5,234 research outputs found

    Solving key design issues for massively multiplayer online games on peer-to-peer architectures

    Get PDF
    Massively Multiplayer Online Games (MMOGs) are increasing in both popularity and scale on the Internet and are predominantly implemented by Client/Server architectures. While such a classical approach to distributed system design offers many benefits, it suffers from significant technical and commercial drawbacks, primarily reliability and scalability costs. This realisation has sparked recent research interest in adapting MMOGs to Peer-to-Peer (P2P) architectures. This thesis identifies six key design issues to be addressed by P2P MMOGs, namely interest management, event dissemination, task sharing, state persistency, cheating mitigation, and incentive mechanisms. Design alternatives for each issue are systematically compared, and their interrelationships discussed. How well representative P2P MMOG architectures fulfil the design criteria is also evaluated. It is argued that although P2P MMOG architectures are developing rapidly, their support for task sharing and incentive mechanisms still need to be improved. The design of a novel framework for P2P MMOGs, Mediator, is presented. It employs a self-organising super-peer network over a P2P overlay infrastructure, and addresses the six design issues in an integrated system. The Mediator framework is extensible, as it supports flexible policy plug-ins and can accommodate the introduction of new superpeer roles. Key components of this framework have been implemented and evaluated with a simulated P2P MMOG. As the Mediator framework relies on super-peers for computational and administrative tasks, membership management is crucial, e.g. to allow the system to recover from super-peer failures. A new technology for this, namely Membership-Aware Multicast with Bushiness Optimisation (MAMBO), has been designed, implemented and evaluated. It reuses the communication structure of a tree-based application-level multicast to track group membership efficiently. Evaluation of a demonstration application shows i that MAMBO is able to quickly detect and handle peers joining and leaving. Compared to a conventional supervision architecture, MAMBO is more scalable, and yet incurs less communication overheads. Besides MMOGs, MAMBO is suitable for other P2P applications, such as collaborative computing and multimedia streaming. This thesis also presents the design, implementation and evaluation of a novel task mapping infrastructure for heterogeneous P2P environments, Deadline-Driven Auctions (DDA). DDA is primarily designed to support NPC host allocation in P2P MMOGs, and specifically in the Mediator framework. However, it can also support the sharing of computational and interactive tasks with various deadlines in general P2P applications. Experimental and analytical results demonstrate that DDA efficiently allocates computing resources for large numbers of real-time NPC tasks in a simulated P2P MMOG with approximately 1000 players. Furthermore, DDA supports gaming interactivity by keeping the communication latency among NPC hosts and ordinary players low. It also supports flexible matchmaking policies, and can motivate application participants to contribute resources to the system

    Reliable scalable symbolic computation: The design of SymGridPar2

    Get PDF
    Symbolic computation is an important area of both Mathematics and Computer Science, with many large computations that would benefit from parallel execution. Symbolic computations are, however, challenging to parallelise as they have complex data and control structures, and both dynamic and highly irregular parallelism. The SymGridPar framework (SGP) has been developed to address these challenges on small-scale parallel architectures. However the multicore revolution means that the number of cores and the number of failures are growing exponentially, and that the communication topology is becoming increasingly complex. Hence an improved parallel symbolic computation framework is required. This paper presents the design and initial evaluation of SymGridPar2 (SGP2), a successor to SymGridPar that is designed to provide scalability onto 10^5 cores, and hence also provide fault tolerance. We present the SGP2 design goals, principles and architecture. We describe how scalability is achieved using layering and by allowing the programmer to control task placement. We outline how fault tolerance is provided by supervising remote computations, and outline higher-level fault tolerance abstractions. We describe the SGP2 implementation status and development plans. We report the scalability and efficiency, including weak scaling to about 32,000 cores, and investigate the overheads of tolerating faults for simple symbolic computations

    Reliable scalable symbolic computation: The design of SymGridPar2

    Get PDF
    Symbolic computation is an important area of both Mathematics and Computer Science, with many large computations that would benefit from parallel execution. Symbolic computations are, however, challenging to parallelise as they have complex data and control structures, and both dynamic and highly irregular parallelism. The SymGridPar framework (SGP) has been developed to address these challenges on small-scale parallel architectures. However the multicore revolution means that the number of cores and the number of failures are growing exponentially, and that the communication topology is becoming increasingly complex. Hence an improved parallel symbolic computation framework is required. This paper presents the design and initial evaluation of SymGridPar2 (SGP2), a successor to SymGridPar that is designed to provide scalability onto 10^5 cores, and hence also provide fault tolerance. We present the SGP2 design goals, principles and architecture. We describe how scalability is achieved using layering and by allowing the programmer to control task placement. We outline how fault tolerance is provided by supervising remote computations, and outline higher-level fault tolerance abstractions. We describe the SGP2 implementation status and development plans. We report the scalability and efficiency, including weak scaling to about 32,000 cores, and investigate the overheads of tolerating faults for simple symbolic computations

    Reliable massively parallel symbolic computing : fault tolerance for a distributed Haskell

    Get PDF
    As the number of cores in manycore systems grows exponentially, the number of failures is also predicted to grow exponentially. Hence massively parallel computations must be able to tolerate faults. Moreover new approaches to language design and system architecture are needed to address the resilience of massively parallel heterogeneous architectures. Symbolic computation has underpinned key advances in Mathematics and Computer Science, for example in number theory, cryptography, and coding theory. Computer algebra software systems facilitate symbolic mathematics. Developing these at scale has its own distinctive set of challenges, as symbolic algorithms tend to employ complex irregular data and control structures. SymGridParII is a middleware for parallel symbolic computing on massively parallel High Performance Computing platforms. A key element of SymGridParII is a domain specific language (DSL) called Haskell Distributed Parallel Haskell (HdpH). It is explicitly designed for scalable distributed-memory parallelism, and employs work stealing to load balance dynamically generated irregular task sizes. To investigate providing scalable fault tolerant symbolic computation we design, implement and evaluate a reliable version of HdpH, HdpH-RS. Its reliable scheduler detects and handles faults, using task replication as a key recovery strategy. The scheduler supports load balancing with a fault tolerant work stealing protocol. The reliable scheduler is invoked with two fault tolerance primitives for implicit and explicit work placement, and 10 fault tolerant parallel skeletons that encapsulate common parallel programming patterns. The user is oblivious to many failures, they are instead handled by the scheduler. An operational semantics describes small-step reductions on states. A simple abstract machine for scheduling transitions and task evaluation is presented. It defines the semantics of supervised futures, and the transition rules for recovering tasks in the presence of failure. The transition rules are demonstrated with a fault-free execution, and three executions that recover from faults. The fault tolerant work stealing has been abstracted in to a Promela model. The SPIN model checker is used to exhaustively search the intersection of states in this automaton to validate a key resiliency property of the protocol. It asserts that an initially empty supervised future on the supervisor node will eventually be full in the presence of all possible combinations of failures. The performance of HdpH-RS is measured using five benchmarks. Supervised scheduling achieves a speedup of 757 with explicit task placement and 340 with lazy work stealing when executing Summatory Liouville up to 1400 cores of a HPC architecture. Moreover, supervision overheads are consistently low scaling up to 1400 cores. Low recovery overheads are observed in the presence of frequent failure when lazy on-demand work stealing is used. A Chaos Monkey mechanism has been developed for stress testing resiliency with random failure combinations. All unit tests pass in the presence of random failure, terminating with the expected results

    How Do Multilingual Encoders Learn Cross-lingual Representation?

    Get PDF
    NLP systems typically require support for more than one language. As different languages have different amounts of supervision, cross-lingual transfer benefits languages with little to no training data by transferring from other languages. From an engineering perspective, multilingual NLP benefits development and maintenance by serving multiple languages with a single system. Both cross-lingual transfer and multilingual NLP rely on cross-lingual representations serving as the foundation. As BERT revolutionized representation learning and NLP, it also revolutionized cross-lingual representations and cross-lingual transfer. Multilingual BERT was released as a replacement for single-language BERT, trained with Wikipedia data in 104 languages. Surprisingly, without any explicit cross-lingual signal, multilingual BERT learns cross-lingual representations in addition to representations for individual languages. This thesis first shows such surprising cross-lingual effectiveness compared against prior art on various tasks. Naturally, it raises a set of questions, most notably how do these multilingual encoders learn cross-lingual representations. In exploring these questions, this thesis will analyze the behavior of multilingual models in a variety of settings on high and low resource languages. We also look at how to inject different cross-lingual signals into multilingual encoders, and the optimization behavior of cross-lingual transfer with these models. Together, they provide a better understanding of multilingual encoders on cross-lingual transfer. Our findings will lead us to suggested improvements to multilingual encoders and cross-lingual transfer
    • …
    corecore