillentation of complex scenes t l~or -  
oughly by studying the effect of missing data  on voluiiletric model recover]., generating 
object-centered descriptions, and presenting a complete set of criteria for the evaluation of 
the superquadric models. Lye conclude by discussing the applications of our approach in 

data reduction, 3-D object recognition, geometric modeling, automatic model generation. 
object nlanipulation, and active vision. 
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Introduction 

For visual discrimination, shape plays a very important role. Human beings exhibit re- 

markable abilities to simplify the visual input without bringing in domain knowledge or 

functionality into consideration. A robot using vision for navigation or recognizing objects, 

has to  sinlilarly simplify the visual input to the level that is required for the specific task. 

To simplify means to partition images into entities that correspond to individual regions, 

objects and parts in the real world and to  describe those entities only in detail sufficient 

for performing a required task. Usually the first level of simplification entails obtaining 

part descriptions based on the properties that are independent of the position, orientation, 

scale and the work domain. Physical shape of an object is an important characteristic that 

allows us to  discriminate between two otherwise identical objects, for example a ball from 

cube of same color and texture. Shape is the outward appearance or form of an object 

defined by its boundaries and surfaces. It is therefore possible to model an object's physical 

shape by geometric primitives in terms of surfaces and volumes. The distinction between 

surface and volume is only subtle in the sense that surface description captures the abstract 

notion of a surface as  curved or convex or planar, while the volume description gives a 

higher-level description by combining the surface properties to give the bounding volume 

as a bos or a sphere. So, a piecewise-planar description of a box at surface level can be put 

together to represent the global shape as a box. This indicates that surface models capture 

local shape more accurately than volumetric models, while volume models are better at 

describing global shapes by ignoring local details. 

From the perspective of shape, objects in the real world represent a complex conglomer- 

a.tion of primitive shapes. These primitive shapes can be considered as the building blocks 

of the larger objects. An object of an arbitrarily complex shape can be decomposed into 

1 
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iiumerous pieces based on the primitives shapes. We would like the shapes to  be primitive 

enough to niodel as large a class of objects as possible. For other objects, only approximate 

descriptions will suffice. The primary objective of a shape recognition system is to  derive 

a structured description of complex objects in terms of primitive shapes. The resulting de- 

composition into parts is very useful for the high-level symbolic reasoning object-recognition 

processes, which can attach domain specific labels to  the parts, and reason a t  a level where 

the visual input is structured in terms of primitives, rather than cope with the difficulties 

of low-level vision and huge pile of unstructured data. 

Since the shapes have to  be recovered from raw data, it is not possible to  invoke comples 

models (models ~v i th  hundreds of degrees of freedom) straight away. It is, however, feasible 

and perceptually less an~biguous to use simpler but powerful models that  can capture the 

local and global properties of the object shapes, and provide a first approximation t o  the 

more comples models. VCTith computability, simplicity, and the utility of the shape repre- 

sentation as our niajor concerns, we decided to use bi-quadrics and superquadrics as our 

surface and volumetric models respectively. We develop a control structure t o  effectively 

carry out the decomposition of complex objects in range images, and address the numerous 

issues encountered in a data-driven bottom-up approach. 

The dissertation is organized in the following manner. In this chapter, we formally define 

the shape recognition problem. and give a philosophical overview of the problem. Shape 

primitives, motivation for segmentation and our approach are discussed in chapter 2. The 

surface segmentation procedure is described in chapter 3 and the aspects of integration of 

surface information with superquadric model recovery are presented in chapter 4. Chapter 

5 gives a detailed analysis of superquadric models and derives important results useful 

for volumetric segmentation. The criteria for the evaluation of superquadric models are 

discussed in chapter 6. The control module, which systematically recovers the superquadric 

models, is described in chapter 7, and detailed results on real range data  are given in chapter 

S. Finally, we sulilillarize our approach and discuss the future directions in chapter 9. 

1.1 Statement of the Problem 

The goal of this research is to recover structured shape descriptions of complex three- 

dinlensional objects in range images in terms of significant parts defined by a set of surface 

and volumetric priillitives without a priori knowledge about the object or the object do- 

main. By "significant" we mean that  the part boundaries are of physical, perceptual or 



geon~etric significance and that  part decomposition is natural. 

In addition to  defining the problem as that  of part-segmentation, i t  can also be viewed 

as that  of symbolic representation and data reduction by attaching symbols t o  data. Other 

interpretations include geometric modeling and geometric reasoning, where knowledge in- 

herent in the geometric primitives is used to  model data. 

The phrase "recover structured descriptions" summarizes our approach to  the problem 

of part-segmentation. Instead of matching stored models, the shape vocabulary should 

include a continuum of shapes that  can be recovered from the data. The description should 

be structured, and obtained in terms of shape primitives without a priori knowledge about 

the ohject or the object domain. 

This brings in the vital issues of part definition, description and decomposition, each of 

~vhich addresses the very basis of our research. At the outset, i t  is important to note that  

the problem of shape description and decomposition has proved to  be extremely difficult 

mainly because the researchers have either tackled each of the components separately or 

limited their description to  one primitive. We present arguments that  the issue of part 

description and part segmentation* are related and have to  be considered together. This 

observation leads us to  propose surface and volumetric primitives for shape representation, 

and the control structure to  integrate them to  obtain the final description. 

The co~llplete problem of shape recognition can be posed as a composition of following 

fulldalnental subproblems : 

1. \&'hat are parts and how are they defined? 

2. \$;hat is the basis of decomposition of shape into parts? 

3. How are part definition, description and decomposition related? 

4. \4'ha.t types of geometric primitives and how many primitives are enough to  generate 

the desired part description? 

5. 1l'ha.t is the motivation for selecting a set of primitives and partitioning rules? 

6. What  are the processes that carry out these decompositions? 

7.  What is the overall coiltrol strategy t o  arrive a t  a detailed description of complex 

ol~jects  in terms of chosen primitives? 

l\Ve will use t,he terms segmentation and decomposition interchangeably. 



4 1. Introduction 

Figure 1.1: 3-D parts: A cylinder (a)  is a single volumetric part consisting of two surface 

patches. The Box (b) is perceived as a single volumetric part ,  while three planar patches are 

seen at, surface level. The composite object (c) has two distinct volumetric parts, separated 

by a concavity at  the transversal join. 

The first five questions constitute the problem analysis phase, where we attempt to  

formalize the problem in the most general sense. The last two questions involve important 

co~llputational and integration issues that  will determine the eventual robustness of the 

system. In this chapter we 1a.y t,lle founda.tion of our work by giving a general definition of 

the problem. Other issues are dealt with in detail i11 the subsequent chapters. 

1.2 What are Parts? 

Wrebster's dictionary defines a part as one of the portions into which something is or is 

regarded as divided and ~vliich together constitute the whole. Arnheim [I9741 notes that 

in a quantitative sense, any section of ~vhole can be a part. But this definition does not 

preserve structure. Partitioning by ignoring structure is not of much use in vision [Witkin 

and Tene~lbauill 1983, Hoffinan and Richards 1985, Pentland 198ib, Arnheim 19741. 

Part definitioil ultimately depends on the reliability, versatility and computability con- 

straints inlposed by the task of shape recognition and may not be unique [Hoffman and 

Richartls 19851. It is therefore difficult to  give a general definition of part in the context of 
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shape recognition. However, a working definition would define a part as a n  easily describable 

and recognizable portion of a complex shape that  is invariant to minor changes in viewpoint 

(figure 1.1). I t  brings the notion of description into part definition, emphasizing the fact 

tha t  two are interrelated. The idea of partitioning a complex object into describable parts is 

not new in computer vision. It differs in the choice of primitives and the way segmentation 

is carried out. Traditionally part definition has been either primitive-based or bouiadary- 

based [Bennett and Hoffman 1987, Nevatia and Binford 1977, Hoffman and Richards 19851. 

In the literature, primitive-based approaches [Agin and Binford 1973, Nevatia and Binford 

1977, Soroka and Bajcsy 19781 have defined objects by cylindrical, polyhedral, conical or 

spherical shapes. The objective of such systems is to  fit parts of complex objects with models 

in the shape vocabulary. Boundary-based approaches [Hoffman and Richards 1985, Bennett 

and Hoffman 1987, I<oenderink and vanDoorn 1982, Biederman 19851 define parts by out- 

lining the boundaries on surfaces. Beiderman [I9851 has emphasized the perceptual basis 

for part decomposition based on Gestalt principles (nonaccidental properties of 2-D pro- 

jection of 3-D objects). Others have imposed the requirement of continuity [Binford 19823 

and uniformity [Hoffman and Richards 19851. In shape decomposition, one tries to  follow 

the principle of orderliness, which means - partitioning things in the simplest possible way. 

Such partitioning normally reflects the structure of the physical world quite well due to  the 

principle of parsimony [Arnheim 19741. 

Segmentation Versus Representation: Decomposition into parts, units or primi- 

tives is t,lle ba.sis of scientific methodology. Because of the limits on how much informa.tion 

we can process a.t a. time, we have to  simplify and view the world a t  various levels of 

abstraction. Our objective is to  decompose complex objects into the constituent parts 

based on the shape. Many reasons have been advanced in favor of such a decomposition. A 

recognition-by-parts approa,ch is not sensitive to occlusion and is extremely powerful in han- 

dling countless configurations of articulated objects. A description in terms of basic shape 

primitives is more efficient, parsimonious in space consumption, and facilitates structured 

description of the world. These arguments are supported by the principles of perceptual 

organization [Biederman 19851. 

In computer vision literature the partitioning of images and description of individual 

parts is called segmentation and shape representation respectively. We have presented ar- 

guments in [Ba,jc.sy et id, 19901 that  the problem of segmentation and representation are 

rela,ted a,nd llnve to  be treated simultaneously. Since the analysis aspect of computer vision 
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Figure 1.2: Part versus detail: Perception of parts depends on scale of the part with 

respect to  the whole. The wrench shape (a) needs decomposition into parts (b). While the 

jagged boundary on one side of the object (c) can be ignored as a detail. However, a t  a 

finer scale, details become parts. 

requires sglnbolic representation of data, for the models to  correctly reflect the underlying 

data it is imperative that  the issue of representation be addressed during the process of seg- 

mentation. Bennett and Hoffman [I9871 have argued that  a primitive based part definition 

confuses the problem of part definition with the separate problem of part description. We 

consider thelll to be interdependent; parts are defined the way they are described by shape 

primitives. Our surface primitive implicitly defines the part boundaries on the smooth sur- 

faces and thus includes the advantages of a boundary-based approach. In this context, it is 

possible to view the local support enjoyed by the surface descriptions as achieving the goals 

of a boundary-based approach, while preserving the descriptive power of the primitive-based 

approaches. Ho~vever, i t  might not ultuays be possible to obtain complete primitive-based 

description of arbitrary objects for al l  the parts. Volumetric primitives being influenced by 

the global shape, nzay not account for all the surface details. Surface primitives ensure that  

we obtain a part description a t  a level lower and less global than the volumetric primitive. 

A n  important issue related to the part-whole relationships is the issue of part versus 

dctriil . Tliat a portion of the whole merits an independent description as a part or can be 



1.3 Shape Primitives 7 
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Data Po/;& Range Data 

Figure 1.3: The hierarchy of representation: The volumetric model is a 3-D represen- 

tation of the 2%-D range data. 

considered a mere detail is a matter of scale in the bottom-up approach we are adopting. 

In figure 1.2 the wrench appears t o  have parts while the wiggles on one side of the other 

object appear to  be details that  do not need part level description. However by illcreasing 

the scale of the wiggliness with respect to  the size of whole we get them as significant parts. 

Notice that  the wrench can be decomposed into four parts instead of three. Ambiguities 

in final description are common in part-segmentation without a priori knowledge, and the 

strategy followed by the volumetric segmentation decides which description is preferred. 

1.3 Shape Primitives 

M7hat are the shape primitives that adequately describe the data? How many prinzitives 

are required? Since the objects in the world are of arbitrary complexity, it is not possible 

t o  include primitives for all the different shapes as i t  will never be a complete set. Thus 

we have to  make a judicious choice of primitives that have the capability of describing 

data a t  various levels (dimensions), so that description at some level is always possible 

and cor~lputability of primitives is assured. For obtaining a global shape descriptioll from 

single-viewpoint 3-D data requires addressing shape a t  following levels : 
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1.  Volulnetric level : Primitives capable of modeling parts in three dimensions are 

needed t o  describe global shape of parts. 

2. Surface level : Surface primitives describe internal surface boundaries and surface 

patches ~vllich are difficult to 11lodel with volumetric primitives, but are vital source 

of inforlnatioll about recovering part structure. 

This hierarchy of shape primitives (figure 1.3) allows us to  obtain shape descriptions a t  

volumetric and surface levels. Figure 1.4 shows the hierarchy of descriptions for a machined 

object. It is clear that no one primitive will always capture all the details of shape. For 

example, if it is not possible to  model parts with the selected volumetric primitive, an 

approsinlation a t  volumetric level call be obtained, with more detailed description a t  surface 

level. Thus. conlpleteness requirement for a general representation is satisfied by obtaining 

hierarchical descriptions. 

Low-level models like contours and edges have low granularity (edge description in fig- 

ure 1.4) and are too local t o  capture or make use of the gross structure of the world. They 

are sensitive t o  local changes and difficult to  put together in a global context. They are 

useful when used with surface models. Our hierarchy of representation (figure 1.3) has only 

ilnplici t infor~natiolr about edges, and no explicit edge models are used. 

The nest level of shape description is achieved by describing local and overall surfa.ce 

cha.ra.ct,erist~ics. Surfaces play importa,nt role in human perception of shape. A lot of effort 

in colllputer vision has been spent on describing complex surfaces as piecewise continuous 

pa.tches. We ha.ve developed a new method for piecewise surface segmentation in terms of 

variable-order (up t o  second-order) bi-variate polynomials. 

Three dillrensional primitives Like generalized cylinders and cones, polyhedral models, 

3-D Snloothed local sym~netries [Brady 19831, and 3-D symmetric axis transform [Nack- 

man and Pizer 198.51 have been used by model based vision systems. However, the power 

of representation varies from model to model. A model allowing deformations is likely to  

describe objects with fewer primitives than a rigid model which will need more instances 

to  approximate the object. As we shall describe later, volumetric primitives are essential 

to  generate colnpact object-centered descriptions and to define global part-structure. Su- 

perquadric models. our choice of volulnetric primitives, generate object centered descriptions 

b?. drawing local support from the surface primitives. 
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Volumetric description: 

Surface description: 

Edge description: 

Range image: 

r 1 
Figure 1.4: Edge-Surface-Volume representation of a complex object: NIST Object: 

The hierarchy of shape primitives highlights different aspects of shape at different levels. 
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1.4 The Segmentation Problem 

The problem then is how t o  use the primitives t o  segment the objects into part-structures. 

In the context of shape recognition, the problem of segmentation can be defined as matching 

the right kind of shape model with the right parts of data  in an image. This brings up the 

crucial question of facilita.ting this ma,tching process. 

Each of the shape primitive can independently describe the data. The contour-based 

segmeiltation is widely studied in pattern recognition and computer vision as 2-D shape 

recognition prohlem [Pavlidis 1977, Shapiro 1980, Asada and Brady 19861. Since we are 

not explicitly dealing with 2-D segmentation, we are interested in approaches using dense 

surface information for segmentation. Surface based approaches have been popular with 

model-based vision systems, as they have local support, and allow 3-D objects t o  be modeled 

as collectior~ of surfaces. Volulnetric models have proved to  be most difficult t o  recover from 

image data. Some researchers have used a combination of features t o  model domain specific 

objects [I<uan and Drazovicll 1985. Brooks 19831, exploiting the robustness achieved by 

colnbilling descriptions a t  different levels. To facilitate segmentation we believe that  a 

general purpose vision system needs volumetric and surface shape primitives. Difficulty in 

recovering volumetric models in intensity images is experienced due to  the loss of depth 

information. But the problem has not proved to  be any easier even with the availability of 

depth information [Nevatia and Binford 1977, Kuan and Drazovich 1985, Solina 1987, Boult 

and Gross 1987. Rao 1988, Soroka and Bajcsy 19781. 

Model based vision systems match the available models in the model database with 

hypothesized instances of models in the image data. Object models typically used in vision 

are built as a structured hierarchy of primitive part-models. Since we are addressing the 

problem a t  the level of shape-definition only, and not at  the object-definition level, we do 

not have the high-level models that  restrict the part-models to a particular configuration. 

Therefore, the typical model-based vision strategy is too restrictive t o  be of any use for 

part segmentation. The essential difference between shape recognition problem and the 

model-based approach is that  we are looking for instances of part-models and not object- 

models that  coilstrain the part-models to configure in a known order. Consequently, we do 

not have a ilotion of L'object'' as such, but only geometric parts. A cluster of points that  

cannot be trivially broken into smaller cluster of points is considered an object by us. Thus, 

neighborhood information provided by the dense 2 i - D  image data  is vital in defining what 

n e  incan by connectivity. 4-connectivity in the neighborhood of a pixel connects the pixel t o  
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the neighboring pixels. This formulation relieves us from generating elaborate neighborhood 

representations like vornoi diagrams and lets us deal with the more important problem of 

segmeat.ation of data. 

1.4.1 Segmentation in terms of Primitives 

There are two basic strategies for segmentation: 

1. Global-to-local: Proceed from coarse-to-fine discrimination by partitioning larger 

entities into smaller. 

2. Local-to-global: Start with local models and aggregate them into larger ones. 

Both of these strategies are commonly used in computer vision [Ballard and Brown 

1982, Pavlidis 19771 The advantage of the coarse-to-fine strategy is that  one gets a quick 

estimate about the volume or surface of the object which can be further refined under 

control of some higher-level process which determines the adequacy of the description. The 

advantage of this approach is that the amount of detectable detail can be obtained by 

switching t o  a different kind of representation or to  a finer scale. For example, t o  describe 

smaller shape details one might have to  go from volumetric to  surface representation. At the 

same time. the criteria for accepting a description can force further splitting of data  t o  match 

the model. The important idea that these methods convey is that progressive blurring of 

images clarifies their deep structure. Object-centered descriptions like superquadric models 

lend themselves especially well t o  such a strategy, since they describe convex bounding 

volumes and any deficiency in the description at a desired scale can be modeled by either 

negative volumes or by decomposing the data into parts. We have developed a control 

structure that  integrates various sources of information t o  make the coarse-to-fine strategy 

feasible for superquadrics. 

The second strategy. which goes from local t o  global, starts with local features and 

incrementally builds larger representations. Models like bi-variate polynomials with good 

estrapolation capabilities are the right choice for this approach. Although aggregation 

of low-level illodels into models of larger granularity is difficult in presence of noise, it is 

possible to  accomplisl~ it iteratively, by incrementally growing the model. We have developed 

a new approach for the recovery of bi-variate polynomials (up t o  second-order) using a 

region growing method based on iterative regression and a model selection method that 

dynamically selects and allows only the "best" models for further growth. 
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Figure 1.5: Examples of some complex objects: Range images of some of the test 

objects showing the complexity of the segmentation task. 
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1.5 The Control Flow for Volumetric Segmentation 

Given t,he shape primitives and the modules to  recover them, a control strategy is needed 

to  invoke, evaluate and integrate them. The control structure forms the heart of the shape 

recognition system. The range of input data that  we are considering is quite broad, as shown 

in range images of complex objects in figure 1.5. The input to  our system is a dense depth 

map, scanned by an active range scanner from a single viewpoint. No information about 

scanner geometry or viewpoint is assumed. Since we are dealing with objects of arbitrary 

complexity, a general control structure is required. 

The control flow of the SUPERSEG (SUPERquadric SEGmentation) system is s110i\~n in 

figure 1.6. The bi-quadric surface segmentation and the recovery of the global superquadric 

model is done independent,ly and the descriptions are then integrated by the control mod- 

ule. The most important component of the control module is its residual analysis module 

which matches the current volumetric description with the given data. This matching gives 

"difference measures" or the residuals that  are then used t o  evaluate the models. While the 

volumetric model gives a holistic explanation of the whole object it can miss details that  

are beyond the scope of the model. An overall measure of goodness-of-fit, like the residual 

from least-squares fit, or the distance mea.sure does not always give an  accurate evalua- 

tion of the appropriateness of the volumetric model. Although models can have acceptable 

overall goodness-of-fit, they need not be the acceptable representations of the object. This 

argues for a measure other than the quantitative measure of goodness-of-fit. The qualitative 

measures obtained by comparing the input data  the recovered volumetric model can point 

out the limitations of the volumetric model and suggest improvements in segmentation or 

refinerrlent in shape representation. 

We shall describe later that  both qualitative (local distribution of residuals) and quan- 

titative measures (normalized deviation of data  from the model) are necessary for the com- 

plete evaluation of the volumetric models. Based on these measures the control module 

will either accept the current level of description or generate hypotheses about potential 

"parts". The extraction of part-structure proceeds in a systematic global-to-local man- 

ner, with global parts discarding the underestimated data  and local models growing on the 

discarded data. This in turn shrinks the global model and makes i t  converge on a part, 

of the ohject. Chapter 7 describes the issues involved in designing a control structure to  

accomplish this. 
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1.6 Chapter Summary 

We introduced the problem of surface and volumetric segmentation in the context of geo~net- 

ric part-description, and summarized our approach, which is coarse-to-fine at  superquadric 

level and fine-to-coarse a t  surface level. There are five components of the SUPERSEG 

system: the bi-quadric surface segmentation module, the module extracting the surface 

illforillation for volumetric segmentation, the superquadric recovery module, superquadric 

model evaluation and residual analysis, and the control module to systematically achieve the 

volunletric segmentation. In the next chapter, we describe the individual shape primitives 

and the issues involved in decomposing objects using them. 



Shape Primitives and Segmentation 

In this chapter we analyze the shape primitives with the central idea of using them for part 

segmentation. We then present the primitives that we have chosen, and address the issue 

of segmentation using the individual primitives. 

2.1 The Choice of Primitives 

The choice of primitives can be guided by some general requirements such as a unique 

decomposition into primitives, that the primitives cannot be further decomposed or that 

the set of primitives is complete. Some of the shape representation criteria are designed 

primarily to facilitate object recognition when models recovered from images are matched 

to a model data base. Unfortunately, all those principles have not been applied to any 

general shape representation scheme for 3-D objects. A review of computer vision literature 

~vliich reveals the large variety of geometrical primitives that were investigated for their 

applicability to shape representation is a testimony to the difficulty of shape description [Besl 

and Jain 19861 

Another discipline involved in representing shape is computer graphics, but from a syn- 

thesis (generating) point of view. Some commonly used 3-D representations in graphics are 

wire-frame representation, constructive solid geometry representation, spatial-occupancy 

representation, voxel representation, octree representation, and different surface patch rep- 

resentations. Splines are used for surface boundary representation. Rut requirenlents for 

shape primiti\.es in computer vision are different from the ones for computer graphics. 

Shape primitives for computer vision must enable the analysis (decomposition) of shape. 

Common shape primitives for volume representation are polyhedra, spheres, generalized 

17 
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cylinders, and parametric representations such as superquadrics. Different orders of sur- 

face patches (planar, quadratic, cubic) are used for surface representation. For boundary 

description one can use linear, circular or other second-order models for piecewise approxi- 

mation, and higher-order spline descriptions. In the rest of this section we will discuss what 

influences the selection of shape primitives in computer vision. 

If only one shape primitive is chosen, the segmentation process is relatively simple. But 

the resulting segmentation may not be natural! The data  can be artificially chopped into 

pieces to match the primitives. A11 example of such unnatural decomposition is when a 

circle is represented piecewise with straight lines or when a straight line is represented with 

circular segments. If the scene consists of both straight lines and circles, then neither straight 

lines nor circles alone would enable a natural segmentation. A natural segmentation, on the 

other hand, ivould partition an image into entities that correspond to  physically distinct 

parts in the real-world. A solution to such problems is to  use more primitives. How many 

primitives are required for segmentation of more complicated natural scenes is then the 

crucial question. The larger the number of primitives, the more natural and accurate shape 

description and seg~rientation is possible. But the larger the number of primitives, the Inore 

complicated the segnlentation process becomes. Finding the right primitive to  match to 

the right part of the scene leads potentially to a combinatorial explosion. This argues for 

Eimiti~ag the number of different shape models. 

Another influencing factor on the number of different models is the level or granularity of 

models. A large number of low-level models is required for scene description because of their 

small size or granularity. Low-level models can fit t o  a large variety of data  sets but bring 

little prior illformation t o  the problem. Substantial manipulation is required to  obtain 

furthcr interl)retation of the data  by aggregating low-level models into models of larger 

granulal.ity which correspond to  real world entities. Such aggregation techniques often fail 

because i t  is not possible to  distinguish data from noise or account for missing data  only on 

the basis of local information. Higher-level models, on the other hand, are prescriptive in the 

sense that they bring in more constraillts and provide more data  compression. Higher-level 

models are not inforlllation preserving in the sense that  they might miss some important 

features because they cannot encompass those data  variations within their parameterization. 

A concise model which a.declua,tely describes the data will enable partitioning or seg- 

rnent,a,tion of inmges into right parts and ignore noise and details. Such a model will have 

prinlitive s1ia.pe lllodels capable of describing shape a t  both low- and high-levels. In everyday 

life, people use a default level of representa.tion, called basic categories [Rosch 19781. Ba.sic 
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categories seem to follow natural breaks in the structure of the world which is deternlined 

by part configuration [Tversky and Hemenway 19841. Shape representation on the part level 

is then very suitable for reasoning about the objects and their relations in a scene. For part 

level description in vision, a vocabulary of a limited number of qualitatively different shape 

primitives [Biederman 19851 and different parametric shape models have been proposed. 

Parametric models describe the differences between parts by changing the internal model 

parameters. In computer vision, the most well known parametric models suitable for repre- 

senting parts are generalized cylinders but superquadrics with global deformations seem to  

have some important advantages when it comes to  model recovery [Pentland 1986, Bajcsy 

and Solina 19871. It is sometimes possible to  know a priori that  a certain class of geometric 

models is sufficient t o  describe observed data. Another possibility is to solnehow evaluate 

the conlplesity of the scene and the dimensionality of the objects in the scene. I<notving 

the colllplexity of the scene can greatly simplify the control structure for segmentation and 

shape recovery while knowing the dimensionality of objects simplifies the selection of shape 

models. 

The ob3ectizre of a vision system, whether the goal is to  avoid obstacles during nav- 

igation, to  manipulate objects with robotic grippers and hands or to identify objects by 

lllatching them t o  a data  base, is allother constraint during shape model selection. For ob- 

ject avoidance, only representation of occupied space is necessary, often allowing to largely 

overestimate the size of obstacles. In addition to location and orientation, grasp planing for 

robotic hands requires knowing more precisely the size and overall global shape of the ob- 

ject. For object recognition, more specific, identifying features are needed. Different shape 

primitives are better at  representing different aspects of shape and a t  different scales. Vol- 

umetric representation provides information on integral properties, such as overall shape, 

enabling classification into elongated, flat, round, tapered, bent, and twisted primitives. 

They call best capture the overall size and volume since they must make an implicit as- 

sumption about the shape of the object hidden by self occlusion. Surface representation is 

better a t  describing details that  pertain to  individual surfaces which can be part of larger 

volumetric primitives. Surface primitives can differentiate planar surfaces versus curved 

surfaces, concave versus convex, and smooth versus undulated surfaces. On the one hand, 

occluding boundary representation is a local representation of curvature and surface near 

the boundaries, on the othel. hand, by delineating the boundaries of an object from the 

background. i t  defines the whole object. 
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2.1.1 Criteria for Representation 

The criteria for selection of primitives have been studied extensively by vision researchers 

[Brady 1983, Marr 1982, Binford 19821. The primitives should be invariant to  rotation, 

translation, and scale. Accessibility, defined as computability of the primitive is essential, 

since our goal is to recover the structure from the input. Stability of the primitive with 

respect to  ~nirlor challges due to noise or viewpoint, with respect to  scale and configuration 

is important t.o generate consistent representations. While small changes in scale should 

not create inajor changes in the description, a multi-scale representation should be possible. 

The primitives shoulcl lla,ve local support, so that  occluded parts ca,n still be described. 

Besides, primitives should balance the trade-off between data reduction and faithfulness 

to  measured data. They should be generic and data-dependent which is a compromise 

between the complete knowledge based approach and the one where the primitives possess an 

eilormous number of degrees of freedom in order to  model everything. Knowledge about the 

constituents of the scene can make the segmentation process less dependent on noisy data, 

thus more robust. but less general. On the other hand, methods that  do not constrain their 

primitives do not achieve any compression or symbolic description. While the number of 

different scenes is non-countable, the number of spatial primitives (planar, convex, concave) 

is relatively small. This enables us to  build models and to  find their instances in the scene. 

It is important for the further processing that  they correspond to  meaningful segmeilts in 

terms of physical phenomena or in terms of natural qualitative description (planar, convex, 

or concave shape, for example). In other words they should possess features which contain 

perceptually significant information. They represent an intermediate stage in the process 

of abstraction of information from early levels into successively more complex forms. 

However, in all model based approaches we are restricted by the primitives, since they 

callnot model everything present in the input data. Nevertheless, they call provide approx- 

inlate descriptions of data even if a model is not present in the vocabulary. For the regions 

that cannot be accurately represented by the model vocabulary, (for example, if a surface 

curves faster than the highest order model) it is important that  the primitives can be easily 

conlbiiled in a description of patchwise continuous combination of model primitives. In 

this respect, surface ~liodels like bi-variate polynomials are better than volumetric models 

like generalized-cylinders and superquadrics, since they have more local support and higher 

fidelity t o  the ullderlying data. 

Spatial primitives like curves and surfaces satisfy the above criteria. Additional criteria 
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for primitive selection, as given by Besl [I9881 are : 1) Models should approximate well 

any smooth curve or surface of constant sign-of-curvature over a finite domain. 2) Models 

should extra.polate accurately to  arbitrary points outside the current domain. 3 )  Models 

should interpolate between missing points inside the domain. 4) Models should be colrlputed 

efficiently. 5 )  Model representation should be compact. 

2.2 Our Choice of Primitives 

Based on tlie criteria outlined above, we chose bi-quadric shapes as the variable-order 

surface models and superquadrics as the volumetric part-models. Bi-quadrics achieve 2;-D 

clustering, while superquadrics achieve 3-D clustering of the 2 i - D  data. Since our task 

is part-segmentation, which is invariant to  scale, size, translation, and orientation. we use 

superquadrics as a general object-centered model for volumetric segmentation. For curved 

surfaces of order greater than 2. the piecewise bi-quadric description may not be invariant 

to  orientation due to  the fixed Z-axis orientation along the viewing direction. \Ve use 

the bi-quadric and superquadric models as general-purpose representations to exploit the 

advantages of surface models and object-centered models. For objects with surface texture, 

only a coarse segmentation is possible a t  volumetric level, while detailed segmentation can 

be achieved at the surface level. In some cases, like the natural scenes, specialized models 

like fractals need to be employed. Locally deformable models are appropriate for objects 

with surface details (like human face). but usually require pre-segmented regions where they 

can be applied. Due t o  their complexity and representational ambiguities (high degrees of 

freedom) they are difficult to employ on raw data (if it requires more than one instance of 

the model for its description) for the purpose of segmentat io~~.  

Mje will nolv introduce the bi-quadrics and superquadric models, and discuss the seg- 

mentation issues as well as the past work in surface and volumetric segmentation using 

these and other models. 

2.2.1 The Surface Model: Bi-quadrics 

A general para.metric model f(a,x) can be represented as : 

P(T) 

f ( a ,  x) = C a i f d x )  

~vhcre  f[(x) are basis functions defined on the image space 1. a is the parameter vector of 
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Extremal 
boundary 

Concave normal 

\---- Jump boundary 

Curved (2nd order) surface. 

Planar surface. 

Maxima contour 

Line of curvature 

Parabolic contour 

Minima contour 

zero crossing contour 

(b) 

Figure 2.1 : Surface boundaries for part decomposition: (a) Surface discontinuities (Co 

type) and tangent discoiiti~luities (C1 type), planar and second-order patches. (b) Smootll 

boundaries of perceptual significance, like the zero-crossing contours, are also useful as 

partitioning rules. 
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the model. a,nd the vector x denotes a pixel location (x ,  y )  E Z, p ( r )  is the number of terms 

in the the model of order r .  The input image data at x is given by a function in image 

space 1 as g(x).  The models we have chosen are the variable-order bi-variate polynomials 

that  are linearly parameterizable ill the Euclidean space : 

where the vector a is defined in the parameter space A. Dimensions of the parameter space 

depend on the order of the model r which is in our case restricted to  0 < r 5 2. Thus our 

model admits planar and bi-quadric surfaces. Surfaces of higher-order can introduce oscil- 

lations, are computationally expensive, and are often unstable during the model-recovery 

process. If the underlying surface is curving faster than a second-order patch, then it is 

always possible t o  break the patch into smaller second-order patches. Our algorithm for 

model recovery and model selection takes care of this in a unique manner. Even if higher- 

order lnodels (say up to fourth-order as in Besl and Jain, 198s)  are considered, there is 

no guarantee that  model will always fit the data,  as is typical with any primitive based 

approach. Instead, bi-quadric patches have nice properties that they can be used t o  merge 

segmented descriptions in order to  come up with more global descriptions like concave and 

conves patches. Second-order patches give descriptions which are perceptually supported. 

TVhat is more, it is easy t o  do reasoning with them and t o  compute discontinuities. The final 

description in t e r ~ n s  of piecewise continuous second-order patches contains global informa- 

tion about tlie scene that  call be described qualitatively (like convex, concave patches) as 

well as quantitatively (curvature, normals, etc.). The description has local support and can 

be used to  derive quantities and higher-level descriptions that  are invariant to translation 

and rotation (Guassian curvature, critical points, etc.). 

Forlnulation of the Surface Segmentation Problem 

The general segmentation problem is usually stated as follows [Horowitz and Pavlidis 1974, 

Zucker 19761. Given tlie set of all image pixels and a logical uliifornlity predicate P ( - ) ,  find 

a partition S of the image Z in terms of set of regions R,, wliere each R; is the dolnain of a 

model (primitive). Let ATR be the number of regions in the segmented image, and let /R,I 

be the nulllber of pixels in the region R;. The following conditions must hold for the set S :  
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where R; Z for each i. Contrary to  the conventional definition of segmentation, our 

primitive based approach permits model domains to  overlap partially, therefore 

for i # j in general. Ri is a 4-connected set of pixels. 

For all i ,  the uniformity predicate 

P(Ri) = T R U E .  (2 .5 )  

If B; is adjacent to  Rj, 

P(R,  U ~ j )  = FALSE. (2.6) 

The uniformity predicate P ( . )  defines the conformity of all the points in R; to the global 

model (primitive). \.lie now examine the various approaches t o  surface segmentation. 

Segmentation by Surface Descriptions 

A large portion of computer vision literature is on different methods for surface reconstruc- 

tion, representation and recognition. The reason for the widespread interest in surface-based 

object recognition is that  this fits well into the prevalent bottom-up approach in vision and 

that  surface is a much more tangible property than volume. 

The field of range image segmentation has traditionally been explored by researchers 

by studying invariant differential geoinetric properties of surfaces, followed by fitting sur- 

face or volumetric nlodels to the segmented data, or by using a geometric model t o  guide 

the segille~itatioil process. There are numerous methods performing the segmentation by 

aggregating the local surface models like curvature, surface normals, etc. [Besl and Jain 

1985. Hoffman and Jain 19871, or by detecting the surface discontinuities (Co and C1 dis- 

continuities and srllooth boundaries) [Fan 1983, Godin and Levine 1989, Smith and Kanade 

19851. 

Approaches based on local differential geometry are the most widely studied techniques 

for surface segillentatioll [Brady et al. 1985, Asada and Brady 1986, Ponce and Brady 

195-1, Besl and Jail1 1986, Sander and Zucker 1988, Liang and Todhunter 19901. They 
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range from local analysis of the surface t o  more global interpretation like peaks, pits and 

passes (saddle points) on a surface [Nackman 19841. Some of the drawbacks of differential 

geometric al>proaches are that  they are applicable only in a small neighborhood of the 

surface and require extensive processing if a global model is to  be used later (e.g. in Besl 

and Jain, 1988 ). Although differential geometric quantities have nice invariant properties, 

they invariably require smoothing of the data  due t o  the sensor and quantization noise. 

The undesirable side effect of uniform smoothing is that  it alters the underlying surface by 

smoothing the discontinuities which are vital for surface segmentation. There are several 

application and sensor-dependent range image segmentation techniques that  are not of 

much interest to us since we are interested in a general algorithm. Besl and Jain [I9851 

have surnlnarized the field of 3-D segmentation in their excellent survey. 

The methods based on aggregation of local properties cluster data  into perceptually 

or geometrically significant regions with or without considering the final representation in 

terms of primitives. If a representation in the form of a parametric model is desired, then the 

model is invoked after the initial clustering. Similarly, purely edge-based methods fit nlodels 

t o  closed regions implicitly defined by edges. The fundamental drawback of such approaches 

is that  they isolate the problem of segmentation from the issue of representation. In other 

words, the model used for representation plays no role in the process of segmentation. 

To obtain a meaningful segmentation. i t  is desirable to  use the model (representation) to 

guide the segmentation [Bajcsy et al. 1990, Faugeras and Hebert 1986, Besl and Jain 

19SSl. One of the motivations for our approach is illustrated in figure 2.2 showing an 

object talien from [Fan 19881. An edge-based method is unable t o  segment the two planar 

surfaces (A and B) joined smoothly by the curved surface C, nor is a model available to  

describe the union surface S (indicating that  segmentation is necessary). Since our approach 

combines model representation and segmentation. it can successfully segment such an object 

(figure 3.8). Thus, edge information is implicit in our primitives. The edges of interest for 

part segnlentation are the Co (step edges) and C1 discontinuities (ramp edges), and the zero- 

crossing contours on the curved surfaces, as shown in figure 2.1. The zero-crossing contours 

decompose slllooth surfaces into concave and convex parts, and are implicitly detected by 

bi-quadric primitives. 

A?uch work has been done on the problem of reconstructing piecewise-smooth surfaces 

in one or nlore dimensions [Blake and Zisserman 1987, Mumford and Shah 1985, Terzopou- 

10s 1986. Poggio et al. 19851, which is posed as an optimization problem. In all these 

approaclies the data is weighted uniformly which nleans that  the algorithms do not possess 
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Figure 2.2: Object with smoothly merging sides: An example of an object that  can 

not be segmented by edge-based approaches. 

the capabilities to adapt to  different conditions in different parts of the image. The global 

measure provided by the energy function is not able to  tell which parts of the image are well 

described in terms of the underlying models a.nd which are not. Also it is difficult to see 

how these approaches could be extended to  subsequent stages of the vision problem without 

using models with fewer degrees of freedom. Leclerc [I9891 developed an interesting con- 

cept which can compensate for some of these drawbacks by defining an objective function 

t.hat is based on the illformation theoretic notion of minimum length descriptions. Since 

we want the final segmentation to be geometrically interpretive, such surface reconstructioll 

approaches do not directly relate to  our requirements. 

2.2.2 Voluilletric Model: Superquadric Part-Models 

Parametric models like generalized cylinders and their derivatives have been used as volu- 

metric primitives by vision researchers because they give compact overconstrained estimate 

of overall shape. This overconstraint comes from using models defined by a few param- 

eters to describe a large set of 3-D points. The Volumetric primitives we are using are 

the super.qundric part-nzodels. Superquadrics (figure 2.3) have been used in vision [Pent- 

land 19S6, Pentland 1987b, Solina 1987, Boult and Gross 19871 t o  represent natural part- 

structure. Pelitland [1987b] argues that superquadric part-models possess descriptive ade- 

quacy though they do not account for every detail of the image data. Also, they are stable 



2.2 Our Choice of Primitives 27 

Figure 2.3: Superquadrics: volumetric primitives: Clockwise from top : ellipsoid, 

cylinder, bos, tapered and bent model, bent model, tapered model 

with respect to  scale, noise, and configuration. Solina [Solina 1987, Solina and Bajcsy 19901 

has developed a model recovery procedure to  fit tapered and bent models to  given data. Our 

SUPERSEG system uses his formulation for the recovery of a single superquadric model for 

a given set of 3-D points. 

Generalized cylinders [Iclingenberg 19781 proposed for use in vision by Binford [I9711 

have been used as volumetric primitives for their rich vocabulary of shapes. However, 

this vocabulary of shapes is very difficult to recover from vision data, thereby limiting 

the actual vocabulary to  simple linear-straight-llomogeneous-cylinders. Deformable models 

based on generalized cylinders [Terzopoulos e t  al. 1988, Koenderink and vanDoorn 19791 or 

superquadrics [Terzopoulos and hfetexas 19901 have the disadvantage that  they too conlplex 

and have so far shown to  ~vork only on pre-segmented data. The descriptions generated 

by our method can be used as starting approximations for the complex deformable models. 

Superquadric primitives can model only a subset of generalized cylinders shapes, a good 

compromise for the representation and computational effectiveness. They are capable of 

nlodeling global tapering and bending deformations, and are recovered effectively by a 

stable numerica.1 procedure. 

Superquadrics are a family of parametric shapes with a rich vocabulary of part-models 
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t11a.t encompa.ss shapes ra,nging from cylinders and parallelepipeds to  spheres. The represen- 

tational power is further increased by introducing deformations like bending and tapering 

along the ma.jor axis. 

Definition : A superquadric surface is defined by a vector x sweeping a closed surface 

in space by varying angles 7 and w  in the given intervals : 

a1 cosC1 (7) cosE2 (u) 
- A  
_?_<171 

- n F w <  
(13 sinE1 ( q )  

Parameters 111, (12, and a3 define the superquadric size in x,y and z direction (in object 

cent.ered coordi~late system) respectively. is the squareness parameter in the latitude 

plane alld is tlle scjuareness parameter in the longitude plane. Based 011 these parameter 

values superquadrics can model a large set of standard building blocks, like spheres, cylin- 

ders, parallelepipeds and shapes in between. If both ~1 and EZ are 1, the surface defines 

an ellipsoid. Cylindrical shapes are obtained for ~1 < 1 and ~2 = 1. Parallelepipeds are 

obtained for both e l  and ~2 are < 1. We have restricted the model recovery procedure to  

fit t l ~ c  iilodels with 0 5 EI.E~ < 1. 

Segi~lentation using Superquadrics 

Xlany different lnethods for partitioning into volumetric primitives have been proposed in 

computer vision. The common problem with all the volumetric primitives is that ,  though 

they are quite rich representations, they are extremely difficult to  recover from the real 

image data.  Superquadrics being convex models (except for the bent models), derive a 

piecewise convex description of the global volume. Therefore, it is natural to  consider them 

as bounding volullies that combine information along convex discontiiluities on the surface. 

One of the dra\vbacks of the previous methods using superquadric models is that  they are 

unable to colllbille i~~for~l la t io i l  along the convex discontinuities (and hence their examples 

have s~noo th  coilvex blobs as parts). This is due t o  the separation of the representation 

stage from the segmentation process. Lie now present a review of some of the previous 

approaches using superquadric models. 

Solina [I9871 has described a global-to-local method of segmentation using superquadric 

recovery procedure. His goal was to  decompose objects or scenes into parts which can 

he represented with a single superquadric model enhanced with global deformations such 

as tapering and bending. NThen several parts or objects made up of multiple parts were 
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present, a suitable distance measure was used to  decide which 3-D points should be included 

in a part.icular volumetric model and which points should be excluded. The method works 

on some examples, but not on an arbitrary complex object, since i t  is difficult to  constrain 

the mini~nization procedure to  take part-structure into account. 

Pentland [I9881 has described a two-part procedure t o  recover segmented descriptions 

of complex objects. His approach is first to  recover part-structure by matched filtering and 

maximum likelihood estimation, and then to  describe parts by superquadrics using a least 

squares procedure. Only occluding boundary data  is used, though he noted that  surface 

information will be useful in extracting complete part-structure. The procedure is extremely 

slo~r. on sequential machines. Another method by Pentland [1987a] uses range data  to recover 

part-struture. The method works by skeletonizing the parts, recovering the models along 

the skeleton (for efficiency's sake), and then performing refinement of the initial models 

by a gradient descent procedure. The final description is obtained by selecting the "best" 

models among the global models. The method can account for occlusion of a model due to 

other parts, and is inherently parallel, but it requires skeletonization (which was done by 

hand) of the parts to  be computationally feasible. This means that  the method assumes 

that  coarse segmentation of the part-structure is available, which is a difficult problem in 

case of range images (where parts may not appear in the silheoutte). 

In a system developed for the purpose of automating the sorting of mail pieces for the 

United States Postal Service, superquadrics were used only for modeling and classification, 

while the segmentation of the postal scene was performed using edge-based methods [Gupta 

et al. 1989b' Gupta et al. To appear, Bajcsy et  al. 1990bl. The procedure segmented ob- 

jects at  jump boundaries, and recovered superquadrics for individual objects after reasoniilg 

about the depth of the object from the available information. Ferrie et a1 [I9891 also use 

superquadrics only as a final modeling primitive, and not as a means to  arrive a t  a seginenta- 

tion. The surface segmentation is performed by following a differential-geometric approach 

developed by [Sander and Zucker 19881, and edges are detected at  surface intersections to  

form closed convex patches. The convex patches are then modeled by superquadrics recov- 

ered using Solina's formulation. Due to the isolation of the modeling primitive from the 

segmentation, the models may not correspond to the segmented data. The problenls inher- 

ent in such approaches is that  a one-to-one correspondence between superquadric nlodcls 

and the surface segmentation is assumed, which is not true in case of objects with planar 

faces. This problem is also evident in the superquadric descriptions achieved by the pro- 

cedure developed by Darrel et a1 [I9901 . Our paradigm solves this problem by following 
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a. systeillatic global-to-local voluinetric segmentation using the superquadrics to  drive the 

segmentation, and not just as find modeling primitives. Biederman [I9871 , in his theory of 

Recognition-By-Components has suggested an edge and volumetric primitive (generalized 

cylinders) based approach for describing complex objects in intensity images. He however, 

does not describe any procedure to  recover such complex part-structure. 

The process of obtaining supercluadric models uses least squares minimization for re- 

covery of model pa.rameters. An important advantage for ease of model recovery is that 

the superquadric surface is defined by a.n analytic function, differentiable everywhere. Su- 

perqua.dric sha.pes form a subc1a.s~ of s1ia.pes describable by generalized cylinders. S1ia.pe 

deformations lilie bending and tapering can be defined with global parametric deformations. 

Superqua.drics with parametric deformations encompass a large variety of natural shapes 

yet are siiiiple enough to  be solved for their pa.rameters. Due t o  their built-in symmetry, 

superqua.dric models predict the shape of occluded parts conforming with the principle of 

parsilnony - among several hypotheses select the simplest [Gombrich 19721. Escept for 

bending, the s1ia.pe vocabulary consists of convex objects. 

An issue t o  be resolved by the control module is, how to  deal with concavities, cavities, 

and holes? Cavities form when a significant chunk of volume is taken away from the object 

leaving a dent enclosed by the remaining object (bowl or cup). Solina [Solina 1987, Solina 

and Bajcsy 19901 developed a recovery procedure t o  identify the presence of cavities in 

segmented objects and model then1 as superquadrics. Concavities ( a  circular cut-out of 

a bos) form by a similar process but they are not enclosed completely by the object, so 

they are visible in the 2-D projection of the object. If a model exists for a concavity 

or hole (like for objects with cylindrical hole), it can be modeled as a negative volume. 

For esample, the circular cut-out can be modeled as a boolean subtraction of a bos  and 

an elliptical cylinder, such that  the points on the box that  belong t o  the cylinder are 

not considered as part of the model. The superquadric inside-outside function presents 

a collveniellt formulation of negative volume. Thus, the descriptions can be combined in 

the constructive solid geometry (CSG) sense, where superquadrics represent the prirrlitive 

models and the regularized intersectioil. union and subtraction are formulated in terms of the 

inside-outside function. Our hierarcliical representation of the superquadric part-structure 

enables us to  directly perceive the description as composed of CSG operations [Requicha 

1980, IYoodwark 1989, Kapur and bilundy 19891. 
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2.3 Chapter Summary 

The two shape primitives that we are using for part-segmentation are bi-quadrics and su- 

perquadrics. In the next two chapters we describe a novel approach to surface segmentation 

and techniques for using the surface information for volumetric segmentation. The recovery 

procedure for one superquadric model for the given data is described in chapter 5 .  The 

complete problem of perfornling volumetric part-segmentation is described in chapter 6 

and 7 .  



Surface Segmentation: The Search for 

the Best Description 

I11 this chapter, we present a novel method for surface segmentation in range images'. 

Following our segmentation paradigm, we view surface segmentation as a local to  global 

aggregation process, needing various similarity criteria to achieve a coherent global descrip- 

tion. Indeed, this global description is most usefully a.chieved in terms of global primitives 

that  are easy to extract and are useful for later processing. This can be accomplished in 

two ways: one is to actively use the global model as the individual primitives are being 

developed, in essence recovering the model as aggregation proceeds. The other way is to  

use a local coherence measure to  first classify the data  and then use the fitting technique 

to  recover the model. The latter approach, though not limited by the global model a t  

the aggregation stage, essentially isolates the segmentation and the representation stages, 

with the result that  the final descriptioil might not correspond to  the global model since i t  

played no part in the segmentation process. Besides, the outliers in the data set resulting 

from miscla.ssification may lead to  disastrous results [Chen 19891. A desirable approach is 

to  use both the local coherence measure and the global model to  guide the segmentation, 

corroborating our notioil that  the problems of segmentation and represenhtion a.re not 

separable [Bajcsy et al. 19901. 

The uniqueness of our approach lies in defining surface segmentation as partitioning 

the range data into primitive models by searching for the models as they are developed 

everywhere in the image, such that the description is best in terms of global shape and 

error. By searching we mean fitting and selecting only those models that  best describe the 

'The work described in this chapt,er was done joillt,ly with Ale5 Leoilardis 
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underlying data  using the criterion function which takes into account the number of points 

that  are described by a particular model, its goodness-of-fit, and the structural complexity of 

the model. The method performs data aggregation via model recovery in terms of variable- 

order (up to  second-order) bi-variate patches using iterative regression. Model recovery 

starts simultaneously and independently at  all the regions found to be globally coherent in 

the initial neighborhood (seed regions). All the recovered models are potential candidates 

for the final description. To make the method computationally feasible, it is necessary to  

monitor region growing and discard superfluous regions even before they are fully grown. 

The major novelty of this approach is the development of an extremely simple and robust 

control structure that  combines model extraction and model selection in a dynamic way. 

allo\i.ing oilly the "1)est" models to develop further. 

The procedure has three major components, viz. model recovery, model selection, and 

the control structure that  dynamically combines model recovery and selection. After dis- 

cussing these components, we present results on real range images. 

3.1 Segmentation and Model recovery 

In this section we describe the process of recovering the primitives from the data. This 

is perfor~ned by following the iferative regression approach, used for surface segmentatioll 

by [Besl and Jain 19881 and for contour segmentation by [Chen 19891. Our approach 

differs from [Besl and Jain 19881 in the selection of initial estimates (seed regions), search 

for connected compatible points, highest order of the polynomial; and from [Chen 19893 in 

that  we do not restrict the connected compatible region to  a predefined size and update 

the model's order during region growing. Our method differs from the Random Sample 

Consensus (Ransac) approach of Bolles and Fischler [I9811 in that  the seed regions are not 

selected a t  random and the model is updated during region growing depending on the data. 

3.1.1 Surface Fitting 

Using the notation introduced in chapter 2, we now formulate the surface recovery problem. 

The tjciriablc-order bi-variate polynoinials, linearly parameterizable in the Euclidean space 

are : 
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where the vector a  is defined in the parameter space A. Dimensions of the parameter space 

depend on the order of the model r  which is in our case restricted to 0 < r  5 2. Thus our 

model admits planar and bi-quadric surfaces. 

A linearly parameterizable surface patch S ( T ,  a ,  x )  can be written as : 

S ( r ,  a, x )  = { ( x ,  z )  E Z x 2 1 z  = ?(r ,  a ,  x ) }  (3.2) 

The squa,red-distance function from a data point g ( x )  t o  the surface S ( r , a , x )  is given by : 

Let us take a topologically connected set of points D  which is a subset of Z and define 

the sum of the squared deviation (SSE) of the points from the surface S ( T ,  a , x )  : 

Given a. set of points D, the problem is to find the order T of the model and the param- 

eters a  which will minimize the SSE function x Z ( r ,  a ,  V). Using least-squares regression we 

get : 

2 x 2 ( r . 8 , D )  = m i n x  ( r , a , D )  ( 3 . 5 )  
a€A 

We use the standard technique for solving the General Linear Least Squares Problem. 

The solution is given in detail in Appendix A. The solution depends on the points in D. 

If 2) is determined before the fitting takes place then the schema is called Classify-then- 

Fit [Chen 19891. As mentioned earlier, this approach essentially isolates the segmentation 

and the representation stages, with the result that  the final description might not correspond 

t o  the global model since i t  played no role in the segmentation process. Our approach is t o  

use both the local coherence measure and the global model to  guide the segmentation. This 

is achieved by an iterative procedure combining data classification and model fitting - the 

i temficc regression nzetllod - with an additional feature that  during the process of model 

recovery even the order of the model call be changed [Besl and Jain 19881. 

3.1.2 The Model Recovery Algorithm 

Surface segmentation starts a t  a seed region by iteratively growing it as outlined in algo- 

rithm 3.1. The schematic diagram of the algorithm is shown in figure 3.1. An i~nportant 



36 3. Surface Segmentation: The Search for the Best Descriptiorl 

Input data, 
Base representation 

Figure 3.1: Iterative regression approach to model-recovery: For one model. 

Update 

problenl in region growing method is how to select the seed regions to start the local to  

global aggregation. It is even more critical in an iterative approach since the starting region 

determines the initial estimates of the parametric models, which determine the entire course 

of i ts  growth. Placing the seed regions arbitrarily on the image cannot guarantee a complete 

description of the image, since some of the regions can be left undescribed. Placing seed re- 

gions intelligently, such that  all the regions are covered requires a priori knowledge of those 

parts, which is nothing but segmentation. This catch-22 problem can be solved either by 

smart selection of the seeds by computing the primitive-related properties and placing the 

seeds in the pre-processed image or by taking the brute-force approach of placing the seeds 

every~vhere in the image thereby ensuriilg that  all the possibilities are considered. Besl and 

.lain [198S] followed the former approach by computing the Gaussian-mean curvature sign 

maps and selecting oilly the best patches as seeds. Their procedure involves smoothing 

the image and computing second-order properties in the local neighborhood of every pixel 

which is noise sensitive and computationally expensive. Also, uniform smoothing has a ma- 

jor disadvantage of altering the underlying surface a t  the discontinuities, especially the C1 
(surface normal) type, which are smoothed out to  form high curvature continuous patches. 
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1. Initial region v(') (seed) is a small window whose size is determined on the basis of 
scale considerations and can be adaptively changed depending on the data. 

2. A first-order surface is fitted to the data in ' D ( O ) .  On the basis of results of different 
statistical techniques (explained in 53.3) we make a decision whether all the data in 
2)(') belong to  the same surface. If they do, the procedure continues with the following 
steps combining data  classification and model fitting. Otherwise the model recovery 
process is not initiated and the seed-region is rejected. 

3. Set, the order r t o  0. If the goodness-of-fit is not acceptable then set the order r 
to 1. Compute the initial estimates of parameters a(') by fitting the data do) in 
s ( * ) ( T .  a('), ~ ( ' 1 ) .  The iterative data classification and model fitting consist of the 
follo~ving three steps performed in a loop, till the region growing terminates. 

3.1 V(") is updated with all conzpatible points. This is achieved via extrapolation of 
the current estimat,e s(")(T, a ,x ) .  Compatible points are defined as : 

c(') = {x / d2(r ,  a,,) 5 C and x E 4-c0nn-nei~hborhood-of(V(~) u ~ ( ~ 1 ) )  (3.6) 

where C is the coilzpatibility constraint, used as a local coherence measure. I t  
also acts as a. scale parameter by effectively "smoothing" the data. Notice the 
recursive definition of the compatible points c(") (the set is initially empty) which 
are connected to  the current v(") or to new compatible points c("). The distance 
of the connected compatible points from 'D(") can be controlled by specifying the 
additional condition in equation 3.6 that 

( x  is no further than k pixels from the nearest border point in ~ ( ' 1 )  (3.7) 

3.2 Based on v('+') = D ( ~ ) u c ( ~ ) ,  update the model, and compute the new goodness- 
of-fit: 

The difference between the old a.nd the new goodness-of-fit is : 

3.3 These two steps are followed by a decision making process : 

i. If ( ~ ( " 1  = 0) Goto step 3.3(iii). 

ii. If (p("+l) < TI ) continue with growing. Goto step 3.1. 

iii. Update the order. r = r + 1. If ( r  > max-order) Goto step 3.3(v) 

iv. Update ~rlodel for new r. If error i~rlproves significantly continue with grow- 
ing. Goto step 3.1. 

v .  2) = V("+l) - ~ ( " 1 .  a = aD(,) Goto step 4. 

4. Done 1vit11 region growing. Store the model ? ( r , a , x )  and the region of its extent. 2). 

Algorithm 3.1: Recovery of one bi-quadric model. 
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To avoid the problems related to smoothing and local curvature computation, we place 

fixed size (7x7 or 5s5) seed regions in the image in a grid-like pattern of non-overlapping 

windows. The seed regions are accepted based on a global coherence measure (step 2 of 

the segmentation algorithm), which is the global chi-square error of the first-order least 

squares fit. This should be less than a specified threshold. This constraint ensures that  the 

behavior of the seed is acceptable for the current extent of the region, and that it is not 

placed on a discontinuity. However, i t  does not guarantee that a seed accepted for further 

growth will always grow into an acceptable region, since the global coherence measure can 

be satisfied on the low strength Go and C1 discontinuities. It is possible t o  incorporate a 

planarity check that  analyzes the distribution of the residuals to  better constrain the seed 

selection. Such a check is, however, not required because our method is not sensitive t o  bad 

starting regions. Such seeds result in regions with high error that are better explained by 

other well-behaved regions, and are discarded by the model selection procedure. Thus, the 

complete model recovery procedure consists of the following two steps : 

1. Pla,ce 7x7 seeds in a grid-like pattern. If the current attempt of placing a seed region 

on a window is unsuccessful, then the next attempt is made in a 5x5 overlapping 

window. 

2. For each seed the model-recovery procedure (algorithm 3.1) is invoked. 

Let D!') denotes the set of points which are used for the estimation of the parameters 

a!') of the i-th model a t  the s-th itemtion. Notice that the regions can overlap partially or 

completely, so (D/') n~j ' ) )  # 0 in general. 

3.1.3 Features of the Segmentation Algorithm 

Thresholds: The thresholds for model acceptance and updating the order of the model 

a,re det,er~nined empirically and kept constant for all the data  from the same sensor. 

Termination: Tlle algorithm always terminates, since the monotonicity requirement for 

gro~ving regions holds : 
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Figure 3.2: Noise distribution and the role of C. 

Inseilsi t ivi ty to outl iers:  The iterative regression method is an  efficient tool for data- 

driven extraction of parametric features. Its main advantage is that  the performance of 

the fitting is constantly monitored. The procedure dynamically analyzes data  consistency 

allowing rejection of the outliers. The compatibilzty constmint, C, which is determined on the 

basis of the statistical behavior of the sensor prevents the outlying points from being taken 

into the fitting process (figure 3.2). This in an important feature since least-squares fitting 

has undesirable sensitivity to outlying points, and ~neasuren~ent  errors are not necessarily 

llorlnally distributed [Bajcsy et al. 19861. 

C o l n p u t a t i o n a l  Complexi ty :  

In i t i a l  e s t i m a t e :  The computational complexity for computing the first estimate is: 

where n = I/Dl/ is the number of points and p = /la// is the number of unknowil coefficients. 

Note that  the number of coefficient is limited from above and is in our case less or equal t o  

6. 

Let us esplaiil the equation 3.11. We need np2 multiplications to  build the matrix 

(xTx) and n p  multiplicatio~ls to obtain the term ( x ~ Y ) .  The computational complexity 

required to  obtain the solution vector a, and also the covariance matrix if needed, is of 

the order of O(p3). I11 case that  n >> p, the computational complexity is O(n),  which is 

linearly proportional to the number of points. 
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U p d a t i n g  the estimate: Let n' denotes the number of points that  are added to  update 

the estima.te of the vector a. The computational complexity for updating the estimate is: 

\4e add a ~vhole set of new poiilts so the dominant factor in determining the computational 

cornplesity becomes the updating of the terms ( x ~ x )  and ( x ~ Y ) .  This can be effectively 

achieved by storing the ( x T x )  size p x p and vector ( x ~ Y )  size p x 1. The number of 

the opera,tions that  is needed to update the first term is 0(nfp2) and the second O(nfp). If 

the number of updating points n' >> p, then the procedure is asymptotically linear in the 

number of newly added points. 

The final output of the segmentation algorithm consists of all the recovered models that  

are potential candidates for the final description of the data. Selection of the models is 

achieved by nlasimizing a quadratic Boolean fuilction described in the following section. 

3.2 Model Selection 

After all possible lllodels are recovered we need an efficient procedure for selecting the 

best rlescription of the ima.ge. The growing procedure, as described in the previous section, 

outputs many different regions of which many are partially or totally overlapped. Intuitively, 

tlre lllethod should select the models so that  : 

r t,he number of selected models is a.s small as possible, 

r the size of each model (i.e, the cardinality of 'D) is as large as possible, 

r t,he error mea.sure between the original data, and the recovered models is small. 

Per11a.p~ the closest in spirit t o  our approach to  model selection is the one used by 

Pentland [I9901 . However, there are a t  least two major differences. 

r Tlle objective (saving) fu~lction is different since we deal wit11 complex models and 

not binary silhouettes. This gives us the opportunity to  give more preference to  

a particular description; for esample the one which describes more points, or has 

smaller error, or has a lower-order model. 

r The ol~jective function is not solved by the continuation method, where it is not clear 

how to precisely adjust the steps of the scale parameter. We have developed a faster 
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algorithm whose computational complexity is proportional t o  the number of selected 

models and thus drastically speeds up the selection procedure. 

3.2.1 Objective Function 

Let us first analyze the objective function for one particular model describing the underlying 

da.ta.. The objective function F is a weighted linear combination of the following terms: 

a Benefit: Number of points (n; =) D 1 )  that are described by the i-th model 

a Cost: Error measure Ji = X P  of the i-th model. 

Cost: Number of parameters (ATi) that  are needed to specify the particular model. 

where F(na,)  is the objective fullction that we want to  masimize and is the function of 

the model nz,. n, corresponds to  the number of points that  are explained by the model 

112,. J, is the error measure between the model nz, and the data. N,  denotes the number 

of parameters for a particular model, which depends on the order of bi-variate polynomial 

that  models the data. K1. K2,  K3 are weights which can be adjusted in order to  give more 

preference t o  a particular description; for example the one which describes more points, or 

has smaller error, or has a lower order model. 

Since many of the models overlap completely or partially, we have t o  design an objective 

function that  takes into account the interaction between different models. As in Pentland 

[I9901 , we consider only the pairwise overlaps in the final solution. 

The objective function to  be maximized for the selection of the "best7' description for 

multiple rllodels has the following form : 

where ~ 7 , ;  is a function of the presence of the model m;, having unit value for the presence 

a.nd 0 for t,he absence of the model in the final description. Diagonal terms express the 

cost-benefit value for a particular model mi: 
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c;; = Kin; - K2t i  - K3Ni (3.16) 

Off-diagonal terlils handle the interaction between the overlapping models: 

Cij  = ( -K~r(mi ,  mj) + Ka(i,j)/2 (3.17) 

where I'(nz,, n-r, ) =( 2); ODj I is the number of points that are explained by both models. ti,, 
corrects the diagonal error terms in case that  both models are selected. In the intersection 

area where both models cover the data  the smaller error is taken. The term is 

I<,, Ii2. I& are weights which can be adjusted in order to take into account the signal- 

to-noise ratio of the image or t o  express a preference for a particular type of description. 

Iil. \vliich weights the number of points in the model is set to unity and I<*, ICs are set 

relative to i t .  

Notice that  the matrix is symmetric. Depending on the overlap of models, the matrix Q 

can be sparse or banded, which can be used to reduce the computations needed t o  calculate 

tlle value of F(iG). 

We would like to  emphasize that  in contrast with some other approaches, the models 

that  are ~vllolly contained within the bigger models are not a priori discarded but are passed 

to tlle selection procedure. 

3.2.2 Optii~~izing the Objective Function - the Algorithm 

Tlle variables 171, are Boolean and denote the presence or the absence of a model in the 

final description. Since the function F ( k )  is quadratic, the problem is known as Boolean 

quadratic problem. Since the objective function is non-convex, the only way t o  determine 

the lllodels which ~llaxirnize the value of the objective function F (k )  is to calculate the 

value for all the 2" possible vectors I% and choose the one which gives the highest value. 

This algorithlll is exponential in the number of models and thus computationally infeasible. 

Several different approaches have been proposed to solve the problem faster. Pentland [I9901 

devised a corlfi~iuation rnetliod where he weights the negative diagonal terms in the rnatrix 

Q by a factor k3 which forces the matrix to  become diagonally dominant and thus negative 

definite. The lllethod is t o  first solve using a very large value of k s ,  and then, using the 

previous solution as a starting point, progressively resolve using smaller and smaller values 
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of k3, until the solution is reached. He does not mention how the factor ks,  which can be 

considered as a scale factor at which parts are recovered, is decreased. It is clear that t,here 

is no guara.ntee that the global maximum will be found, but the reported experimental 

results show that in most cases the algorithm performs well and gives the expected results. 

The optimization is performed by a direct descent algorithm. We observed that if k3 is 

decreased in large steps, the solution gets stuck at a local maximum which is significantly 

lower than the solution reached by decreasing the parameter almost continuously. The 

computational complexity of the method is proportional to: 

(no. of steps of k3)  x M x (evaluation of the matrix Q) (3.19) 

where A.1 is the number of models involved in a selection process. In evaluating the matrix 

Q we esploited the fact that the matrix can be sparse and banded. Since the cornputational 

complexity of the method depends on k3-steps, there is an obvious trade-off between tlie 

accuracy of the solution and the speed. 

While experimenting we made two observations on how the solution develops. which 

allowed us to design a very efficient algorithm 3.2 that is based on two assumptions: 

Only one model is chosen at  a time, 

Once a model is cl~osen it cannot be rejected. 

Algorithm 3.2 is computationally inexpensive. The computational complexity of our 

method is proportional to: 

(number of models in the final description) x (evaluation of the matrix Q) (3.20) 

The designed algorithm is an excellent compromise between speed and accuracy. Exper- 

imental results show that in almost all the cases the algorithm performs well and gives good 

results both quantitatively and qualitatively. We compared it to the continuation ~izethod 

and except for very small steps of ks ,  where the results were tlie same, our algorithm selected 

the models with tlie higher ~ a l u e  of the objective function. 

Thus, we now have a complete model recovery procedure that yields all the models in 

the image, followed by the above model selection procedure which selects the best models 

according to  the global error, order, and the spatial extent of the region. The complete 

procedure works as shown in Figure 3.3 (a) .  As a consequence of the selection process, 

eventually very few of the regions emerge as acceptable descriptions of the data. However, 
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1. Initial values: Qi mi = 0. The initial value of the objective function is 0. 

2. do 
old-value-of-objectivefunction = new~value~of~objectivefunction; 
procedureis-done = true; 

f o r  all the models d o  
find~model~contributi~~g~ost-to~the-objective~unction; 
new-value-of-objective_function = maximum-value-of-objective-function; 

end-for 

if (old-value-of-objective-function < new-value-of-ob jectivefunction) 
Output(  Selected model, Value of the objective function); 
procedureis-done = false; 

end-if 

whi le  ( n o t  procedureis-done). 

Algorithm 3.2: Bi-quadric model selection. 

instead of growing all the regions completely, i t  is desirable to discard regions as they grow. 

Also, the computational cost of growing all the regions completely is prohibitive in most 

ca.ses. These observations suggest incorporating the selection procedure into the recovery 

procedure to  discard redundant and superfluous regions even before they are grown fully. 

Our final algorithm described in the next section accomplishes this integration. 

3.3 Dynamically Combining Model Recovery and Selection 

After describing the two major components of our system, namely, the module for model 

recovery, and the module for model selection, we now describe how they can be combined in 

a dynamic way t o  obtain a fast and efficient method for image segmentation. As explained 

earlier. to avoid the problems related to smoothing and local curvature computation, seed 

regions are placed in globally coherent windows everywhere in the image, and models are 

grown si~llultaneouslg and independently for all of them. This way all the regions are grown 

to  their full estent and then selected for the optimal description, as shown in Figure 3.3a. 

Since the regions are selected by the optimization procedure after they are fully grown, 

the resulting segmentation can be claimed to be the best piecewise continuous description 

of the image. IA'e call this procedure Recover-then-Select, for it grows all the regions fully 

and tlien prunes them (discards the redundant ones). MThile the results of this procedure 
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Range lmage 

I Select Seed ~ e ~ i o n s l  

t 
Model Recovery 

Complete recovery of 
all possible models. 

~ o d z ~ e l e c t i o n  
Selection of the models 
for optimal description. 

I 

Range lmage 

Select Seed Regions + 
Model decover~ 

-) Partial recovery of 
currently active models. 

Model Selection 
Selection of models for 

segmented lmage 

Segmented Image 

Figure 3.3: Model recovery and selection: (a): The Recover-then- Select paradigm. All 

the models are fully recovered before model selection is invoked. (b): The Recover-and- 

Select para.dign1. Models are selected before they are fully grown, thereby reducing the 

nulllber of active models. 

are optimal (we use the word optimal to  signify the fact that  optimization was performed 

to  extract the final regions and that  the results are optimal in some sense, and by no 

means imply that  the global maximum was achieved by the procedure), the computational 

complexity is prohibitive because all the regions are grown t o  the maximum before the best 

among them are chosen. Surely, there must be a way to  discard the regions after a few 

iterations of region growing using the same model selection procedure (with conservative 

~veights. to  accept n~ultiple descriptions rather than losing a good one about which we 

are not collfidellt yet), so that only the active models are grown further. This procedure, 

performed continuously in a. loop (see figure 3.3b) is called Recover-and-Select. 
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Feature I Model selection invoked 

Models remaining for further growth / - More I + Fewer 

Description 

Processing needed for initial growing I + Less I - More 

Matrix Q I + Sparse I - Dense 

Early 

- Less reliable 

Table 3.1: Trade-offs in combining model recovery and model selection procedures. 

Late 

+ More reliable 

The incorporation of Recover-and-Select paradigm opens up a number of possibilities as 

to the control of the region-growing procedure. I t  has the feature of growing only well- 

behayed regions (in terms of convergence, error, number of compatible points) while at  

the same time lowering the computational complexity of the procedure. There is a. clear 

trade-off in collibini~lg the model recovery module with the module for the selection of 

the optimal current description. The more the regions are grown, the more reliable is the 

description they give. But the initial growing is computationally expensive and also results 

in a less sparse nlatrix Q. However, this reduces further processing since fewer models are 

selected for further growth. On the other hand, if the growing process is interrupted by 

the selection of currently optimal models at  the early stages, the complexity of the early 

processing is decreased and the matrix Q is sparse due to less overlapping. In this case fewer 

nlodels are rejected, increasing the complexity of the further processing. These tradeoffs 

are sunlmarized in Table 3.1. By properly balancing the two trade-offs a computationally 

efficient algorithm is obtained. 

During the very first iteration, model selection is invoked after all the regions are grown 

only for a distance of b = 20 pixels (equation 3.7 in step 3.1 of the segmentation algorithm) 

from the seed. After that. the restriction on b is removed, and the model selection procedure 

is invol;ed after every iteration of region growing (one iteration of the steps 3.1-3.3). We 

have found that  after the initial selection of regions, depending on the type of surfaces in the 

image. less than 50% of the regions survive. The model selection weights are kept biased 

to discard only the conlpletely identical regions. Also, error is weighted more than the 

order of the regions. Later in  the procedure, however, the weights are changed t o  eliminate 

duplicate regions describing a patch with considerable overlap and similar global error. 
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3.4 Example Surface Descriptions 

The Recover-and-Select paradigm was tested on a number of range images of scenes with a 

combination of different kinds of surfaces. The method is straightforward and is computa- 

tionally feasible on a sequential machine. All the examples were run on a SUN-4, with the 

average execution time of less than 2 minutes. The program is twice as fast on an IBM-6000 

RISC machine or a Sparcstation-2. 

In this section we present a few examples that illustrate the most important aspects 

of the surface segmentation algorithm. Results on other objects are displayed in chapter 

8. The images were scanned using a structured lighting laser-scanner with approsilllately 

lmm/pisel spatial resolution and 1.5mm depth resolution. Due to the geometry of the 

scanner, certain parts of the scene appear as shadow regions (with no data) in the 2 4 ~  

image representation. The compatibility constraint for all the range images was set to 4, 

which corresponds t o  a quantization and sensor noise of f 2 pixels. The algorithm was run 

on the raw data without any preprocessing like uniform smoothing. Results are discussed 

for each image below. All the results coded in gray-levels are grouped such that the top 

row of the figure (from left to right) shows the original image, its 3-D perspective plot, the 

reconstructed image from the piecewise continuous segmented pa.tches, and the 3-D plot of 

the recoiistructed image. The images are displayed with the depth value at each pisel from 

a reference plane appearing larger if the pixel is closer to the camera. The white square 

in the patch indicates the seed region for that patch. The individual surface patches are 

displayed in the second row of the figures in the order in which they were selected by the 

model selection procedure, and are referred to below with their position in the row, counting 

from left to  right. 
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(a) Range image. (b) Reconstructed image. 

(c) Seed regions. (d) Recovered patches. 

(e) Refined planar patches. 

Figure 3.4: Scene 1: The cylindrical surfaces are modeled as bi-quadric patches. C1 

discontinuities at planar intersections are reliably recovered. Refinement of the patches is 

done by using a technique described in the next chapter. 
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This range image consists of a triangular prism and two half-cylinders placed on a, box 

(figure 3.4) .  Three planar regions representing the box and the prism and two second- 

order patches for the cylindrical objects are recovered, as shown in the bottom row of the 

figure 3.4. The planar regions on the prism extend along the intersection with the box. 

IJsing the procedure for region refinement described in chapter 4, the overlap due to the 

intersection of the regions was removed and the results are shown in the last three images 

in the bottom row. The line of intersection between the planes gives the surface-normal 

(C1) discontinuities. 
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3.4.2 Scene 2 

This is a complex image for any surface modeling algorithm, primarily because of the 

smooth boundaries (zero-crossing contours of the lines of curvature) between the convex 

and concave patches forming the undulated portion of the scene. The individual patches 

recovered for tlle image are shown in the middle row of figure 3.5, with the first four patches 

describing the image almost completely. 

The undulated portion is described as two convex and one concave regions intersecting in 

tlle vicinity of the zero-crossing contours. Patch 5 is a first-order patch flanking the convex 

second-order patch 3. Adding it to the final description increases the accuracy of description 

of the convex patch xvllich is curving faster than the bi-quadric surface. It is selected by 

putting emphasis on the error term in the model-selection procedure. Patch G describes 

the second-order region that  smoothly merges into the planar patch. The merged region 

is modeled partlp by the planar patch and completely by patch 6, which is an a,cceptable 

description. One significant result in this example is the approximate detection of the zero- 

crossing contour by region-growing and not by curvature tracing, which is computationally 

prohibitive and estremely sensitive to noise. Such a region based description is also useful 

for qualitative description of the scene in terms of convex, concave and planar patches. 

The third row in figure 3.5 shows some of the regions that  were rejected during various 

stages of the Recover-and-Select procedure. In most cases, these regions had bad starting 

points which passed the seed-selection criterion. It shows that though the seed placement 

is not perfect. the procedure is robust enough to reject the patches arising out of bad seeds 

in favor of the patches that  are well behaved in terms of the spatial extent, order, and the 

global error. 
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(a) Range image. (b) Reconstructed image. 

(c) Recovered patches. 

(c) Some of the rejected patches. 

Figure 3.5: Scene 2: Undulated surface smoothly merging into a planar surface: Segmen- 

tation is achieved in terms of convex and concave parts of the surface. Some of the rejected 

pa.tches are shown in the bottom row. 
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3.4.3 The Coffee-mug 

The convex and concave portions of the body of the cup are recovered as individual second- 

order patches, as shown in the first two images of the bottom row in figure 3.6. The handle 

consists of very curved patches which are modeled piecewise for the given scale (which 

directly relates to  the compatibility constraint). According to  the results, the missing parts 

are better described pixelwise than as parametric patches (due to the scale consideration). I t  

should be noted that the jump (Co) discontinuities are clearly delineated by the neighboring 

regions. 

It is possible t o  restrict the highest order during the model recovery to zeroth or first. 

resulting in piecewise-constant and piecewise-planar descriptions respectively. This restric- 

tion call be trivially imposed in the recover-and-select paradigm by changing the maz-order 

value to 0 or 1 in step 3.3(iii) of algorithm 3.1. Starting with the same seed regions, the 

piecewise constant and piecewise first-order descriptions are obtained for the  coffee mug (fig- 

ure 3.6). Tlle piecewise-constant descriptioll is like equidistant contours or planar slices of 

\vidth determined by the compatibility constraint. The piecewise-planar description shows 

a natural approximation of curved patches by planar patches. The extent of plana,r patches 

(along the curvature) is determined by the compatibility constraint. 



Figure 3.6: The coffee-mug: Top: Range image and its 3-D plot. Center: Seed regions 

and the bi-quadric segmentation. The highly curved handle is modeled as a combination 

of the smaller patches. Bottom: The piecewise-constant (left) and piecewise-planar (right) 

approximation of the curved surfaces. 
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Figure 3.7: The car: Top: Range image. Bottom: Seed regions (left) and the final 

segmentation (right). Surfaces constituting the car are neatly segmented. 

3.4.4 The Car 

The surfaces constituting the car in figure 3.7 (range image provided by USC) are seg- 

mented neatly, even though the boundaries separating them are not sharp (as evident from 

the placement of the seeds). The surface details on the side of the car are described by 

overlapping patches. 

3.4.5 Object with smoothly merging sides 

As mentioned earlier, the second-order surface (region C) in figure 3.8 (taken from [Fan 

19883) is difficult to  segment due to the absence of step or surface normal discontinuities. 

Our method gives a clean separation of the curved surface (patch 2 in figure 3.8) from the 

neighboring planar patches. Such a result a possible only because we search for the best 

description everywhere in the image and allow the models to  develop independently. 
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Figure 3.8: Object with smoothly merging sides: Top: Range image and a sketch. of 

the object. Bottom: The seed regions and the final segmentation. The second-order patch 

is segmented from the planar patches. 
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3.5 Chapter Summary 

ilie presented a novel approach for local t o  global data aggregation in terms of bi-quadric 

patches. The iterative approach combining data classification and model fitting shows that  

segmentation and modeling are not two independent procedures but have to  be integrated. 

A1:other important conclusion that  we could draw from our work is that  reliable segmen- 

tation can only be achieved by considering many competitive solutions and choosing those 

\vllicll reveal some kind of structure in terms of underlying models. lead to  a good result, 

and more global information is needed. Optimization that  is performed on the level of 

primitives rather than on a pixel level not only improves the performance enormously in 

terms of computatiollal complexity but also gives more reliable results. 

The above esanlples show that our method gives acceptable segmentation of objects 

into patches in most of the cases. The interpretation of these patches is straight forward, 

nit11 direct applications for surface modeling and detection of both, discontinuities and 

srnootl: boundaries. The segmentation occurs a t  the surface normal discontinuities or a t  

the 7ero-crossing contour t o  divide the surface into convex and concave patches. In the 

nest chapter, we will analyze these descriptions t o  label surface discontiiluities as convex 

or concave, and also present methods to interpret the bi-quadric patches for further use in 

volumetric segmentation. 

During the course of experimentation, we observed that the method degrades gracefully 

if the assumptions which are determined by the choice of primitives are not met. For 

esainple. a geometric object like torus is described by numerous bi-quadric patches which 

do not result in a simple description, signaling that different kind of primitives should be 

invol\ed. Although the procedure is computationally feasible on a sequential machine, like 

SUN-4,  in order t o  exploit the inherent parallelism, the procedure has been ilnplelneilted 

on the Connection Machine. 



Deriving Surface Properties from 

So far we have a piecewise, and possibly overlapping segmentation of the range data into bi- 

quadric patches. In order to use this description for the recovery of superquadric models, we 

have to  refine the segmentation and derive as much information about the surface attributes 

as possible. The only relevant refinement that needs to  be done concerns the overlapping of 

the bi-quadric patches along their intersection curve. The important surface attributes are 

region-adjacency information, edge localization, and determining if it is convex or concave, 

major axis determination, and determining if the surface is convex is concave. In this 

chapter we will derive analytical expressions to  compute these important surface attributes 

and discuss their relevance in superquadric fitting. We start with presenting our general 

a~gorithm for the refinement of surface patches which is also used for determining edge-type 

a.t the intersection of two patches. 

4.1 Refining Regions Along Intersect ion Curves 

The collection of models obtained by the Recover-and-Select strategy describes the image 

in terllls of primitives with minimum overlap such that all the parts of the image (where 

seeds were pla,ced) are described by at least one surface. There are two kinds of overlaps 

tl1a.t need to  be treated differently. 

The first kind occurs when two regions have significant amount of overlapping domain 

due t o  the s~lloothness of the underlying data with no clear segmentation possible (as 

in figure 3.5). It is not possible to  resolve the overlapping portion without considering 

57 
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additional constraints or domain knowledge. In this case, the overlapping points are decided 

by the volumetric segmentation described in chapter 7. 

In this section, tve are concerned with the overlapping points occurring due t o  the com- 

patibility criteria employed during the region-growing process. The compatibility constraint 

(C  in equation 3.6) only accounts for conformity of the point to  the model and not the shape 

of the domain. Thus, the region A's geometrical domain consists of all the points that  sat- 

isfy the compatibility constraint, including the points lying along the intersection curves of 

all the regions tha t  intersect with A. This can further result in two cases as illustrated in 

figure 4.1. Region A and B are both planar patches, with area C consisting of the common 

points het~veen A and B. The intersection curves for the image of scene 1 are shown in 

figure -1.'Z(a). Planar patches 1 and 2 intersect with planar patch 3, as also the second-order 

patch .5. The two cases are: 

1. Type I: Region A overflows into region B along the intersection curve (region C). 

2. Type 11: Region A and B overlap near the common boundary. 

Although the type I overlap is geometrically correct, it is perceptually unacceptable, and 

must be removed before the region ,4 can be useful in any way. Type I1 overlap, on the other 

hand, is mostly harmless. since it extends only a few points along the region boundary and 

does not significantly alter the interpretation of the segmented regions. In fact, it provides 

useful inforlnation about the connectivity of the regions and implicitly detects ramp edges 

(which exist a t  the intersection) by distinguishing them from the step edges along which 

two regions would never overlap. 

Both types of overlaps can be resolved by a systematic procedure. Since the regions are 

described analytically, it is possible to  detect such cases and remove the extraneous points in 

a clear) manner. This is true for all kinds of intersections, including the intersections formed 

by t n o  second-order regions. The analytical computation of the intersection curve of two 

quadric surfaces is quite involved and is well understood in CAD literature [Lull and Krolak 

196.5, C'omba 1968, Mahl 1972, Levin 1976, Levin 19791. Fortunately, the problem of two 

intersecting bi-quadric surfaces is simpler, since the intersection is at  most a second-order 

curve lying in XY plane. 
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Figure 4.1: Overflow of one region into another along the intersection curve. 

Figure -1.2: Example of intersection cleaning on  a real range image: (a): O u t p u t  

of the Recover-and-select procedure for scenel. (b): Output  after R.efining pa.tches 1, 2 ?  3 

a,ntl 5 along the intersectioll curves. 
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1. Determine the pixels pi tha t  are on the intersection curve. 

Compute the normal to the curve. 

Trace pixels along the nornlal on both sides of the curve, storing all the traced 
pixels and looking for the first pixel on both sides tha t  does not belong to  the 
overla.pped region. 

If (bo th  end-l~ixels belong to  the same region) 

then /* Type I intersection */ 
Assign all the traced pixels t o  that  region 

else /* Type I1 intersection */ 
Distribute the traced pixels between the two regions. 

3. Intersection cleaning completed. 

Algorithm 4.1: Region refinement along the intersection curve. 

For two surfaces S(r ,a ,x)  and S(r,b,x) of up to  second-order, the intersection curve is 

given by : 

Thns. given a point ( r ,  y), it is possible to  clleck if it  lies on the intersection curve of the 

two surfaces. The  curve in equation 4.1 is planar and a t  most second-order. The  analytical 

form of the  curve generator also gives the closed form solution for the  normal t o  the  curve, 

which is used for refining the surface labeling. 

The  equation of the normal a t  ( x ,  y )  is given by : 

A surface nornial check is performed in the overlapped portion of t l ~ e  two regions to  

deter~nine the type of overlap. If t,he average angle between surface normals is not significant 

then t l ~ e r e  is a s~llootll  overlap between the two regions, otherwise the two patches intersect 

ant1 neetl refinement along their intersection curve. We have devised an algoritl~m t o  refine 

the overlapping ~.egions formed a t  the line of intersection and to  assign the points t o  the 

right ~)atcl i .  For each pair of overlapping regions the steps in algorithm 4.1 are invoked. 
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In figure 4.1, points in C that  should only be labeled as belonging to B are assigned 

to  B (case I). For case 11, points on the two sides of the intersection curve are distributed 

between A and B by the algorithm. In figure 4.2, the intersection curves of regions 1, 2 

and 5 with region 3 are cleaned to  give the refined regions. This procedure has been tested 

on llumerous images with excellent results. The method of intersection tracing is also used 

later in determining the type of edge a t  region intersections. 

4.1.1 Another Method for Region Refinement 

The post-processing described in this section is required because of the absence of the 

constraints to  limit the domain of the geometric patch. By definition. the dolnain extends 

t o  all the pixels satisfying the geometric model. Another way to  deal with this problem is to 

prevent i t  from occurring in the first place. From the observation that  intersection regions 

are invariably narrow in width (determined by the value of the compatibility constraint), 

we can prevent the geometric patches to grow into regions that  are not sufficiently wide. 

This has the effect of inhibiting the region growth along narrow appendages. It is simple t o  

incorporate such a check in the region growing process. We have implemented it by simply 

requiring that  every new pixel incorporated in the patch should have a t  least p pixels in its 

5x5 neighborhood. The only drawback of this constraint is that  it puts a non-zero lower 

l~ound  on the width of the acceptable regions. 

4.2 Region Refinement by Relaxing Compatibility Constraint 

Due to the iterative regression approach, a new point is included in the domain of the region 

only if it satisfies the e q ~ ~ a t i o n  3.6. Most of the data points that  do not satisfy this strict 

compatibility criterion can be included in the region by relaxing the compatibility constraint 

C after the termination of the recover-and-select procedure. However, the surface parameters 

are not reestimated t o  take those points into account. This has the effect of includillg the 

nlissing points that  narrowly miss the compatibility test, and giving clean segmentation 

results. Another way could be to  interpolate or extrapolate the surface patch t o  include 

such points. 
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4.3 Bi-quadric Surface Types 

The bi-quadric surface segmentation consists of a piecewise description in terms of follo~ving 

two types of pa.tches expressed in their general form as: 

1. Planar pa f ches: Zeroth or first.-order, represented as, 

2. Czrr.ved patches: Second-order, represented in general form as, 

t = ax2 + by2 + c x y  + dz + ey + f (4.3) 

There are three types of curved bi-quadric patches, viz. elliptic paraboloid, hyperbolic 

paraboloid, a.nd the elliptic cylinder, as shown in figure 4.3. The surface type can be 

deternlined fro111 the sign of the quantities that  are invariant with respect to  the translation 

and rotation transformations. For bi-quadrics, the sign of the following invariant quantity 

deter~nines the surface type : 

-4 serond-order surfa.ce can therefore be classified as : 

J > 0 : Elliptic Panboloid 

J = 0 : Parabolic Cylinder 

J < 0 : Hyperbolic Paraboloid (4-5) 

Because there is no second-order term involving z in a bi-quadric surface, they belong 

t o  the class of non-central quadrics. The general form of the bi-quadric surface has z y  tern1 

signifying the rotation of the X and 1' ases in the world coordinate system (see figure 4.4). 

111 addition, tlle linear terms constitute the translation component. Since every bi-quadric 

has a stalldard form without the cross-terms, i t  is possible to transform the general form 

into the standard forin and obtain tlte orientation information as a result. 
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Elliptic Paraboloid Hyperbolic Paraboloid Parabolic Cylinder 

Figure 4.3: The three bi-quadric surface types. 

4.3.1 Tra~~sforlnatiol~ to Standard Form 

The transforma.tion is accomplished by translating and orienting the patch to remove the 

linear and cross-multiple terms in the equation. Appendix B outlines the procedure to  

reduce the hi-quadrics t o  their standard forms. 

The standard forms of the three basic bi-quadric surfaces are given by: 

x 2  y2 
Elliptic Paraboloid: z = - + - b12 

x 2  y2  
Hyperbolic Paraboloid: a = - ar2 - - br2 

x 
Parabolic Cylinder: 2 = - 

aI2 

Based on the second-order coefficients, the surface types can be classified, as shown in 

table 4.1. \Ve are no\v ready to  use the standard form of the three types of bi-quadrics to  

derive the orientation and the type of surface embedding, to facilitate volumetric segmen- 

tation. 
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b'l > Ib'l 

- 

+ 
- 

+ 

Table 3.1: Axis and surface-type determination from the coefficients of the standard form 

Type 

concave 

- 

0 

0 

of the bi-quadrics. 

bi-quadric type 

elliptic paraboloid 

Axis 

Y 

Ib'l > la'i 

- 

- 

f 

0 

x k'' (X',Y',Z') : Object Coordinate System 

Type 

concave 

Figure 4.4: T h e  C o o r d i n a t e  s y s t e m  fo r  b i -quadr ic  representa t ion:The axis deter- 

n~ ina t~ io l~  algoritl~m cllooses X' as tlie correct orientation for the surface since its projection 

S" niahes least angle with X. 

Axis 

X 

convex 

concave 

convex 

concave 
I 

Y 
- 

0 

+ 
+ 

Y 

Y 

Y 

Y 

convex 

concave 

convex 

convex 

convex 

concave 

X 

X 

X 

X 

X 

- 

hyperbolic paraboloid 

parabolic cylinder 
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4.4 Aligning the Major Axis for Curved Objects 

Curved objects in 3-D space are modeled by bi-quadrics (in 2;-D space) as one of the 

three basic surface types. The restriction of a fixing Z-axis along the viewing direction 

has a disadvantage that  the curved surfaces like cylinders have no corresponding bi-quadric 

model when their axis is not orthogonal to  the viewing direction. The model then obtained 

for the cylinders is either elliptic paraboloid or hyperbolic paraboloid, which is only an 

approximatioll of the underlying surface. In addition t o  providing surface support t o  the 

curved surfaces, these models have the information about the curvature of the surface. 

This information can be used to  derive the axis in 3-D space that  corresponds to the bi- 

quadric axis along which the surface curves the least or the most. This information is 

helpful in orienting the major axis of the initial approximation for tlle superquadric model 

recovery. For example, for the cylinders with greater diameter than height, this is the only 

way to  get the correct the major axis (shown for the two cylindrical parts in scene 1 in 

figure 4.5). The superquadric axis placement follows the rule of thumb that  the axis of least 

inertia (corresponding t o  the largest eigenvalue of the moment matrix) is the major axis 

(figure 4.5(b)). This heuristic is not true for cylinders with larger diameter than height, and 

may result in a box-like model instead of a cylindrical model. Aligning the Z-axis using the 

bi-quadric coefficients (figure 4.5(c)), as explained below, results in the initial model lllodel 

t o  converge quickly to  a cylindrical shape. 

Figure 4.4 depicts a scenario where a cylindrical object is modeled by a elliptic paraboloid. 

The axis for which the coefficient in the standard form is larger, is the one along which the 

surface has higher curvature, so the axis orthogonal to  it is the right axis for the superquadric 

major axis (Z direction). Referring to table 4.1, we note that  if la'\ > Ib'l, then the chosen 

bi-quadric axis is Y, and whichever axis in the object centered system makes least angle 

with Y axis will be considered as the Z-axis for superquadric alignment. Thus, for cylindri- 

cal shapes, we get the correct orientation by enforcing the axis direction to  comply with the 

hi-quadric curvature. This is estremely useful for the superquadric inodel recovery, because 

the optimization procedure is unable t o  change the orientation of the model drastically if 

the initia,l estimates of the orientation are not correct. 

The surface-type information is also available from the standard form, as shown in 

table 4.1. However. for hyperbolic paraboloids, additional processing is required if a concave 

surface is lnodeled by them. The superquadric surface normal test or the 2-residuals derived 

later call be used to  deterlnine if a patch is concave, and the model can be correctly oriented. 
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(a,) All range points. 

\Y 

(b) Z-axis aligned along the eigenvector with largest eigenvalue. 

(c) Z-axis determined by bi-quadric orientation. 

Figure 4.5: Major axis estimation for curved parts in Scene 1: The object centered 

systelu is oriented along the eigenvectors. (a) Aligning the Z-axis along the eigenvector with 

largest eigenvalue results in incorrect initial model whicll will never converge to  a cylinder. 

( b )  Using the bi-quadric infornlation to align the Z-axis gives the correct initial model whicll 

converges (luiclil~ to  a cylindrical model. 



4.5 Edge-type Determination 

By edges we mean the embedding of the intersection curve on the two surfaces in 3-space. 

An edge exist where the dorilains of two analytical surfaces intersect. Whether they meet 

t o  form a convex edge or concave edge (in a global sense), is what interests us here. This 

infornlation is of great inlportance in later processing when regions connecting along concave 

edges will discard any hypothesis predicting their union in a volumetric sense. 

Tlle property of convexity and concavity is a function of surface embedding and hence 

an extrinsic second-order property. We have adapted the surface refinement metllod for 

intersection cleaning t o  detect and label edges reliably. The procedure involves intersection 

traversal like before and does ramp detection in a one-dimensional signal. A one-dimensional 

mask. [l -2 11, is applied in the neighborhood of every overlapping point to compute second- 

order differences. A negative value indicates presence of a convex edge, while a positive 

value indicates a concave edge. The procedure is given in algorith~n 4.2. Tlle method is 

demonstrated on the NIST object in figure 4.6. The edge labeling is sho~vn in the adjacency 

graph in figure 4.7. The edge information is used to label the edges of the surface adjacency 

graphs. 

4.6 Surface Adjacency Graphs (SAGS) 

The region adjacency graph is a simple graph (No self-loops or parallel edges), with nodes 

representing each region and edges representing the edge-types between pairs of intersecting 

regions. If two regions overlap (but do not intersect, as in two smoothly merging surfaces) 

then they are marked as non-intersecting, and allowed the possibility of combination by 

the globally convex volumetric model.If step edges exist between two regions, then there is 

no edge between the nodes representing the surfaces. Thus, if we renlove all the concave 

edges from a SAG, we are left with graph (possibly disconnected, if parts connected only 

along a concave edge) that  only convex edges. This graph encodes information about the 

consistency of surface level combinations, although this information may inhibit some of the 

po5sihle colnbi~lations at  global level. We shall explain in chapter 7, how the inforlllation 

about edges is used by the coarse to fine strategy of the control structure to allow for the 

possibility of global conlbinatioll of surfaces that  form concave edges at their intersections. 

The surface graph for the NlST object is shown in figure 4.7. ,411 interesting aspect 

of the SAG is that  by removing concave edges. it divides the data set into convex con- 
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Figure 4.6: Edge-type determination for the NIST object: Top: The range image, 

and its seed regions. Bottom: Surface segmentation and the C1 (surface normal) edges 

marked at the overlapping parts of the surfaces. Following a procedure similar to the 

intersection cleaning, the edges are marked as convex or concave. 
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1. Determine the pixels p; that are on the intersection curve. 

(a )  convex-pixels = concave-pixels = 0. 

(b)  Compute the normal to  the curve. 

(c) Trace pixels along the normal on both sides of the curve, storing all the traced 
pixels and looking for the first pixel on both sides that does not belong to the 
overlapped region. 

(d)  Apply [I -2 11 mask in the k neighborhood of pi. 

( e )  If (negative) 
then 
Embedding = CONVEX 
convex-pixels = convex-pixels + 1 
else 
Embedding = CONCAJJE 
concave-pixels = concave-pixels + 1 

3. If( concave-pixels > convex-pixels) 
then Edge-embedding = CONVEX 
else Edge-embedding = CONCAVE 

Algorithm 4.2: Edge detection and labeling at two intersecting regions. 

-----  Concave edge 

- Convex edge 

Figure 4.7: Surface adjacency graph (SAG) for the NIST object: The removal of 

concave edges splits the graph into three connected components, corresponding to  three 

parts in the object. 
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nected components, which can be viewed as independent data  sets. Thus a SAG is useful 

for collnected component analysis as well as for checking the combination hypotheses for 

consistency. 

4.7 Chapter Summary 

We described techniques for the refinement of surface patches, so that  the surface cluster- 

ing can be used by the volumetric segmentation as the first approximation of the data. 

The information contained in bi-quadric surface segmentation can be of immense use for 

volumetric segmentation. In addition to providing the surface support, bi-quadrics contain 

information about axis orientation for curved surfaces, convex component analysis for seg- 

menting parts along concave discontinuities, and the embedding of the surface in 3-D space. 

We derived the analytical expressions to compute these important surface attributes and 

discuss their relevance in superquadric fitting. The analysis presented in this chapter is of 

vital irl~portance in designing the control strategy for volumetric segmentation described in 

chapter 7. 
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'GVe now have a piecewise description of the range data  in terms of bi-quadric patches. 

However, our goal is to recover volumetric descriptions of data  by clustering thein into 

piecewise-convex or combination of positive and negative convex parts. Superquadric mod- 

els give volullletric object-centered descriptions of the object parts. In this chapter we will 

describe the superquadric model, formulate the model-recovery problem, and derive some 

results that  are useful for obtainil~g tlie volumetric segmentation. We will first give tlie 

definition of deformable superquadrics as given by Solina [Solina 1987, Bajcsy and Solina 

1987, Solina and Bajcsy 19901, and then develop some useful results about the interpreta- 

tion of the inside-outside function, computation of the true Euclidean distance, derivation 

of the occluding contour generator on superquadrics, computing edges on superquadrics, 

and the formulation of the superquadric recovery problem t o  provide volume, surface and 

occluding-contour constraints. 

5.1 Introduction 

Superquadrics are a family of parametric shapes that have been used as primitives for shape 

represelitatioli in computer vision [Pentland 1986, Solina 1987, Boult and Gross 19871 and 

computer graphics [Barr 1981, Barr 19841. Superquadrics are like lumps of clay that  can be 

deforrried and glued together into realistic looki~ig models. 

Definition : A superqua.dric surface is defined by a vector x sweeping a closed surface 

in space by varying angles 7 and w in the given intervals : 

7 1 
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Figure 5.1: Superquadric shapes: Superquadric model vocabulary between 0.1 <= 
E I  <= 1.0 and 0.1 <= ~2  <= 1.0. 

Superquadric iinplicit equation can be derived from the above equation by elilninating 

11 and LL: 

Parameters a l .  a2. and as define the superquadric size in x, y and z direction (in object 

ceiltered coordinate system) respectively. ~1 is the squareness parameter in the latitude 

plaae and ~2  is the squareness parameter in the longitude plane. Based on these param- 

eter values superquadrics can model a large set of standard building blocks, like spheres, 

cylinders, parallelepipeds and shapes in between (figure 5.1). 

If both sl and E Z  are 1, the surface defines an ellipsoid. Cylindrical shapes are obtained 

for ~1 < 1 and € 2  = 1. Parallelepipeds are obtained for both 6 1  and ~2  are < 1. We have 
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restricted the model recovery procedure to  fit the models with 0.1 5 ~ 1 ,  E:! < 1.0. 

5.1.1 Applying Deformations to Superquadrics 

The representational power of superquadrics increase further by applying various global 

deformations on the basic model (incorporated by Solina [Solina 19871). Deformatioils that  

we have included in our vocabulary are tapering and bending. The tapering and bending 

trallsformations applied to  tlle vector x(7, w )  in the forward direction are given below: 

T a p e r i n g  : Linear tapering along z axis transforms the superquadric (x,  y, z) to  (X, 1; 2) 

by following transformation : 

Bending : Bending deforlllation transforms the superquadric surface vector by following 

transfor~nat,ioll : 

1 
-X = x + cos,(R - T),  Y = y + sin,(R - T) ,  Z = sin,(- - r). 

k 

?IThere 7' is the projection of x and y co~~lpoilerlts onto the bending plane 2 - I. : 

Bending transforms 7- into 

R = k - l -  c o ~ ( ~ ) ( k - l  - r) ,  

?IThere is the bending angle 
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Figure 5.2: Deformed superquadric shapes: Tapered, bent, and tapered and bent 

shapes for a cyliildrical model = 0.1 and ~2 = 1.0). 

Coinbination of Tapering and Bending: The two independent deformations are 

a.pplied by coinputing the correspondi~lg l~omogeneous transformation matrices. It is pos- 

sible to  apply both the transformations to  a superquadric model one by one. since matrix 

multiplication is not commutative, the order in which deformations are applied is impor- 

tant. The model recovery procedure has adopted the following structure t o  transform an 

object centered superquadric model to  a deformed superquadric in general position and 

orient,a.tion : 

Thus bending and tapering introduce two parameters each in the final superquadric 

equation, bringing total parameter count to 15. The tapered and bent shapes for a cylin- 

drical model are shown in figure 5.2. 

Computing the deformations in the reverse direction transforms a point (X,l', 2 )  on a 

defornled inode1 into (z, y ,  z )  on the basic superquadric model by satisfying the following 

implicit equation of the deforilled ~llodel : 
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5.2 Formulation of the Model Recovery Problem 

The Modified Inside-outside Function: The inside-outside function for the superquadric 

model can be modified by adding the exponent to  the equation 5.2, to cancel out the 

effect of low values of ~1 during the model recovery process [Solina 19871 : 

Tliis nlodification does not alter the shape of the superquadric model, but  significantly 

ilnproves tlie recovery of cylindrical objects, The inside-outside fullction ( I0  fullction for 

short) determines ~vhere a point lies relative to the superquadric surface. If F ( x .  y. 3 )  = 1, 

point (x. y,  z )  lies on the surface of the superquadric. If F ( x ,  y, z )  < 1, the point lies inside 

and if F(m, y,  2 )  > 1, the point lies outside the superquadric. 

Solina [Solina 19871 has formulated the superquadric model recovery problem in general 

position and orientation by using Euler angles #, 9 ,  ?1, to  define the orientation and p,,py, p, 

to  define position of the superquadric in a world coordinate system. The optimization pro- 

cedure minimizes the inside-outside function of deformed superquadrics in general position 

given by : 

GOF = J*(R), 

where 

Thus, the formulation imposes two constraints on the recovering model: 

1.  Voluine Constraint: The JG factor provides for the smallest volume sa.tisfying 

the surface constraint. 

2. Surface Constraint: The condition that  a point should satisfy the inside-outside 

functions provides the constraint for a point to lie on the superquadric model. 

11-hen an arbitrary collection of points (non-convex) is presented to the above formula- 

tion, and there is no lllodel that will satisfy the surface c o ~ ~ s t r a i n t ,  the 11iodel average4 out 
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the inside-outside function value to  leave certain points outside the model (F  > 1, underes- 

timated) and sollle inside the model (F < I) ,  overestimated. If the concavities (or conves 

deficiencies) are significant, then cluster of points have values away from the ideal value of 

1. T Goodness-of-fit is simply the llormalized sum of the inside-outside function values a t  

all the points. To use this normalized value of F for model evaluation, we have to  assign 

a meaning to it. In other words, what does it mean for a point to  have a goodness-of-fit 

value? I t  is certainly not related to  the Euclidean distance in the sense that  two equidistant 

points from the superquadric model can have different inside-outside function value. We 

now describe the significance of the goodness-of-fit measure based on the I 0  function. 

5.2.1 Interpretation of the Goodness-of-fit 

The outerlnost exponent in the inside-outside function F was added by Solina [Solina 

19871 to  cancel out the effect of in the equation. This modification resulted in better 

recovery of cylindrical objects. Solina noted only the qualitative effect of the modification, 

and no mathematical justification was given for it. We provide an explanation which gives 

an intuitive ~lleaning to the values of inside-outside function, and makes it possible to use 

this measure for nlodel evaluation. 

Consider a superquadric S1 = (XI ,  f i , Z1) defined by explicit superquadric equations. 

Take an arbitrary point P ( z ,  y, z )  in space, and scale the three axes of S1 by a factor /? such 

that  the point P lies on the scaled superquadric S2 = ( X 2 ,  Y2, Z2) : 

M'e will prove that F and ,O are related. The implicit form of S 2 ( 7 , u )  can be written 

as : 

Solving for ,/? yields : 
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Figure 5.3: P-expansion and contraction of a superquadric model: left: expansion 

for /3 = 1.2; right: contractioil for ,O = 0.8. 

It folloxvs from the definition of F  that  : 

This result shows that  the value of inside-outside function F for a point ( a ,  y,  z )  is 

nothing but square of the factor by which the axes of superquadric S1 have to  be scaled to  

make it pass through (x ,  y.2). This factor can be seen as the amount a superquadric has 

to  he  expa~zded or contracted (figure 5.3) to  make it pass through an arbitrary point in 3 

space. This result provides an intuitive explanatioil for tlie values of F ,  with values > 1 

indicating expansion and < 1 indicating dilation of the superquadric. 

The obvious question to  ask is if this explanation can be extended t o  the tapered or 

bent models? Since tapering is defined in terms of as (the dimension along the major axis), 

it is not possible t o  obtain a closed form solution for P. So the above interpretation is 

only approxinlately true for tapered models. For the models with bending deformation, 

however, the interpretation is valid. Since the minimization problem is fornlulated in terms 

of insicle-outside function, its values are available with the model parameters, and does not 

require explicit computation. 
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5.3 Euclidean Distance Measure 

The formulatioil of tlie superquadric recovery procedure in terms of minimization of inside- 

outside function is not the same as the minimization of the distance function : 

\\illere d is the distance of a point (x,  y,z)  from the superquadric. So the Euclidean 

distance is not computed at  any stage of model recovery. I t  is important to  note that 

the inside-outside function and the distance measure are not related in the sense that  two 

points a t  the same distance from the superquadric surface do not have the saille value of F 

in general. 

The distance of an arbitrary point in 3-D space from a given superquadric model is dif- 

ficult to coillpute because of multiple solutions of the analytical formulation of the problem 

as the non-linear root finding problem. Further, it is not possible to obtain a closed form 

solution for the problem. We have posed it as a minimization problem, that  iteratively 

minimizes rl for a given point and a given deformed superquadric. In any minirnizatioil 

problem it is imperative to  have a close initial approximation. Superquadric surfaces are 

paraineterized 11y 17 and w ,  and are convex for the points outside the model. Thus the 

problem is forinulated as : 

Problem definition : Given (XI ,  yl, zl), minimize the following functio~i of two vari- 

ables : 

blillere xjij, w ) ,  y(7, w ) ,  ~ ( 7 ,  W )  are the position vectors of the deformed superquadric 

To ensure convergence to the right solution, a close initial approximation is obtained 

by estelldiiig tlie espansion/contraction approach introduced in the previous section (fig- 

ure  5 . 3 ) .  Corresponding to tlie point P ( x l ,  yl, zl) i11 3-D space, there is a point G(n:;!, y2, z 2 )  

on the original superquadric S1 : 
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Figure 5.4: Euclidean distance computation: The distance (PR)  of a point P from the 

illode1 is determined using an initial guess (PG)  based on P-expansion/contraction. The 

point. C, lies on the straight line connecting the point P and the origin of the model. The 

superquadric recovery forn~ulation corresponds to  the distance PG and not to PR. Excepting 

the spherical model (bottom left), where points G and R coincide, P G  is an overestilllation 

of the real distance PR. 
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The point G in Cartesian coordinate system can be written as G(7,w) in the parametrized 

form. Thus, initial approximation of q and w is easily obtained. If the superquadric in con- 

sideration is deformed then deformations are ignored since we are interested in only an 

initial approxi~imation. This method essentially traces the locus of 17 and w on superquadrics 

by varying ,G' but keeping other parameters constant. Thus the points P and G correspond 

to  the Yame 17 and w values, and G is likely to  be very close to  the point R ( ~ ' , w ' )  such that  

R is the point closest to  P. Figure 5.4 gives examples of initial guess to find the lllini~llurn 

distance on different superquadric shapes. 

The objective is to find R. The function d of two variables is minimized given the initial 

approximation 17 and w ,  using a gradient-descent method. The method requires only func- 

tion values, a finite-difference rnethod is used to  estimate the gradient internally. Though 

d is diffsrentiable a t  all points (even with deformations), we have found that  supplying 

external gradient values does not speed up the iterative process in general. The ~lletliod 

npas found to be accurate up to  sixth decimal place for esperimental data. We can settle for 

lower accuracy for faster convergence. The method has been successfully tested on deformed 

superquadrics. 

The optimization function represented in equation 5.16 is convex for the points lying 

outside the superquadric model. For the points inside the model, distances are also min- 

inlized in two orthogonal directions past the edge of the model, since the presence of a 

strong edge is the reason for non-convexity of the distance function. Two methods for the 

conlputation of superquadric edges are described later in the chapter. 

5.4 Apparent Contours of Superquadrics 

Definition: The Contour-generator (or occludi~lg contour) defined as the locus of the 

points (a closed curve) on the superquadric surface where the surface normal vector is 

perpendicular to  the viewpoint vector. 

Let V = (T:,T1j, I<) be the viewpoint vector, and N = (n,,n,,n,) be any surface 

nornlal vector (see appendix B for surface normal computation). The occluding contour is 

then given by  : 

We now derive a closed form solution for the contour generator on a no~z-deformed 

snperquadric surface : 
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lfznz + Vyny + T ~ , I z ,  = 0 

Substituting for N gives : 

11, 
- C O S ~ - ' ~  (7) C O S ~ - ~ '  

vz ( w )  + 3 cos2-" (q) s i ~ l ~ - ' ~  (w) + - sin2-'' (11) = 0. (5.20) 
01 a 2 a3 

Solving for 7 gives the closed form solution for generating the apparent contour : 

When 11,; = 0, the contour generator becomes: 

For the degenerate ca.se ( I f ,  = I$ = 0) the contour is given by 77 = 0; -71- 5 w < ir. 
Figure 5.5 shorvs the apparent contours of non-deformed box and cylidrical superquadric 

models generated by the above equation. Unfortunately, there is no closed form solution for 

a general deforrned superquadric, as the surface normal vector AT has to undergo deformation 

by the following rule (derived by [Barr 19841) : 

where J is the Jacobian of the deformed superquadric. To trace the apparent contour of 

a deformed superquadric, we have t o  vary tlle angles q and w systematically, and accumulate 

points on the contour in such a way that  a closed contour is formed (shown for a tapered 

box in figure 5.5). This contour can be orthographicdly projected on the image coordinate 

system to make colllparisons with the image contour. 

Due to  the closed form of the the 5.21, i t  call be used to  derive an  objective function to  

provide the occluding co~ltour constraint during the model recovery. The constraint would 

force the occluding contour points (if known in advance) to  lie along the occluding contour 

of the model. We tested such a formulation by adding it to  the optimization function in 

ecluation 5.9, but  did not observe any significant improvement in convergence. The reason 

being that  the equation 5.21 is valid only when a point lies on the superquadric model. 

For the points away from tlle surface of the model, there is no closed form solution for the 

surface nor~rial and hence a general forrrlulation is not possible. 
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Figure 5.5: Apparent contours of superquadrics: Shown for a box and a cylinder, and 

a tapered bos. Left: The superquadric model; right: The occluding contour superimposed 

on the model. 
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5.5 Superquadric Edges 

By limiting the shape parameters between 0.1 and 1.0, the analyticity of the superquadric 

surface is maintained. Thus, there are no C1 (surface normal) discontinuities, but the points 

of high curvature represented by the shape factor can be considered as "analytical edges." 

\We now present an algorithm for edge extraction on deformable superquadrics. On a non- 

deformed superquadric, the two 2-D cross-section contours (corresponding to 7 = 0 and 

w = O ) ,  contain complete information about edges. Of course, existence of an edge depends 

on w1ia.t we consider an edge. Typically, a shape parameter value of more than 0.5 indicates 

smooth surface, otherwise an  edge exists. Interestingly, the edges do not change in terms 

of a.ngles (aJt,hough their location cha.nges) , when tapering and bending deforma.t,ions a.re 

applied to the model. This means that  we need only consider the non-deformed case to 

extract angles corresponding to the edge location. An edge exists where the curvature is 

inaximum or equivalently the rate of change of curvature is zero. Since the supercluadric 

equa'tion is differentiable everywhere on the surface, the first, second and third derivatives 

are computed and plugged into the 2-D curvature and rate of curvature equations : 

Curvature and the rate of change of curvature values along the 17 = 0 contour for 0 5 
;L: _< 71-12? are shown for ~1 = 0.1 & ~2 varying between 0.1 and 1.0 in figure 5.6. Six angles 

( 2  for 11 and 4 for w )  are required to  completely describe edges for a general superquadric 

model. Edges for a box, its deformations, and a cylinder are shown in figure 5.7. 

5.5.1 Superquadric Edges from Occluding Contour 

The superquadric ~llodel and its edges in figure 5.7(a) lead t o  an interesting observation. 

Notice that  the edges exist a t  the occluding contour of the model. The  question then arises, 

can we use the closed-form for~nulation of the occludi~lg contour in equation 5.21 to  directly 

derive the 11 and *v. instead of taking tlie curvature-based approach? The answer, fortunately, 

is yes, thereby providing us with an elegant method to determine superquadric edges. Also, 

since tlie edge locations do not change when deformations are applied, the equation 5.7 is 

adequate to compute edges in general. 
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Curvature 
Y X  10-3 

! I I el=O.l ,e2=0.1 
350.00 - - ..--....-....--....-....- 

el=O.l ,e2=0.2 
-------.--...-...----- 
el=O.l ,e2=0.3 - - - - - - - - - - - - - - -  

300.00 r - el=O.l ,e2=0.4 - - - - - - - - - - - 
el=O.l ,e2=0.5 - - - - - - - - -  
el=O.l,e2=0.6 

250.00 - - - - - - - - - - 
el=O.l ,e2=0.7 - - - - - - .  
el=O.l,e2=0.8 

200.00 - - el=O.l,e2=0.9 . . . 
el=O.l,e2=1.0 

150.00 - 

100.00 - 

50.00 - 

I 
0.00 l- 

Rate of change of curvature 
Y x 

el=O.l ,e2=0.1 .. - ... . --- .. ..-....-... 
el=O.l ,e2=0.2 -------.---.----.---.- 
el=O.l ,e2=0.3 - - - - - - - - - - - - - - -  

600.00 el=O.l ,e2=0.4 

Figure 5.6: Superquadric curvature: Curva.ture (top) and the rate of change of curvature 

(bottom) aaong the 71 = 0 contour for 0 < w < ~ / 2 ,  for E I  = 0.1 & 0.1 < ~2 < 1.0. 
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Figure 5.7: Superquadric edges: Edges of (a) a non-deformed box, (b)  its tapered model, 

( c )  its t,apered and bent model, and (d) a cylinder. Same edge angles were used t o  compute 

edges on the deformed models. 
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The edge angle 17, can be obtained from the equation 5.20 by making w = 0: 

The other edge angle we, is obtained by making 7 = 0 in the equation 5.20: 

A corner exists at  (q,,w,). Equations 5.25 and 5.26 give the analytical solutions for 

computatioii of edges (or high curvature contours) and corners for a superquadric model. 

5.6 Recovery of a Superquadric Model on Range Data 

The model recovery algorithm as formulated by equation 5.9 starts with fitting an ellipsoidal 

shape on 3-D points and converges on a shape that  minimizes the least-squares error. A 

stepwise description of the procedure is given in algorithm 5.1. The coordinate systems 

are shown in figure 5.8. Recovery occurs in world coordinate system, whose origin is a t  

the centroid of the data  points and oriented the same way as the image coordinate system. 

This has the effect of starting iterations with (0,0,0) position vector for tlie object centered 

system. \vl~ich was empirically found to  converge faster. The initial ellipsoidal model for the 

NIST object, and tlie model after 15 iterations are shown in figure 5.9. Clearly, the global 

niodel is unacceptable as a volumetric description of the NIST object, and reflects the need 

for further segmentation. 

Solina [Solina 19871 showed that the solution space is convex near the optimal solution, 

and the model generally converges to perceptually acceptable shapes. We have found the 

procedure to  be stable numerically, but liavillg difficulties in recovering cylindrical shapes 

when tlie Z-asis (asis  along ns dimension) is not aligned along the axis of tlie cylinder. The 

nlethod also converges faster if the initial orientation is close to the final one, specially when 

the data  is not conlplete or symmetric due to occlusion. LTre will address these problems later 

in the contest of volumetric segmentation and provide efficient solutions to the problem of 

model orientation and Z-axis determination. 
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,Y 
0 

(X,Y,Z) : World Coordinate System 

(X1,Y',Z') : Object Coordinate System 
V 

Figure 5.S: Image, World and Object coordinate systems: The representation and 

recovery space for representation and segmentation. 

Figure 5.9: Recovery of the superquadric model: NIST object. Left: The initial 

ellipsoidal model is oriented along the eigenvectors of the molllent ma,trix. Right: The 

nlodel after 13 iterations of the Levenberg-Marquardt method. 
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1. Convert range image points from Image coordinate system (ICS) z = f (x ,  y) to World 
coordinate system f (x, y, z )  = 0, centered a t  the object centroid and oriented as image 
coordina.te system (figure 5.8). 

2. Compute eigenvectors and eigenvalues of the moment matrix of the 3-D points. Orient 
the Z-asis of the superquadric along the eigenvector with least moment of inertia. 

3. Object centroid gives position (p,,py, p,), and the eigenvectors give orientation (Euler) 
angles (q,w.  $1) placing the object coordiilate system (OCS) with respect to  the world 
coordinate system (WCS). 

4. Compute extremities of 3-D points in OCS to  estimate the size parameters ( a l ,  a*, a3) 
of the initial estimate of the superquadric So. 

5. Set = cz  = 0 (ellipsoid), Ii, = I<, = 0 (no initial tapering), and k = 0.0001, a = 0 
(no initial bending). 

6. Enable desired deformations. (Tapering in our case). 

7. Perform iterative non-linear mini~niza,tion (Levenberg-Marquardt method, [Press et 
al. I9SSlj. Termination is decided by m (masimum number of iterations), alld the 
least-squares error: 

(a,) The first or second time error decreases marginally: 
( E r r ~ r ( S ; - ~ )  - Error(S;)) < 0.1, 
the procedure terminates even if i < m. 

(b)  Procedure terminates if, 
for sollle 12 > m, Error(S,) < Em;,, 
where Emin  = Min(Error(So) . . . Error(S,)). 

8. Model recovery done. 

Algorithll~ 5.1: Recovery of one superquadric model on range data. 
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5.7 Chapter Summary 

After describing the deformable superquadrics as defined by Solina [Solina 1987, Bajcsy and 

Solina. 19871, we developed some useful results about interpretation of the inside-outside 

function, co~l~putation of the true Euclidean distance, derivation of the occludi~~g contour 

genera.tor on superquadrics, computing edges on superquadrics, and formulated the su- 

perquadric recovery problem to provide volume and surface constraints. Using this formu- 

lation. a model for the given set of points can be obtained. In our global to  local a.pproach 

for volumetric segmentation this model gives the first volumetric estimate of the data-set. 

In the nest chapter we analyze the global model for its adequacy in describing the data, 

a.nd develop an exhaustive set of criteria to completely evaluate the model. 



Criteria for Superquadric Model 

Evaluation: Residual Analysis 

I've now have a fine-to-coarse surface segmentation procedure and a procedure to recover the 

global superquadric model for the given data. Consequently, for the given data. set, we have 

the piecewise bi-quadric description and a global superquadric model. The superquadric 

model recovery formulatioll lacks the segmentation capability. All our efforts from this 

chapter on are directed towards developing a control structure that  will segment the given 

data set by constant evaluation of the intermediate superquadric approximatiolls of the 

da ta  and by using the information from the biquadric segmentation and other geometric 

constraints. 

In this chapter we begin the design of the control flow of the volumetric segmentation, 

so that  the procedure can recognize the correct strategy for approaching the segmentation 

problem starting with the global superquadric model. We first present a set of criteria for 

the complete evaluation of a superquadric model and then demonstrate hotv they can be 

generated, evaluated and used by the volumetric segmentation module. 

6.1 Criteria for Model Evaluation 

A superquadric model obtained by least-square fitting the inside-outside function is an over- 

constrained esti~nation of data, with more constraints than parameters. Like any parametric 

approach the goal is t o  describe a large chunk of data  by a few parameters. The recovery 

procedure assigns equal weight to each point, no matter where the point lies in 3-D space, 

with the central goal of satisfying the volume and surface constraints. As discussed in the 

9 1 
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previous chapter, the superquadric recovery procedure is formulated to  provide : 

1. Volume Constraint: The Jm factor provides for the smallest volume satisfying 

the surface constra.int. 

2 .  Surface Constraint: The condition that  a point should satisfy the inside-outside 

functions provides the constraint for a point to lie on the superquadric model. 

Our definition of volumetric segi~lentation imposes acceptance criteria for the recovered 

models, which lnust be satisfied before a model is considered to  be adequate for the given 

data. These acceptance criteria reflect the scale considerations and specify how much of error 

can be tolerated in the final description. The acceptance criteria dictate that  all the data 

points must correspond to  the model within the given error tolerance. When an arbitrary 

collection of points (non-convex in general) is presented to  a single-model formulation, and 

there is no model that will satisfy the surface constraint, the model averages out the inside- 

outside function value to leave certain points outside the model (F > 1, underestimated) 

and seine inside the model (F < 1, overestimated). If the concavities (or convex deficiencies) 

are significant, then clusters of points have values significantly different from the ideal value 

of 1. In such cases. the recovered model is not a satisfactory description of the underlying 

data, and t,he presence of such clusters signals the need for decomposition of data. into 

smaller pieces to  satisfy the modeling constraints. 

Thus, it is ilrlperative that the rnodel be fully analyzed, both qualitatively (using local 

distribution of residuals) and quantitatively (using global error measures), to  aid in further 

course of action. As will be discussed later, the existence of residuals and their distribution 

is key to developing a systematic segmentation procedure. We have identified the following 

measures for model evaluatioil in the context of the shape recognition problem : 

Quantitative Measures: Deviation of data points from the model surface call be mea- 

sured bv the following two methods (illustrated in figure 6.1): 

1. Goodness-of-fit ( G )  measure based on the inside-outside (10) function (without the 

volume factor). In figure G.l(b), the I 0  function value corresponds to PG and not to 

the lninirnu~ll distance PR. A 0.1 value of F indicates 10% expansion/contraction of 

tlie rrlodel and is generally a good cut-off for evaluating the quality of a fit. 

2. Average deviation along Z direction: In figure 6. l(a) ,  the distance of point P from 

the nlodel is PP' along Z while the minimum distance is PP". PP' is usually an 
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Figure 6.1: Computation of deviation of a point from the superquadric model: 

(a)  The 2-residual is computed along the viewing direction in the image coordinate system. 

PP' is the distance along 2 ,  while PP" is the minimum distance. (b)  The I 0  residual is 

based on the inside-outside function, measuring the distance corresponding to PG and not 

P R .  
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overestinlation of PP". A value of 2 to 3 pixels is a good threshold for considering a 

fit acceptable at  individual points. 

These thresl~olds were determined from the empirical observations of the fits, and taking 

into account the quantization and sensor noise. However, relying on these thresholds for the 

evalliation of a ~ecovered model can be misleading. Quantitative measures are normalized, 

global. and least-squares numerical values of the measuring quantity. Thus, a high value 

of the average deviation indicates a bad fit, although a good value may not always be due 

t o  a good fit. A11 acceptable global error can result from models with local details that  

are averaged out in the global consideration. Sometimes these details may need negative 

voluille descriptions or further segmentation. This necessitates analysis of the type and the 

distribution of residuals. An example of such a case is shown in figure 6.2, where the data 

points in region 5 are overestimated by the global model having an acceptable global error- 

of-fit. Region 3G sho~vs the points that  are estimated within the error tolerance, and region 

27 sho\vs the overestimation of the boundary of the object in Z direction. The residual 

of region 5 can trigger further segmentation or provide for the negative volume fitting. 

Thus, local residuals and their distribution contains useful information about the quality 

of segmentation. Therefore, in order t o  evaluate individual residual regions, we present the 

follo~ving qualitative measures. 

Qua l i t a t ive  Measures :  The deviation of individual points from the model can be  used 

t o  geilerat,e maps of the residuals to for111 clusters of points with identical description by 

the superquadric model: 

1. I 0  residual-map: Classifies clust.ers of points that  are outside, inside or on the model 

in terms of the inside-outside function. 

2. Z residual-map: Classifies clusters of points that  are outside, inside or on the model 

when analyzed along the viewing (or scanning) direction. 

3. ED residual-map: Classifies clusters of points along the direction of the true Euclidean 

dist.ance. 

We discuss each one of these methods separately in next section. First, we need to  

describe all the different types of clusters (regions) that  can be generated in a residual 

map. Residuals are computed by projecting the model in the image coordinate system, and 
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Surface underestimation 

Exact description 

Contour overestimation 

Surface overestimation 

Acceptable occluding region 

Occluding region overestimation 

Figure 6.2: The object with missing volume: Top: Range image and its 3-D plot. 

Center: The global model and its Z-residual. The missing volume results in local residuals 

but the globa.1 model has acceptable error-of-fit. Bottom: Legend for the interpretation of 

the residuals, used throughout the dissertation. 
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making comparisons between data points and the model surface using one of the 10 ,  Z or 

ED measures. For illustration, we present the I 0  residual-map and the Z residual-map of 

tlie global model for the composite object (figure 6.3), and Z residual-map for the NIST 

object (figure 6.4). The six types of clusters are : 

1. Surface underes t imat ion  (s-under): The model surface underestimates the point 

(leaves it outside) when viewed along Z direction or in the I 0  sense. Regions 41 and 

48 represent exist as s-under regions in both Z-residual and 10-residual maps of the 

composite object (figure 6.3). 

2. Surface overes t imat ion (s-over): The model surface overestimates the point (leaves 

it  inside) when viewed along Z direction or in the I 0  sense. Points that appear to be 

underestilnated in I 0  sense can actually appear overestimated along Z, because of the 

directiona.lity constraint of the Z residuals. For example, the underestimated region 

for the composite object in figure 6.3 has a number of points hidden behind the model 

that appear to be overestimated along Z (region 14) but are underestimated in the 

inside-ou tside sense. 

3. Accep tab le  descr ipt ion (s-exact): The model estimates the data points witliin tlie 

specified tolerance. Again, due to the non-directionality of the I0  function, some of 

the points that are modeled by the hidden side of the model (the side that is not visible 

from the viewing direction) will be labeled as acceptable, whereas the 2-residual map 

will show them as overestimated. Due to the presence of parts, the NIST object and 

the composite object have small s-exact regions, while the global model for the object 

in figure 6.2 is a good approxima.tion for the majority of the surface points (region 

36). 

4. C o n t o u r  overes t imat ion (c-over): Due to the symmetry and shape constraints 

of the rigid model, the projection of the model on the image coordinate system can 

result in overestimatio~l of the silhouette of the data. These regions predict extra data 

which does not exist in the image. Region 46 in Z-residuals of the global model for 

the NIST object is such a region. Note that c-over is similar in both 2-residuals and 

10-residuals (regions 6 and 9, and 7 and 11 respectively). 

5. Accep tab le  Occluding regions (occ-ok): When data is decomposed to arrive at  

a piecewise description, it is desirable to allow the volumes of the models to occlude 

each other such that the occluded model ~~nrlerestimates or exactly describes the data 
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Figure 6.3: The  composite object: Top: The range image, the global model, and its 

projection. Bottom: The Z residual-map and the I 0  residual map. 
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Figure 6.1: The ~ 1 ~ q o b j e e t :  Top: The range image and the projection of the global 
Y 

model; Micldle: The global model and the Z residual map for the global model; Bottom: 

The model for the base of the object and its Z residual map showing occluding regions 
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points that do not belong to the model. For example, the base in the NIST object 

shown in the bottom row of figure 6.4 underestimates the points belonging t o  the 

other parts. The occ-ok regions (47 and 90) are labeled t o  show that  the occlusion 

is acceptable and that  those residuals should not adversely affect the model for the 

base. 

6. Occluding region overestimated (occ-over): Regions where the model overesti- 

mates the data  points not belonging t o  it. It is clear that this is undesirable and 

therefore counts against the model during evaluation. 

6.2 Residual Analysis 

The residuals generated by comparing the recovered model on the given da ta  form the basis 

of our coarse-to-fine volumetric segmentation approach. The residuals of the superquadrics 

can be referred to as the deficiency in describing the convexity of the object. We now de- 

scribe methods of genera.ting the residuals based on the inside-outside function (10-residual 

maps) and those based on the point-to-point correspondence along the viewing direction 

(2-residual maps). Euclidean distance can be used in 10-residual maps instead of the 

inside-outside function value. 

6.2.1 Residual Analysis by Inside-Outside Function 

The inside-outside function value corresponds to  the expansion/contraction factor P for the 

given point, and therefore is not described along a fixed direction. As described earlier, its 

direction is along the line connecting the point with the center of the model. An important 

consequence of this is that  the point can associate itself with the surface not visib!e from 

the viewing direction. Although it is a strong indication of the presence of concavities, it 

can be misleading in the case of thin objects. Together with the analysis along the viewing 

(Z)  direction, i t  provides a check for the existence of concavities or combination of concave 

surfaces (in global sense). Clusters of points that are correctly modeled according the IO- 

residual map but are overestimated according to the 2-residual map, belong to  the hidden 

the side of the model, and therefore need to  be discarded if a convex combination of surfaces 

is desired. This check is similar to the surface normal check for the detection of concavities, 

but does not require explicit computatioxi of additional quantities like surface normals. The 

quantity of deviation at individual points can be the real Euclidean distance instead of the 
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inside-outside value, although the latter is available as part of the recovery procedure while 

the forrner requires explicit computation. 

Generating the I 0  Residual-map: The analytical formulation of the inside-outside 

function allows for an inexpensive cornputation of this map a t  the data  points. This gives 

io-s-over, io-s-exact ,  and io-s-under regions. For the io-c-over regions, where su- 

perquadric predicts data (along the viewing direction), we need to  compute the projection 

of the superquadric occluding contour in the image coordinate system following the proce- 

dure described in chapter 5. 

6.2.2 Residual Ailalysis Along the Viewing ( Z )  Direction 

Since we are aiming to describe the single viewpoint data, it is clear that  we want t o  mini- 

mize the modeling error along the Z direction. This fact, however does not contradict the 

formulation of the superquadric recovery in terms of the I 0  function, since any formula- 

tion assunles that the data is inherently describable by the superquadrics without requiring 

begmentation. Hence, even with the Z-distance formulation of the superquadric recovery, 

seglnelltatioll will still be required. Thus we isolate the recovery procedure and the residual 

analysis formulation to achieve best results. 

Given that  we want the Z-distance residual, let us define underestimation of surface 

as the points that are outside of the visible superquadric surface, and overestimatio~z of 

the surface as the points that  are inside the visible surface (beyond a certain acceptable 

z - to le rance  value). Additionally, the non-existent points that  are described by the su- 

perquadric, are due to the symmetry constraint (if a superquadric model does not exist) or 

the presence of concavities. 

Generating the Z residual-map: For the purpose of comparing the superquadric model 

with given surface points to  generate a difference map, we have to  compute the distance of 

every given point from the superquadric surface along the given direction. There are two 

\vays to  accomplisll this: 

1. Compute the distance analytically, if possible, else numerically. 

2. R.econstruct the superquadric surface in the scanner coordinate system and then per- 

forlll point by point comparison in = direction to compute the difference map. 
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Due to the a.bsence of a, closed-form analytical solution to compute the dista.nce of a 

point from a superquadric surface (even when the vector along which the distance is t o  

be coinput~etl is given), we backproject the model into the scanner coordinate system and 

ma.ke point by point colnparison to generate the residual map. This approach lla,s many 

advantages over a numerical method that only computes the distance of a point from the 

superqua.dric model. A complete backprojection along the viewing direction gives us an 

immediate assessment of the extrapolation of the model into non-existent data. 

6.3 Residual Clustering for Further Processing 

Folloiving the above analysis. each pixel can be marked to be of the basic six types. To use 

these individual points as clustered units, it is important to label tlle connected pixels as a. 

single cluster. A 4-connected neighborhood is used to  enforce pixel connectivity in a cluster. 

The resulting labeling produces clusters of each type, so that they can all be referenced as 

units. Once we have the clustered residuals they can be treated as a graph structure and 

their coni~ectedness at  cluster level can be determined. 

6.3.1 Residual Adjacency Graphs (RAGS) 

A region-adja.cency graph is constructed with each node representing a region and  edges 

labeled according to the following rela.tionships between a pair of regions: 

1. Connection between two valid non-c-over regions. 

2. Connection between two valid regions (one is c-over). 

3. Connection wit11 an invalid region (region too small). 

4. Connection with a, background/hole region. 

5. Connection wit11 a.n occluding region. 

A region is valid if it has more than a minimum number of points (usually 1 or 2). 

Figure 6.6 shows it for the global model of scene3 (figure 6.5) containing 4 clusters of 

data. The RAG encodes connectivity information of the residual regions, and therefore 

ca.n be used to break isolate data clusters that are not connected in the image. This can 

be easily accon~plisl~ed by removing the edges corresponding to cases 2 (one of the region 

is c-over) and 4. and analyzing the graph for connected components. Although similar 
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Figure 6.5: T h e  global model for Scene 3: The range image and its global model. 

in concept t o  the surface adjacency graph (SAG) described earlier, the RAG is generated 

for every new data-set.  Thus RAG dynamically changes as the models evolve and da ta  

clusters become disconnected during the segmentation process, but  are actually connected 

in the SAC, sense. Therefore, we need tlie RAG description even though surface graphs 

can do the same initial decomposition. The  RAG for scene3 breaks the scene into four 

independent p u t s  and initiates independent models on each one of them. Notice tha t  

during the connected-component analysis, the edges connecting wit11 occluding regions are 

not removed. It 11a.s tlie advantage of providing continuity of d a t a  along occluded regions, as 

also isola.bing tlie regions tha t  are solely formed of occluded points. We will later sliow t1ia.t. 

during the second itemtion for scene3, such a. case occurs with the global model describing 

the handset of the phone. 

6.3.2 Using the Residuals for Superquadric Evaluation 

Ha.ving described the  6 types of residuals and methods of genera.ting them, we now discuss 

the issue of using them t o  evaluate a. model. For a d a t a  set of cardinality n, we know 

the number of points t1ia.t a.re esactly described, underestimated, and overestimated. The 

a.hso1ut.e numbers are not of much use in evalua.tion, since they are size dependent. To 

enforce scaleability aad  size invarimce, we use the relative measures. This  informa.tion 

is stored as  percentage of da t a  tha t  is exactly described, overestimated or underestimated. 

Va.rious thresholds can be put on these fractions t o  define the acceptance criteria. Similarly, 
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0 Contour Overestimation 

Surface Overestimation 

Figure 6.6: Residual adjacency graph (RAG) for Scene 3: Top: Z-residual map for 

the global model of Scene3, and its RAG (bottom). Connected component analysis gives 

four independent clusters for further processing. 
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the  c-over can be studied relative to the original data.  Usually there is a 10 t o  20% 

c-over regions due t o  noisy d a t a  nea.r the edges and due to  the fact that  superquadric 

only approxima.telg follow the boundaries of real data.  A 20% value means tha t  in order 

t o  describe 100 points in da ta ,  an overestimation of 20 points occurred in volumetric sense. 

Similarly, an accept.a.nce condition for occ-over regions can be enforced. A combination 

of these colldit'ions gives the accepta.nce criteria t o  the control module, and defines the 

termina.tion conditioils for the model recovery. 

In a.ddition t o  the residuals for the entire data, residuals for individual surfaces can also 

be obt,a,ined t o  further refine t,he a.cceptaace criteria. T h e  residuals are computed only for the 

doma.in of t l ~ e  biquadric surfa.ce included in the superqua.dric model. Thus, an a.ccepta.ble 

ino(le1 will describe all it,s constituent surfa.ces with high confidence. I t  is also possible to  

selectively enforce the t,hresholds, for example, some of the surfaces (eg. snlaller than a. 

fixed size) ca.n be ignored during the evaluation, while others can be given more weight. 

Together with t,lie globally-relat,ive acceptance criteria outlined above, the surface-relative 

criteria. form a. comprehensive criteria. for superquadric model evaluation. 

6.4 Chapter Summary 

Given a. recovered superqua,dric model, we developed a. set of criteria. for co~~lple t -e  s u -  

perqua.dric evalua.tion. Both quantiht ive,  as  well as the  qualitative measures are requiretl 

t o  esliaustively evaluate a superquadric model. Residual analysis forms the ba.sis of the 

global t o  local volunzetric segmentation, and in the next chapter we present the  issues 

involved in accomplishing it .  



Volumetric Segmentation: The Control 

Flow 

We continue with the design of the volumetric segmentation module in this chapter. The 

description a.vailable a.t this stage is in the form of the piecewise bi-quadric pa.tches along 

with the information about the surface-type, orientation and edges. Also available is the 

global superquadric model and a set of criteria to  exhaustively evaluate it given the original 

dataset. The  main task of the control structure for volumetric segmentation call be defined 

as systema,tically integrating surface descriptions with the global-to-local superquadric re- 

covery approach, evaluating the intermediate descriptions, and deciding on the strategies 

for segmentation. 

We begin this chapter by addressing the important issues in superquadric-based volu- 

metric segmentation of real range data  obtained from a structured lighting range scanner. 

We will the11 discuss the control structure for integrated segmentation procedure in detail. 

7.1 Issues in Volumetric Segmentation 

7.1.1 What are Superquadrics Modeling? 

Surfaces have more local support and hence provide reliable intermediate-level clustering in 

terms of bi-quadrics. Unfortunately, the analytical correspondence between biquadrics and 

superquadrics is minimal since bjquadrics belong to  the class of non-central quadrics while 

superquadrics are more appropriately non-linear deformations of ellipsoids which belong to  

the class of central quadrics'. In chapter 4, we established some correspondence between 

'The  appropriate term for superquadrics is superellipsoids since they do not cover general quadrics. 

105 
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the trvo for the purpose of axis alignment for curved objects. Essentially, we look a t  a 

supercluadric nlodel as not only a surface description, but also as an object-centered volu- 

metric description describing a convex cluster of points a s  close as possible to  its surface. For 

example, a superquadric with = E Z  = 0.1 gives a convex combination of planar patches 

that  actually meet a t  C1 (surface normal) discontinuities. But from the superquadric point 

of view, the discontinuity is smoothed out, since the model is differentiable everywhere. 

An important ramification of this unique formulation is that  our approach to  segmentation 

departs from the standard feature-based techniques and generalized cylinder-based formu- 

lations. 

7.1.2 Superquadric Recovery Fornlulatioll for Seginentatioil 

An important difference between model-based approaches and our formulation lies in how 

models are nlatched or recovered. Since our models represent a continuum of shapes, the 

techniques relating to stored model nlatclling are not useful. Instead of matching a stored 

model, we allow the model to recover all its parameters starting from a basic ellipsoidal 

shape. Tlle formulation is based on surface and volumetric constraints and not on any 

features like edges. The reason being that  the local continuity analysis is of little use in 

invokiilg a globally differentiable superquadric model. As mentioned earlier, the edges of a 

superquadric model have to  be viewed as high curvature colltours or as occluding contours. 

Thus, an edge-based approach has to  be formulated in terms of occluding contours, providing 

the surface constraint and the occluding contour constraint. As noted before, the occluding 

contour formulatioll does not improve the model recovery capability. In any case, no matter 

how the model recovery is formulated, the most difficult aspect of using the recovery-based 

formulation is that  the domain of the model (data points for which the model has to  be 

recovered) has to be defined before the model is recovered. This rules out any possibility of 

segmentation during the model recovery phase. 

Therefore segmentation has to  performed by a process that  is separately formulated. 

Sl~eletonizatioa is a popular approach [Nevatia and Binford 1977, Pentland 1987b, Ter- 

zopoulos et al. 1988. Rao 19883, but is sensitive to  occlusion and requires the knowledge of 

iilternal boundaries for complex objects. The difficulties involved in a reliable detection of 

internal boundaries in range images renders them impractical for our use. In the absence 

of any  d o ~ t ~ a i n  kilowledge me want to  provide for the possibility of occlusion due to  parts, 

and handle it in a perceptually significant manner. Besides, skeletonization works best for 

curved surfaces and in general it is ambiguous and distracting when the volume consists of 
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planar surfaces. 

7.1.3 Coping with the Missing Information 

Data can be absent due to  occlusion with other parts, and shadows cast due to  the scanner 

geometry. Shadows due to  scanner geometry are considered as missing da ta  and the model 

is allowed t o  predict data  on them. In the context of residual analysis, i t  was mentioned 

that  occlusion due to  other parts in the scene can be handled easily by considering the 

residuals for those points to  be acceptable. However, occlusion can prevent a part from 

constraining the model t o  get its right size and position, although shape and orientation 

are less sensitive to  occlusion. 

ill1 additional source of missing data  in single view data  is self-occlusion. An object 

in general position and orientation gives an  idea of its volume or global shape. If the self- 

occlusion is such that  it hides the volume of the object, then the view is degenerate and 

additional data  or reasoning is required to  get volume estimates. Given a non-degenerate 

view, superquadrics fill in the missing data by imposing symmetry constraints. There are 

no other options available because superquadrics are symmetric models, and available data  

constrains the model and predicts a symmetrical hidden shape. This is not a problem if the 

object is t o  model the available data and the object in consideration is indeed symmetric 

in superquadric sense. In fact, this only predicts the hidden side of the object and is the 

best guess given the single view. Additionally, it provides pointers for where to  look for 

additional information by predicting the existence of information. A secondary procedure 

can verify the prediction by manipulation or imaging the hidden side if possible, depending 

on the application. Generally speaking. self-occlusion is not a problem if the viewpoint 

is non-degenerate for the data, but in a complex scene objects can be in their general or 

degenerate viewing position (along a given viewing direction) and hence it is not possible 

to  make the general viewpoint assumption for all the parts in general. This means that 

the possibility of existence of degenerate views of parts has to  be taken into account when 

analyzing the scene. The degeneracy of the view affects different kinds of objects differently. 

A box appears as just a plane, resulting in a flat "volumetric" model. A cylinder, on the 

other hand, poses such problem only if viewed head-on, in which case only the cross-section 

i~iforlnation is available. If the curved surface is visible, then the cross-section infornlation 

of a cylindrical object can be extracted from the surface curvature by the superquadrics. 
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Figure 7.1: Orientation of the  object coordinate system: The eigenvectors give a 

moment based estimation of the orientation (left). Orienting it along one of the surfaces is 

a, better estimate for the least-squares based optimization procedure (right). 

7.1.4 Orienting the  Initial Superquadric Model 

As a rule of thumb, the initial model (the ellipsoid) is oriented along the eigenvectors of the 

moment matrix, and the Z axis is aligned along the eigenvector with maximum eigenvalue 

(corresponding to  least axis of inertia). The model is sensitive to  the selection of the Z axis 

(asis along a3 dimension) in the object-centered coordinate system for cylindrical models, 

requiring that  cylinders curve only along the Z axis. In addition, it is helpful t o  orient the 

model as close t o  its final orientation as possible. Due to the least-squares-based recovery 

process. and the initial axis estimation using eigenvectors of the moment matrix (tvhich is 

biased due t o  the self-occlusion in single view data), the optimization procedure can get 

stucli a t  the local minima. Instead, if the model is oriented such that  i t  corresponds to one of 

the constituent surfaces (with the assumption that the orientation of any one of the surfaces 

is also the most likely final orientation), the recovery procedure exhibits quick convergence 

to the correct model2 (figure 7.1). We have empirically tested this heuristic and found it t o  

give coilsistently better solution than the uncorrected one. Since the initial guess is close 

to  the final orientation, the model convergence is also improved. The problem of selecting 

the Z-axis in case of curved surfaces is resolved by biquadric surfaces. Algorithm 7.1 gives 

the general approach for the orielltation of the object coordinate system with respect to a 

l<nown world coordinate system. 
p ~ - - ~ ~  - 

2\,\ie use t.he words "correct'! and "accept,able" based on the study of residuals, and not on our subjective 
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1. Compute eigenvectors and eigenvalues of the moment matrix for the 3-D points in 
world coordinate system. Orient the object centered system along the eigenvectors. 

2. If (single curved patch) 
then 

Align Z-axis along the axis with least coefficient in the standard form of the 
biqua,dric. 

else if (single planar patch) 

then Align Z-asis along the eigenvector with maximum eigenvalue. 

else /* cluster of patches */ 
Orient the object coordinate system in the same sense as the coordinate 
system of the largest patch in the cluster. If curved surfaces present then 
prefer that orientation (to correctly align the Z axis). 

Algorithm 7.1: Orientation and Z axis placement of the initial superquadric model. 

7.1.5 Surface Support for the Superquadric Data 

The volumetric segmentation procedure considers only those data  points that  have bi- 

quadric surface support. The support is exhibited by the inclusion of a point in one or 

more surface patches. The logic behind this requirement is that  if a data point cannot 

gather surface support then it can be excluded from the volumetric consideration as well. 

It  also has the desirable effect of leaving out the outliers (filtered by the iterative regression 

approach of biquadric recovery) that  can be distracting for the least-squares procedure for 

the superquadric recovery. 

7.2 The Strategy for Volumetric Segmentation 

A schematic diagram of our approach for volumetric segmentation is shown in figure 7.2. 

The surface and superquadric recovery modules are applied independently to  the range 

data. The surface segmentation is refined to obtain surface patches that  can be used by 

the volu~netric segmentation, and surface adjacency, edge-type, and surface orientation 

information are extracted from the standard form of the biquadrics. Surface segmentation 

is considered final in the sense of 24-D description. Residuals defined in the previous chapter 

are generated for the global superquadric model. 

The objective of the control module is t o  evaluate the global superquadric model and 
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I Preprocessing 
-- Uniform Scaling 

Surface Segmentation Superquadric Model 
* Biquadric Surface Fitting. * Model Recovered for 
* Search For Best Description. 
* Recover-and-select. 

Surface Description 

* Residual Analysis for Part Hypotheses. 
* Extrapolation (growth) of Part-models. 
* Negative Volurne/Concavity Description. 

I I 

CONTROL MODULE 

Figure 7.2: The Control Flow of the SUPERSEG system: An integrated approach 

for surface a.nd volullletric segmentation. 
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devise the appropriate strategy to  either segment the data  by hypothesizing part-models as 

indicated by the residuals, or terminate the procedure, or generate negative volume descrip- 

tions. The segmentation a t  surface level can be used to guide the volumetric segmentation, 

but when to rely on surface information, and what surface information to  use is not clear at  

a first glance. Depending on whether or not to  invoke surface information, there are three 

basic strategies: 

1. For every surface model one superquadric model is recovered. This strategy has 

been niost popular with researchers interested only in using superquadrics for final 

modeling of a segmented description arrived at by using techniques not involving the 

superqua.dric model. Thus the superquadric model may or may not be the right model 

for the segmented data.. This is the weakest strategy to  follow, but we will describe 

the a.dvantages of integra.ting i t  a.s part of a more complex stra.tegy. 

2. Segmenting the object at  concave discontinuities found during the segmentation, and 

recovering a superquadric 111odel for each convex component. This is not a general 

strategy, and will not always work since it assumes that  surface segmentation is final 

in volumetric sense as well, and groups of surfaces can be combined together to  form 

a volume. However, we want the control structure to identify the situations in rvl~ich 

it will work, so that  it can make use of the surface information to  derive the correct 

segmentation. 

3. By following a global to local approach, driven solely by residual analysis, and without 

the help of surface patches, it is possible to  generate part hypotheses a t  the s-under 

regions, place local superquadrics (part models) there, and let them grow (extrapolate) 

as the global model shrinks by discarding the points that  were underestimated by the 

earlier fit. 

The third strategy is the most general one. However, it is too slow and tends to generate 

more false hypotheses than if surface information was also taken into account. Crucial 

information that  surfaces provide is the existence of step edges and the concave surface 

nornlal discontinuities, as also the orientation of individual surface patches, which is of 

crucia.1 iillportance in orieilting the part (seed) superquadric models placed on s-under 

regions. We will first explain the three strategies as independent methods and then describe 

the integra.tion of their best features to obtain a general control structure. We will illustrate 

the results of following these strategies for the composite object in figure 7.3. 
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7.2.1 Strategy 1: One Superquadric Model for Every Bi-quadric Surface 

If the biquadric surface segmentation is complete a t  the superquadric level in the sense of 

l-to-1 correspondence between the biquadric and superquadric surfaces, then there is no 

more segmentation necessary at  the superquadric level. A superquadric model can then be 

recovered for each bi-quadric surface patch. Cases where this will work include: Curved 

surface patches where each patch provides enough information to  constrain the superquadric 

recovery. This is not a general strategy, as it does not allow convex combination across 

convex discontinuities, and hence admits a small class of objects. The other researchers using 

the superquadric modeling methods [Ferrie et al. 1989, Pentland 1987b, Darrell e t  al. 1990, 

Terzopoulos and Metexas 19901 have made the assumptioll that  a l-to-1 correspondence 

exists between the surface descriptiolls and superquadric models and thus are not able to  

handle volumetric parts (like boxes) with convex discontinuities. 

The result of fitting one model for every surface to  the composite object gives an  unre- 

alistic looking description shown in figure 7.3 (bottom left). The description for the NIST 

object is shown in figure 7.4. However, this strategy can be used by the general segmentation 

procedure for the following purposes: 

Some of the planar patches are described by the biquadric recovery procedure as 

second-order polynomials. This can be due to  the distortion of data or noise in a tilted 

plana,r surface. Planar surfaces require different consideration than curved surfa,ces, 

and hellce it is necessa,ry to  be confident about the fact that  a surface is second-order 

or p1ana.r. The stra.tegy-1 provides an unambiguous planarity check by computing the 

dimensions of the data in the surface domain by following the superquadric fitting 

procedure. This a,pproach is similar to the approach based on computing eigenvectors 

of the rnornent matrix for planarity check [Hoffman and Jain 19871, but performs 

better because it also gives an estimate of the size and shape of the surface to  make a 

decision &out the planarity of the patch. For this test, we keep the Z-axis d o n g  the 

shortest axis (along the axis of maximum inertia). Thus, if the as dimension of the 

object is sillall then it can concluded that the patch is globally planar. The surfaces 

laheled 1,3, and 4 in the composite object (figure 7.3) result in flat superqua,dric 

models, while the curved surface gives a box-like model. 

2. By fitting a, superqua.dric to  every surfa.ce, we get an estimation of the global orients.- 

tion of the pa.tch in 3-D. This iilfor~natio~l is not present in the biquadric parameters 

because the Z-axis is fised for biqua.dric patches. The surface orientation information 
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Figure '7.3: The composite object: Top: Range image, bi-qua.dric seed regions. 1)i- 

qua.dric segmentation. Center: The  global model and its Z-residual map. Bottom: Left: 

Result of strategy 1: One superquadric model for every surface. Right: Result of strategy 

3: Sl1rinl;ing the global model. 
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ca.n be used in orienting the initial estimates of superquadrics hypothesized by the 

control module if the surface is included in pa.rt or completely by the hypothesized 

model, as explained earlier a.nd shown in figure 7.1. 

3. Surfaces patches can also provide starting da ta  regions for growing or extrapolating 

the superquadric models. Although, extending the surface patches in this manner 

will not work in general because the patch may not correspond t o  any superquadric 

crossection . 

4. Recovering a superqnadric model for every surface gives an intermediate description. 

1vhic11 is final in surface sense but not in the sense of the optimal volumetric descrip- 

tion. 

The prilnary reason t11a.t we do not consider this description as the final description, even 

for tlle pa.tches tha t  have superquadric models a t  surface level (for example the composite 

object), is tha t  i t  does not maximize the positive volume of the data. The  box i n  the 

con~posite object is better represented a.s one volume rather than two "flat" volumes. Thus, 

the control structure enforces t,he minimum volume constraint for a given set of points (in 

the model recovery formula,tion), but it  aims t o  maximize the positive volume by extending 

the model as  much as possible without crea.ting negative volumes. 

7.2.2 Strategy 2: Grouping Convex Surfaces 

A more sophistica.ted strategy will allow the models to  combine surfaces along convex dis- 

continuit.ies, t,hereby allowing a scenario where individual surfaces need t o  be grouped to  

get a volumetric fitt,ing (a.s in tlle exa.mple of the composite object). If the grouping of 

surfa.ces is suf6cient t o  form the volumetric model, then segmentation of surfaces is not 

necessa.ry. But  this is not t rue in general, because the surface patches may need further 

segmenta.tion for a volume description, for example, an L-shaped object needs the surface 

with t.he L-shape to broken into a t  lea,st two parts. Therefore, a more elaborate strategy is 

needetl tl1a.t will recognize the  possibility of further surface segmentation, and a t  the same 

t i ~ n e  use tlle convexity informa.tion if possible. The  composite object can be completely 

segrnentetl by grouping the convex connected components together, as shown in figure 7.5. 
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Figure 7.4: The NIST object: One superquadric model for every surface: Left: 

Tlle hi-quadric surface segmentation. Right: The  corresponding superquadric motlels for 

individual surfaces. 

Figure 7.5: The composite object: Grouping convex surfaces together: The conca.ve 

etlge a t  tlie traversal join decomposes the object into a box and a cylinder. 
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7.2.3 Strategy 3: Global to Local Superquadric Fitting 

By follolving a global to local approach, driven solely by residual analysis, i t  is possible to  

genera.te part liypot,lieses a t  the s-under regions, place local superquadrics there, and let 

them grow (estrapolate) as the global model shrinks by discarding the points tha t  were 

underestimatecl I>y t,he earlier fit. No surface information is assumed to  be available. 

The stra.tegy is illustrated for tlie composite object in figure 7.6 where the global model 

(unta.pered), begins to  discard the underestimated points on the cylinder (corresponding to 

OU-region 41) .  We will 1a.ter describe a. procedure for selecting the starting OU-regions. 

The global model shrinks iteratively as the local model on the cylinder accepts the points 

rejected by the global model. When the global model converges to  the box shape, it has 

no s-under residuals to discard in the direction of tlie local model, so it  stops shrinking 

a.nd the local model stops growing. Note t11a.t residuals change drastically as the model 

begins to a.pproa.cli tlle the cluster of points that  i t  can model without significant s-over 

or s-under residaa.ls. The final rnotlels look esa.ctly the same a.s those obtained using tlie 

conves-combination of the surface patches. The goodness-of-fit values a.nd the qualitative 

residua.1~ of tlie global and pa.rt models a.re shown in figure 7.7. Notice tha t  the qualitative 

residuals (mea.sured a's percenta.ge of total da ta  points) of the global model improve a.s the 

model converges to  the final acceptable description of a box. The residuals of the  part- 

111odel (corresponding to the cylinder) remain acceptable throughout the iterative process. 

However, it is important to note that the goodness-of-fit based on the volume considera.tions 

(whicll is the a.ct.ua1 optimization function) cannot be used to  evaluate models recovered on 

different da.ta. set,s. For emmple. the volume-GOF a.ctually increases in case of the pa.rt- 

model (figure 7.S) because of the increase in the volume and not due t o  increase in tlie value 

of the inside-outside function (the surfa.ce constraint). Thus, our quantitative evaluation 

CI-it,esia considers the global goodness-of-fit without tlie volume factor (equation 5.10 instea.d 

of equa.t.ion 5.9). 

This strategy is general in application and fits in our global t o  local approach to the 

volunletric segnlentation. In addition, it  can use the surface information effectively by re- 

jecting false liypotlieses early in the segmentation process. We are now ready t o  present 

our general control structure for volumetric segmentation. We will now present our inte- 

grated approach, colnbi~ling the elements of strategies 1, 2 and 3 to give an efficient control 

structure that  systematically generates volumetric descriptions. 
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Figure 7.G: T h e  composite object: Global to local model growing and shrinking: 

Top: Shrinking the global model and the corresponding residuals; Bottom: Growing the 

local model and the corresponding residuals. 
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COf or global modcl 

GOFX 10-3 

COF af part model 
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Reslduak of part model 
% points 
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Figul-e 7.7: T h e  colmposite object: Residuals of strategy 3: Top: For the 7 iteratioils 

of t , l~c  global model. The  goodness-of-fit values (left), and the residuals of the global fit as  

percentage of da.ta. points. Bottom: For the G iterations of the part-model corresponding to 

the cylinder. The  goodness-of-fit values (left), and the residuals of the  model. 
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Volume COF of global model 
Volume GOF x lo3 

Volume COF of part model 
Volume GOF 

Figure 7.8: The composite object: Volume-GOFs for strategy 3: Top: 7 iterations 

of the global model. Bottom: G iterations of the part model. The Volume GOF of the part 

lllodel increases as the lllodel grows in size, while the non-volume GOF (figure 7.7 (left)) 

effectively tfccreases. For this reason, the volume factor is ignored during evaluatiol~ of the 

111odels and only the non-volume GOF is used. 
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7.3 General Strategy: Integrating the Three Strategies 

As noted earlier, some of the surfaces require further segmentation to  conform to any 

superquadric model in a combination of surface patches. This is the most difficult scenario 

and the one we focus most of our attention on. But at the same time, we don't want to 

ignore the possibility of ca.ses 1 and 2, which simplify the volumetric description for simpler 

objects. Therefore, our strategy is to control the flow of the segmentation in such a way 

t11a.t the ea.sier st,ra,tegies can be identified early on, but not become a significant overhead 

if the object turns out t o  be more complex. 

The global strategy beginning with the biquadric segmentation is outlined in the algo- 

rithm 7.2. Before describing our approach let us introduce the hierarchical structure of the 

superquadric model representation in the control module. In Figure 7.9, the global model 

for tlze complete data set is GO, and [GI  ... Gn] represent the evolution of the global model as 

i t  is refined by the global-to-local process. The first refinement gives G1 with 1 part-models, 

P10..P10, describing clusters of data  taken away from GO. Thus, Pi0 models a.re stored 

a.s children of G1  and are inherited by all the subsequent refinements of G I .  The global 

model either terminates as one model, or can break into more global models [Gnl  ... Gnp] as 

dictated by the dynamic connected-component analysis. This is the reason, Residual ad- 

ja.cency graphs are needed although Surface graphs also represent data connectivity. Each 

of the global models then behaves just like GO, but inherits all the children of its previous 

iterations. The children are likewise represented as a chain of evolution from P I 0  to P l m .  

A child model can also become a global model if further segmentation becomes necessary 

for the data  in its domain. Thus, the representation is recursive by definition, reflecting the 

control flow of the procedure which is recursive in its global to  local approach. 

The control structure branches out t o  the appropriate strategy depending on the relative 

amouilt of each t,ype of residual. Algorithm 7.2 shows all the cases that  can exist after 

the residual analysis. Ea.ch of these cases indicate the type of data being modeled, and 

tlze a.ppropria.te strategies ca.n be invoked. For example, if only surface overestimations 

(s-over) are t,he significant residuals in the Z-residual map, then the underlying data is 

concave and requires negative volume descriptions. Flat objects result in significant surface 

underestinlations. However, if a flat object has to  broken into parts, it will also have contour 

overest,ima.tions along the Z direction. 

The most general case is when surface underestimations (s-under) exist along with other 

residuals. The algorithin for the general case is outlined in algorithm 7.3. The two most 
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1. Recover bi-quadric models for the range data  using the recover-and-select paradigm 
(Algorithm 3.1). 

2. Recover global superquadric model (SG) for the data  (Algorithm 5.1). 

3. Recover superqua.dric models for each bi-quadric surface. 

4. Analyze (SG) for the Z-residuals and perform connected component analysis of the 
OU-regions. 

5 ,  if(~llultiple clusters) 
t h e n  foreach (cluster i) 

Determine orientation. (Algorithm 7.1). 

Recover global supercluadric S b  

goto step 4. 

e lse  /* single cluster */ 

I f  (Fit  == OICAY) 
output current Sc 

e l se  if (fit == SU) /* s-under regions exist */ 
Provide for flat object during the general analysis. 

e lse  if (fit == CO) / *  c-over regions exist */  
Invoke contour constraint. 

e l se  if (fit == SO) /* s-over regions exist */ 
4nalyze for negative volume. 

e l se  if (fit == GO-SO) /* c-over and s-over regions exist */ 
Invisible side of superquadric modeling data. 

e l se  if (fit == SO-SU) /* s-over and s-under regions exist */ 
Object with surface details. Do general analysis. 

e lse  if (fit == SU-CO) / *  s-under and c-over regions exist * /  
Do general analysis of underestimated regions. 

e l se  if (fit == SU-SO-GO) / *  s-under, s-over, and c-over regions esist */ 
Do general analysis of underestimated regions. 

6. Done with volumetric segmentation. 

Algorithm 7.2: The control flow for volumetric segmentation. 
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1. Global model is SG and its children are [Spl . . . Spn]. 

2. Grow the already existing active children into s-under regions of SG. If a child is 
done, lllarli i t  as inactive. 

3. Find new children of SG, by taking away points from SG, in the s-under regions in 
the same coordina.te direction as the already existing children. 

4. Refit SG on the new data  set. 

5. C:o to  step 3 of the control flow algorithm. 

Algorithln 7.3: General Analysis when s-under regions exist. 

inlportant aspects of the control procedure in algorithm 7.3 are selection of data  clusters to 

start part-models, and growing the models placed in those clusters in a controlled manner. 

We now discuss these issues in detail. 

7.3.1 Selection of Part-Models 

s-under regions correspollding to the underestimate points are the indication of concavi- 

ties or part-structure in the global cluster of data. They protrude from the global model, 

suggesting the esistellce of a separate part, part of which is underestimated due t o  global 

averaging by the minimizatio~l procedure. Unfortunately, since the global model tends to  

average out residual errors, these regions can be odd-shaped and can be elongated in one 

direction. or surround the object conlpletely (as in flat objects). We want to start the part- 

models at  regions that constrain the inodel at  least in two dimensions and allow a good 

approsinlation of the orientation of the model by extracting it from the orientation of the 

constituent surfaces. 

For this purpose, the s a n d e r  regions are positioned in the object-coordinate system 

of the parent lnodel in such a way that  the region extremities are known in terms of the 

parent model. Thus, if a regions estends beyond an asis completely, like the region 4 1  for 

the composite object in figure 7.3, and its size is large enough t o  place a superquadric model. 

then it is selected as a part-model. Additionally, the direction (which is negative Z-asis for 

the colllposite object) in which the residual lies is also stored, such that  all the residuals in 

that  direction are collsidered as part-models. This has the desirable effect of removing data 

fro111 the parent model only in one direction, thereby letting the model shrink in a stable 
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Global model 

a Local model 

---+ Next Model 

Disconnected Components 

- -b Children of Global Model 

Figure 7.9: The hierarchical superquadric representation and recovery structure 

manner. La.ter, when the residuals in a particular direction do  not exist any more (due to  

the current global shape), other direction of shrinking is chosen following the same method. 

This strategy can be easily refined to  include surface information in deciding which 

s-under regions are best starting points. For the composite object, the surface 1 is com- 

pletely underestimated by the global model and the curved surface is partly included, 

thereby preferring the portions of the s-under region due t o  the cylinder to  the region 

formed due t o  the box. Other considerations include size and location of the regions, a i d  

the types of surfaces they underestimate. 

7.3.2 Growing or Extrapolating the Part-Models 

The part-models placed a t  the s-under regions are coilstrained only along the direction they 

have data. The directions (with respect t o  the part-model's coordinate system) along which 

the model is not constrained are the prime candidates for extrapolation of the model. Thus 

a model can grow only if i t  is not constrained in the direction of the available data.  which 

is the case with the global-local segmentation approach. The extrapolation has the effect 

of changing the cross-section of the model (the a1 and a2 dimensions) and the lengtll ( ~ 3 )  
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of the model. Either of the shape parameter for a box shaped object will not change, while 

both or one of them will change for a curved object. But if a curved surface is present, then 

the surface segmentation will result in a curved patch and the local model can be placed 

on the entire curved patch rather than a part of it .  Thus, the real issue is in growing of 

part-models having planar patches. The question is, how to  extrapolate a model given an 

initial set of data,  initial orientation and the neighboring unclaimed data? 

Superquadric Cross-section 

Before describing the possible extrapolation strategies, it is instructive to  study the XY 

cross-section of superquadrics. Given a superquadric model described by equation 5.2, the 

cross-section a t  z = d is given by : 

The cross-section is a super-ellipse (left side of the equation), starting a t  z = 0, and 

disappearing a t  z = as. ~2 determines the shape of the super-ellipse. Note that the cross- 

section changes non-linearly along the Z-axis, and it always terminates. Hence, the typical 

generalized-cylinder based methods assuming linear non-terminating cross-section are not 

useful here. For EI  = 1, the variation in the area of the cross-section is maximum as z 

progresses from 0 to  a3. At the other extreme, for = 0.1, the cross-section remains 

constant (-v 1) for almost the entire length of the model, dropping to  zero for values very 

close t,o r = as.  Thus, the objects like cylinders and boxes, for which the cross-section does 

not vanish at any point, are modeled with = 0.1; while the curved objects have values of 

E I  close to  1. 

In the contest of model extrapolation, the growth in the length of the model (along 

Z-axis), is a function of €1 and a3, while changing the cross-section at given value of Z 

depends on ~ 2 ,  a1 , and az. 

Growing the part-models 

One approach is to check the neighborhood connectivity, and slowly increment the model 

domain by constantly evaluating the refined model. In general, all the parameters (including 

translation and orientation) are allowed to change, though at  times it may be necessary to 

fix some of the parameters. If changes result in an  increased error or in a model that  is not 

acceptable, then the previous model is considered final and a new model is started at  the 
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underestimated points. However, this approach has a problem that it extends the model 

equally in all directions, which may not work in general. 

A more controlled method would extrapolate the model only in one dimension and 

ignore data altogether in other directions. By direction, we mean the six axes directions 

of the object centered coordinate system. We can divide the problem into extrapolating 

along the length of the model (Z-axis) or the cross-section of the model. For box shaped 

objects ( E ~  < 0.5), the growth along a particular direction is possible by simply observing 

the coordinates of the potential data point and comparing it with the dimensions of the 

part-model. This has the effect of extending the model along a desired dimension only 

and ignoring the rest. The model is thus grown along only one dimension at  a time and 

constantly evaluated. Notice that the model grows only if there are unclaimed data points 

along that dimension and including those points does not conflict with the points already 

accepted by model. We will show results of this approach in the next chapter. The method 

can handle tapering deformation but not global bending, due to the ambiguities inherent 

in bent models. 

Following the above considerations, the control structure recursively shrinks and grows 

global and part models respectively, and terminates individual global models when their 

fit is acceptable. The global models shrink till they converge on a part or disappear after 

the data is completely accounted for. Part-models grow for as long as they satisfy the 

acceptance criteria. In the next chapter we present detailed results of applying the general 

control structure on complex objects, and discuss the salient aspects of our segmentation 

schema. 

7.4 Chapter Summary 

We now have a general control structure that identifies various possibilities for segmentation 

and guides the segmentation procedure accordingly. We discussed the issues relating to 

volu~rietric segmentation of 24-D data, devised efficient solutions for overcoming the problem 

of model extrapolation, which is difficult to  perform for an object-centered model. The role 

of surfa.ce segmentation was discussed, and the information derived from biquadrics was 

fully incorporated in the control structure. 
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Experiment a1 Results 

We now have a systematic procedure for the suiface and volumetric segmentation of dense 

range data. To test the SUPERSEG system thoroughly and to  highlight its strengths and 

weaknesses, we designed a set of experiments comprising of objects of varying complexities. 

We will begin with discussing the scope of the object classes that  can handled by the system 

and then present the results for objects representing each one of the categories. 

8.1 Test Cases: Complexity and Scope of the Paradigm 

Objects in the real world are of varying complexities and present most demanding require- 

ments on a general segmentation procedure which has no knowledge of the object domain or 

domain properties. The complete scenario can be divided into different classes as shown in 

figure 8.1. Notice that the division reflects the control flow of the volumetric segmentation 

system. Thus, the control flow maps favorably to  the complexity of the input and is able 

t o  systematically analyze i t .  

The simplest case is that of isolated objects on the given background depth, with each 

object corresponding to  a superquadric model. In general, the objects can be of varying 

complexity from single part to multiple part objects. Single part objects can again either 

be superquadric-modelable or not. Same is true at part-level for the complex objects. The 

part arrangement and levels of parts add to  the complexity of the objects. Our objective 

in this chapter is t o  test the robustness of the paradigm by running an implementa.tion of 

the SUPERSEG system on range images scanned with the GRASP lab structured lighting 

range scanner (spatial resolution = l m m  and depth resolution = 1.5mm). 

127 
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parts Concavities 

Figure 8.1: The hierarchy of test cases: The complexity and scope of the paradigm are 

representative of the control flow of the system. 



8.2 Examples 

We first present the case of L-shaped objects with varying relative sizes of parts to  demon- 

strate the robustness of the system. The two examples of bent objects demonstra.te that 

the part-description capability of the system is tied to the acceptance criteria which directly 

evaluates all the recovered models. The coffee-mug is an object with a hole and a. cavity, 

along with concave and convex surfaces. A negative volume description is generated for the 

body of the mug. The NIST object is a machined object with holes, and planar and curved 

surfaces. The wrench is an example of an object with multiple parts, a.nd some of its pa.rts 

are in a degenerate viewing position. The scene3 has multiple objects (clusters) in the scene 

a.nd shows the segmentation using independent global models. 

Representation of Results: The input data is shown as a gray-level image with gray 

values corresponding to  the range values along the viewing (Z) direction. Thus, the points 

closer to  the camera appear brighter. Since the objects are scanned along Z, this repre- 

sentation shows all the data, that is available to  the segmentation modules. In addition, 

a 3-dimensional perspective plot is also generated for every object. Tlie OU regions (the 

residual maps) are shown for the intermediate and final descriptions, where appropriate. 

The superquadric models are displayed in a coordinate system different from the ima.ge 

coordinate system to  get a better viewing angle. So their orientation does not directly 

correspond with the orientation of the objects in the image coordinate system. The models 

are shown on the entire data set to  highlight the segmentation. 

The POSTSCRIPT display of surface segmentation and the residuals show a pixel-wide 

gap between adjacent non-overlapping regions. The gap merely illustrates that the two 

regions are separate (no overlapping domain) and that they actually extend eql~ally to 

cover the ga.p completely. However, no gap is shown between the adjacent seed regions. 

The following legend is followed throughout this chapter for the display of tlie residuals: 

Surface underestimation 

Exact description 

Contour overestimation 

Occluding region overestimation 



130 8. Experimen ta.1 Results 

8.2.1 L shaped Objects 

We show tlle results for a continuum of L-shaped objects of varying sizes and scale. The 

surface segmentation into planar patches is not final for these examples, thereby requiring 

the control module to reject the convex-combination hypothesis, and perform controlled 

growing of the part models to  achieve the final segmentation. 

L1-shape: Although tlie surfaces form convex edges, the surface segmenta.tion into three 

parts caniiot be coiiibiiied in coiives sense due to the shape of surface 3 (figure 8.2), wliicli 

requires further segmentation. The residuals of the global model contain significant regions 

of c-over, exac t ,  s-under, and s-over regions. Tlie segmentation starts witli the biggest 

s-under region lying completely outside the model along the Z-axis. 

The two iterations leading to a.n acceptable segmentation are shown in figure 8.3. The 

s-under region (#  4 in figure 8.2) of the residual of the global model is selected for placing 

the part-model (also called the local model), as shown in figure 8.3(c). The global model's 

second iteration is shown in (a) ,  which allows the local model to grow into tlie points in the 

new s-under ( #  3 in (a))  region. Tlie grown model is shown in (d). The residuals indica.te 

t1ia.t tlie local model describes data. very well and has contour overestimation due to the 

missing data  and an acceptable occludiiig region due to the viewing direction. The global 

models terinina,tes a.t third iteration to give the model shown in (b). This has the effect of 

terminating the local model as well. 

L2-shape: Similar processing for the L2-shape gives two volumetric parts (figure 8.4), 

witli the global model converging to  tlie bigger part. Notice that the surface segnientation 

brea.1is one of the planar pa.tc1ies into smaller regions, which could be distracting to a, control 

st,ruct,ure completely dependent on the surface information. 

L3-shape: Tlie part-model starts growing a.t the smaller pa.rt, but due to the noise on 

the fa.ce consisting of surfa.ces 4 and 5, the part-model stops growing after first iteration. 

A second part-model is initiated to  model the s-under region by the recursive structure of 

the control module. 

L4-shape: Even wit11 an oversized illail1 part of the L-shape, a part-model is recovered 

for tlie snlaller pa.rt, while the global model converges to the bigger pa.rt. 



Figure 8.2: T h e  L 1-shape:Top: Range image, 3-D plot, hi-quadric seeds, a n d  surface 

segmentation; Bottom: the global model, its Z-residuals, and volumetric segmentation. 
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Figure 8.3: The L1-shape: Voluinetric segmentation:(a) & (b) The first and final 

iterations of the global model. (c) The part (local) model starts a t  the s-under region (#  
4 of global residual, figure 8.2). (d) During the second iteration, the pa.rt model continues 

to  grow into the s-under region (# 3 in (a)) to form the final part model. The bottom row 

shows the residuals of the corresponding superquadric models. The residuals of the final 

part-model consist of exact (#  17), c-over (# 19), and occ-ok (# 30) regions. 
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Figure 8.4: The L2-shape: Top: Range Image, 3-D plot, bi-quadric seccls, bi-qua.clric 

segmenta.tion. Center: Global fit, Z-residuals of the global fit, and Bottom: Refillet1 global 

model, grown local model, and the final volumetric description. 
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Figure 8.5: The L3-shape: Top: Range Image, 3-D plot, bi-quadric seeds, bi-quadric 

segmenta,tion. Center: Global fit, Z-residuals of the global fit, and Bottom: Refined global 

rnodel, the two pa.rt models, a,nd the final volumetric description. 



Figure 8.G: The L4-shape: Top: Range Image, 3-D plot, bi-quadric seeds, bi-quadric 

segmenta.tion. Center: Global fit, 2-residuals of the global fit, and Bottom: R.efined global 

model, grown local model, and volumetric description. 
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8.2.2 Bent Objects 

Results are presented for two bent objects, with Bent2 object bending more than Bent l .  

Bentl object: T h e  bi-qua.dric segmentation gives a piecewise curved description (surfaces 

2 a.nd 4)  of tlze curved surface (figure 8.7, top right). Surfaces 1 and 3 are planar. Clearly, 

a convex combina.tion of patches is not sufficient (because surface 3 needs t o  be segmented 

further in the  volun~etric sense), and the general global-to-local strategy is required. T h e  

presence of significant amount of residuals indicates the need for segmentation. 

Beginning with a global model (shown in figure 8.7), the s-under region (# 3) is selected 

as  the domain for the part-model, which grows (shown in figure 8.8), while the global model 

shrinlis in 4 iterations t o  an accepta.ble model. The  a,ccepta.nce criterion usetl was t.11a.t. 

a.t 1ea.st 80% of the points should be correctly described in the Z-residual map, with the 

t,olerance along the 2-direction being 3 pixels. Part  model is acceptable during all iterations, 

while tlze global model strives for a.n acceptable description. After four iterations of the 

global   nod el shrinking and part model growing, the procedure terminates when the global 

model becomes a.cceptable. 

Figure 8.9 displays the variation of goodness-of-fit values and the residuals of the  global 

a,nd part models during the segmentation procedure. The  qualitative residuals a,re given 

as percentage of data. points rela.tive to  the given data.  .4t the end of the fourtli itera.tion, 

tlie global rilodel has SO% of points falling in exact ca.tegory, which terminates the  fur- 

ther shrinking of the global model. During the iterations, the percentage of d a t a  points 

contributing to  residuals decreases, wit11 the lowest values after the fourth iteration. T h e  

GOF (the fit error) for the part model increases, but  remains a t  an acceptable level. Tlle 

residuals of the  par t  model remain within the acceptance criteria throughout tlie itera.tive 

process (bottom right in figure 8.9), with more than  90% of points lying on the model a t  

the end of the  final iteration. 



Figure 8.7: The Bent1 shape: Top: Range image, its 3-D plot, bi-quadric seed ~.cgions, 

and the bi-quadric segmentation. Bottom: The global model, its Z-residuals and t l ~ c  fi11a1 

volumetric tlescription. 
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Iteration 1 Iteration 2 Iteration 3 Iteration 4 

Figure S.S: The Bent1 shape: Volumetric segmentation: The four iterations taken by 

the system to satisfy the acceptance criteria. Each column shows the volumetric description, 

residuals of the global model, and the residuals of the part model. The part model grows 

by a.ccepting data in the s-under regions only beyond the extent of the global model along 

one of the coordinate direction, and into the complete region. 
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Bent2 object: The Bent2 object bends more than the Bentl object. The object and 

the final results are shown in (figure 8.10). Bi-quadric segmentation describes the curved 

surfa.ce as a. piecewise combination of three curved patches (2, 4, and 5 ) .  As in the case 

of Bentl object, the convex combination hypothesis is rejected and the residual-guided 

global-to-local analysis of the scene is performed by the control module. The part model, 

placed on s-under region 12 grows into a model which reaches the limit of the acceptance 

criteria. and can a.ccept no more points. Since the global model is not final a t  t11a.t point, a. 

new part-model is started which terminates when the global model satisfies the acceptance 

criteria. 

These examples demonstrate the capability of the control structure to  generate piece- 

wise descriptions of the objects which do not have a model in the superquadric vocabulary. 

Since the procedure is guided by acceptance criteria (which in turn measures the deviation 

hetween the model a.nd data. in terms of tolerances), it is possible to  obtain a. scale-spa.ce of 

volumetric descriptions by simply rela.xing the tolerances or by ma.king them stricter. Thus, 

a, stricter Z-tolera,nce will result in more parts for the Bent:! object, while a relased criteria 

will accept a. description with fewer pasts. 
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Figure 8.10: The Bent2 shape: Top: Range ima.ge, its 3-D plot, bi-quadric seed regions, 

and bi-quadric segmentation. Bottom: The global model, its Z-residuals and the final 

volumetric tlescription consisting of three models 
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8.2.3 The Coffee Mug 

The coffee mug is an example of a,n object with a cavity and a hole, and both convex 

and concave surfaces. The biquadric segmentation (figure 8.11) gives one surface each for 

the convex and concave patches along wit11 the orientation information which is used to 

orient the local models. The convex part of the main body is separa.ted as a convex elliptic 

paraboloid. 

The surface description isolates the concave piece (surface 1) from the remainder of the 

data  due to the presence of the step edge between them. The connected-component analysis 

of the Z-residuals therefore starts two global models a t  each component (figure 8.12). The 

conca.ve part is modeled by a cylinder which is accepted as a negative cylinder. The main 

body of the cup, along with the handle constitute the remaining data, which is modeled by 

a bos. The box is further decomposed into the convex part, due to the presence of concave 

ramp edges between the handle and the convex part. The cylindrical description of the 

conves part is accepted, so are the surface level superquadrics for the handle decomposing 

it into 4 parts. The Z-residuals of the conca.ve part of the cup consist of the s-over (# 27) 

and occ-ok (#31) regions. This information coupled with the bi-quadric analysis establishes 

the fa.c.t that a negative volume description is needed. 
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Figure 8.11: T h e  Coffee Mug: Top: R.ange image and its 3-D plot; Center: biclua.dric 

seed regions, and surface segmentation; Bottom: The global model and its 2-residual ma.p. 
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Figure 8.12: The coffee mug: Top: Description after the first component separation (left), 

and the final description (right). Center: The Z-residual regions of the concave and conves 

parts of the cup. Bottom: final descriptions of the main body of the cup and the handle. 
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8.2.4 Scene3: Multiple Clusters 

Scene3 \vas formed by merging three views of the scene, and is noisier than other images 

due to the correspondence problem in our experimental setup. The scene consists of three 

clusters t1ia.t can be trivially segmented from the background. 

The cluster formed by the box and the cylinder is separated into two bi-qua.dric patchcs 

(9 and 12 in figure 8.14). The two patches have a step edge between them, and hence are 

spatially separated. Since the Z-residual analysis is performed on the data with surfa.ce 

support only, the patches 9 and 12 appear as separate clusters, resulting in a total of 4 

independent data clusters as evident in the residual adjacency graph shown in figure 8.13. 

The left pa.rt of the phone hand-set is segmented into four patches (8, 10, 11, ant1 13) 

instead of two, because of the correspondence problem between two views fornling to tl1a.t 

part. The right part is correctly segmented into two surface patches (2 and 3). The handle 

of the phone is segmented into a planar patch (4) and an overlapping second-order patch (5). 

Connected component analysis of the 2-residual map results in four clusters, wllicll 

define individual connected components described by individual global models in the nest 

itemtion as sho\vn in figure 8.15 (a). The description for the two boxes and the cylindrica.1 

object is final, while the phone requires further segmentation. The axis of the cylii~drica.l 

object is correctly oriented using the bi-quadric information, even though the dia~nct'er of 

the cylinder is greater than its height. The surface level segmentation of the curvet1 sor-fa.ccs 

on the phone (figure 8.14) forms convex clusters describing the two curved pa.rts and the 

handle of the phone, shown in figure 8.15 (b). 
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Surface Underenimation 

Contour OverestimaIion 

Surface Overestimation 

Figure 8.13: Residual adjacency graph (RAG) for Scene 3: The connected compo- 

nent allalysis gives four independent clusters for further processing. 
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Figure 8.14: Scene 3: Multiple clusters: Top: Ra.nge image, and its 3-D plot; Center: 

bi-qua.dric seed regions, and bi-quadric segmentation; Bottom: The global model and its 
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Figure S.15: Scene 3: Volumetric segmentation: (a) Models for individual clusters (first 

itera.tion). All the models except the plzo~le are final a t  this stage. (b)  Final description of 

the scene (second iteration). 
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The wrench shown in figure 8.16 has a definite part-structure, although the surface segmen- 

ta.tion is inadequa,te to capture it. In fact, the two surfaces also have considerable overlap 

(figure 8.16) due to the first-order surface smoothly merging into the curved ha.ndle of the 

wrench. In addition, the surface constituting the head of the wrench is viewed in such a' 

way that only its planar part is visible, with no information about the depth. Thus, the 

surface segmentation is of no help in obtaining the volumetric segmentation. 

Sta.rting with the global model, the SUPERSEG procedure places the part-models at. 

s-under regions labeled 12 and 13 (bottom row, figure 8.16), and begins to  shrink the 

global model. Tlie four iterations are shown in figure 8.17, where the head of the wrench is 

segmented into 3 parts, and neck is separated from the handle of the wrench. At the cntl of 

tlie first itemtion there are two active part models and a global model. The second iteration 

results in termimting the growth of t,lle two part models, and initiating a third pa.rt model 

to  complete the description of the head of the wrench. During the third iteration, a, part 

model is placed for the neck which terminates during the fourth iteration. The procedure 

terminates after the fourth iteration because of the global model (now describing the curved 

part of the handle) sa.tisfying the a.cceptance criteria. 

Figure 8.18 shows the plots of the qualitative residuals and the goodness-of-fit values 

(with and without the volume criterion), as also the size of global model during the four 

itera.ti0n.s. Tlie model reduces size along tlie Z dimension, which is expected since t,he 

residuals of the global model lie in t1ia.t direction. As the global model shrinks, tlie goodness- 

of-fit values drop (indicating a better fit), so do the qualitative residuals evaluating the fit 

as percentage of over/underestimated points. 
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Figure 8.16: The Wrench: Top: Range image and its 3-D plot. Center: Bi-quadric seed 

regions and bi-quadric segmentation. Bottom: Global model and its residuals. 
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Iteration 1 Iteration 2 

Iteration 3 Iteration 4 

Figure 8.17: The Wrench: Volumetric segmentation: Iterations 1 through 4, segment- 

ing the part-structure. Top: Iterations 1 and 2. Bottom: Iterations 3 and 4. 
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Figure 8.18: Wrench: Global model: Variation of parameters and residuals during 4 

itera.tions. Top: Size of the model, and qualitative residuals. Bottom: Volume-based error 

50.00 

45.00 

40.00 

35.00 

30.00 

25.00 

20.00 

15.00 

10.00 

5.00 

0.00 

-~chisq 

Iteralion 

of the fitting function, and the non-volume-based error. 

1.00 200 3.00 4.00 5.00 

- 
t- '. .. - ... - "*.. 

- '.. . . . . . . . . - . - . - . . -.._ ...___.._____..--.--a 

- 
- - 

- - 

- . . . . , . 
- ,.,-. '.. 
- -" '. .-----_____ ----__- - --- -------------. ------- - 
I I t I I Iteration 



152 8. Exwerimental Results 

8.2.6 The NIST Object 

The object (figure 8.20) has holes and a definite part structure. The bi-quadric surface 

description correctly segments the surfa.ce into planar patches (2, 4, 5, 6, and 7 )  and 

second-order patches (1  and 3). following the procedure described in chapter 4, the in- 

ternal edges (cl discontinuities) are localized and marked as convex or concave (figure 4.6), 

and the surface adjacency graph (sag) is constructed (figure 8.19). the approach for convex 

combina.tion will work for this object, but we show the results for the general approach. 

The global model shows substantial residuals, and starts the part segmentation by com- 

bining the base of the object in convex sense. here the control structure recognizes the 

conves compone~lt a,nd opts for the convex combination of the two patches ra.ther than 

going for the ela.borate model growing process. the global model now describes the da.t,a. 

corresponding to  the other two parts (top left in figure 8.21), resulting in two disconnected 

components in the Z-residuals. Thus, the global model bifurcates into two global models, 

aad the two conlpollents are individually processed to recover the part-models correspond- 

ing to the individual parts. This example shows how the control structure integrates surface 

information with the global-to-local surface approach and dynamically segments the da.ta 

clusters. The residuals for the parts show the need for nega.tive volume descriptions for the 

holes, which can be done by a secondary process. 

Concave edge 

Convex edge 

Figure 8.19: Surface adjacency graph (SAG) for the NIST object: The removal of 

conca.ve edges splits the graph into three connected components, corresponding to  the three 

pa.rts in tlle object. 
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Figure S.20: The NIST object: Top: The range image and its 3-D plot. Centcr: hi- 

quadric seed regions and the bi-quadric segmenta.tion. Bott.om: The global model ant1 its 

Z-residuals. 
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Figure 8.21: The NIST Object: Volumetric segmentation: Top: (left) Description 

after the first component separation, and (right.) the final description. Center: The Z- 

residual regions of the three parts of the object. Bottom: Final descriptions of the three 

pa.rts 
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8.3 Implementation Aspects 

The SUPERSEG system was implemented in a modular manner with the integration pack- 

age as the central core. The surface segmentation package and the global superquadric 

module recovery are individual packages while the integration module performs all the re- 

maining tasks. The system is composed of more than 15,000 lines of documented C code, 

and runs on SUNS and IBM 6000 machines, with an X display interface for real-time visu- 

alization, and a POSTSCRIPT interface for output generation. 

The range data  is obtained from a structured lighting scanner. The range images have 

considerable shadows due to the geometry of the scanner, and the depth inforlllation is 

noisy at  the step boundaries. Median filtering of data  along the step boundarieq is donc 

to  bring the noisy edge points to  collform to  the neighboring surfaces, nrithout loss of the 

spatial estent of the object. Median filtering works better than eroding the data along 

the step edges. The range image has different spatial resolution along X and Y ases. The 

image is scaled ulliformly along X and Y axes to lmmjpixel using lagrangian interpolation 

method. The depth resolutioll of the scanner is 1.5mm. 

8.3.1 Systenl Parameters 

The thresholds are sensor dependent, and reflect the effect of noise due to sensor nleasure- 

~ n e n t s  and quantization, and the tolerance of the deviation of a lllodel from the data. A11 

the values mere determined empirically. 

Surface Segmentation: 

1. Acceptable global chi-square error for placement of seeds = lmm2.  

2. Compatibility constraint, C = f 3 mm. 

3. Accepta.ble global chi-scjuare error of a patch = 3n1m2. 

4. If during a n  iteration. a lnodel does not grow at  least l%, or if a nlodel wl~ose ortlcr 

~ v a s  updated (say from 1 to 2)  does not grow at  least lo%, then the model growing is 

terminated. In the latter case, the order of the model is reverted back t o  the previous 

order. 

.5. h~lodel selection parameters: K1 = 1, K2 = 5, and K3 = 5. K2 and K3 are normal- 
ized with respect t o  K1. .4 value of 5 accepts small regions in the final description by 

nlaking them more cost effective than the pisel based description. 
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Superquadric Recovery and Segmentation: 

1. A/Iaximum number of iterations (m in Algorithm 5.1) for model recovery: 15. 

2. Tolerance for llleasuring deviatioll from model: 0.1 for the inside-outside function. 

and 3mm for the Z-residuals. 

3. Accept able non-volume goodness-of-fit = 0.1. 

4. Acceptance criteria for a superquadric model: At least 80% points exact and, less 

than 10% each of other residuals. 

8.4 Discussion 

Tlle results presented in this chapter demonstrate the various capabilities of the general 

volumetric segmentation method. The control procedure is able to adapt to  the complexity 

of the input and generate suitable descriptions. The procedure effectively integrates the 

global-to-local strategy of the volumetric segmentation with the descriptions obtained by the 

local-to-global clustering of the surface segmentation. The control module can be adapted 

to  prefer certain descriptions t o  other, as also to  give coarse or fine descriptions based on 

scale considerations, which determine tlze thresholds in the residual analysis. Since relative 

error ineasures are used for evaluation, the lnethod is not sensitive to the absolute differences 

in size. 

The descriptions are generated in object-centered coordinate systems with respect to  a 

known world coordinate system. The superquadric descriptions are hierarchical in nature, 

depicting the coarse-to-fine segmentation of data into convex volumes. As observed in the 

case of bent objects, the "scale" of the description is defined by tolerance in measuring the 

deviation of data  from thc model. Thus, the global model (for the entire data) provides 

the description a t  the coarsest scale. The first level of refinement involves satisfying tlle 

acceptance criteria ~vithin the specified tolerances. For example, for the same acceptance 

criteria. the description obtained for a tolerance o f f  3 mm in Z-residuals will be coarser than 

obtained for a tolerance of f 2 111111. A typical acceptance criteria may require that 

80% of the data should be accounted for by the model within the specified tolerance, and 

that  the model should not have contour overestimations of more than 20%. Special handling 

is needed for the parts that appear flat due to the degenerate viewing position, where a 

relaxed acceptance criteria is applied. The reason being that  the volumetric model, in tlle 

absence of the depth informatioll tends to  underestimate the data, resulting in significant 



s-under regions. For example, the head of the wrench is segmented into "volumes" even 

though the depth information is not available. This is possible because the system is able 

t o  recognize the fact that  the part being modeled is flat, and alter the acceptance criteria 

to  accommodate the part dimensionality. 

Bi-quadric description is considered final after refining the patches along the intersection 

curves. Bi-quadric surfaces can be further segmented by the volun~etric segmeiltation pro- 

cedure, as in  the case of L-shaped objects. Superquadric models are object-centered with 

known transformation from the world (image) coordinate system, as shown in figure 5.8. 

Bi-quadric nlodels are reduced t o  their standard form with known transformation from the 

world coordinate system. 

The superquadric models are scale, position, and orientation invariant as long a s  the 

viewpoint for the parts is not degenerate. They are not sensitive to occlusioil due to other 

parts if the available i~lfornlatioil can constraiil all the   nod el parameters. Curved bi-cluadric 

models, on the other hand. are sensitive to  orielltation since the Z-axis is fised along the 

viewing direction. Planar patches are invariant t o  orientation to  a great extent. except 

when the plane tilts significantly with respect to  the viewing direction. The least-squares 

method of ~ninimizing error along the viewing direction can result in a curved patch instead 

of a planar one. This is not a matter of concern for us since the planarity check mentiolled 

in chapter 7 corrects this problem. 

At the level of surfaces, planar patches are insellsitive to vie~vpoint changes. tvllile the 

piece-nise curved description can vary with the changes in the viewpoint. The variation at 

the vol~imetric level is due to  the inherent ambiguities in the definition of part-structnre 

using volumetric primitives. The volumetric segmentation is completely data-driven and 

does not have a priori knowledge about the objects or object domain. For this reason, 

segmented descriptions of an object viewed from different angles may differ in part-structure. 

However, the number of parts. and their relationships will still be qualitatively similar. For 

esample, an L-shaped object will be described as consisting of 2 parts, even thougll the 

individual parts may vary in quantitative details. U'hile this is undesirable if precise ol~jcct- 

recognition is the goal, sucli descriptions are adequate if the goal is qualitative descril~tion 

or classification of the object. These descriptions are also adequate for designing grasping 

strategies for object manipulation. and for navigation or path planning applications. The 

invariance demanded by object recognition tasks can be imposed by using the high-level 

knowledge (in the form object models) to  guide the segmentation of the object. At the very 

least, these descriptions can reduce the complexity of the search by narrolving doivll tlie 
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potential candidates during the database search. 

Due to the Z-depth (2$-D) nature of the range data, the volumetric models (which are 

3-D models) may not be fully coilstrained for curved objects. Superquadric models impose 

symmetry constraints, and predict data  on the hidden side that  satisfies the surface and 

volun~e constraint for the data on the visible side. This will result in a perceptually ac- 

ceptable bos-shaped description for two perpendicular planes, while an  elliptical cylinder 

may be obtained for a circular cylinder. Whaite and Ferrie [I9901 have studied this prob- 

lem of inherent lack of uniqueness in predicting unobserved data using volumetric models. 

They define an "ellipsoid of confidence", derived from the covariance matrix of the fitting 

procedure, within whicll a number of superquadric models fit the data equally well. Al- 

though their procedure does not conlillit a model, i t  still imposes the symmetry constraint 

to  predict the invisible data, which suggests the possible viewing di~ection to  millinlize the 

ambiguity. Model recovery can also be constrained by using the pll>sical constraints of sup- 

port and stability, as investigated in [Gupta et al. 1989bI. However, in cases where tllese 

constrailits cannot be imposed (either due to the formulation of the problenl or because 

of their unavailability), the former approach seems most plausible since i t  can guide the 

additional acquisition of data  in the spirit of active perception. 

In the next chapter we will summarize our approach and discuss the various applications 

where the structured descriptions generated by the program can prove to  be useful. 



Summary and Conclusions 

We developed a control structure for segmenting dense range data  of complex 3-D objects 

into their constituent parts in terms of surface and volumetric primitives. The procedure 

is conlpletely data-driven, ivith shape constraints imposed by the geometric models. The 

descriptions are recovered rvithout a priori domain knowledge or stored models. Bi-qu(idric 

models for surface representation and superquadric models for object-centered voluliletric 

representation are used t o  obtain a hierarchical shape description. 

The surface segmentation uses a novel approach of searching for the best piecewise 

description of the image in terms of bi-quadric ( z  = f(x, y)) models. It is used to  generate 

the region adjacency graphs, to  localize surface discontinuities, and to  derive glol~al shape 

properties like embedding of the surface in space, and the orientation of the standard form 

of the surface. A superquadric model is recovered for the entire data  set and resiclnals are 

computed t o  evaluate the fit. The goodness-of-fit value based on the inside-outside function, 

and the mean-squared distance of data  from the model provide quantitative evaluatiori of 

the model. The qualitative evaluation criteria check the local consistency of the model in 

the form of residual maps of overestimated and underestimated data  regions. 

The control structure invokes the models in a systematic manner, evaluates the inter- 

mediate descriptions, and integrates them t o  achieve final segmentation. Superquadric and 

bi-quadric models are recovered in parallel to  incorporate the best of the coarse-to-fine and 

fine to coarse segmentation strategies. The model evaluation criteria deternline tllc dil~lell- 

sionality of the scene, and decide whether to terminate the procedure, or selectively ref ne 

the segnlelltatioll by following a global-to-local part segmentation approach. The control 

module generates hypotheses about superquadric models a t  clusters of underestimated data 

and performs controlled extrapolation of the part-model by shrinking the global model. As 
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tlre global model slrrinks and the local models grow, they are evaluated and tested for 

termination or further segmentation. 

LT'e presented results on r e d  range images of scenes of varying complexity, including 

objects with occludillg parts, and scenes where surface segmentation is not sufficient to  

guide tlie volullletric segmentation. We analyzed the issue of segmentation of complex 

scenes thoroughlq- by studying the effect of missing data on volumetric model recovery, 

generating object-centered descriptions, and presenting a complete set of criteria for the 

evaluation of the superquadric models. 

MTe now discuss the applications of our approach in data  reduction, 3-D object recog- 

nition, geometric modeling, automatic model generation, object manipulation, and active 

vision. 

9.1 Applications and Future Directions 

The 1-olume and surface descriptionh generated by our approach have applications in various 

middle and high level vision tasks. 

The segmentation process can be viewed as a data reduction mechanism where symbols 

are attached to the raw data to obtain structured symbolic representations. Such descrip- 

tions can be used by high-level vision tasks like object recognition and classification, and 

database matching, which require canonical descriptions of the part-structure of an object. 

This dissertation dealt with the data-driven bottom-up approach to scene segmenta- 

tion. Our objective was to  study the utility of the geometric models in participating in 

the segmentation process in the absence of any domain knowledge. Thus, the segmentetl 

descriptions correspond to the geometric models and not necessarily to the notion of objects 

as they exist in the real world. Additionally, the descriptions may suffer from ambiguities 

and non-invariance to  the orientation of the objects. Clearly, domain knowledge in the form 

of a p i o r i  constraints and object models can be and should be incorporated to make the 

descriptions meaningful in the given context. The method has the possibility of incorpo- 

rating domain specific constraints in order to  make it prefer certain types of descriptions, 

and to resolve ambiguities in the part description. If object-models are available, they can 

constrain the parts to lie in a knoivn configuration, and bring in object-specific constraints. 

The procedure curreiltly uses dense sparse data to  exploit the neighborhood informa- 

tion provided by the Z-depth representation. A general method that uses sparse depth 

information obtained from reflectance images will tremendously broaden the scope of the 
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paradigm. 

The parametric descriptions have the advantage of compactly describing the shape, size, 

and the pose of the object, making them useful for object manipulation and path planning 

tasks. The descriptions have already been used to  segment objects in a cluttered scene, and 

generate grasping strategies. 

The analysis of 2 + - ~  data in terms of 3-D primitives also adds the possibility of supple- 

menting more information or integrating it as i t  becomes available in a temporal fashion. 

Thus, it is possible to  update the description, instead of computing it afresh. Additionally, 

superquadrics predict data by imposing symmetry constraints, which require additional 

data for the verification. 

The surface and volumetric descriptions form the basis of 3-D object models. It is 

possible to use the surface segmentation as a clustering mechanism for an  automatic model 

generation system or i t  can be further refined by an operator-assisted model gelleratioil 

system in the spirit of reverse engineering. The segmentation provided at  surface level into 

planar and curved patches has been shown to  reduce the complesity of model building 

process significantly. 

-4s mentioned earlier, shape models with local deformations offer better modeling ca- 

pabilities, but  complicate the already difficult problem of segmentation. The description 

generated by the SUPERSEG system can be used as the first approximation for such mod- 

els, which can then refine the segmentation by modeling the data  more closely than that  is 

possible by rigid models. 

9.2 Contributions of the Dissertation 

We developed a paradigm for shape description of single viewpoint range data,  clemonstrat- 

ing that  the issues of representation and segmentation are not separable. The part seg- 

illentation problem was fornlulated with the definition of the geometric primitives, which 

represent the parts. We proposed a fine-to-coarse surface segmentation strategy and a 

coarse-to-fine volume segmentation strategy, and a control structure that  integrates these 

descriptions i11 a systematic manner. 

A new paradigm for surface segmentation was developed which searches for the best 

description of image in terms of primitives by dynamically combining model recovery and 

model selection. The paradigm is general and has a variety of applications. The surface 

segmentation obtained from this was used t o  provide initial segmentation for the object 
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centered superquadric part-models. Tlle method automatically determines the dolnain of 

applicability, as also implicitly detects and labels the surface discontinuities. 

\We analyzed shape vocabulary and recovery methods for superquadrics. We provided 

a novel interpretation for the modified inside/outside function that allows us to  use it for 

superquadric model evaluation. The interpretation formulated as superquadric expansion 

and contraction also gives a close initial approximation for the procedure computing the 

Euclidean distance of a point from a superquadric model. We derived a closed-form solution 

for tracing the occluding contours of superquadrics. Additionally, we developed algorith~ns 

for tracing occluding contours of deformed superquadrics, for rendering superquadric model 

along a viewing direction, for computing and representing superquadric edges, etc. 

A complete set of criteria was developed to evaluate the superquadric models by com- 

paring it against the given data, and to guide the segmentation procedure. We developed 

a control structure that  recognizes the dimensionality of the scene and segments data  by 

recovering the relevant models on the appropriate pieces of data. We discussed the issues 

inrrolving segmentation of static scenes using volumetric models. The concept of global- 

to-local segmentation by growing the part models and shrinking the global models was 

introduced, and shown to be effective in extracting the part-structure. 



Linear Least Squares for Surface Fitting 

A linearly pararneterizable surface patch S ( r , a , x )  can be written as : 

The squared distance fullction from a data point g ( x )  to the surface S ( r ,  a, X) is given by : 

Let us take a topologically connected set of points V which is a subset of Z and define 

the sum of the squared deviation ( S S E )  of the points from the surface S(T, a, x) : 

Given a set of points D ,  the problem is to  find the order .r. of the model and the I>aranl- 

eters a ~vhich \\.ill minimize the SSE function x2(r ,  a , V ) .  Using least-squares regression we 

get : 

2  X 2 ( r , A , D )  = rnin x ( r , a , V )  
a€A 

(A.4)  

We use the standard technique for solving the General Linear Least Squares Problem. 

The solution is given by : 

where xT is the transpose of the nlatris X. The optimal vector A  is computed as : 
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f l ( ~ 1 )  . - -  fp(x1)  

(A.7) 
and f i ( x )  are the basis functions. The solution depends on the points in D. 

A.l  Solving the Least Squares Problem 

In the step 2 of the segnlelltatioll algorithm 3.1 we accept or reject seed regions based on a 

global coherence measure, ~vhicli is the global chi-square error of the first-order least squares 

fit. 

If the seed is a.ccepted we compute the initial estimates of parameters a(') by fitting the 

data  v(') in s( ' ) (T ,  a('), 'D (O) ) .  This is achieved by solving the normal equations: 

xTxa = xTY (A.9 

Here we describe an  efficient way for solving tlie normal equations [Seber 19771. 

Let us define the augmented inatris A. 

By sirnply applying Gaussian elimina.tion to the first p columns of the augnlented matrix 

A we obtain 

Since Va = d,  \vhere V is an upper triangular matrix, the elements of a can be found by 

back-substitution. The important observation is that the chi-square error can be obtained 

directly, 
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without computing the parameters a, thus reducing the computational complexity of the 

algorithnl ~vllen only the goodness-of-fit is required. 

In eacli iteration we update the model with new compatible points. This is simply 

acconiplished by updating the augmented matrix A and performing Gaussian eliilliiiatioil 

follo~ved by the back-substitution. 



Deriving the Standard Forms of 

Bi-quadrics 

The general form of a bi-quadric is given by: 

There are three types of curved bi-quadric patches, viz. elliptic paraboloid, hyperbolic 

paraboloid, and the elliptic cylinder, as shown in figure 4.3. Since every bi-quadric has a 

standard form without the cross-terms, it is possible to  transform the general form into the 

standard form and obtain the orientation information as a result. The standard forms of 

the three bi-quadric surfaces are given by: 

xL y L  
Elliptic Paraboloid: z = - + - 

an b'2 

x 2  Y 2  
Hyperbolic Paraboloid: z = - - - 

an be 
z2 

Parabolic Cylinder: z = - 
aJ2 (B.2) 

The transformation is accomplished by translating and orienting the patch to remove 

the linear and cross-multiple terms in the equation. Since we are interested in only the 

orientation of the surface, we will deal with only the second-order terms. The standard 

form of a bi-quadric surface is given by [Korn and Korn 1961, Hall et al. 19821: 

Equation B . l  can be represented in matrix form as 
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M7e want t.o diagonalize D so that the xy  term disappears, and remove the linear terllls 

to get: 

or 

jpflx - 2 = 0; (B.7) 

Tlle trallsfornlatio~l from one ortllonormal basis to  another call be perforlued 1)y 

x = PX or X = P-'x, (B-8) 

where P is a, linear trallsforrnatioll matrix, composed of rotation information of the form: 

encoding the rotation of z and y ases about the z-axis by the angle a. If P is the transitioll 

ma.tris from a basis F for a. finite dilllensional vector space, then P is iilvertible [Hall et al. 

19821, and P-' = pT. IVe have to find a matrix P that will diagonalize matrix D to fornl 

matrix D: 

P-'DP = D 

By substituting equa.tion B.S into equation B.7, we get 

( P - ~ x ) ~ D ( P - ~ ~ )  - = = 0. 

Since (p-'klT = x T p - l ,  we get 

~ ' p - ~ ~ I ) ( p - l ~ )  - ; = 0. 



LYhich gives 

Con~pariilg the quadratic forms of equations B.12 and B.7 gives, 

Therefore. P is an eigenvector matrix, specifying the rotation of the bi-quadric i n  the 

general form to reduce i t  t o  its standard form. Every bi-quadric has two principal planes 

and the directions of the nor~lials t o  the principal planes are directed along the eigenvectors 

associated nit11 matrix D. Thus, the column vectors of P specify the orientation of the 

standard bi-quadric with respect t o  the image coordinate system. 



APPENDIX C 

Superquadric Surface Normals 

Given a, s ~ ~ p e r q ~ i a d r i c  surface: 

a1 cosel ( q )  cose2 (w) 
- r  T 5 V 5 Z  

~ ( 7 ,  w )  = u2 cosE1 (7 )  sinc2 (w) (C .1 )  
- - T < W < T  

a3 sinE1 (I?) ! ! 
the surface ilorlnal vector iIr( i l ,w) = Ar(x,  y , t )  a t  ( 7 1 , ~ )  = (2, y,  Z)  call be derived as: 

LVhich gives: 

Eliil~iilatiilg ( x ,  y ,  Z) gives the normals in terms of (q ,w ) :  
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Eliillina,ting 7 and w and simplifying the equations gives the superquadric normals: 
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