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Abstract

NLP systems typically require support for more than one language. As different lan-

guages have different amounts of supervision, cross-lingual transfer benefits languages

with little to no training data by transferring from other languages. From an engineering

perspective, multilingual NLP benefits development and maintenance by serving multiple

languages with a single system. Both cross-lingual transfer and multilingual NLP rely on

cross-lingual representations serving as the foundation. As BERT revolutionized representa-

tion learning and NLP, it also revolutionized cross-lingual representations and cross-lingual

transfer. Multilingual BERT was released as a replacement for single-language BERT,

trained with Wikipedia data in 104 languages.

Surprisingly, without any explicit cross-lingual signal, multilingual BERT learns cross-

lingual representations in addition to representations for individual languages. This thesis

first shows such surprising cross-lingual effectiveness compared against prior art on various

tasks. Naturally, it raises a set of questions, most notably how do these multilingual encoders

learn cross-lingual representations. In exploring these questions, this thesis will analyze the

behavior of multilingual models in a variety of settings on high and low resource languages.
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ABSTRACT

We also look at how to inject different cross-lingual signals into multilingual encoders, and

the optimization behavior of cross-lingual transfer with these models. Together, they provide

a better understanding of multilingual encoders on cross-lingual transfer. Our findings will

lead us to suggested improvements to multilingual encoders and cross-lingual transfer.

Readers: Mark Dredze, Benjamin Van Durme, João Sedoc
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Dedication

As Max Weber put it in his speech “Science as a Vocation”,

In science, each of us knows that what he has accomplished will be antiquated
in ten, twenty, fifty years. That is the fate to which science is subjected; it is the
very meaning of scientific work, to which it is devoted in a quite specific sense,
as compared with other spheres of culture for which in general the same holds.
Every scientific ‘fulfilment’ raises new ‘questions’; it asks to be ‘surpassed’ and
outdated. Whoever wishes to serve science has to resign himself to this fact.
Scientific works certainly can last as ‘gratifications’ because of their artistic
quality, or they may remain important as a means of training. Yet they will be
surpassed scientifically–let that be repeated–for it is our common fate and, more,
our common goal. We cannot work without hoping that others will advance
further than we have. In principle, this progress goes on ad infinitum.

I dreamed to become a scientist when I was a kid, but I did not understand what it meant

until I read this paragraph. NLP, ML, and AI change much faster today than science did

a hundred years ago. What you and I accomplished would be antiquated in less than two

or even one year, so that together as a community, we could keep moving forward faster

and faster. Therefore, I am dedicating this thesis to the ad infinitum of scientific progress,

answering open questions and pushing the frontier forward. I hope that I get to witness the

modeling of human language on the same level or even surpass our brain one day.
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CHAPTER 1. INTRODUCTION

Modern NLP applications typically require support for more than one language, and we

want to build an equally good system for each language. As different languages usually do

not have the same amount of supervision, for languages with the least or even no training

data, we may rely on cross-lingual transfer—transferring knowledge from languages with

more supervision to languages with less or even no supervision. From an engineering

perspective, managing different systems for different languages introduces challenges for

continuous development and maintenance. Thus, even if we had enough training data for

each language to build one system per language, therefore eliminating the need for cross-

lingual transfer, we may still want a single system for all languages, namely a multilingual

system.

Cross-lingual transfer and multilingual NLP both greatly benefit from cross-lingual

representation. Supposed we have access to perfect cross-lingual representation space, i.e.

words with similar meaning across languages have similar vector representation, transferring

knowledge across language would be straight-forward. Similarly, with such representation,

multilingual NLP models only need to learn to solve the task without worrying how to encode

words into vectors, leaving much less to learn. Looking at the literature overall, the quality of

cross-lingual representation tends to improve as representation learning techniques improve.

NLP has moved from hand-engineered features with classical machine learning models to

word embeddings with deep neural networks. In the past four years, representation learning

methods like ELMo—a deep LSTM network trained with language model objective—and

BERT—a deep Transformer network trained with masked language model objective—have
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revolutionized NLP again, including cross-lingual representation learning. In this thesis,

we will refer to models like ELMo and BERT as encoders, encoding words in context into

contextual vector representation with deep networks.

Around three years ago, in November 2018, a multilingual version of BERT was released,

called multilingual BERT (mBERT). As the authors of BERT say “[...] (they) do not plan

to release more single-language models”, they instead train a single BERT model with

Wikipedia to serve 104 languages, hence multilingual BERT. The main difference between

English monolingual BERT and multilingual BERT is the training data: Wikipedia of English

v.s. Wikipedia of 104 languages. Surprisingly, even without any explicit cross-lingual signal

during pretraining, mBERT shows promising zero-shot cross-lingual performance—training

the model on one language then directly applying that model to another language—on a

natural language inference dataset.

This thesis first fully documents the surprising cross-lingual potential of mBERT on

various tasks against prior art via zero-shot cross-lingual transfer, which directly tests its

cross-lingual representation. We show that mBERT is not only learning representation for

each language but also learning cross-lingual representation. Such surprising cross-lingual

effectiveness leads to a set of questions, most importantly how do multilingual encoders learn

cross-lingual representations. This thesis attempts to answer these questions, in doing so, to

better understand models behaviour and how these models learn cross-lingual representation.

With these insights, we are able to identify and improve their cross-lingual representation

and cross-lingual transfer with these encoders.
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1.1 Outline & Contributions

The main contribution of this thesis is to understand how multilingual encoders learn

cross-lingual representations. In exploring this question, we will analyse the behavior

of multilingual models in a variety of settings on high and low resource languages. Our

findings will lead us to suggested improvements to these models, the testing of which will

allow us to better understand how these models work and what makes them effective. As

we document the surprising cross-lingual effectiveness of these multilingual models, in

each chapter, we answer different questions raised by these models. Together, they provide

a better understanding of multilingual encoders on cross-lingual transfer, which leads to

directions to improve these models for cross-lingual transfer. All chapters are supported by

the same codebase https://github.com/shijie-wu/crosslingual-nlp.

Chapter 2 reviews the progress of representation learning in NLP and discusses its

application in cross-lingual transfer. Improvement on representation learning typically leads

to better cross-lingual representation. As BERT revolutionizes representation learning and

NLP, a multilingual version of BERT called Multilingual BERT (mBERT) is also released.

Does mBERT learn cross-lingual representation? In chapter 3, we show that surprisingly

mBERT learns cross-lingual representation even without explicit cross-lingual signal, even

outperforming previous state-of-the-art cross-lingual word embeddings on zero-shot cross-

lingual transfer. Additionally, we probe mBERT and document the model behavior. This

work was published in Wu and Dredze (2019).

How does mBERT learn cross-lingual representation? Chapter 4 presents an ablation
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study on mBERT, teasing apart which modeling decision contributes the most to the learning

of cross-lingual representation. We show that sharing transformer parameters is the most

important factor. As monolingual BERT of different languages are similar to each other,

parameter sharing allows the model to natrually align the representation in a cross-lingual

fashion. This work was published in Conneau et al. (2020b).

Are all languages created equal in mBERT? In chapter 5, we show that mBERT does not

learn equally high quality representation for its lower resource languages. Such outcome is

not the product of hyperparameter or multilingual joint training but the sample inefficiency

of BERT objective, as monolingual BERT of these languages perform even worse and

pairing them with similar high resource languages close the performance gap. This work

was published in Wu and Dredze (2020a).

How to inject cross-lingual signals into multilingual encoders? Chapter 6 introduces

two approaches for injecting two types of cross-lingual signal into multilingual encoders:

bilingual dictionary and bitext. For the former, we create synthetic code-switch corpus

for pretraining. For the latter, we ad-hoc explicitly align the encoder representation using

a contrastive alignment loss. Both methods show improvement for mBERT or smaller

encoders. However, the performance gain is eclipsed by simply scaling up the model

size and data size. Additionally, we observe that zero-shot cross-lingual transfer has high

variance on the target language, creating challenges for comparing models fairly in the

literature. This work was published in Conneau et al. (2020b) and Wu and Dredze (2020b).

Why does zero-shot cross-lingual transfer have high variance as shown in chapter 6?

5



CHAPTER 1. INTRODUCTION

In chapter 7, we show that zero-shot cross-lingual transfer is under-specified optimization,

causing its high variance on target languages and much lower variance on source language.

To improve the performance of zero-shot cross-lingual transfer, addressing the under-

specification could produce bigger gain.

Does data projection constrain zero-shot cross-lingual transfer optimization? Chapter

8 proposes using silver target data—created automatically with machine translation based

on supervision in source language—to constrain the optimization, and shows adding such

constraint improves zero-shot cross-lingual transfer. We also investigate the impact of

encoder on the data creation pipeline, and observe that the best setup is task specific. This

work was published in Yarmohammadi et al. (2021).

Chapter 9 recaps our contributions and discusses future work.
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CHAPTER 2. REPRESENTATION LEARNING IN NLP

In the past decade, representation learning has improved natural language processing

(NLP) technology significantly. Representation learning learns dense representation of

language using unlabeled corpus, using the corpus itself as a learning signal. As the

computational infrastructure scales with the collection of Web corpus, the capability of

representation learning keeps scaling (Radford et al., 2019). Every sub-fields within NLP

has been revolutionized by representation learning, including cross-lingual transfer. Cross-

lingual transfer attempts to transfer knowledge from one language—typically languages

with lots of supervision—to another language—typically languages with less supervision.

As modern NLP technology is deployed to support more than one language and different

languages have different amounts of supervision for tasks of interest, cross-lingual transfer

is the bedrock of NLP real world application. In this chapter, we will discuss the progress

on representation learning in NLP and its impact on cross-lingual transfer.

2.1 Word Embeddings

Word embeddings encode word to dense vector representation. It had existed as a part

of the neural network based NLP model before, such as language model (Bengio et al.,

2003). While global matrix factorization based methods for learning word embeddings have

existed for decades, such as latent semantic analysis (Deerwester et al., 1990) and Brown

clusters (Brown et al., 1992), online learning based approaches like Word2Vec (skip-gram

and CBOW) (Mikolov et al., 2013a; Mikolov et al., 2013b), Glove (Pennington, Socher,
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and Manning, 2014), and FastText (Bojanowski et al., 2017) pushes representation learning

to a prominent position in NLP. Pretrained word embeddings became a standalone step

in the pipeline of developing neural NLP systems with it as input to the neural network.

Pretraining usually refers to the training procedure of word embeddings and later contextual

word embeddings, as it is learning information from the corpus itself instead of from any

particular tasks.

The learning of embedding of a word relies on its contextual information, as the distribu-

tional hypothesis states that words in similar contexts have similar meanings. Specifically,

skip-gram trains a log-bilinear model to predict words within a certain window size using

only the center word, while CBOW trains a similar model to predict the center word using a

bag of context words. Both skip-gram and CBOW approximate the word prediction softmax

loss with noise contrastive estimation and negative sampling. Glove instead trains word

embeddings to predict global co-occurrence word statistics. FastText additionally extends

Word2Vec by incorporating subword information. Due to efficiency consideration, word

embeddings represent each word type with a single fixed-dimensional vector, trained with

local co-occurrence signals regardless of order. As deep learning framework and computa-

tional infrastructure improves, such limitations would be later addressed by contextual word

embeddings.
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2.2 Contextual Word Embeddings

Different from word embeddings, contextual word embeddings represents word using

its context processed by a deep neural network. There are many attempts on such idea with

language model (Peters et al., 2017) or machine translation (McCann et al., 2017) as learning

signal, and ELMo (Peters et al., 2018) popularized it within the NLP community. ELMo,

two deep LSTM (Hochreiter and Schmidhuber, 1997) pretrained with right-to-left and left-

to-right language modeling objective, produce contextual word embeddings by combining

the output of each layer of LSTM with weighted averaging. Additionally, convolution is

used to encode character-level information. This contextualized representation outperforms

stand-alone word embeddings, e.g. Word2Vec and Glove, with the same task-specific

architecture in various downstream tasks, and achieves state-of-the-art performance at the

time of publication. Similar to word embeddings, neural network takes static representation

from ELMo as input.

Instead of taking the representation from a pretrained model, GPT (Radford et al., 2018)

and Howard and Ruder (2018) also fine-tune all the parameters of the pretrained model for a

specific task, referred to as fine-tuning. Also, GPT uses a transformer encoder (Vaswani

et al., 2017) instead of an LSTM and jointly fine-tunes with the language modeling objective.

Howard and Ruder (2018) propose another fine-tuning strategy by using a different learning

rate for each layer with learning rate warmup and gradual unfreezing.
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2.3 BERT

BERT (Devlin et al., 2019) is a deep contextual representation based on a series of

transformers trained by a self-supervised objective. One of the main differences between

BERT and related work like ELMo and GPT is that BERT is trained by the Cloze task

(Taylor, 1953), also referred to as masked language modeling, instead of right-to-left or

left-to-right language modeling. This allows the model to freely encode information from

both directions in each layer, contributing to its better performance compared to ELMo and

GPT. The goal of the Cloze task is to predict the center missing word based on its context.

BERT could be viewed as a deep CBOW, using much deeper representation to encode much

larger ordered contextual information. Softmax is used to compute the probability of the

missing word based on the contextual representation.

To set up the Cloze for training, the authors propose a heuristic to replace each word with

a mask or a random word with the probability of 12% or 1.5%, respectively. Additionally,

BERT also optimizes a next sentence classification objective. At training time, 50% of

the paired sentences are consecutive sentences while the rest of the sentences are paired

randomly. Instead of operating on words, BERT uses a subword vocabulary with WordPiece

(Wu et al., 2016), a data-driven approach to break up a word into subwords. Using a subword

vocabulary allows BERT to keep a modest vocabulary size, making the softmax prediction

practical, and offers a balance between word-based vocabulary and character-level encoding

like ELMo.
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2.3.1 Fine-tuning

BERT shows state-of-the-art performance at the time of publication by fine-tuning

the transformer encoder followed by a simple softmax classification layer on sentence

classification tasks, and a sequence of shared softmax classifications for sequence tagging

models on tasks like NER. Fine-tuning usually takes 3 to 4 epochs with a relatively small

learning rate, for example, 3e-5. Instead of directly fine-tuning BERT on the task of interests,

Phang, Févry, and Bowman (2018) propose intermediate fine-tuning—fine-tuning BERT on

data-rich supervised tasks—and show improvement on the final task of interests. Unlike the

later GPT-2 and GPT-3, which will be discussed in Section 2.5, BERT typically requires

task-specific data fine-tuning to perform said tasks.

2.4 Transformer

Since the introduction of transformer, it has taken over NLP. Its popularity could be

attributed to two factors: easy to parallelize and easy to model long range context. For

a sequence with length n, while recurrent-based models like RNN and LSTM have O(n)

sequential operation, transformer has O(1) sequential operation in comparison, making

it much more parallelizable. Additionally, to connect any two items within a sequence,

recurrent-based models need to pass through up to O(n) items in between while transformer

directly connect these two items, making it much easier to model long context.

For completeness, we describe the Transformer used by BERT. Let x, y be a sequence
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of subwords from a sentence pair. A special token [CLS] is prepended to x and [SEP] is

appended to both x and y. The embedding is obtained by

ĥ
0

i = E(xi) + E(i) + E(1x) (2.1)

ĥ
0

j+|x| = E(yj) + E(j + |x|) + E(1y) (2.2)

h0
· = Dropout(LN(ĥ

0

· )) (2.3)

where E is the embedding function and LN is layer normalization (Ba, Kiros, and Hinton,

2016). M transformer blocks are followed by the embeddings. In each transformer block,

hi+1
· = Skip(FF,Skip(MHSA, hi

·)) (2.4)

Skip(f, h) = LN(h+ Dropout(f(h))) (2.5)

FF(h) = GELU(hW⊤
1 + b1)W

⊤
2 + b2 (2.6)

where GELU is an element-wise activation function (Hendrycks and Gimpel, 2016). In

practice, hi ∈ R(|x|+|y|)×dh , W1 ∈ R4dh×dh , b1 ∈ R4dh , W2 ∈ Rdh×4dh , and b2 ∈ Rdh .

MHSA is the multi-heads self-attention function. We show how one new position ĥi is

computed.

[· · · , ĥi, · · · ] = MHSA([h1, · · · , h|x|+|y|]) (2.7)

= WoConcat(h1
i , · · · , hN

i ) + bo (2.8)
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In each attention, referred to as attention head,

hj
i =

|x|+|y|∑︂
k=1

Dropout(α(i,j)
k )Wj

V hk (2.9)

α
(i,j)
k =

exp
(Wj

Qhi)
⊤Wj

Khk√
dh/N∑︁|x|+|y|

k′=1 exp
(Wj

Qhi)⊤Wj
Khk′√

dh/N

(2.10)

where N is the number of attention heads, hj
i ∈ Rdh/N , Wo ∈ Rdh×dh , bo ∈ Rdh , and

Wj
Q,W

j
K ,W

j
V ∈ Rdh/N×dh .

2.5 Generative Language Model

Generative language model (LM) pretrained with language modeling objective. In this

sense, ELMo and GPT are both generative LM. However, generative LM typically also refer

to how the model was used. Instead of taking the representation from the model like ELMo

or GPT, they instead cast the task of interest as language modeling, e.g. GPT-2 (Radford et

al., 2019) and GPT-3 (Brown et al., 2020). Any natural language generation tasks fall under

this category, and some NLP tasks can be naturally cast as language model with prompt and

template. GPT-2 shows pretrained generative LM can performs zero-shot learning on some

tasks—no fine-tuning is needed. GPT-3 shows larger generative LM can performs few-shot

learning with only context—again no fine-tuning is needed—although typical few-shot

learning usually involve fine-tuning. One potential reason for no fine-tuning in GPT-3 could

be model size with 175B parameters, making fine-tuning expensive. This thesis does not
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focus on generative LM as there is no publicly available multilingual generative LM until the

recent mT5 (Xue et al., 2021), a model with both encoder like BERT and decoder like GPT

pretrained with span-corruption objective (Raffel et al., 2020). However, scaling beyond the

current biggest encoder might need generative LM, as we discuss in chapter 9.

2.6 Cross-lingual Transfer and Multilingual NLP

Cross-lingual transfer learning is a type of transductive transfer learning with different

source and target domain (Pan and Yang, 2010). It attempts to transfer knowledge from

one language, usually referred to as source language, to another language, usually referred

to as target language. It is possible to have more than one source language or more than

one target language. Few-shot cross-lingual transfer assumes limited training data in

target languages, while Zero-shot cross-lingual transfer typically assumes no task specific

supervision on target language. A stricter assumption further eliminates any cross-lingual

signal like bilingual dictionary or bitext. A cross-lingual representation space is assumed

to perform the cross-lingual transfer, and the quality of the cross-lingual space is essential

for cross-lingual transfer, especially zero-shot transfer. Multilingual NLP attempts to build

a single NLP system supporting multiple languages. Cross-lingual representation benefits

the development of multilingual NLP, as it alleviates the learning to solve the specific task.

This thesis mainly focuses on zero-shot cross-lingual transfer as a proxy for evaluating

cross-lingual representation.
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2.7 Cross-lingual Representation

Cross-lingual representation learning follows a similar development trajectory as repre-

sentation learning in NLP. Before the widespread use of cross-lingual word embeddings,

task-specific models assumed coarse-grain representation like part-of-speech tags, in support

of a delexicalized parser (Zeman and Resnik, 2008).

2.7.1 Cross-lingual Word Embeddings

With the progress on word embeddings, Mikolov, Le, and Sutskever (2013) shows that

embedding spaces tend to be shaped similarly across different languages. This inspired

work in aligning monolingual embeddings. The alignment was done by using a bilingual

dictionary to project words that have the same meaning close to each other with linear

mapping (Mikolov, Le, and Sutskever, 2013). This projection aligns the words outside of

the dictionary as well due to the similar shapes of the word embedding spaces. Follow-up

efforts only required a very small seed dictionary (e.g., only numbers (Artetxe, Labaka, and

Agirre, 2017)) or even no dictionary at all (Lample et al., 2018; Zhang et al., 2017). Ruder,

Vulić, and Søgaard (2019) surveys methods for learning cross-lingual word embeddings by

either joint training or post-training mappings of monolingual embeddings. Other work has

pointed out that word embeddings may not be as isomorphic as thought (Søgaard, Ruder, and

Vulić, 2018) especially for distantly related language pairs (Patra et al., 2019). Ormazabal

et al. (2019) show joint training can lead to more isomorphic word embeddings space. On
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top of cross-lingual word embeddings, task-specific neural architectures have been used for

tasks like named entity recognition (Xie et al., 2018), part-of-speech tagging (Kim et al.,

2017) and dependency parsing (Ahmad et al., 2019).

2.7.2 Cross-lingual Contextual Word Embeddings

However, cross-lingual word embeddings have similar drawbacks as word embeddings.

With the success of ELMo over word embeddings, Schuster et al. (2019) aligns pretrained

ELMo of different languages by learning an orthogonal mapping and shows strong zero-

shot and few-shot cross-lingual transfer performance on dependency parsing with 5 Indo-

European languages. Mulcaire, Kasai, and Smith (2019) trains a single ELMo on distantly

related languages and shows mixed results as to the benefit of pretraining.

2.8 Multilingual BERT

BERT offers a multilingual model, called Multilingual BERT (mBERT), pretrained on

concatenated Wikipedia data for 104 languages without any explicit cross-lingual signal,

e.g. pairs of words, sentences or documents linked across languages (Devlin, 2018). It

follows the same model architecture and training procedure as BERT, except with data from

Wikipedia in 104 languages.

In mBERT, the WordPiece modeling strategy allows the model to share embeddings

across languages. For example, “DNA” has a similar meaning even in distantly related
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languages like English and Chinese.1 To account for varying sizes of Wikipedia training

data in different languages, training uses a heuristic to subsample or oversample words

when running WordPiece as well as sampling a training batch, random words for cloze and

random sentences for next sentence classification.

However, mBERT does surprisingly well compared to cross-lingual word embeddings on

zero-shot cross-lingual transfer in XNLI (Conneau et al., 2018), a natural language inference

dataset (Devlin, 2018). While the XNLI experiment is promising, many questions remain

unanswered. What does mBERT really learn: separate representation for each language,

or some cross-lingual representation mixed with some language-specific representation?

Is mBERT better than cross-lingual word embeddings in terms of cross-lingual transfer?

How does its modeling decision impact its performance? In chapter 3, we will conduct

experiments to answer these questions.

1“DNA” indeed appears in the vocabulary of mBERT as a stand-alone lexicon.
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3.1 Introduction

As we discuss in Section 2.8, while XNLI results are promising, the question remains:

does mBERT learn a cross-lingual space that supports zero-shot transfer, even without any

explicit cross-lingual signal? Does mBERT learn a cross-lingual representation, or does

it produce a representation for each language in its own embedding space? Is mBERT

better than cross-lingual word embeddings in terms of cross-lingual transfer? How does its

modeling decision impact its performance?

In this chapter, grounded by models in the literature, we evaluate mBERT as a zero-

shot cross-lingual transfer model on five different NLP tasks: natural language inference,

document classification, named entity recognition, part-of-speech tagging, and dependency

parsing. We show that it achieves competitive or even state-of-the-art performance (at

the time of publication) by simply fine-tuning all parameter of mBERT with minimal

task-specific layer. This is surprising as mBERT does not have any explicit cross-lingual

signal during pretraining while prior work assume various amount of cross-lingual signal.

While fine-tuning all parameters achieves strong performance, we additionally explore

different fine-tuning and feature extraction schemes. We demonstrate that we could further

outperform the suggested fine-tune all approach with simple parameter freezing—freezing

the bottom layer of mBERT. Furthermore, we explore the extent to which mBERT maintains

language-specific information by probing each layer of mBERT with language identification.

Surprisingly, mBERT maintains strong language specific information despite having strong

cross-lingual representation. Finally, we show how subword tokenization modeling decisions
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ar bg ca cs da de el en es et fa fi fr he hi hr hu id it ja ko la lv nl no pl pt ro ru sk sl sv sw th tr uk ur vi zh

MLDoc ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
NLI ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
NER ✓ ✓ ✓ ✓ ✓
POS ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Parsing ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Table 3.1: The 39 languages used in the 5 tasks.

impact cross-lingual transfer performance. We observe a positive correlation between

the amount of subword overlap between languages and the transfer performance across

languages.

Parallel to the publication of this chapter, Conneau and Lample (2019) incorporates

bitext into BERT by training on pairs of parallel sentences. Pires, Schlinger, and Garrette

(2019) shows mBERT has good zero-shot cross-lingual transfer performance on NER and

POS tagging. They show how subword overlap and word ordering affect mBERT transfer

performance. Additionally, they show mBERT can find translation pairs and works on

code-switched POS tagging. In comparison, this chapter looks at a larger set of NLP tasks

including dependency parsing and ground the mBERT performance against previous state-

of-the-art on zero-shot cross-lingual transfer. We also probe mBERT in different ways and

show a more complete picture of the cross-lingual effectiveness of mBERT.

3.2 Tasks

We consider five tasks in the zero-shot transfer setting. We assume labeled training data

for each task in English, and transfer the trained model to a target language. We select a

range of different tasks: document classification, natural language inference, named entity
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recognition, part-of-speech tagging, and dependency parsing. We cover zero-shot transfer

from English to 38 languages in the 5 different tasks as shown in Table 3.1. In this section,

we describe the tasks as well as task-specific layers.

3.2.1 Document Classification

We use MLDoc (Schwenk and Li, 2018), a balanced subset of the Reuters corpus

covering 8 languages for document classification. The 4-way topic classification task decides

between CCAT (Corporate/Industrial), ECAT (Economics), GCAT (Government/Social),

and MCAT (Markets). We only use the first two sentences1 of a document for classification

due to memory constraint. The sentence pairs are provided to the mBERT encoder. The

task-specific classification layer is a linear function mapping h12
0 ∈ Rd

h into R4, and a

softmax is used to get class distribution. We evaluate by classification accuracy.

3.2.2 Natural Language Inference

We use XNLI (Conneau et al., 2018) which covers 15 languages for natural language

inference. The 3-way classification includes entailment, neutral, and contradiction given a

pair of sentences. We feed a pair of sentences directly into mBERT and the task-specific

classification layer is the same as Section 3.2.1. We evaluate by classification accuracy.

1We only use the first sentence if the document only contains one sentence. Documents are segmented into
sentences with NLTK (Perkins, 2014).
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3.2.3 Named Entity Recognition

We use the CoNLL 2002 and 2003 NER shared tasks (Tjong Kim Sang, 2002; Tjong

Kim Sang and De Meulder, 2003) (4 languages) and a Chinese NER dataset (Levow, 2006).

The labeling scheme is BIO with 4 types of named entities. We add a linear classification

layer with softmax to obtain word-level predictions. Since mBERT operates at the subword-

level while the labeling is word-level, if a word is broken into multiple subwords, we mask

the prediction of non-first subwords. NER is evaluated by F1 of predicted entities (F1). Note

we adopt a simple post-processing heuristic to obtain a valid span, rewriting standalone I-X

into B-X and B-X I-Y I-Z into B-Z I-Z I-Z, following the final entity type.

3.2.4 Part-of-Speech Tagging

We use a subset of Universal Dependencies (UD) Treebanks (v1.4) (Nivre, 2016), which

cover 15 languages, following the setup of Kim et al. (2017). The task-specific labeling

layer is the same as Section 3.2.3. POS tagging is evaluated by the accuracy of predicted

POS tags (ACC).

3.2.5 Dependency parsing

Following the setup of Ahmad et al. (2019), we use a subset of Universal Dependencies

(UD) Treebanks (v2.2) (Nivre, 2018a), which includes 31 languages. Dependency parsing is
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evaluated by unlabelled attachment score (UAS) and labeled attachment score (LAS) 2. We

only predict the coarse-grain dependency label following Ahmad et al. We use the model

of Dozat and Manning (2017), a graph-based parser as a task-specific layer. Their LSTM

encoder is replaced by mBERT. Similar to Section 3.2.3, we only take the representation of

the first subword of each word. We use masking to prevent the parser from operating on

non-first subwords.

3.3 Experiments

We use the base cased multilingual BERT, which has N = 12 attention heads and

M = 12 transformer blocks. The dropout probability is 0.1 and dh is 768. The model has

179M parameters with about 120k vocabulary.

3.3.1 Training

For each task, no preprocessing is performed except tokenization of words into subwords

with WordPiece. We use Adam (Kingma and Ba, 2014) for fine-tuning with β1 of 0.9, β2

of 0.999 and L2 weight decay of 0.01. We warm up the learning rate over the first 10% of

batches and linearly decay the learning rate.

2Punctuations (PUNCT) and symbols (SYM) are excluded.
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3.3.2 Maximum Subwords Sequence Length

At training time, we limit the length of subwords sequence to 128 to fit in a single

GPU for all tasks. For NER and POS tagging, we additionally use the sliding window

approach. After the first window, we keep the last 64 subwords from the previous window

as context. In other words, for a non-first window, only (up to) 64 new subwords are added

for prediction. At evaluation time, we follow the same approach as training time except for

parsing. We threshold the sentence length to 140 words, including words and punctuation,

following Ahmad et al. (2019). In practice, the maximum subwords sequence length is the

number of subwords of the first 140 words or 512, whichever is smaller.

3.3.3 Hyperparameter Search and Model Selection

We select the best hyperparameters by searching a combination of batch size, learning

rate and the number of fine-tuning epochs with the following range: learning rate {2 ×

10−5, 3 × 10−5, 5 × 10−5}; batch size {16, 32}; number of epochs: {3, 4}. Note the best

hyperparameters and models are selected by development performance in English.
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en de zh es fr it ja ru Average

In language supervised learning

Schwenk and Li (2018) 92.2 93.7 87.3 94.5 92.1 85.6 85.4 85.7 89.5
mBERT 94.2 93.3 89.3 95.7 93.4 88.0 88.4 87.5 91.2

Zero-shot cross-lingual transfer

Schwenk and Li (2018) 92.2 81.2 74.7 72.5 72.4 69.4 67.6 60.8 73.9
Artetxe and Schwenk (2019) ♠ † 89.9 84.8 71.9 77.3 78.0 69.4 60.3 67.8 74.9
mBERT 94.2 80.2 76.9 72.6 72.6 68.9 56.5 73.7 74.5

Table 3.2: MLDoc experiments. ♠ denotes the model is pretrained with bitext, and † denotes
concurrent work. Bold and underline denote best and second best.

en fr es de el bg ru tr ar vi th zh hi sw ur Average

Pseudo supervision with machine translated training data from English to target language

Conneau and Lample (2019) (MLM+TLM) ♠ † 85.0 80.2 80.8 80.3 78.1 79.3 78.1 74.7 76.5 76.6 75.5 78.6 72.3 70.9 63.2 76.7
mBERT 82.1 76.9 78.5 74.8 72.1 75.4 74.3 70.6 70.8 67.8 63.2 76.2 65.3 65.3 60.6 71.6

Zero-shot cross-lingual transfer

Conneau et al. (2018) (X-LSTM) ♠ ♢ 73.7 67.7 68.7 67.7 68.9 67.9 65.4 64.2 64.8 66.4 64.1 65.8 64.1 55.7 58.4 65.6
Artetxe and Schwenk (2019) ♠ † 73.9 71.9 72.9 72.6 73.1 74.2 71.5 69.7 71.4 72.0 69.2 71.4 65.5 62.2 61.0 70.2
Conneau and Lample (2019) (MLM+TLM) ♠ ♢ † 85.0 78.7 78.9 77.8 76.6 77.4 75.3 72.5 73.1 76.1 73.2 76.5 69.6 68.4 67.3 75.1

Conneau and Lample (2019) (MLM) ♢ † 83.2 76.5 76.3 74.2 73.1 74.0 73.1 67.8 68.5 71.2 69.2 71.9 65.7 64.6 63.4 71.5
mBERT 82.1 73.8 74.3 71.1 66.4 68.9 69.0 61.6 64.9 69.5 55.8 69.3 60.0 50.4 58.0 66.3

Table 3.3: XNLI experiments. ♠ denotes the model is pretrained with cross-lingual signal
including bitext or bilingual dictionary, † denotes concurrent work, and ♢ denotes model
selection with target language dev set.

en nl es de zh Average (-en,-zh)

In language supervised learning

Xie et al. (2018) - 86.40 86.26 78.16 - 83.61
mBERT 91.97 90.94 87.38 82.82 93.17 87.05

Zero-shot cross-lingual transfer

Xie et al. (2018) ♢ - 71.25 72.37 57.76 - 67.13
mBERT 91.97 77.57 74.96 69.56 51.90 74.03

Table 3.4: NER tagging experiments. ♢ denotes model selection with target language dev
set.
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lang bg da de en es fa hu it nl pl pt ro sk sl sv Average (-en)

In language supervised learning

mBERT 99.0 97.9 95.2 97.1 97.1 97.8 96.9 98.7 92.1 98.5 98.3 97.8 97.0 98.9 98.4 97.4

Low resource cross-lingual transfer

Kim et al. (2017) (1280) 95.7 94.3 90.7 - 93.4 94.8 94.5 95.9 85.8 92.1 95.5 94.2 90.0 94.1 94.6 93.3
Kim et al. (2017) (320) 92.4 90.8 89.7 - 90.9 91.8 90.7 94.0 82.2 85.5 94.2 91.4 83.2 90.6 90.7 89.9

Zero-shot cross-lingual transfer

mBERT 87.4 88.3 89.8 97.1 85.2 72.8 83.2 84.7 75.9 86.9 82.1 84.7 83.6 84.2 91.3 84.3

Table 3.5: POS tagging. Kim et al. (2017) use small amounts of training data in the target
language.

3.4 Is mBERT Multilingual?

3.4.1 MLDoc

We include two strong baselines. Schwenk and Li (2018) use MultiCCA, multilingual

word embeddings trained with a bilingual dictionary (Ammar et al., 2016), and convolution

neural networks. Concurrent to the publication of this chapter, Artetxe and Schwenk (2019)

use bitext between English/Spanish and the rest of languages to pretrain a multilingual

sentence representation with a sequence-to-sequence model where the decoder only has

access to a max-pooling of the encoder hidden states.

mBERT outperforms (Table 3.2) multilingual word embeddings and performs compara-

bly with a multilingual sentence representation, even though mBERT does not have access to

bitext. Interestingly, mBERT outperforms Artetxe and Schwenk (2019) in distantly related

languages like Chinese and Russian and under-performs in closely related Indo-European

languages.
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Dist mBERT(S) Baseline(Z) mBERT(Z) mBERT(Z+POS)

en 0.00 91.5/81.3 90.4/88.4 91.5/81.3 91.8/82.2
no 0.06 93.6/85.9 80.8/72.8 80.6/68.9 82.7/72.1
sv 0.07 91.2/83.1 81.0/73.2 82.5/71.2 84.3/73.7
fr 0.09 91.7/85.4 77.9/72.8 82.7/72.7 83.8/76.2
pt 0.09 93.2/87.2 76.6/67.8 77.1/64.0 78.3/66.9
da 0.10 89.5/81.9 76.6/67.9 77.4/64.7 79.3/68.1
es 0.12 92.3/86.5 74.5/66.4 78.1/64.9 79.0/68.9
it 0.12 94.8/88.7 80.8/75.8 84.6/74.4 86.0/77.8
ca 0.13 94.3/89.5 73.8/65.1 78.1/64.6 79.0/67.9
hr 0.13 92.4/83.8 61.9/52.9 80.7/65.8 80.4/68.2
pl 0.13 94.7/79.9 74.6/62.2 82.8/59.4 85.7/65.4
sl 0.13 88.0/77.8 68.2/56.5 72.6/51.4 75.9/59.2
uk 0.13 90.6/83.4 60.1/52.3 76.7/60.0 76.5/65.5
bg 0.14 95.2/85.5 79.4/68.2 83.3/62.3 84.4/68.1
cs 0.14 94.2/86.6 63.1/53.8 76.6/58.7 77.4/63.6
de 0.14 86.1/76.5 71.3/61.6 80.4/66.3 83.5/71.2
he 0.14 91.9/83.6 55.3/48.0 67.5/48.4 67.0/54.3
nl 0.14 94.0/85.0 68.6/60.3 78.0/64.8 79.9/67.1
ru 0.14 94.7/88.0 60.6/51.6 73.6/58.5 73.2/61.5
ro 0.15 92.2/83.2 65.1/54.1 77.0/58.5 76.9/62.6
id 0.17 86.3/75.4 49.2/43.5 62.6/45.6 59.8/48.6
sk 0.17 93.8/83.3 66.7/58.2 82.7/63.9 82.9/67.8
lv 0.18 87.3/75.3 70.8/49.3 66.0/41.4 70.4/48.5
et 0.20 88.8/79.7 65.7/44.9 66.9/44.3 70.8/50.7
fi 0.20 91.3/81.8 66.3/48.7 68.4/47.5 71.4/52.5
zh* 0.23 88.3/81.2 42.5/25.1 53.8/26.8 53.4/29.0
ar 0.26 87.6/80.6 38.1/28.0 43.9/28.3 44.7/32.9
la 0.28 85.2/73.1 48.0/35.2 47.9/26.1 50.9/32.2
ko 0.33 86.0/74.8 34.5/16.4 52.7/27.5 52.3/29.4
hi 0.40 94.8/86.7 35.5/26.5 49.8/33.2 58.9/44.0
ja* 0.49 94.2/87.4 28.2/20.9 36.6/15.7 41.3/30.9

AVER 0.17 91.3/82.6 64.1/53.8 71.4/54.2 73.0/58.9

Table 3.6: Dependency parsing results by language (UAS/LAS). * denotes delexicalized
parsing in the baseline. S and Z denotes supervised learning and zero-shot transfer. Bold
and underline denotes best and second best. We order the languages by word order distance
to English.
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3.4.2 XNLI

We include three strong baselines, Artetxe and Schwenk (2019) and Conneau and Lample

(2019) are concurrent to the publication of this chapter. Conneau and Lample (2019) with

MLM is similar to mBERT; the main difference is that it only trains with the 15 languages of

XNLI, has 249M parameters (around 40% more than mBERT), and MLM+TLM also uses

bitext as training data 3. Conneau et al. (2018) use supervised multilingual word embeddings

with an LSTM encoder and max-pooling. After an English encoder and classifier are trained,

the target encoder is trained to mimic the English encoder with ranking loss and bitext.

In Table 3.3, mBERT outperforms one model with bitext training but (as expected) falls

short of models with more cross-lingual training information. Interestingly, mBERT and

MLM are mostly the same except for the training languages, yet we observe that mBERT

under-performs MLM by a large margin. We hypothesize that limiting pretraining to only

those languages needed for the downstream task is beneficial. The gap between Artetxe and

Schwenk (2019) and mBERT in XNLI is larger than MLDoc, likely because XNLI is harder.

3.4.3 NER

We use Xie et al. (2018) as a zero-shot cross-lingual transfer baseline, which is state-of-

the-art on CoNLL 2002 and 2003. It uses unsupervised bilingual word embeddings (Lample

et al., 2018) with a hybrid of a character-level/word-level LSTM, self-attention, and a CRF.

Pseudo training data is built by word-to-word translation with an induced dictionary from

3They also use language embeddings as input and exclude the next sentence classification objective
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bilingual word embeddings.

mBERT outperforms a strong baseline by an average of 6.9 points absolute F1 and an

11.8 point absolute improvement in German with a simple one layer 0th-order CRF as a

prediction function (Table 3.4). A large gap remains when transferring to distantly related

languages (e.g. Chinese) compared to a supervised baseline. Further effort should focus

on transferring between distantly related languages. In Section 3.7 we show that sharing

subwords across languages helps transfer.

3.4.4 POS

We use Kim et al. (2017) as a reference. They utilized a small amount of supervision in

the target language as well as English supervision so the results are not directly comparable.

Table 3.5 shows a large (average) gap between mBERT and Kim et al. Interestingly, mBERT

still outperforms Kim et al. (2017) with 320 sentences in German (de), Polish (pl), Slovak

(sk) and Swedish (sv).

3.4.5 Dependency Parsing

We use the best performing model on average in Ahmad et al. (2019) as a zero-shot

transfer baseline, i.e. transformer encoder with graph-based parser (Dozat and Manning,

2017), and dictionary supervised cross-lingual embeddings (Smith et al., 2017). Dependency

parsers, including Ahmad et al., assume access to gold POS tags: a cross-lingual representa-
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tion. We consider two versions of mBERT: with and without gold POS tags. When tags are

available, a tag embedding is concatenated with the final output of mBERT.

Table 3.6 shows that mBERT outperforms the baseline on average by 7.3 point UAS

and 0.4 point LAS absolute improvement even without gold POS tags. Note in practice,

gold POS tags are not always available, especially for low resource languages. Interestingly,

the LAS of mBERT tends to be weaker than the baseline in languages with less word order

distance, in other words, more closely related to English. With the help of gold POS tags,

we further observe 1.6 points UAS and 4.7 point LAS absolute improvement on average.

It appears that adding gold POS tags, which provide clearer cross-lingual representations,

benefit mBERT.

3.4.6 Summary

Across all five tasks, mBERT demonstrates strong (sometimes state-of-the-art) zero-shot

cross-lingual performance without any cross-lingual signal. It outperforms cross-lingual

embeddings in four tasks. With a small amount of target language supervision and cross-

lingual signal, mBERT may improve further. In short, mBERT is a surprisingly effective

cross-lingual model for many NLP tasks.
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(a) Document classification (ACC) (b) Natural language inference (ACC)

(c) NER (F1) (d) POS tagging (ACC)

(e) Dependency parsing (LAS)

Figure 3.1: Performance of different fine-tuning approaches compared with fine-tuning all
mBERT parameters. Color denotes absolute difference and the number in each entry is the
evaluation in the corresponding setting. Languages are sorted by mBERT zero-shot transfer
performance. Three downward triangles indicate performance drop more than the legend’s
lower limit.

3.5 Does mBERT Vary Layer-wise?

The goal of a deep neural network is to abstract to higher-order representations as you

progress up the hierarchy (Yosinski et al., 2014). Peters et al. (2018) empirically show that

for ELMo in English the lower layer is better at syntax while the upper layer is better at

semantics. However, it is unclear how different layers affect the quality of cross-lingual
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representation. For mBERT, we hypothesize a similar generalization across the 13 layers, as

well as an abstraction away from a specific language with higher layers. Does the zero-shot

transfer performance vary with different layers?

We consider two schemes. First, we follow the feature-based approach of ELMo

by taking a learned weighted combination of all 13 layers of mBERT with a two-layer

bidirectional LSTM with dh hidden size (Feat). Note the LSTM is trained from scratch and

mBERT is fixed. For sentence and document classification, an additional max-pooling is

used to extract a fixed-dimension vector. We train the feature-based approach with Adam

and learning rate 1e-3. The batch size is 32. The learning rate is halved whenever the

development evaluation does not improve. The training is stopped early when learning

rate drops below 1e-5. Second, when fine-tuning mBERT, we fix the bottom n layers (n

included) of mBERT, where layer 0 is the input embedding. We consider n ∈ {0, 3, 6, 9}.

Freezing the bottom layers of mBERT, in general, improves the performance of mBERT

in all five tasks (Figure 3.1). For sentence-level tasks like document classification and natural

language inference, we observe the largest improvement with n = 6. For word-level tasks

like NER, POS tagging, and parsing, we observe the largest improvement with n = 3. More

improvement in under-performing languages is observed.

In each task, the feature-based approach with LSTM under-performs the fine-tuning

approach. We hypothesize that initialization from pretraining with lots of languages provides

a very good starting point that is hard to beat. Additionally, the LSTM could also be part

of the problem. In Ahmad et al. (2019) for dependency parsing, an LSTM encoder was
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Figure 3.2: Language identification accuracy for different layer of mBERT. layer 0 is the
embedding layer and the layer i > 0 is the output of the ith transformer block.

worse than a transformer when transferring to languages with high word ordering distance

to English.

3.6 Does mBERT Retain Language Specific In-

formation?

mBERT may learn a cross-lingual representation by abstracting away from language-

specific information, thus losing the ability to distinguish between languages. We test this

by considering language identification: does mBERT retain language-specific information?

We use WiLI-2018 (Thoma, 2018), which includes over 200 languages from Wikipedia. We
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Figure 3.3: Relation between cross-lingual zero-shot transfer performance with mBERT and
percentage of observed subwords at both type-level and token-level. Pearson correlation
coefficient and p-value are shown in red.

keep only those languages included in mBERT, leaving 99 languages 4. We take various

layers of bag-of-words mBERT representation of the first two sentences of the test paragraph

and add a linear classifier with softmax. We fix mBERT and train only the classifier the

same as the feature-based approach in Section 3.5.

All tested layers achieved around 96% accuracy (Figure 3.2), with no clear difference

between layers. This suggests each layer contains language-specific information; surprising

given the zero-shot cross-lingual abilities. As mBERT generalizes its representations and

creates cross-lingual representations, it maintains language-specific details. This may be

encouraged during pretraining since mBERT needs to retain enough language-specific

information to perform the cloze task.

4Hungarian, Western-Punjabi, Norwegian-Bokmal, and Piedmontese are not covered by WiLI.
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3.7 Does mBERT Benefit by Sharing Subwords

Across Languages?

As discussed in Section 2.8, mBERT shares subwords in closely related languages

or perhaps in distantly related languages. At training time, the representation of a shared

subword is explicitly trained to contain enough information for the cloze task in all languages

in which it appears. During fine-tuning for zero-shot cross-lingual transfer, if a subword in

the target language test set also appears in the source language training data, the supervision

could be leaked to the target language explicitly. However, all subwords interact in a non-

interpretable way inside a deep network, it is hard to characterize how sharing subwords

affects the transfer performance. Additionally, subword representations could overfit to

the source language and potentially hurt transfer performance. In these experiments, we

investigate how sharing subwords across languages affects cross-lingual transfer.

To quantify how many subwords are shared across languages in any task, we assume

V en
train is the set of all subwords in the English training set, V ℓ

test is the set of all subwords

in language ℓ test set, and cℓw is the count of subword w in test set of language ℓ. We then

calculate the percentage of observed subwords at type-level pℓtype and token-level pℓtoken for
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each target language ℓ.

pℓtype =
|V ℓ

obs|
|V ℓ

test|
× 100 (3.1)

pℓtoken =

∑︁
w∈V ℓ

obs
cℓw∑︁

w∈V ℓ
test
cℓw
× 100 (3.2)

where V ℓ
obs = V en

train ∩ V ℓ
test.

In Figure 3.3, we show the relation between cross-lingual zero-shot transfer performance

of mBERT and pℓtype or pℓtoken for all five tasks with Pearson correlation. In four out of five

tasks (not XNLI) we observed a strong positive correlation (p < 0.05) with a correlation

coefficient larger than 0.5. In Indo-European languages, we observed pℓtoken is usually around

50% to 75% while pℓtype is usually less than 50%. This indicates that subwords shared across

languages are usually high frequency5.

3.8 Discussion

In this chapter, we show mBERT does well in a cross-lingual zero-shot transfer setting

on five different tasks covering a large number of languages, even without any explicit

cross-lingual signal during pretraining. It outperforms cross-lingual embeddings, which

typically have more cross-lingual supervision. By fixing the bottom layers of mBERT

during fine-tuning, we observe further performance gains. Language-specific information is

5With the data-dependent WordPiece algorithm, subwords that appear in multiple languages with high
frequency are more likely to be selected.
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preserved in all layers. Sharing subwords helps cross-lingual transfer; a strong correlation

is observed between the percentage of overlapping subwords and transfer performance.

mBERT effectively learns a good multilingual representation with strong cross-lingual zero-

shot transfer performance in various tasks. Even without explicit cross-lingual supervision,

these models do very well.

This thesis builds on top of these findings. In Section 3.7, we observe a correlation

between subword overlap between languages and cross-lingual transfer performance. How-

ever, this is surprisingly not causation despite being intuitive, as we will show in chapter 4,

determining which factor contributes the most to the learning of cross-lingual representa-

tion. While we experimented with 39 languages in this chapter, the majority of languages

supported by mBERT are still untested. In chapter 5, we test the low resource languages

within mBERT. As we show with XNLI in Section 3.4, while bitext is hard to obtain in low

resource settings, a variant of mBERT pretrained with bitext (Conneau and Lample, 2019)

shows even stronger performance. In chapter 6, we explore how to introduce cross-lingual

supervision into models like BERT. With POS tagging in Section 3.4, we show mBERT, in

general, under-performs models with a small amount of supervision. Lauscher et al. (2020)

shows few-shot cross-lingual transfer improves zero-shot cross-lingual transfer, although

the choice of shot has significant impact on the performance (Zhao et al., 2021). Such

observation is not surprising, as we will take a deeper dive in chapter 7 looking at why

zero-shot cross-lingual transfer has high variance. In chapter 8, we explore how to construct

better data projection pipeline to improve zero-shot cross-lingual transfer with multilingual
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models like mBERT.

Outside of this thesis, many papers build on top of these findings. By scaling up mBERT

with bigger dataset and model, better cross-lingual representation can be achieved, including

models like XLM-R (Conneau et al., 2020a), mT5 (Xue et al., 2021), and XLM-RXXL (Goyal

et al., 2021). With strong cross-lingual representation covering over 100 languages, mBERT

enables massively multilingual models like multilingual parser UDify (Kondratyuk and

Straka, 2019). As more and more multilingual models become available, benchmarks have

been introduced aggregating existing multilingual dataset (Hu et al., 2020; Liang et al.,

2020).
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Chapter 4

How Does mBERT Learn Cross-lingual

Representation?
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4.1 Introduction

In chapter 3, we observe that multilingual language models such as mBERT (Devlin et

al., 2019) and XLM (Conneau and Lample, 2019) surprisingly enable effective cross-lingual

transfer—it is possible to learn a model from supervised data in one language and apply it

to another with no additional training—for a wide range of tasks without any explicit cross-

lingual signal. chapter 3 observes that there is a positive correlation between vocabulary

overlap between languages and transfer performance across languages. However, without

controlled experiment, it is unclear whether such correlation is causal. More broadly, it is

unclear why models like mBERT learn cross-lingual representation without any explicit

cross-lingual signal.

In this chapter, we first present a detailed ablation study on the impact of each modeling

decision of pretraining on the learning of cross-lingual representation. We look at factors

including domain similarity of pretraining corpus, a single shared subword vocabulary

across languages, vocabulary overlap between languages, random word replacement during

pretraining, joint softmax prediction across languages, and transformer parameter sharing

across languages.

Much to our surprise, we discover that pretrained models still learn cross-lingual repre-

sentation without any shared vocabulary or domain similarity, and even when only a subset

of the parameters in the joint encoder are shared. In particular, by systematically varying the

amount of shared vocabulary between two languages during pretraining, we show that the

amount of overlap only accounts for a few points of performance in transfer tasks, much
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less than might be expected. By sharing transformer parameters alone, pretraining learns to

map similar words and sentences to similar hidden representations.

How does sharing transformer parameters alone allow a model to learn cross-lingual rep-

resentation? To better understand these observation, we also analyze multiple monolingual

BERT models trained independently. We find that monolingual models trained in different

languages learn representations that align with each other surprisingly well, even though

they have no shared parameters during pretraining and completely different vocabulary. This

result closely mirrors the widely observed fact that word embeddings can be effectively

aligned across languages (Mikolov, Le, and Sutskever, 2013). Similar dynamics are at play

in multilingual pretraining. As monolingual BERTs of different language are similar to each

other, when the transformer parameters are shared across languages during pretraining, the

multilingual model naturally align the representation of different language in a cross-lingual

fashion.

4.2 Background

4.2.1 Alignment of Embeddings

In Section 2.7, we discuss the alignment of monolingual word embeddings and ELMo

to produce cross-lingual representation. Wang et al. (2019) align mBERT representations

and evaluate on dependency parsing.
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4.2.2 Neural Network Activation Similarity

We hypothesize that similar to word embedding spaces, language-universal structures

emerge in pretrained language models. While computing word embedding similarity is

relatively straightforward, the same cannot be said for the deep contextualized BERT models

that we study. Researchers introduce ways to measure the similarity of neural network

activation between different layers and different models (Laakso and Cottrell, 2000; Li

et al., 2016; Raghu et al., 2017; Morcos, Raghu, and Bengio, 2018; Wang et al., 2018).

For example, Raghu et al. (2017) use canonical correlation analysis (CCA) and a new

method, singular vector canonical correlation analysis (SVCCA), to show that early layers

converge faster than upper layers in convolutional neural networks. Kudugunta et al. (2019)

use SVCCA to investigate the multilingual representations obtained by the encoder of a

massively multilingual neural machine translation system (Aharoni, Johnson, and Firat,

2019). Kornblith et al. (2019) argue that CCA fails to measure meaningful similarities

between representations that have a higher dimension than the number of data points and

introduce the centered kernel alignment (CKA) to solve this problem. They successfully use

CKA to identify correspondences between activations in networks trained from different

initializations.
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Figure 4.1: On the impact of anchor points and parameter sharing on the emergence of
multilingual representations. We train bilingual masked language models and remove
parameter sharing for the embedding layers and first few Transformers layers to probe the
impact of anchor points and shared structure on cross-lingual transfer.

Figure 4.2: Probing the layer similarity of monolingual BERT models. We investigate the
similarity of separate monolingual BERT models at different levels. We use an orthogonal
mapping between the pooled representations of each model. We also quantify the similarity
using the centered kernel alignment (CKA) similarity index.
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4.3 Cross-lingual Pretraining

We study a standard multilingual masked language modeling formulation and evaluate

performance on several different cross-lingual transfer tasks, as described in this section.

4.3.1 Multilingual Masked Language Modeling

Our multilingual masked language models follow the setup used by both mBERT and

XLM. We use the implementation of Conneau and Lample (2019). Specifically, we consider

continuous streams of 256 tokens and mask 15% of the input tokens which we replace 80%

of the time by a mask token, 10% of the time with the original word, and 10% of the time

with a random word. Note the random words could be foreign words. The model is trained

to recover the masked tokens from its context (Taylor, 1953). The subword vocabulary and

model parameters are shared across languages. Note the model has a softmax prediction

layer shared across languages. We use Wikipedia for training data, preprocessed by Moses

(Koehn et al., 2007) and Stanford word segmenter (for Chinese only) and BPE (Sennrich,

Haddow, and Birch, 2016) to learn subword vocabulary. During training, we sample a batch

of continuous streams of text from one language proportionally to the fraction of sentences

in each training corpus, exponentiated to the power 0.7.
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4.3.2 Pretraining Details

Each model is a Transformer (Vaswani et al., 2017) with 8 layers, 12 heads and GELU

activiation functions (Hendrycks and Gimpel, 2016). The output softmax layer is tied with

input embeddings (Press and Wolf, 2017). The embeddings dimension is 768, the hidden

dimension of the feed-forward layer is 3072, and dropout is 0.1. We train our models

with the Adam optimizer (Kingma and Ba, 2014) and the inverse square root learning rate

scheduler of Vaswani et al. (2017) with 10−4 learning rate and 30k linear warm up steps.

For each model, we train it with 8 NVIDIA V100 GPUs with 32GB of memory and mixed

precision. It takes around 3 days to train one model. We use batch size 96 for each GPU and

each epoch contains 200k batches. We stop training at epoch 200 and select the best model

based on English dev perplexity for evaluation.

4.4 Cross-lingual Evaluation

We consider three NLP tasks to evaluate performance: natural language inference (NLI),

named entity recognition (NER) and dependency parsing (Parsing). Similar to chapter 3, we

adopt the zero-shot cross-lingual transfer setting, where we (1) fine-tune the pretrained

model on English and (2) directly transfer the model to target languages. We select the

model and tune hyperparameters with the English dev set. We report the result on average

of the best two sets of hyperparameters.
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4.4.1 Fine-tuning Details

We fine-tune the model for 10 epochs for NER and Parsing and 200 epochs for NLI. We

search the following hyperparameter for NER and Parsing: batch size {16, 32}; learning

rate {2e-5, 3e-5, 5e-5}. For XNLI, we search: batch size {4, 8}; encoder learning rate

{1.25e-6, 2.5e-6, 5e-6}; classifier learning rate {5e-6, 2.5e-5, 1.25e-4}. We use Adam with

a fixed learning rate for XNLI and warmup the learning rate for the first 10% batch then

decrease linearly to 0 for NER and Parsing. We save a checkpoint after each epoch.

4.4.2 Natural Language Inference

We use the cross-lingual natural language inference (XNLI) dataset (Conneau et al.,

2018). The task-specific layer is a linear mapping to a softmax classifier, which takes the

representation of the first token as input.

4.4.3 Named Entity Recognition

We use WikiAnn (Pan et al., 2017), a silver NER dataset built automatically from

Wikipedia, for English-Russian and English-French. For English-Chinese, we use CoNLL

2003 English (Tjong Kim Sang and De Meulder, 2003) and a Chinese NER dataset (Levow,

2006), with realigned Chinese NER labels based on the Stanford word segmenter. We model

NER as BIO tagging. Similar to Section 3.2.3, the task-specific layer is a linear mapping

to a softmax classifier, which takes the representation of the first subword of each word
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Figure 4.3: Cross-lingual transfer of bilingual MLM on three tasks and language pairs under
different settings. Other tasks and language pairs follow similar trends. See Table 4.1 for
full results.

as input. We report span-level F1. We adopt the same post-processing heuristic steps as

Section 3.2.3.

4.4.4 Dependency Parsing

Finally, we use the Universal Dependencies (UD v2.3) (Nivre, 2018b) for dependency

parsing. We consider the following four treebanks: English-EWT, French-GSD, Russian-

GSD, and Chinese-GSD. The task-specific layer is a graph-based parser (Dozat and Man-

ning, 2017), using representations of the first subword of each word as inputs, same as

Section 3.2.5. We measure performance with the labeled attachment score (LAS).
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Model Domain BPE Merges Anchors Pts Share Param. Softmax
XNLI (Acc) NER (F1) Parsing (LAS)

fr ru zh ∆ fr ru zh ∆ fr ru zh ∆

Default Wiki-Wiki 80k all all shared 73.6 68.7 68.3 0.0 79.8 60.9 63.6 0.0 73.2 56.6 28.8 0.0

Domain Similarity (Section 4.5.1)

Wiki-CC Wiki-CC - - - - 74.2 65.8 66.5 -1.4 74.0 49.6 61.9 -6.2 71.3 54.8 25.2 -2.5

Anchor Points (Section 4.5.2)

No anchors - 40k/40k 0 - - 72.1 67.5 67.7 -1.1 74.0 57.9 65.0 -2.4 72.3 56.2 27.4 -0.9
Default anchors - 40k/40k - - - 74.0 68.1 68.9 +0.1 76.8 56.3 61.2 -3.3 73.0 57.0 28.3 -0.1

Parameter Sharing (Section 4.5.3)

Sep Emb - 40k/40k 0* Sep Emb lang-specific 72.7 63.6 60.8 -4.5 75.5 57.5 59.0 -4.1 71.7 54.0 27.5 -1.8
Sep L1-3 - 40k/40k - Sep L1-3 - 72.4 65.0 63.1 -3.4 74.0 53.3 60.8 -5.3 69.7 54.1 26.4 -2.8
Sep L1-6 - 40k/40k - Sep L1-6 - 61.9 43.6 37.4 -22.6 61.2 23.7 3.1 -38.7 61.7 31.6 12.0 -17.8

Sep Emb + L1-3 - 40k/40k 0* Sep Emb + L1-3 lang-specific 69.2 61.7 56.4 -7.8 73.8 46.8 53.5 -10.0 68.2 53.6 23.9 -4.3
Sep Emb + L1-6 - 40k/40k 0* Sep Emb + L1-6 lang-specific 51.6 35.8 34.4 -29.6 56.5 5.4 1.0 -47.1 50.9 6.4 1.5 -33.3

Table 4.1: Dissecting bilingual MLM based on zero-shot cross-lingual transfer performance.
- denote the same as the first row (Default). ∆ denote the difference of average task
performance between a model and Default.

4.5 What Makes mBERT Multilingual?

We hypothesize that the following factors play important roles in what makes multilin-

gual BERT multilingual: domain similarity, shared vocabulary (or anchor points), shared

parameters, and language similarity. Without loss of generality, we focus on bilingual

MLM. We consider three pairs of languages with different levels of language similarity:

English-French, English-Russian, and English-Chinese.

4.5.1 Domain Similarity

Multilingual BERT and XLM are trained on the Wikipedia comparable corpora. Domain

similarity has been shown to affect the quality of cross-lingual word embeddings (Lample

et al., 2018), but this effect is not well established for masked language models. We consider

domain differences by training on Wikipedia for English and a random subset of Common

Crawl of the same size for the other languages (Wiki-CC). We also consider a model trained
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with Wikipedia only (Default) for comparison.

The first group in Table 4.1 shows domain mismatch has a relatively modest effect on

performance. XNLI and parsing performance drop around 2 points while NER drops over 6

points for all languages on average. One possible reason is that the labeled WikiAnn data

for NER consists of Wikipedia text; domain differences between source and target language

during pretraining hurt performance more. Indeed for English and Chinese NER, where

neither side comes from Wikipedia, performance only drops around 2 points.

4.5.2 Anchor Points

Anchor points are identical strings that appear in both languages in the training corpus.

Translingual words like DNA or Paris appear in the Wikipedia of many languages with

the same meaning. In mBERT, anchor points are naturally preserved due to joint BPE and

shared vocabulary across languages. Anchor point existence has been suggested as a key

ingredient for effective cross-lingual transfer since they allow the shared encoder to have at

least some direct tying of meaning across different languages (Conneau and Lample, 2019;

Pires, Schlinger, and Garrette, 2019; Wu and Dredze, 2019). However, this effect has not

been carefully measured.

We present a controlled study of the impact of anchor points on cross-lingual transfer

performance by varying the amount of shared subword vocabulary across languages. Instead

of using a single joint BPE with 80k merges, we use language-specific BPE with 40k merges

for each language. We then build vocabulary by taking the union of the vocabulary of two
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languages and train a bilingual MLM (Default anchors). To remove anchor points, we add

a language prefix to each word in the vocabulary before taking the union. Bilingual MLM

(No anchors) trained with such data has no shared vocabulary across languages. However,

it still has a single softmax prediction layer shared across languages and tied with input

embeddings.

The second group of Table 4.1 shows cross-lingual transfer performance under the two

anchor point conditions. Surprisingly, effective transfer is still possible with no anchor

points. Comparing no anchors and default anchors, the performance of XNLI and parsing

drops only around 1 point while NER even improves 1 point averaging over three languages.

Overall, these results show that we have previously overestimated the contribution of anchor

points during multilingual pretraining. Concurrent to the publication of this chapter, K et al.

(2020) similarly find anchor points play a minor role in learning cross-lingual representation.

4.5.3 Parameter Sharing

Given that anchor points are not required for transfer, a natural next question is the extent

to which we need to tie the parameters of the transformer layers. Sharing the parameters of

the top layer is necessary to provide shared inputs to the task-specific layer. However, as seen

in Figure 4.1, we can progressively separate the bottom layers 1:3 and 1:6 of the Transformers

and/or the embedding layers (including positional embeddings) (Sep Emb; Sep L1-3; Sep

L1-6; Sep Emb + L1-3; Sep Emb + L1-6). Since the prediction layer is tied with the

embeddings layer, separating the embeddings layer also introduces a language-specific
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softmax prediction layer for the cloze task. This effectively introduces language specific

component into the multilingual model. In theory, such language specific component might

learn to encode language specific information into a shared space, benefiting the learning

of cross-lingual representation. Additionally, in this group of experiment, we only sample

random words within one language during the MLM pretraining, as MLM pretraining would

potentially introduce accidental anchor points during random word replacement. During

fine-tuning on the English training set, we freeze the language-specific layers and only

fine-tune the shared layers.

The third group in Table 4.1 shows cross-lingual transfer performance under different pa-

rameter sharing conditions with “Sep” denoting which layers is not shared across languages.

Sep Emb (effectively no anchor point) drops more than No anchors with 3 points on XNLI

and around 1 point on NER and parsing, suggesting having a cross-language softmax layer

also helps to learn cross-lingual representations. Performance degrades as fewer layers are

shared for all pairs, and again the less closely related language pairs lose the most. Most no-

tably, the cross-lingual transfer performance drops to random when separating embeddings

and bottom 6 layers of the transformer. However, reasonably strong levels of transfer are still

possible without tying the bottom three layers. These trends suggest that parameter sharing

is the key ingredient that enables the learning of an effective cross-lingual representation

space, and having language-specific capacity does not help learn a language-specific encoder

for cross-lingual representation despite having extra parameters.
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4.5.4 Language Similarity

Finally, in contrast to many of the experiments above, language similarity seems to be

quite important for effective transfer. Looking at Table 4.1 column by column in each task,

we observe performance drops as language pairs become more distantly related. The more

complex tasks seem to have larger performance gaps and having language-specific capacity

does not seem to be the solution.

4.5.5 Conclusion

Summarised by Figure 4.3, parameter sharing is the most important factor. Anchor

points and shared softmax projection parameters are not necessary for effective cross-

lingual transfer. Joint BPE and domain similarity contribute a little in learning cross-lingual

representation.

4.6 How Does Parameter Sharing Enable Cross-

lingual Representation?

In Section 4.5, we observe that parameter sharing is the key for learning cross-lingual

representation. How does parameter sharing enable cross-lingual representation? Our hy-

pothesis is that the representations that the models learn for different languages are similarly

shaped and during multilingual pretraining, the models naturally align its representation
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across languages. If the hypothesis were true, we would be able to show that independently

trained monolingual BERT models learn representations that are similar across languages,

much like the widely observed similarities in word embedding spaces.

In this section, we show that independent monolingual BERT models produce highly

similar representations when evaluated at the word level (Section 4.6.1.1), contextual word-

level (Section 4.6.1.2), and sentence level (Section 4.6.1.3) . We also plot the cross-lingual

similarity of neural network activation with center kernel alignment (Section 4.6.2) at each

layer. We consider five languages: English, French, German, Russian, and Chinese.

4.6.1 Aligning Monolingual BERTs

To measure similarity, we learn an orthogonal mapping using the Procrustes (Smith

et al., 2017) approach:

W ⋆ = argmin
W∈Od(R)

∥WX − Y ∥F = UV T (4.1)

with UΣV T = SVD(Y XT ), where X and Y are representations of two monolingual

BERT models, sampled at different granularities as described below. We apply iterative

normalization on X and Y before learning the mapping (Zhang et al., 2019).
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(a) Non-contextual word embeddings alignment (b) Contextual word embedding alignment

Figure 4.4: Alignment of word-level representations from monolingual BERT models on
a subset of MUSE benchmark. Figure 4.4a and Figure 4.4b are not comparable due to
different embedding vocabularies.

4.6.1.1 Word-level Alignment

In this section, we align both the non-contextual word representations from the em-

bedding layers, and the contextual word representations from the hidden states of the

Transformer at each layer.

For non-contextualized word embeddings, we define X and Y as the word embedding

layers of monolingual BERT, which contain a single embedding per word (type). Note that

in this case we only keep words containing only one subword. For contextualized word

representations, we first encode 500k sentences in each language. At each layer, and for

each word, we collect all contextualized representations of a word in the 500k sentences

and average them to get a single embedding. Since BERT operates at the subword level,

for one word we consider the average of all its subword embeddings. Eventually, we get

one word embedding per layer. We use the MUSE benchmark (Lample et al., 2018), a

bilingual dictionary induction dataset for alignment supervision and evaluate the alignment
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Figure 4.5: Contextual representation alignment of different layers for zero-shot cross-
lingual transfer.

on word translation retrieval. As a baseline, we use the first 200k embeddings of fastText

(Bojanowski et al., 2017) and learn the mapping using the same procedure as Section 4.6.1.

Note we use a subset of 200k vocabulary of fastText, the same as BERT, to get a comparable

number. We retrieve word translation using CSLS (Lample et al., 2018) with K=10.

In Figure 4.4, we report the alignment results under these two settings. Figure 4.4a shows

that the subword embeddings matrix of BERT, where each subword is a standalone word,

can easily be aligned with an orthogonal mapping and obtain slightly better performance

than the same subset of fastText. Figure 4.4b shows embeddings matrix with the average

of all contextual embeddings of each word can also be aligned to obtain a decent quality

bilingual dictionary, although underperforming fastText. We notice that using contextual

representations from higher layers obtain better results compared to lower layers.
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4.6.1.2 Contextual Word-level Alignment

In addition to aligning word representations, we also align representations of two

monolingual BERT models in contextual settings, and evaluate performance on cross-lingual

transfer for NER and parsing. We take the Transformer layers of each monolingual model

up to layer i, and learn a mapping W from layer i of the target model to layer i of the source

model. To create that mapping, we use the same Procrustes approach but use a dictionary of

parallel contextual words, obtained by running the fastAlign (Dyer, Chahuneau, and Smith,

2013) model on the 10k XNLI parallel sentences.

For each downstream task, we learn task-specific layers on top of i-th English layer: four

Transformer layers and a task-specific layer. We learn these on the training set, but keep the

first i pretrained layers freezed. After training these task-specific parameters, we encode

(say) a Chinese sentence with the first i layers of the target Chinese BERT model, project

the contextualized representations back to the English space using the W we learned, and

then use the task-specific layers for NER and parsing.

In Figure 4.5, we vary i from the embedding layer (layer 0) to the last layer (layer

8) and present the results of our approach on parsing and NER. We also report results

using the first i layers of a bilingual MLM (biMLM), and the same alignment step with

biMLM. We show that aligning monolingual models (MLM align) obtain relatively good

performance even though they perform worse than bilingual MLM, except for parsing in

English-French. However, the same alignment step with biMLM only shows improvement in

parsing. The results of monolingual alignment generally show that we can align contextual
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Figure 4.6: Parallel sentence retrieval accuracy after Procrustes alignment of monolingual
BERT models.

representations of monolingual BERT models with a simple linear mapping and use this

approach for cross-lingual transfer. We also observe that the model obtains the highest

transfer performance with the middle layer representation alignment, and not the last layers.

The performance gap between monolingual MLM alignment and bilingual MLM is higher

in NER compared to parsing, suggesting the syntactic information needed for parsing might

be easier to align with a simple mapping while entity information requires more explicit

entity alignment.

4.6.1.3 Sentence-level Alignment

In this case, X and Y are obtained by average pooling subword representation (excluding

special token) of sentences at each layer of monolingual BERT. We use multi-way parallel

sentences from XNLI for alignment supervision and Tatoeba (Artetxe and Schwenk, 2019)

for evaluation.

Figure 4.6 shows the sentence similarity search results with nearest neighbor search
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and cosine similarity, evaluated by precision at 1, with four language pairs. Here the best

result is obtained at lower layers. The performance is surprisingly good given we only use

10k parallel sentences to learn the alignment without fine-tuning at all. As a reference, the

state-of-the-art performance is over 95%, obtained by LASER (Artetxe and Schwenk, 2019)

trained with millions of parallel sentences.

4.6.1.4 Conclusion

These findings demonstrate that both word-level, contextual word-level, and sentence-

level BERT representations can be aligned with a simple orthogonal mapping. Similar to

the alignment of word embeddings (Mikolov, Le, and Sutskever, 2013), this shows that

BERT models are similar across languages. This result gives more intuition on why mere

parameter sharing is sufficient for multilingual representations to emerge in multilingual

masked language models.

4.6.2 Neural Network Similarity

Based on the work of Kornblith et al. (2019), we examine the centered kernel alignment

(CKA), a neural network similarity index that improves upon canonical correlation analysis

(CCA), and use it to measure the similarity across both monolingual and bilingual masked

language models. The linear CKA is both invariant to orthogonal transformation and

isotropic scaling, but are not invertible to any linear transform. The linear CKA similarity
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Figure 4.7: CKA similarity of mean-pooled multi-way parallel sentence representation
at each layer. Note en′ corresponds to paraphrases of en obtained from back-translation
(en-fr-en′). Random encoder is only used by non-Engligh sentences. L0 is the embedding
layer while L1 to L8 are the corresponding transformer layers. The average row is the
average of 9 (L0-L8) similarity measurements.

measure is defined as follows:

CKA(X, Y ) =
∥Y TX∥2F

(∥XTX∥F∥Y TY ∥F)
, (4.2)

where X and Y correspond respectively to the matrix of the d-dimensional mean-pooled

(excluding special token) subword representations at layer l of the n parallel source and

target sentences.

In Figure 4.7, we show the CKA similarity of monolingual models, compared with

bilingual models and random encoders, of multi-way parallel sentences (Conneau et al.,

2018) for five languages pair: English to English′ (obtained by back-translation from French),
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French, German, Russian, and Chinese. The monolingual en′ is trained on the same data as

en but with different random seed and the bilingual en-en′ is trained on English data but with

separate embeddings matrix as in Section 4.5.3. The rest of the bilingual MLM is trained

with the Default setting. We only use random encoder for non-English sentences.

Figure 4.7 shows bilingual models have slightly higher similarity compared to mono-

lingual models with random encoders serving as a lower bound. Despite the slightly lower

similarity between monolingual models, it still explains the alignment performance in Sec-

tion 4.6.1. Because the measurement is also invariant to orthogonal mapping, the CKA

similarity is highly correlated with the sentence-level alignment performance in Figure 4.6

with over 0.9 Pearson correlation for all four languages pairs. For monolingual and bilingual

models, the first few layers have the highest similarity, which explains why Section 3.5 finds

freezing bottom layers of mBERT helps cross-lingual transfer. On the other hand, the final

few layers have the lowest similarity, perhaps because the model needs language specific

information to solve the cloze task, which explains why Section 3.6 finds that mBERT retains

strong language specific information. The similarity gap between monolingual model and

bilingual model decreases as the languages pair become more distant. In other words, when

languages are similar, using the same model increases representation similarity. On the other

hand, when languages are dissimilar, using the same model does not help representation

similarity much.
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4.7 Discussion

In this chapter, we show that multilingual representations can emerge from unsupervised

multilingual masked language models with only parameter sharing of some Transformer

layers. Even without any anchor points, the model can still learn to map representations

coming from different languages in a single shared embedding space. We also show

that isomorphic embedding spaces emerge from monolingual masked language models in

different languages, similar to word2vec embedding spaces (Mikolov, Le, and Sutskever,

2013). By using a linear mapping, we are able to align the embedding layers and the

contextual representations of Transformers trained in different languages. We also use the

CKA neural network similarity index to probe the similarity between BERT Models and

show that the early layers of the Transformers are more similar across languages than the

last layers. All of these effects were stronger for more closely related languages, suggesting

there is room for significant improvements on more distant language pairs.

This type of emergent language universality has interesting theoretical and practical

implications. We gain insight into why the models learn cross-lingual representation and

open up new lines of inquiry into the implication of such emerge universality. It should

be possible to adapt multilingual pretrained models to new languages with little additional

training. For example, pretrained multilingual MLM models can be rapidly fine-tuned to

another language (Artetxe, Ruder, and Yogatama, 2020; Chau, Lin, and Smith, 2020; Wang

et al., 2020a; Pfeiffer et al., 2020).
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5.1 Introduction

In chapter 3, we show that mBERT learns high-quality cross-lingual representation and

has strong zero-shot cross-lingual transfer performance. However, evaluations have focused

on high resource languages, with cross-lingual transfer using English as a source language

or within language performance. As chapter 3 evaluates mBERT on 39 languages, this

leaves the majority of mBERT’s 104 languages, most of which are low resource languages,

untested.

In this chapter, we ask the following question. Does mBERT learn equally high-quality

representation for its 104 languages? If not, which languages are hurt by its massively

multilingual style pretraining? While it has been observed that for high resource languages

like English, mBERT performs worse than monolingual BERT on English with the same ca-

pacity (Devlin, 2018). It is unclear that for low resource languages (in terms of monolingual

corpus size), how does mBERT compare to a monolingual BERT? And, does multilingual

joint training help mBERT learn better representation for low resource languages?

To answer this question, we first evaluate the representation quality of mBERT on 99

languages for NER, and 54 for part-of-speech tagging and dependency parsing. We show

mBERT does not have equally high-quality representation for all of the 104 languages, with

the bottom 30% languages performing much worse than a non-BERT model on NER. Addi-

tionally, by training various monolingual BERT for low-resource languages with the same

data size, we show the low representation quality of low-resource languages is not the result

of the hyperparameters of BERT or sharing the model with a large number of languages, as
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monolingual BERT performs worse than mBERT. On the contrary, by pairing low-resource

languages with linguistically-related languages, we show low-resource languages benefit

from multilingual joint training, as bilingual BERT outperforms monolingual BERT while

still lacking behind mBERT.

These experiments suggest that mBERT try its best to learn representation for the low

resource languages with the given data. However, as BERT pretraining objective is not

known for sample efficient, the small Wikipedia of low resource languages is not enough

for mBERT to learn high quality representation. To address this challenge, we either need

a more sample efficient pretraining algorithm or collect more data to make low resource

languages high resource.

5.2 Background

Several factors need to be considered in understanding mBERT. First, the 104 most com-

mon Wikipedia languages vary considerably in size (Table 5.1). Therefore, mBERT training

attempted to equalize languages by up-sampling sentences from low resource languages and

down-sampling sentences from high resource languages. Second, while each language may

be similarly represented in the training data, subwords are not evenly distributed among the

languages. Many languages share common characters and cognates, biasing subword learn-

ing to some languages over others. Both of these factors may influence how well mBERT

learns representations for low resource languages. Finally, Baevski et al. (2019) show that
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in general larger pretraining data for English leads to better downstream performance, yet

increasing the size of pretraining data exponentially only increases downstream performance

linearly. For a low resource language with limited pretraining data, it is unclear whether

contextual representations outperform previous methods.

5.2.1 Representations for Low Resource Languages

Embeddings with subword information, a non-contextual representation, like fastText

(Bojanowski et al., 2017) and BPEmb (Heinzerling and Strube, 2018) are more data-efficient

compared to contextual representation like ELMo and BERT when a limited amount of

text is available. For low resource languages, there are usually limits on monolingual

corpora and task specific supervision. When task-specific supervision is limited, e.g.

sequence labeling in low resource languages, mBERT performs better than fastText while

underperforming a single BPEmb trained on all languages (Heinzerling and Strube, 2019).

Contrary to this work, we focus on mBERT from the perspective of representation learning

for each language in terms of monolingual corpora resources and analyze how to improve

BERT for low resource languages. We also consider parsing in addition to sequence labeling

tasks.
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WikiSize Languages # Languages Size Range (GB)

3 io, pms, scn, yo 4 [0.006, 0.011]
4 cv, lmo, mg, min, su, vo 6 [0.011, 0.022]
5 an, bar, br, ce, fy, ga, gu, is, jv, ky, lb, mn, my, nds, ne, pa, pnb, sw, tg 19 [0.022, 0.044]
6 af, ba, cy, kn, la, mr, oc, sco, sq, tl, tt, uz 12 [0.044, 0.088]
7 az, bn, bs, eu, hi, ka, kk, lt, lv, mk, ml, nn, ta, te, ur 15 [0.088, 0.177]
8 ast, be, bg, da, el, et, gl, hr, hy, ms, sh, sk, sl, th, war 15 [0.177, 0.354]
9 fa, fi, he, id, ko, no, ro, sr, tr, vi 10 [0.354, 0.707]

10 ar, ca, cs, hu, nl, sv, uk 7 [0.707, 1.414]
11 ceb, it, ja, pl, pt, zh 6 [1.414, 2.828]
12 de, es, fr, ru 4 [2.828, 5.657]
14 en 1 [11.314, 22.627]

Table 5.1: List of 99 languages we consider in mBERT and its pretraining corpus size.
Languages in bold are the languages we consider in Section 5.5.

5.3 Experiments

We begin by defining high and low resource languages in mBERT, a description of

the models and downstream tasks we use for evaluation, followed by a description of the

masked language model pretraining.

5.3.1 High/Low Resource Languages

Since mBERT was trained on articles from Wikipedia, a language is considered a high

or low resource for mBERT based on the size of Wikipedia in that language. Size can be

measured in many ways (articles, tokens, characters); we use the size of the raw dump

archive file;1 for convenience we use log2 of the size in MB (WikiSize). English is the

highest resource language (15.5GB) and Yoruba the lowest (10MB).2 Table 5.1 shows

1The size of English (en) is the size of this file: https://dumps.wikimedia.org/enwiki/
latest/enwiki-latest-pages-articles.xml.bz2

2The ordering does not necessarily match the number of speakers for a language.

67

https://dumps.wikimedia.org/enwiki/latest/enwiki-latest-pages-articles.xml.bz2
https://dumps.wikimedia.org/enwiki/latest/enwiki-latest-pages-articles.xml.bz2


CHAPTER 5. ARE ALL LANGUAGES CREATED EQUAL IN MBERT?

languages and their relative resources.

5.3.2 Downstream Tasks

mBERT supports 104 languages, and we seek to evaluate the learned representations

for as many of these as possible. We consider three NLP tasks for which annotated task

data exists in a large number of languages: named entity recognition (NER), universal

part-of-speech (POS) tagging and universal dependency parsing. For each task, we fine-tune

a task-specific model built on top of the mBERT using within-language supervised data.

For NER we use data created by Pan et al. (2017), built automatically from Wikipedia,

which covers 99 of the 104 languages supported by mBERT. We evaluate NER with entity-

level F1. This data is in-domain as mBERT is pretrained on Wikipedia. For POS tagging

and dependency parsing, we use Universal Dependencies (UD) v2.3 (Nivre, 2018b), which

covers 54 languages (101 treebanks) supported by mBERT. We evaluate POS with accuracy

(ACC) and Parsing with label attachment score (LAS) and unlabeled attachment score

(UAS). For POS, we consider UPOS within the treebank. For parsing, we only consider

universal dependency labels. The domain is treebank-specific so we use all treebanks of a

language for completeness.

5.3.2.1 Task Models

For sequence labeling tasks (NER and POS), we add a linear function with a softmax

on top of mBERT. For NER, at test time, we adopt the same post-processing step as
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Section 3.2.3. For dependency parsing, we replace the LSTM in the graph-based parser of

Dozat and Manning (2017) with mBERT. For the parser, we use the original hyperparameters.

Note we do not use universal part-of-speech tags as input for dependency parsing. We fine-

tune all parameters of mBERT for a specific task. We use a maximum sequence length of

128 for sequence labeling tasks. For sentences longer than 128, we use a sliding window

with 64 previous tokens as context. For dependency parsing, we use sequence length 128

due to memory constraints and drop sentences with more than 128 subwords. We also adopt

the same treatment for the baseline (Che et al., 2018) to obtain comparable results. Since

mBERT operates on the subword-level, we select the first subword of each word for the

task-specific layer with masking.

5.3.2.2 Task Optimization

We train all models with Adam (Kingma and Ba, 2014). We warm up the learning rate

linearly in the first 10% steps then decrease linearly to 0. We select the hyperparameters

based on dev set performance by grid search, as recommended by Devlin et al. (2019). The

search includes a learning rate (2e-5, 3e-5, and 5e-5), batch size (16 and 32). As task-specific

supervision size differs by language or treebank, we fine-tune the model for 10k gradient

steps and evaluate the model every 200 steps. We select the best model and hyperparameters

for a language or treebank by the corresponding dev set.
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5.3.2.3 Task Baselines

We compare our mBERT models with previously published methods: Pan et al. (2017)

for NER; For POS and dependency parsing the best performing system ranked by LAS

in the 2018 universal parsing shared task (Che et al., 2018) 3, which use ELMo as well

as word embeddings. Additionally, Che et al. (2018) is trained on POS and dependency

parsing jointly while we trained mBERT to perform each task separately. As a result, the

dependency parsing with mBERT does not have access to POS tags. By comparing mBERT

to these baselines, we control for task and language-specific supervised training set size.

5.3.3 Masked Language Model Pretraining

We include several experiments in which we pretrain BERT from scratch. We use the

PyTorch (Paszke et al., 2019) implementation by Conneau and Lample (2019), the same as

Section 4.3. All sentences in the corpus are concatenated. For each language, we sample a

batch of N sequence and each sequence contains M tokens, ignoring sentence boundaries.

When considering two languages, we sample each language uniformly. We then randomly

select 15% of the input tokens for masking, proportionally to the exponentiated token count

of power -0.5, favoring rare tokens. We replace selected masked token with <MASK> 80%

of the time, the original token 10% of the time, and uniform random token within the

vocabulary 10% of the time. The model is trained to recover the original token (Devlin

3The shared task uses UD v2.2 while we use v2.3. However, treebanks contain minor changes from version
to version.
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et al., 2019). We drop the next sentence prediction task as Liu et al. (2019b) find it does not

improve downstream performance.

5.3.3.1 Data Processing

We extract text from a Wikipedia dump with Gensim (Řehůřek and Sojka, 2010). We

learn vocabulary for the corpus using SentencePiece (Kudo and Richardson, 2018) with the

unigram language model (Kudo, 2018). When considering two languages, we concatenate

the corpora for the two languages while sampling the same number of sentences from both

corpora when learning vocabulary. We learn a vocabulary of size V , excluding special

tokens. Finally, we tokenized the corpora using the learned SentencePiece model and did

not apply any further preprocessing.

5.3.3.2 BERT Models

Following mBERT, We use 12 Transformer layers (Vaswani et al., 2017) with 12 heads,

embedding dimensions of 768, hidden dimension of the feed-forward layer of 3072, dropout

of 0.1 and GELU activation (Hendrycks and Gimpel, 2016). We tie the output softmax layer

and input embeddings (Press and Wolf, 2017). We consider both a 12 layer model (base)

and a smaller 6 layer model (small).
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5.3.3.3 BERT Optimization

We train BERT with Adam and an inverse square root learning rate scheduler with

warmup (Vaswani et al., 2017). We warm up linearly for 10k steps and the learning rate is

0.0001. We use batch size N = 88 and mixed-precision training. We trained the model for

roughly 115k steps and save a checkpoint every 23k steps, which corresponds to 10 epochs.

We select the best out of five checkpoints with a task-specific dev set. We train each model

on a single NVIDIA RTX Titan with 24GB of memory for roughly 20 hours.

5.4 Are All Languages Created Equal in mBERT?

Figure 5.1 shows the performance of mBERT and the baseline averaged across all

languages by Wikipedia size (see Table 5.1 for groupings). For WikiSize over 6, mBERT

is comparable or better than baselines in all three tasks, with the exception of NER. For

NER in very high resource languages (WikiSize over 11, i.e. top 10%) mBERT performs

worse than baseline, suggesting high resource languages could benefit from monolingual

pretraining. Note mBERT has strong UAS on parsing but weak LAS compared to the

baseline; in Section 3.4 we find adding POS to mBERT improves LAS significantly. We

expect multitask learning on POS and parsing could further improve LAS. While POS and

Parsing only cover half (54) of the languages, NER covers 99 of 104 languages, extending

the curve to the lowest resource languages. mBERT performance drops significantly for

languages with WikiSize less than 6 (bottom 30% languages). For the smallest size, mBERT

72



CHAPTER 5. ARE ALL LANGUAGES CREATED EQUAL IN MBERT?

3 4 5 6 7 8 9 10 11 12 14
WikiSize

50

60

70

80

90

100

F1

NER

mBERT
Baseline

3 4 5 6 7 8 9 10 11 12 14
WikiSize

60

70

80

90

100

A
C
C

POS

mBERT
Baseline

3 4 5 6 7 8 9 10 11 12 14
WikiSize

50

60

70

80

90

100

U
A
S

Parsing

mBERT
Baseline

3 4 5 6 7 8 9 10 11 12 14
WikiSize

30

40

50

60

70

80

90

L
A
S

Parsing

mBERT
Baseline

Figure 5.1: mBERT vs baseline grouped by WikiSize. mBERT performance drops much
more than baseline models on languages lower than WikiSize 6 – the bottom 30% languages
supported by mBERT – especially in NER, which covers nearly all mBERT supported
languages.
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Figure 5.2: NER with mBERT on 99 languages, ordered by size of pretraining corpus
(WikiSize). Task-specific supervised training size differs by language. Performance drops
dramatically with less pretraining and supervised training data.

goes from being competitive with state-of-the-art to being over 10 points behind. Readers

may find this surprising since while these are very low resource languages, mBERT training

up-weighted these languages to counter this effect.

Figure 5.2 shows the performance of mBERT (only) for NER over languages with

different resources, where we show how much task-specific supervised training data was

available for each language. For languages with only 100 labeled sentences, the performance

of mBERT drops significantly as these languages also had less pretraining data. While

we may expect that pretraining representations with mBERT would be most beneficial for

languages with only 100 labels, as Howard and Ruder (2018) show pretraining improve

data-efficiency for English on text classification, our results show that on low resource

languages this strategy performs much worse than a model trained directly on the available

task data. Clearly, mBERT provides variable quality representations depending on the
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Coefficient p-value CI

Univariate

Training Size 0.035 <0.001 [0.029, 0.041]
Training Vocab 0.021 <0.001 [0.017, 0.025]

WikiSize 0.015 <0.001 [0.007, 0.023]

Multivariate

Training Size 0.029 <0.001 [0.023, 0.035]
WikiSize -0.014 <0.001 [-0.022, -0.006]

Table 5.2: Statistical analysis on what factors predict downstream performance. We fit two
types of linear models, which consider either single factor or multiple factors.

language. While we confirm the finding of others that mBERT is excellent for high resource

languages, it is much worse for low resource languages. Our results suggest caution for

those expecting a reliable model for all 104 mBERT languages.

5.5 Why Are All Languages Not Created Equal

in mBERT?

5.5.1 Statistical Analysis

We present a statistical analysis to understand why mBERT does so poorly in some

languages. We consider three factors that might affect the downstream task performance:

pretraining Wikipedia size (WikiSize), task-specific supervision size, and vocabulary size in

task-specific data. Note we take log2 of training size and training vocab following WikiSize.
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We consider NER because it covers nearly all languages of mBERT.

We fit a linear model to predict task performance (F1) using a single factor. Table 5.2

shows that each factor has a statistically significant positive correlation. One unit increase

of training size leads to the biggest performance increase, then training vocabulary followed

by WikiSize, all in log scale. Intuitively, training size and training vocab correlate with

each other. We confirm this with a log-likelihood ratio test; adding training vocabulary to a

linear model with training size yields a statistically insignificant improvement. As a result,

when considering multiple factors, we consider training size and WikiSize. Interestingly,

Table 5.2 shows training size still has a positive but slightly smaller slope, but the slope

of WikiSize change sign, which suggests WikiSize might correlate with training size. We

confirm this by fitting a linear model with training size as x and WikiSize as y and the slope

is over 0.5 with p < 0.001. This finding is unsurprising as the NER dataset is built from

Wikipedia so larger Wikipedia size means larger training size.

In conclusion, the larger the task-specific supervised dataset, the better the downstream

performance on NER. Unsurprisingly, while pretraining improve data-efficiency (Howard

and Ruder, 2018), it still cannot solve a task with limited supervision. Training vocabulary

and Wikipedia size correlate with training size, and increasing either one factor leads to better

performance. A similar conclusion could be found when we try to predict the performance

ratio of mBERT and the baseline instead. Statistical analysis shows a correlation between

resource and mBERT performance but can not give a causal answer on why low resource

languages within mBERT perform poorly.
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lv af mn yo

Genus Baltic Germanic Mongolic Defoid
Family Indo-Eur Indo-Eur Altaic Niger-Congo

WikiSize 7 6 5 3
# Sentences (M) 2.9 2.3 0.8 0.1

# Tokens (M) 21.8 28.8 6.4 0.9
mBERT vocab (K) 56.6 59.0 42.3 29.3
mBERT vocab (%) 49.2 51.3 36.8 25.5

Table 5.3: Statistic of four low resource languages.

5.5.2 mBERT vs monolingual BERT

We have established that mBERT does not perform well in low-resource languages. Is

this because we are relying on a multilingual model that favors high-resource over low-

resource languages? To answer this question we train monolingual BERT models on several

low resource languages with different hyperparameters. Since pretraining a BERT model

from scratch is computationally intensive, we select four low resource languages: Latvian

(lv), Afrikaans (af), Mongolian (mn), and Yoruba (yo). These four languages (bold font in

Table 5.3) reflect varying amounts of monolingual training data.

It turns out that these low resource languages are reasonably covered by mBERT’s

vocabulary: 25% to 50% of the subword types within the mBERT 115K vocabulary appear

in these languages’ Wikipedia. However, the mBERT vocabulary is by no means optimal

for these languages. Figure 5.3 shows that a large amount of the mBERT vocabulary that

appears in these languages is low frequency while the language-specific SentencePiece

vocabulary has a much higher frequency. In other words, the vocabulary of mBERT is not
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Figure 5.3: Percentage of vocabulary containing word count larger than a threshold. “Raw” is
the vocabulary segmented by space. Single-30K and Single-10K are 30K/10K vocabularies
learned from single languages. Pair-30K is 30K vocabulary learned from the selected
language and a closely related language, described in Section 5.5.3.

Figure 5.4: Dev performance with different pretraining epochs on three languages and tasks.
Dev performance on higher resources languages (lv, af) improves as training continues,
while lower resource languages (mn) fluctuate.

distributed uniformly.

To train the monolingual BERTs properly for low resource languages, we consider

four different sets of hyperparameters. In base, we follow English monolingual BERT

on learning vocabulary size V = 30K, 12 layers of transformer (base). To ensure we

have a reasonable batch size for training using our GPU, we set the training sequence

length to M = 256. Since a smaller model can prevent overfitting smaller datasets, we
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Model Size Vocabulary Max Length
lv af mn yo

NER POS Parsing (LAS/UAS) NER POS Parsing (LAS/UAS) NER NER

Baseline

Baseline 92.10 96.19 84.47/88.28 94.00 97.50 85.69/88.67 76.40 94.00
mBERT 93.88 95.69 77.78/88.69 93.36 98.26 83.18/89.69 64.71 80.54

Monolingual BERT (Section 5.5.2)

base 30k 256 93.02 95.76 74.18/85.35 90.90 97.76 80.08/86.92 56.20 72.57

small - - 92.75 95.41 71.67/83.34 90.67 98.02 80.60/87.40 58.92 70.80
- 10k - 92.68 95.65 73.94/85.20 89.55 97.66 79.91/86.93 41.70 80.18
- - 128 93.38 95.57 73.21/84.53 91.84 97.87 80.83/87.59 55.91 73.45

Bilingual BERT (Section 5.5.3) lv + lt af + nl

base 30k 256 93.22 96.03 74.42/85.60 91.85 97.98 81.73/88.55 n/a n/a

Table 5.4: Monolingual BERT on four languages with different hyperparameters.
Underscore denotes best within monolingual BERT and bold denotes best among all models.
Monolingual BERT underperforms mBERT in most cases. “-” denotes same as base case.

consider 6 transformer layers (small). We do not change the batch size as a larger batch is

observed to improve performance (Liu et al., 2019b). As low resource languages have small

corpora, 30K vocabulary items might not be optimal. We consider smaller vocabulary with

V = 10K. Finally, since in fine-tuning we only use a maximum sequence length of 128, in

smaller sequence length, we match the fine-tuning phrase with M = 128. As a benefit of

half the self-attention range, we can increase the batch size over 2.5 times to N = 220.

Table 5.4 shows the performance of monolingual BERT in four settings. The model with

smaller sequence length performs best for monolingual BERT and outperforms the base

model in 5 out of 8 tasks and languages combination. The model with smaller vocabulary

has mixed performance in the low resource languages (mn, yo) but falls short for (relatively)

higher resource languages (lv, af). Finally, the smaller model underperforms the base model

in 5 out of 8 cases. In conclusion, the best way to pretrain BERT with a limited amount of

computation for low resource languages is to use a smaller sequence length to allow a larger
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batch size.

Despite these insights, no monolingual BERT outperforms mBERT (except Latvian

POS). For higher resource languages (lv, af) we hypothesize that training longer with

larger batch size could further improve the downstream performance as the cloze task dev

perplexity was still improving. Figure 5.4 supports this hypothesis showing downstream

dev performance of lv and af improves as pretraining continues. Yet for lower resource

languages (mn, yo), the cloze task dev perplexity is stuck and we began to overfit the training

set. At the same time, Figure 5.4 shows the downstream performance of mn fluctuates. It

suggests the cloze task dev perplexity correlates with downstream performance when dev

perplexity is not decreasing.

The fact that monolingual BERT underperforms mBERT on four low resource languages

suggests that mBERT style multilingual training benefits low resource languages by trans-

ferring from other languages; monolingual training produces worse representations due to

small corpus size. Additionally, the poor performance of mBERT on low resource languages

does not emerge from balancing between languages. Instead, it appears that we do not have

sufficient data, or the model is not sufficiently data-efficient.

5.5.3 mBERT vs Bilingual BERT

Finally, we consider a middle ground between monolingual training and massively

multilingual training. We train a BERT model on a low resource language (lv and af) paired

with a related higher resource language. We pair Lithuanian (lt) with Latvian and Dutch
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(nl) with Afrikaans.4 Lithuanian has a similar size to Latvian while Dutch is over 10 times

bigger. Lithuanian belongs to the same Genus as Latvian while Afrikaans is a daughter

language of Dutch. The base pair model has the same hyperparameters as the base model.

Table 5.4 shows that pairing low resource languages with closely related languages

improves downstream performance. The Afrikaans-Dutch BERT improves more compared

to Latvian-Lithuanian, possibly because Dutch is much larger than Afrikaans, as compared

to Latvian and Lithuanian. These experiments suggest that pairing linguistically related

languages can benefit representation learning and adding extra languages can further improve

the performance as demonstrated by mBERT. It echoes the finding of Conneau and Lample

(2019) where multilingual training improves uni-directional language model perplexity for

low resource languages. Concurrent to the publication of this chapter, Conneau et al. (2020a)

shows similar findings as the performance of low resource languages (Urdu and Swahili)

improves on XNLI when more languages are trained jointly then decrease with an increasing

number of languages. However, they do not consider the effect of language similarity.

5.6 Discussion

While mBERT covers 104 languages, in this chapter, we find that the 30% languages

with least pretraining resources perform worse than using no pretrained language model at all.

Therefore, we caution against using mBERT alone for low resource languages. Furthermore,

training a monolingual model on low resource languages does no better. Training on pairs of
4We did not consider mn and yo since neither has a closely related language in mBERT.
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closely related low resource languages helps but still lags behind mBERT. Thus, mBERT is

trying its best to learn representation for low resource languages. However, constrained by

the sample inefficiency of BERT objective and the lack of data of low resource languages,

mBERT learns low quality representation for low resource languages. On the other end of

the spectrum, the highest resource languages (top 10%) are hurt by massively multilingual

joint training. While mBERT has access to numerous languages, the resulting model is

worse than a monolingual model when sufficient training data exists.

Our findings suggest, with small monolingual corpus, BERT does not learn high-quality

representation for low resource languages. To learn better representation for low resource

languages, we suggest either collect more data to make low resource language high resource,

which leads to XLM-R (Conneau et al., 2020a), or consider more data-efficient pretraining

techniques like Clark et al. (2020), which leads to better performing XLM-E (Chi et al.,

2021b). On the other hand, for high resource languages, training a monolingual model is

likely to produce better representation than mBERT. Since English BERT and multilingual

BERT, a large number of BERT-like models for various languages have been publicly

available, e.g. Dutch (Delobelle, Winters, and Berendt, 2020), French (Martin et al., 2020),

and Vietnamese (Nguyen and Tuan Nguyen, 2020). In fact, by November 2021, over 1700

BERT-like models are available with the Transformers library (Wolf et al., 2020).
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6.1 Introduction

Massively multilingual encoders including multilingual BERT (Devlin et al., 2019,

mBERT) and XLM-RoBERTa (Conneau et al., 2020a, XLM-R) are pretrained without any

explicit cross-lingual signal. In this chapter, we will investigate how to inject two types of

cross-lingual signal into multilingual encoders: bilingual dictionary and bitext.

Bilingual dictionary is widely available for most language pairs, and it is easy to collect

bilingual dictionary for a new language pair (Kamholz, Pool, and Colowick, 2014). We inject

it into the pretraining process by increasing subwords overlap across languages. We achieve

additional subwords overlap by creating synthetic code-switching corpus with bilingual

dictionary. As we observe in Section 3.7, subwords overlap between languages correlates

with cross-lingual transfer performance, although Section 4.5.2 shows that subword overlap

is not the necessary condition for cross-lingual representation. In Section 6.3, we show that

the correlation indeed holds with additional subwords overlap, in other word, having extra

anchor points benefit the cross-lingual representation.

Bitext is available for most high-resource language pairs (usually involving English),

and researchers have proposed collecting additional bitext by mining parallel sentences from

the Web (Schwenk et al., 2021; Schwenk et al., 2019). While bitext can be incorporated

during expensive pretraining (Conneau and Lample, 2019; Huang et al., 2019; Ji et al.,

2020; Chi et al., 2021a), aligning pretrained multilingual encoders with explicit alignment

objective, i.e. enforcing similar words from different languages have similar representation,

is much more efficient. However, as word-level alignments from an unsupervised aligner
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are often suboptimal, in Section 6.4, we develop a new cross-lingual alignment objective

for training our model. We base our objective on contrastive learning, in which two similar

inputs – such as from a bitext – are directly optimized to be similar, relative to a negative set.

These methods have been effective in computer vision tasks (He et al., 2020; Chen et al.,

2020).

Most previous work on contextual alignments consider high-quality bitext like Europarl

(Koehn, 2005) or MultiUN (Eisele and Chen, 2010). While helpful, these resources are

unavailable for most languages for which we seek a zero-shot transfer. To better reflect the

quality of bitext available for most languages, we additionally use OPUS-100 (Zhang et al.,

2020), a randomly sampled 1 million subset (per language pair) of the OPUS collection

(Tiedemann, 2012). In Section 6.4, we show that our new contrastive learning alignment

objectives outperform previous work (Cao, Kitaev, and Klein, 2020) when applied to bitext

from previous works or the OPUS-100 bitext. However, our experiments also produce a

negative result. While previous work showed improvements from alignment-based objectives

on zero-shot cross-lingual transfer for a single task (XNLI) with a single random seed, our

more extensive analysis tells a different story. We report the mean and standard deviation

of multiple runs with the same hyperparameters and different random seeds. We find that

previously reported improvements disappear, even while our new method shows a small

improvement. Furthermore, we extend the evaluation to multiple languages on 4 tasks,

further supporting our conclusions.
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6.2 Background

6.2.1 Explicit Alignment Objectives

We begin with a presentation of explicit alignment objective functions that use parallel

data across languages for training multilingual encoders. These objectives assume multi-

lingual data in the form of word pairs in parallel sentences. Since gold word alignments

are scarce, we use an unsupervised word aligner. Let S and T be the contextual hidden

state matrix of corresponding words from a pretrained multilingual encoder. We assume

S is English while T is a combination of different target languages. As both mBERT and

XLM-R operate at the subword level, we use the representation of the first subword, which

is consistent with the evaluation stage. Each si and ti are a corresponding row of S and T,

respectively. S and T come from the final layer of the encoder while Sl and Tl come from

the lth-layer.

6.2.1.1 Linear Mapping

If S and T are static feature (such as from ELMo (Peters et al., 2018)) then T can be

aligned so that it is close to S via a linear mapping (Wang et al., 2019; Wang et al., 2020b;

Liu et al., 2019a; Conneau et al., 2020b), similar to aligning monolingual embeddings

to produce cross-lingual embeddings. For feature Sl and Tl from layer l, we can learn a
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mapping Wl.

Wl∗ = argmin
Wl
∥Sl −TlWl∥22 (6.1)

When Wl is orthogonal, Equation 6.1 is known as Procrustes problem (Smith et al., 2017)

and can be solved by SVD. Alternatively, Equation 6.1 can also be solved by gradient descent,

without the need to store in memory huge matrices S and T. We adopt the latter more

memory efficient approach. Following Lample et al. (2018), we enforce the orthogonality

by alternating the gradient update and the following update rule

W← (1 + β)W − β(WWT )W (6.2)

with β = 0.01. Note we learn different Wl for each target language.

This approach has yielded improvements in several studies. In Section 4.6.1.2, we use

bilingual BERT and 10k parallel sentences from XNLI (Conneau et al., 2018) to improve

dependency parsing (but not NER) on French, Russian, and Chinese. Wang et al. (2019) use

mBERT and 10k parallel sentences from Europarl to improve dependency parsing. Wang

et al. (2020b) use mBERT and 30k parallel sentences from Europarl to improve named

entity recognition (NER) on Spanish, Dutch, and German. Liu et al. (2019a) do not evaluate

on cross-lingual transfer tasks.
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6.2.1.2 L2 Alignment

Instead of using S and T as static features, Cao, Kitaev, and Klein (2020) propose

fine-tuning the entire encoder

LL2(θ) = meani(∥si − ti∥22) (6.3)

where θ is the encoder parameters. To prevent a degenerative solution, they additionally use

a regularization term

Lreg-hidden(θ) = ∥S̄− S̄pretrained∥22 (6.4)

where S̄ denote all hidden states of the source sentence including unaligned words, encour-

aging the source hidden states to stay close to the pretrained hidden states. With mBERT

and 20k to 250k parallel sentences from Europarl and MultiUN, Cao, Kitaev, and Klein

show improvement on XNLI but not parsing.1

In preliminary experiments, we found constraining parameters to stay close to their

original pretrained values also prevents degenerative solutions

Lreg-param(θ) = ∥θ − θpretrained∥22 (6.5)

while being more efficient than Equation 6.4. As a result, we adopt the following objective

1The authors state they did not observe improvements on parsing in the NLP Hightlights podcast (#112)
(AI2, 2020).
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(with λ = 1):

L(θ) = LL2(θ) + λLreg-param(θ) (6.6)

6.3 Bilingual Dictionary

6.3.1 Experiments

As Section 3.7 suggests that there may be correlation between cross-lingual performance

and anchor points, we additionally increase anchor points by using bilingual dictionary to

create code switch data for training bilingual MLM. Specifically, for two languages, ℓ1 and

ℓ2, with bilingual dictionary entries dℓ1,ℓ2 , we add anchors to the training data as follows. For

each training word wℓ1 in the bilingual dictionary, we either leave it as is (70% of the time)

or randomly replace it with one of the possible translations from the dictionary (30% of the

time). We change at most 15% of the words in a batch and sample word translations from

PanLex (Kamholz, Pool, and Colowick, 2014) bilingual dictionary, weighted according to

their translation quality.2 We pretrain two bilingual encoders for each language pair: with

or without synthetic code-switching corpus. We consider the same three language pairs

as Section 4.5: English-French, English-Russian, and English-Chinese. The rest of the

pretraining is the same as Section 4.3. Recall that each encoder is a 8-layer Transformer.

To ensure a fair comparison, both models have the same number of gradient updates. For

2Although we only consider pairs of languages, this procedure naturally scales to multiple languages.
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XNLI (Acc) NER (F1) Parsing (LAS)
fr ru zh fr ru zh fr ru zh

Default 73.6 68.7 68.3 79.8 60.9 63.6 73.2 56.6 28.8

+ Bi. Dict. 74.0 69.8 72.1 76.1 59.7 66.8 73.3 56.9 29.2

Table 6.1: Impact of extra anchor points with synthetic code-switching corpus based on
bilingual dictionary.

this section, we adapt the same zero-shot cross-lingual evaluation on XNLI, NER, and

dependency parsing as Section 4.4

6.3.2 Fingdings

Table 6.1 shows using bilingual dictionary to create synthetic code-switching corpus

overall benefit cross-lingual representation. Anchor points have a clear effect on performance

and more anchor points help, especially in the less closely related language pairs (e.g.

English-Chinese has a larger effect than English-French with over 3 points improvement on

NER and XNLI).

6.4 Bitext

6.4.1 Contrastive Alignment

Inspired by the contrastive learning framework of Chen et al. (2020), we propose a

contrastive loss to align S and T by fine-tuning the encoder. Assume in each batch, we have
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Our Work
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Strong Contrastive AlignmentLinear/L2 Alignment Weak Contrastive Alignment

Figure 6.1: Explicit alignment with different objectives. We use a parallel sentence “He
ate an apple” and “Se comió una manzana” as an example. While linear or L2 alignment
optimizes for absolute distance, making “ate” and “comió” as close as possible (solid line),
contrastive alignment optimizes for relative distance, making “ate” and “comió” closer
(solid line) and pushing other away (dotted line).

corresponding (si, ti) where i ∈ {1, . . . , B}. Instead of optimizing the absolute distance

between si and ti like Equation 6.1 or Equation 6.3 in Section 6.2.1, contrastive loss allows

more flexibility by encouraging si and ti to be closer as compared with any other hidden state.

In other words, our proposed contrastive alignment optimizes the relative distance between

si and ti (see Figure 6.1 for visualization). As the alignment signal is often suboptimal,

our alignment objective is more robust to errors in unsupervised word-level alignment.

Additionally, unlike previous works, we select different sets of negative examples to enforce

different levels of cross-lingual alignment. Finally, it naturally scales to multiple languages.

6.4.1.1 Weak alignment

When the negative examples only come from target languages, we enforce a weak

cross-lingual alignment, i.e. si should be closer to ti than any other tj,∀j ̸= i. The same is
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true in the other direction. The loss of a batch is

Lweak(θ) =
1

2B

B∑︂
i=1

(log
exp(sim(si, ti)/T )∑︁B
j=1 exp(sim(si, tj)/T )

+ log
exp(sim(si, ti)/T )∑︁B
j=1 exp(sim(sj, ti)/T )

) (6.7)

where T = 0.1 is a temperature hyperparameter and sim(a, b) measures the similarity of a

and b.

We use a learned cosine similarity sim(a, b) = cos(f(a), f(b)) where f is a feed-forward

feature extractor with one hidden layer (768-768-128) and ReLU. It can learn to discard

language-specific information and only align the align-able information. Chen et al. (2020)

find that this similarity measure learns better representation for computer vision. After

alignment, f is discarded as most cross-lingual transfer tasks do not need this feature

extractor, though tasks like parallel sentence retrieval might find it helpful. This learned

similarity cannot be applied to an absolute distance objective like Equation 6.3 as it can

produce degenerate solutions.

6.4.1.2 Strong alignment

If the negative examples include both source and target languages, we enforce a strong

cross-lingual alignment, i.e. si should be closer to ti than any other tj,∀j ̸= i and sj,∀j ̸= i.

Lstrong(θ) =
1

2B

∑︂
h∈H

log
exp(sim(h, aligned(h))/T )∑︁
h′∈H,h′ ̸=h exp(sim(h, h′)/T )

(6.8)

where aligned(h) is the aligned hidden state of h andH = {s1, . . . , sB, t1, . . . , tB}.
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For both weak and strong alignment objectives, we add a regularization term Equation 6.5

with λ = 1.

6.4.2 Experiments

6.4.2.1 Multilingual Alignment

We consider alignment and transfer from English to 8 target languages: Arabic, German,

English, Spanish, French, Hindi, Russian, Vietnamese, and Chinese. We use two sets of

bitexts: (1) bitext used in previous works (Conneau and Lample, 2019) and (2) the OPUS-

100 bitext (Zhang et al., 2020). (1) For bitext used in previous works, we use MultiUN

for Arabic, Spanish, French, Russian or Chinese, EUBookshop (Skadiņš et al., 2014) for

German, IIT Bombay corpus (Kunchukuttan, Mehta, and Bhattacharyya, 2018) for Hindi

and OpenSubtitles (Lison, Tiedemann, and Kouylekov, 2018) for Vietnamese. We sample

1M bitext for each target language. (2) The OPUS-100 covers 100 languages with English

as the center, and sampled from the OPUS collection randomly, which better reflects the

average quality of bitext for most languages. It contains 1M bitext for each target language,

except Hindi (0.5M).

We tokenize the bitext with Moses (Koehn et al., 2007) and segment Chinese with

Chang, Galley, and Manning (2008). We use fast align (Dyer, Chahuneau, and Smith,

2013) to produce unsupervised word alignments in both directions and symmetrize with the

grow-diag-final-and heuristic. We only keep one-to-one alignment and discard any trivial
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alignment where the source and target words are identical.

We train the L2 (Section 6.2.1.2), weak, and strong alignment objectives in a multilingual

fashion. Each batch contains examples from all target languages. Following Devlin et al.

(2019), we optimize with Adam (Kingma and Ba, 2014), learning rate 1e-4, 128 batch

size, 100k total steps (≈ 2 epochs), 4k steps linear warmup and linear decay. We use 16-bit

precision and train each model on a single RTX TITAN for around 18 hours. We set the

maximum sequence length to 96. For linear mapping (Section 6.2.1.1), we use a linear

decay learning rate from 1e-4 to 0 in 20k steps (≈ 3 epochs), and train for 3 hours for each

language pairs.

6.4.2.2 Evaluation

We consider zero-shot cross-lingual transfer with XNLI (Conneau et al., 2018), NER

(Pan et al., 2017), POS tagging and dependency parsing (Zeman, 2020a).3 We evaluate

XNLI and POS tagging with accuracy (ACC), NER with span-level F1, and parsing with

labeled attachment score (LAS). For the task-specific layer, we use a linear classifier for

XNLI, NER, and POS tagging, and use Dozat and Manning (2017) for dependency parsing.

We fine-tune all parameters on English training data and directly transfer to target languages.

We optimize with Adam, learning rate 2e-5 with 10% steps linear warmup and linear decay,

5 epochs, and 32 batch size. For the linear mapping alignment, we use an ELMo-style

3We use the following treebanks: Arabic-PADT, German-GSD, English-EWT, Spanish-GSD, French-GSD,
Hindi-HDTB, Russian-GSD, Vietnamese-VTB, and Chinese-GSD.
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feature-based model4 with 4 extra Transformer layers (Vaswani et al., 2017), a CRF instead

of a linear classifier for NER, and train for 20 epochs, a batch size of 128 and learning rate

1e-3 (except NER and XNLI with 1e-4). All token level tasks use the first subword as the

word representation for task-specific layers similar to previous chapters. Model selection is

done on the English dev set. We report the mean and standard derivation of test performance

of 5 evaluation runs with different random seeds5 and the same hyperparameters.

We set the maximum sequence length to 128 during fine-tuning. For NER and POS

tagging, we additionally use a sliding window of context to include subwords beyond the

first 128. At test time, we use the same maximum sequence length except for parsing. At

test time for parsing, we only use the first 128 words of a sentence instead of subwords to

make sure we compare different models consistently. We ignore words with POS tags of

SYM and PUNCT during parsing evaluation. We adopt the same post-processing heuristic

steps as Section 3.2.3 during NER evaluation. As the supervision on Chinese NER is on

character-level, we segment the character into word using the Stanford Word Segmenter and

realign the label.
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XNLI NER POS Parsing

mBERT 70.1±0.8 67.7±1.3 78.3±0.5 52.6±0.4

+ Linear Mapping 70.0±0.6 63.7±1.5 79.5±0.5 53.6±0.3

+ L2 Align 69.7±0.4 67.1±1.0 78.0±1.3 52.2±0.7

+ Weak Align (Our) 70.5±0.7 68.0±1.3 78.8±0.7 53.1±0.6

+ Strong Align (Our) 70.4±0.7 67.7±1.1 79.0±0.7 53.0±0.6

XLM-Rbase 76.4±0.5 66.4±0.9 81.2±0.6 57.3±0.6

+ Linear Mapping 73.4±0.6 54.1±0.9 81.3±0.5 55.6±0.5

+ L2 Align 75.7±0.5 65.7±1.2 81.3±0.9 56.2±0.7

+ Weak Align (Our) 76.1±0.7 66.0±1.0 81.5±0.5 57.4±0.4

+ Strong Align (Our) 76.0±0.6 66.1±0.9 81.4±0.6 57.4±0.5

XLM-Rlarge 80.4±0.6 71.0±1.4 82.6±0.5 59.4±0.8

(a) Alignment with bitext used in previous works

XNLI NER POS Parsing

mBERT 70.1±0.8 67.7±1.3 78.3±0.5 52.6±0.4

+ Linear Mapping 70.2±0.6 63.8±1.3 80.1±0.4 53.6±0.3

+ L2 Align 70.3±0.5 67.8±1.4 78.2±1.2 52.8±0.7

+ Weak Align (Our) 70.8±0.7 67.3±0.9 78.8±0.6 52.9±0.6

+ Strong Align (Our) 70.4±0.7 67.2±1.1 79.0±0.7 53.3±0.6

XLM-Rbase 76.4±0.5 66.4±0.9 81.2±0.6 57.3±0.6

+ Linear Mapping 73.5±0.5 54.2±0.8 81.7±0.6 56.1±0.4

+ L2 Align 75.8±0.5 65.5±1.2 81.4±0.8 55.9±0.6

+ Weak Align (Our) 76.0±0.4 66.2±1.2 81.5±0.5 57.4±0.5

+ Strong Align (Our) 76.1±0.4 66.2±1.0 81.5±0.6 57.4±0.5

XLM-Rlarge 80.4±0.6 71.0±1.4 82.6±0.5 59.4±0.8

(b) Alignment with the OPUS-100 bitext

Table 6.2: Zero-shot cross-lingual transfer result, average over 9 languages. Breakdown
can be found in Table 6.3 and Table 6.4. Blue or orange indicates the mean performance is
one standard derivation above or below the mean of baseline. While mBERT benefits from
alignment in some cases, extra alignment does not improve XLM-R.

6.4.3 Findings

6.4.3.1 Robustness of Previous Methods

With a more robust evaluation scheme and 1 million parallel sentences (4× to 100×

of previously considered data), the previously proposed Linear Mapping or L2 Alignment

does not consistently outperform a no alignment setting more than one standard deviation in

all cases (Table 6.2). With mBERT, L2 Alignment performs comparably to no alignment

on all 4 tasks (XNLI, NER, POS tagging, and parsing). Compared to no alignment, Linear

Mapping performs much worse on NER, performs better on POS tagging and parsing, and

performs comparably on XNLI. While previous work observes small improvements on

selected languages and tasks, it likely depends on the randomness during evaluation. Based

on a more comprehensive evaluation including 4 tasks and multiple seeds, the previously

4We take the weighted average of representations in all layers of the encoder.
5We pick 5 random seeds before the experiment and use the same seeds for each task and model.
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XNLI (Accuracy)

mBERT 64.2±0.9 70.5±0.2 82.5±0.3 74.2±1.2 73.8±0.8 59.4±0.7 68.3±0.9 69.6±0.7 68.6±0.9 70.1±0.8

+ Linear Mapping 63.8±0.6 70.4±0.4 81.0±0.5 73.9±0.9 72.5±0.8 61.2±0.7 67.1±0.4 70.2±0.5 70.1±0.8 70.0±0.6

+ L2 Align 64.1±0.4 70.0±0.7 82.2±0.4 73.9±0.5 73.8±0.2 58.5±0.3 67.9±0.4 69.4±0.6 67.9±0.4 69.7±0.4

+ Weak Align (Our) 64.9±0.8 71.0±0.8 82.3±0.4 74.6±0.7 73.8±0.4 59.8±0.3 68.5±1.0 70.3±0.8 69.4±1.0 70.5±0.7

+ Strong Align (Our) 64.8±0.8 70.5±0.9 82.3±0.5 74.4±0.6 74.1±0.7 59.8±0.9 68.2±0.6 70.1±0.8 69.0±1.0 70.4±0.7

XLM-Rbase 71.8±0.2 77.3±0.5 85.1±0.3 79.3±0.5 78.8±0.4 70.3±0.6 75.9±0.5 74.8±0.4 74.1±0.5 76.4±0.5

+ Linear Mapping 69.7±0.6 74.3±0.3 82.5±0.6 76.4±0.5 75.5±0.4 67.2±0.9 73.2±0.3 72.5±0.5 68.9±1.2 73.4±0.6

+ L2 Align 71.6±0.8 76.0±0.5 84.5±0.5 78.6±0.3 77.9±0.3 69.8±0.7 75.3±0.3 74.0±0.4 73.7±0.7 75.7±0.5

+ Weak Align (Our) 71.7±0.7 76.5±0.6 84.7±0.6 78.7±0.6 78.1±0.7 70.4±0.9 75.8±0.6 74.5±0.5 74.2±0.7 76.1±0.7

+ Strong Align (Our) 71.6±0.5 76.6±0.4 84.7±0.5 79.0±0.4 78.3±0.3 70.0±1.0 75.7±0.7 74.7±0.4 73.7±0.8 76.0±0.6

XLM-Rlarge 77.5±0.6 81.7±0.4 88.0±0.3 83.3±0.6 82.0±0.5 75.1±0.8 79.2±0.7 78.4±0.6 78.3±0.6 80.4±0.6

NER (Entity-level F1)

mBERT 42.0±2.9 79.0±0.3 84.1±0.2 73.3±2.5 78.9±0.3 65.7±1.4 65.2±1.4 69.7±1.8 51.7±0.8 67.7±1.3

+ Linear Mapping 36.9±1.1 76.1±0.4 82.8±0.1 70.4±2.1 77.4±0.7 64.5±1.4 59.5±2.5 65.2±2.7 40.5±2.0 63.7±1.5

+ L2 Align 39.7±1.6 77.7±0.8 84.0±0.1 72.5±1.5 79.1±0.3 63.3±1.8 64.3±1.0 71.2±0.9 52.1±1.1 67.1±1.0

+ Weak Align (Our) 42.3±2.7 78.7±0.3 84.2±0.2 71.6±2.2 79.4±0.6 67.6±1.3 64.8±0.8 70.0±2.3 52.9±0.9 68.0±1.3

+ Strong Align (Our) 40.6±1.0 78.7±0.3 84.2±0.2 72.2±2.5 79.0±0.5 67.2±0.7 64.5±1.7 70.1±2.5 52.5±0.8 67.7±1.1

XLM-Rbase 44.0±1.3 75.0±0.3 82.2±0.2 76.0±2.4 77.6±0.7 65.7±0.6 64.1±0.7 68.0±1.2 45.1±0.8 66.4±0.9

+ Linear Mapping 30.8±2.1 69.0±0.6 78.3±0.3 59.8±0.5 67.8±0.7 57.9±1.5 48.0±1.0 54.4±0.5 21.0±0.9 54.1±0.9

+ L2 Align 44.9±2.1 74.9±0.6 82.1±0.3 75.0±3.1 77.1±0.6 65.5±1.3 63.2±0.3 66.3±2.2 42.4±0.7 65.7±1.2

+ Weak Align (Our) 45.6±1.4 75.0±0.5 82.2±0.2 74.2±2.4 77.2±0.8 65.8±1.1 63.6±1.1 67.6±0.7 42.8±0.6 66.0±1.0

+ Strong Align (Our) 45.7±1.7 75.1±0.6 82.1±0.3 73.5±1.7 77.2±0.6 65.8±1.7 63.7±0.5 68.1±0.8 43.2±0.4 66.1±0.9

XLM-Rlarge 46.8±4.3 79.1±0.5 84.2±0.2 75.7±2.9 80.7±0.5 71.6±1.1 71.7±0.5 77.4±1.3 51.5±1.4 71.0±1.4

POS (Accuracy)

mBERT 60.3±0.9 90.4±0.3 96.9±0.1 87.7±0.2 88.9±0.3 68.0±0.8 82.5±0.7 62.7±0.2 67.1±1.1 78.3±0.5

+ Linear Mapping 73.6±0.7 88.2±0.5 96.3±0.0 87.4±0.1 88.9±0.3 77.3±0.6 78.0±1.0 60.4±0.5 65.7±1.3 79.5±0.5

+ L2 Align 63.4±2.6 89.3±0.7 96.7±0.2 86.7±0.3 87.9±0.5 65.2±3.9 83.6±0.9 62.3±0.8 66.5±1.5 78.0±1.3

+ Weak Align (Our) 61.6±2.0 90.3±0.7 96.9±0.1 87.5±0.6 88.6±0.3 70.3±0.9 83.1±0.6 63.2±0.3 68.1±0.9 78.8±0.7

+ Strong Align (Our) 61.9±2.0 90.4±0.7 96.9±0.0 87.5±0.5 88.5±0.4 71.1±1.2 83.0±0.5 63.2±0.2 68.0±0.6 79.0±0.7

XLM-Rbase 70.2±1.6 91.6±0.3 97.5±0.0 88.5±0.2 89.4±0.3 71.7±1.3 86.1±0.3 64.5±0.5 71.4±0.5 81.2±0.6

+ Linear Mapping 74.3±1.1 90.7±0.5 96.9±0.0 88.2±0.1 89.3±0.3 82.1±0.9 82.7±0.4 62.6±0.4 65.3±1.0 81.3±0.5

+ L2 Align 71.1±1.8 91.4±0.3 97.4±0.0 88.2±0.2 89.0±0.3 73.0±3.8 86.6±0.2 64.4±0.4 70.8±0.8 81.3±0.9

+ Weak Align (Our) 72.8±0.7 91.1±0.2 97.4±0.0 88.3±0.2 89.2±0.2 72.4±1.6 86.4±0.1 64.7±0.4 71.6±1.2 81.5±0.5

+ Strong Align (Our) 72.5±0.9 91.1±0.3 97.4±0.0 88.3±0.2 89.1±0.1 72.0±2.1 86.4±0.1 64.8±0.4 71.4±1.1 81.4±0.6

XLM-Rlarge 73.9±1.0 91.9±0.3 98.0±0.0 89.2±0.2 89.8±0.1 78.4±2.1 86.5±0.2 64.8±0.3 71.0±0.3 82.6±0.5

Parsing (Labeled Attachment Score)

mBERT 28.8±0.4 67.8±0.5 79.7±0.1 69.1±0.1 73.3±0.2 31.0±0.5 60.2±0.6 33.5±0.5 29.5±0.4 52.6±0.4

+ Linear Mapping 44.1±0.3 64.4±0.4 80.5±0.2 70.2±0.3 73.9±0.1 32.2±0.3 56.7±0.5 32.1±0.2 28.1±0.3 53.6±0.3

+ L2 Align 29.6±1.6 66.9±0.2 79.2±0.2 68.2±0.4 72.5±0.5 30.8±1.9 60.0±0.6 33.3±0.4 29.5±0.4 52.2±0.7

+ Weak Align (Our) 30.7±0.9 67.6±0.6 79.8±0.1 69.7±0.4 73.6±0.4 31.2±0.8 61.3±0.7 33.5±0.6 30.5±0.6 53.1±0.6

+ Strong Align (Our) 31.2±1.1 67.5±0.4 79.8±0.1 69.4±0.3 73.4±0.5 30.7±1.5 61.3±0.8 33.5±0.6 30.0±0.5 53.0±0.6

XLM-Rbase 43.7±1.7 69.0±0.4 80.5±0.2 71.0±0.4 73.6±0.5 41.2±0.9 66.3±0.9 36.6±0.2 34.2±0.7 57.3±0.6

+ Linear Mapping 47.2±0.6 66.7±0.3 81.4±0.1 72.6±0.2 74.4±0.4 41.4±0.7 60.8±0.6 34.3±0.3 21.5±1.1 55.6±0.5

+ L2 Align 41.3±1.8 68.1±0.3 79.7±0.2 70.0±0.5 73.0±0.5 40.2±1.6 63.7±0.9 36.5±0.5 32.9±0.3 56.2±0.7

+ Weak Align (Our) 44.6±1.0 68.8±0.4 80.4±0.1 71.4±0.2 73.9±0.2 41.0±0.6 65.7±0.4 36.7±0.4 33.8±0.3 57.4±0.4

+ Strong Align (Our) 44.8±0.9 68.9±0.5 80.4±0.1 71.3±0.2 73.9±0.1 40.7±0.8 66.2±0.4 36.7±0.3 34.0±0.8 57.4±0.5

XLM-Rlarge 48.2±1.5 67.8±0.6 82.6±0.3 73.9±0.4 76.4±0.4 41.8±2.5 69.6±0.4 38.9±0.6 35.4±0.5 59.4±0.8

Table 6.3: Zero-shot cross-lingual transfer result with bitext from previous works. Blue or
orange indicates the mean performance is one standard derivation above or below the mean
of baseline.
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XNLI (Accuracy)

mBERT 64.2±0.9 70.5±0.2 82.5±0.3 74.2±1.2 73.8±0.8 59.4±0.7 68.3±0.9 69.6±0.7 68.6±0.9 70.1±0.8

+ Linear Mapping 64.1±0.7 70.0±0.6 81.0±0.5 74.1±0.6 72.9±0.9 61.8±0.7 67.4±0.6 70.2±0.5 70.2±0.8 70.2±0.6

+ L2 Align 64.3±0.5 70.7±1.0 82.5±0.5 74.3±0.3 74.0±0.4 59.3±0.4 68.6±0.7 69.7±0.4 69.1±0.5 70.3±0.5

+ Weak Align (Our) 65.1±0.9 70.9±0.6 82.6±0.5 74.9±0.6 74.1±0.4 60.3±0.6 68.9±0.8 70.6±0.6 69.6±1.0 70.8±0.7

+ Strong Align (Our) 64.7±0.9 70.8±0.7 82.4±0.1 74.5±0.7 73.9±0.7 59.6±0.6 68.5±1.1 70.4±0.6 69.1±1.0 70.4±0.7

XLM-Rbase 71.8±0.2 77.3±0.5 85.1±0.3 79.3±0.5 78.8±0.4 70.3±0.6 75.9±0.5 74.8±0.4 74.1±0.5 76.4±0.5

+ Linear Mapping 69.9±0.4 74.3±0.3 82.5±0.6 76.4±0.5 75.5±0.6 67.2±1.0 72.7±0.2 72.7±0.5 70.1±0.8 73.5±0.5

+ L2 Align 71.9±0.6 76.4±0.4 84.6±0.3 78.4±0.5 77.8±0.3 69.9±0.8 75.2±0.5 74.2±0.5 73.7±0.5 75.8±0.5

+ Weak Align (Our) 71.8±0.6 76.5±0.5 84.6±0.2 79.0±0.4 78.4±0.5 70.0±0.5 75.7±0.3 74.7±0.3 73.4±0.6 76.0±0.4

+ Strong Align (Our) 72.0±0.5 76.6±0.4 84.8±0.1 79.0±0.4 78.6±0.5 70.1±0.3 75.7±0.4 74.8±0.6 73.8±0.6 76.1±0.4

XLM-Rlarge 77.5±0.6 81.7±0.4 88.0±0.3 83.3±0.6 82.0±0.5 75.1±0.8 79.2±0.7 78.4±0.6 78.3±0.6 80.4±0.6

NER (Entity-level F1)

mBERT 42.0±2.9 79.0±0.3 84.1±0.2 73.3±2.5 78.9±0.3 65.7±1.4 65.2±1.4 69.7±1.8 51.7±0.8 67.7±1.3

+ Linear Mapping 36.9±0.9 76.2±0.3 82.8±0.1 71.2±1.5 77.4±0.7 62.4±2.2 59.6±2.4 65.4±2.6 42.3±1.4 63.8±1.3

+ L2 Align 41.3±3.2 78.2±1.0 84.1±0.1 73.4±2.4 79.7±0.8 64.9±1.5 64.9±1.6 71.8±0.9 52.4±1.3 67.8±1.4

+ Weak Align (Our) 40.3±1.1 78.7±0.3 84.0±0.1 70.7±2.1 79.0±0.4 67.2±1.2 64.9±1.2 69.1±0.8 52.0±1.1 67.3±0.9

+ Strong Align (Our) 40.7±1.9 78.3±0.3 84.2±0.1 70.0±2.6 78.8±0.3 66.7±1.4 64.8±0.9 69.5±1.4 52.1±0.6 67.2±1.1

XLM-Rbase 44.0±1.3 75.0±0.3 82.2±0.2 76.0±2.4 77.6±0.7 65.7±0.6 64.1±0.7 68.0±1.2 45.1±0.8 66.4±0.9

+ Linear Mapping 30.8±1.6 69.3±0.6 78.3±0.3 60.2±0.8 67.9±0.5 58.2±0.7 47.7±0.8 54.1±0.3 21.6±1.2 54.2±0.8

+ L2 Align 44.1±1.2 74.2±0.7 81.9±0.3 74.9±3.3 76.9±0.6 64.7±0.5 61.9±1.4 68.4±2.2 42.1±1.1 65.5±1.2

+ Weak Align (Our) 45.5±2.8 75.0±0.8 82.2±0.2 73.7±1.8 77.3±0.6 66.6±1.3 64.0±1.2 67.5±1.4 43.9±1.2 66.2±1.2

+ Strong Align (Our) 45.3±1.5 75.1±0.4 82.2±0.2 74.6±2.5 77.4±0.6 66.0±1.2 63.7±0.9 68.0±1.1 43.3±0.4 66.2±1.0

XLM-Rlarge 46.8±4.3 79.1±0.5 84.2±0.2 75.7±2.9 80.7±0.5 71.6±1.1 71.7±0.5 77.4±1.3 51.5±1.4 71.0±1.4

POS (Accuracy)

mBERT 60.3±0.9 90.4±0.3 96.9±0.1 87.7±0.2 88.9±0.3 68.0±0.8 82.5±0.7 62.7±0.2 67.1±1.1 78.3±0.5

+ Linear Mapping 76.2±0.5 91.2±0.1 96.3±0.0 87.6±0.1 89.0±0.2 74.9±1.1 80.6±0.3 60.4±0.5 64.8±1.3 80.1±0.4

+ L2 Align 62.7±2.9 89.5±0.8 96.8±0.1 87.1±0.3 88.3±0.2 65.2±3.7 83.8±1.0 62.8±0.5 67.3±1.1 78.2±1.2

+ Weak Align (Our) 61.1±1.3 90.4±0.8 96.9±0.0 87.7±0.5 88.7±0.3 70.3±1.2 83.2±0.6 63.3±0.3 68.0±0.5 78.8±0.6

+ Strong Align (Our) 61.7±1.7 90.5±0.7 96.9±0.0 87.7±0.6 88.7±0.4 70.5±1.0 83.3±0.7 63.1±0.3 68.2±0.8 79.0±0.7

XLM-Rbase 70.2±1.6 91.6±0.3 97.5±0.0 88.5±0.2 89.4±0.3 71.7±1.3 86.1±0.3 64.5±0.5 71.4±0.5 81.2±0.6

+ Linear Mapping 76.0±0.9 92.0±0.1 96.9±0.0 88.7±0.2 89.5±0.3 78.9±2.1 83.9±0.3 62.5±0.4 66.5±1.0 81.7±0.6

+ L2 Align 71.0±0.9 91.2±0.5 97.3±0.0 87.9±0.3 88.8±0.4 74.8±2.9 86.9±0.8 64.0±0.6 70.6±0.5 81.4±0.8

+ Weak Align (Our) 72.5±0.8 91.2±0.3 97.4±0.0 88.2±0.2 89.2±0.2 72.7±1.3 86.2±0.2 64.7±0.4 71.8±1.4 81.5±0.5

+ Strong Align (Our) 72.5±0.6 91.2±0.2 97.4±0.1 88.3±0.2 89.2±0.2 72.0±1.9 86.5±0.2 64.8±0.4 71.7±1.7 81.5±0.6

XLM-Rlarge 73.9±1.0 91.9±0.3 98.0±0.0 89.2±0.2 89.8±0.1 78.4±2.1 86.5±0.2 64.8±0.3 71.0±0.3 82.6±0.5

Parsing (Labeled Attachment Score)

mBERT 28.8±0.4 67.8±0.5 79.7±0.1 69.1±0.1 73.3±0.2 31.0±0.5 60.2±0.6 33.5±0.5 29.5±0.4 52.6±0.4

+ Linear Mapping 45.0±0.3 67.7±0.2 80.5±0.2 70.0±0.3 73.9±0.2 28.4±0.2 57.2±0.4 32.0±0.3 28.1±0.2 53.6±0.3

+ L2 Align 29.7±0.6 67.7±0.7 79.3±0.4 68.9±0.6 73.4±0.5 31.7±1.8 61.3±1.2 33.6±0.5 29.7±0.2 52.8±0.7

+ Weak Align (Our) 29.9±1.0 67.6±0.4 79.8±0.0 69.6±0.3 73.5±0.5 31.0±1.6 61.2±0.9 33.4±0.7 30.0±0.5 52.9±0.6

+ Strong Align (Our) 30.8±0.9 68.0±0.4 79.8±0.1 69.9±0.3 73.7±0.5 31.5±1.5 61.8±0.6 33.5±0.6 30.4±0.4 53.3±0.6

XLM-Rbase 43.7±1.7 69.0±0.4 80.5±0.2 71.0±0.4 73.6±0.5 41.2±0.9 66.3±0.9 36.6±0.2 34.2±0.7 57.3±0.6

+ Linear Mapping 48.0±0.5 69.2±0.2 81.4±0.1 72.4±0.1 74.8±0.3 38.8±0.9 61.8±0.5 34.2±0.3 24.2±0.9 56.1±0.4

+ L2 Align 39.4±0.5 68.0±0.5 79.9±0.2 69.9±0.5 72.8±0.5 40.2±1.1 63.8±0.8 36.4±0.6 32.3±0.9 55.9±0.6

+ Weak Align (Our) 44.5±1.3 68.7±0.7 80.4±0.1 71.3±0.3 73.8±0.3 41.4±0.8 65.7±0.4 36.7±0.4 34.0±0.7 57.4±0.5

+ Strong Align (Our) 44.9±1.0 68.8±0.6 80.4±0.1 71.2±0.2 73.8±0.2 41.1±0.8 65.9±0.5 36.6±0.3 33.9±0.7 57.4±0.5

XLM-Rlarge 48.2±1.5 67.8±0.6 82.6±0.3 73.9±0.4 76.4±0.4 41.8±2.5 69.6±0.4 38.9±0.6 35.4±0.5 59.4±0.8

Table 6.4: Zero-shot cross-lingual transfer result with the OPUS-100 bitext. Blue or orange
indicates the mean performance is one standard derivation above or below the mean of
baseline.
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proposed methods do not consistently perform better than no alignment with millions of

parallel sentences.

6.4.3.2 Contrastive Alignment

In Table 6.2, with mBERT, both proposed contrastive alignment methods consistently

perform as well as no alignment while outperforming more than 1 standard deviation on POS

tagging and/or parsing. This suggests the proposed methods are more robust to suboptimal

alignments. We hypothesize that learned cosine similarity and contrastive alignment allow

the model to recover from suboptimal alignments. Both weak and strong alignment perform

comparably.

6.4.3.3 Alignment with XLM-R

XLM-R, trained on 2.5TB of text, has the same number of transformer layers as mBERT

but with a larger vocabulary. It performs much better than mBERT. Therefore, we wonder

if an explicit alignment objective can similarly lead to better cross-lingual representations.

Unfortunately, in Table 6.2, we find all alignment methods we consider do not improve over

no alignment. Compared to no alignment, Linear Mapping and L2 Alignment have worse

performance in 3 out of 4 tasks (except POS tagging). In contrast to previous work, both

contrastive alignment objectives perform comparably to no alignment in all 4 tasks.
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6.4.3.4 Impact of Bitext Quality

Even though the OPUS-100 bitext has lower quality compared to bitext used in previous

works (due to its greater inclusion of bitext from various sources), by comparing Table 6.2a

and Table 6.2b, we observe that it has minimum impact on each alignment method we

consider. This is good news for the lower resource languages, as not all languages are

covered by MultiUN or Europarl.

6.4.3.5 Model Capacity vs Alignment

XLM-Rlarge has nearly twice the number of parameters as XLM-Rbase. Even trained on

the same data, it performs much better than XLM-Rbase, with or without alignment, as shown

in Table 6.2. This suggests increasing model capacity likely leads to better cross-lingual

representations than using an explicit alignment objective.

6.5 Discussion

In this chapter, we discuss how to inject cross-lingual signals into multilingual encoders.

For type-level cross-lingual signal like bilingual dictionary, we show that adding additional

subwords overlap by creating synthetic code-switching corpus with bilingual dictionary

benefits cross-lingual representation. For sentence-level cross-lingual signal like bitext, we

propose contrastive alignment objective and show that it outperforms L2 Alignment (Cao,

Kitaev, and Klein, 2020) and consistently performs as well as or better than no alignment
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using various quality bitext on 4 NLP tasks under a comprehensive evaluation with multiple

seeds.

However, to our surprise, previously proposed methods do not show consistent improve-

ment over no alignment in this setting. Therefore, we make the following recommendations

for future work on cross-lingual alignment or multilingual representations: 1) Evaluations

should consider average quality data, not exclusively high-quality bitext. 2) Evaluation must

consider multiple NLP tasks or datasets. 3) Evaluation should report mean and variance

over multiple seeds, not a single run. More broadly, the community must establish a robust

evaluation scheme for zero-shot cross-lingual transfer as a single run with one random seed

does not reflect the variance of the method (especially in a zero-shot or few-shot setting).6

While Keung et al. (2020) advocate using oracle for model selection, we instead argue

reporting the variance of test performance, following the few-shot learning literature.

Finally, no explicit alignment methods with bitext improve XLM-R and the larger XLM-

Rlarge performs much better. While bilingual dictionary contributes to improved cross-lingual

representation for 8-layers encoders, the performance gain is likely eclipsed by scaling up

the model size. Indeed, as Kale et al. (2021) find that the gain from incorporating bitext into

pretraining decreases as model size increase. For smaller model, incorporating cross-lingual

signal explicitly might still offers good performance gain. However, as raw text is easier to

obtain than bitext, scaling models to more raw text and larger capacity models may be more

beneficial for producing better cross-lingual models, as evidenced by Xue et al. (2021) and

6This includes zero-shot cross-lingual transfer benchmarks like XGLUE (Liang et al., 2020) and XTREME
(Hu et al., 2020).
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Goyal et al. (2021).

In this chapter, we observe that zero-shot cross-lingual transfer has low variance on

source language generalization performance but high variance on target language generaliza-

tion performance (Table 6.2a or Table 6.2b). In chapter 7, we will investigate why zero-shot

cross-lingual transfer has high variance.
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7.1 Introduction

In chapter 6, we observe that While the generalization performance on the source lan-

guage has low variance, on the target language the variance is much higher with zero-shot

cross-lingual transfer, making it difficult to compare different models in the literature and

meta-benchmark. Similarly, pretrained monolingual encoders also have unstable perfor-

mance during fine-tuning (Devlin et al., 2019; Phang, Févry, and Bowman, 2018).

Why are these models so sensitive to the random seed? Many theories have bee offered:

catastrophic forgetting of the pretrained task (Phang, Févry, and Bowman, 2018; Lee,

Cho, and Kang, 2020; Keung et al., 2020), small data size (Devlin et al., 2019), impact of

random seed on task-specific layer initialization and data ordering (Dodge et al., 2020), the

Adam optimizer without bias correction (Mosbach, Andriushchenko, and Klakow, 2021;

Zhang et al., 2021), and a different generalization error with similar training loss (Mosbach,

Andriushchenko, and Klakow, 2021). However, none of these factors fully explain the high

generalization error variance of zero-shot cross-lingual transfer on target language but low

variance on source language.

In this chapter, we offer a new explanation for high variance in target language per-

formance: the zero-shot cross-lingual transfer optimization problem is under-specified.

Based on the well-established linear interpolation of 1-dimensional plot and contour plot

(Goodfellow, Vinyals, and Saxe, 2014; Li et al., 2018), we empirically show that any linear-

interpolated model between the monolingual source model and bilingual source and target

model has equally low source language generation error. Yet the target language generation
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error surprisingly reduces smoothly and linearly as we move from a monolingual model to a

bilingual model. To the best of our knowledge, no other paper documents this finding.

This result provides a new answer to our mystery: only a small subset of the solution

space for the source language solves the target language on par with models with actual target

language supervision; the optimization could not find such a solution without target language

supervision, hence an under-specified optimization problem. If target language supervision

were available, as it was in the counterfactual bilingual model, the optimization finds the

smaller subset. By comparing both mBERT and XLM-R, we find that the generalization

error surface of XLM-R is flatter than mBERT, contributing to its better performance

compared to mBERT. Thus, zero-shot cross-lingual transfer has high variance, as the

solution found by zero-shot cross-lingual transfer lies in the non-flat region of the target

language generalization error surface.

7.2 Existing Hypotheses

Prior studies have observed encoder model instability, and have offered various hypothe-

ses to explain this behavior. Catastrophic forgetting – when neural networks trained on one

task forget that task after training on a second task (McCloskey and Cohen, 1989; Kirk-

patrick et al., 2017) —has been credited as the source of high variance in both monolingual

fine-tuning (Phang, Févry, and Bowman, 2018; Lee, Cho, and Kang, 2020) and zero-shot

cross-lingual transfer (Keung et al., 2020). Mosbach, Andriushchenko, and Klakow (2021)
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wonder why preserving cloze capability is important. In zero-shot cross-lingual transfer,

deliberately preserving the multilingual cloze capability with regularization improves per-

formance but does not eliminate the zero-shot transfer gap (Aghajanyan et al., 2021; Liu

et al., 2021b).

Small training data size often seems to have higher variance in performance (Devlin

et al., 2019), but Mosbach, Andriushchenko, and Klakow (2021) found that when controlling

the number of gradient updates, smaller data size has the similar variance as larger data size.

In the pretraining-then-fine-tune paradigm, random seeds mainly impact the initialization

of task-specific layers and data ordering during fine-tuning. Dodge et al. (2020) show

development set performance has high variance with respect to seeds. Additionally, Adam

optimizer without bias correction—an Adam (Kingma and Ba, 2014) variant (inadvertently)

introduced by the implementation of Devlin et al. (2019)—has been identified as the source

of high variance during monolingual fine-tuning (Mosbach, Andriushchenko, and Klakow,

2021; Zhang et al., 2021). However, in zero-shot cross-lingual transfer, while different

random seeds lead to high variance in target languages, the source language has much

smaller variance in comparison even with standard Adam (Wu and Dredze, 2020b).

Beyond optimizers, Mosbach, Andriushchenko, and Klakow (2021) attributes high

variance to generalization issues: despite having similar training loss, different models

exhibit vastly different development set performance. However, in zero-shot cross-lingual

transfer, the development or test performance variance is much smaller on the source

language compared to target language.
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7.3 Zero-shot Cross-lingual Transfer is Under-

specified Optimization

Existing hypotheses do not explain the high variance of zero-shot cross-lingual trans-

fer: much higher variance on generalization error of the target language compared to the

source language. We propose a new explanation: zero-shot cross-lingual transfer is an

under-specified optimization problem. Optimizing a multilingual model for a specific task

using only source language annotation allows choices of many good solutions in terms of

generalization error. However, unbeknownst to the optimizer, these solutions have wildly

different generalization errors performance on the target language. In fact, a small subset

has similar low generalization error as models trained on target language. Yet without the

guidance of target data, the zero-shot cross-lingual optimization could not find this smaller

subset. As we will show in §7.5, the solution found by zero-shot transfer lies in a non-flat

region of target language generalization error, causing its high variance.

7.3.1 Linear Interpolation

We test this hypothesis via a linear interpolation between two models to explore the

neural network parameter space. Consider three sets of neural network parameters: θsrc,

θtgt, θ{src,tgt} for a model trained on task data for the source language only, target language
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only and both languages, respectively. This includes both task-specific layers and encoders.1

Note all three models have the same initialization before fine-tuning, making the bilingual

model a counterfactual setup if the corresponding target language supervision was available.

We obtain the 1-dimensional (1D) linear interpolation of a monolingual (source) task trained

model and bilingual task trained model with

θ(α) = αθ{src,tgt} + (1− α)θsrc (7.1)

or we could swap source and target by

θ(α) = αθ{src,tgt} + (1− α)θtgt (7.2)

where α is a scalar mixing coefficient (Goodfellow, Vinyals, and Saxe, 2014). Additionally,

we can compute a 2-dimensional linear interpolation as

θ(α1, α2) = θ{src,tgt} + α1δsrc + α2δtgt (7.3)

where δsrc = θsrc − θ{src,tgt}, δtgt = θtgt − θ{src,tgt}, α1 and α2 are scalar mixing

coefficients (Li et al., 2018).2 Finally, we can evaluate any interpolated models on the

1We experiment with interpolating the encoder parameters only and observe similar findings. On the other
hand, interpolating the task-specific layer only has a negligible effect.

2Li et al. (2018) use two random directions and they normalize it to compensate scaling issue. In this setup,
we find δsrc and δtgt have near identical norms, so we do not apply additional normalization. As these two
directions are not random, we find that it spans around 55°. We plot the norm ratio and angle of these two
vectors in Figure 7.1.
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Figure 7.1: ∥δsrc∥/∥δtgt∥ v.s. angle between δsrc and δtgt. Most δsrc and δtgt have similar
norms, and the angle between them is around 55°.

development set of source and target languages, testing the generalization error on the same

language and across languages.

The performance of the interpolated model illuminates the behavior of the model’s

parameters. Take Equation 7.1 as an example: if the linear interpolated model performs

consistently high for our task on the source language, it suggests that both models lie within

the same local minimum of source language generalization error surface. Additionally, if the

linear interpolated model performs vastly differently on the target language, it would support

our hypothesis. On the other hand, if the linear interpolated model performance drops on

the source language, it suggests that both models lie in different local minimum of source

language generalization error surface, suggesting the zero-shot optimization searching the

wrong region.
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7.4 Experiments

We consider four tasks: natural language inference (XNLI; Conneau et al., 2018), named

entity recognition (NER; Pan et al., 2017), POS tagging and dependency parsing (Zeman,

2020b). We evaluate XNLI and POS tagging with accuracy (ACC), NER with span-level F1,

and parsing with labeled attachment score (LAS). We consider two encoders: base mBERT

and large XLM-R. For the task-specific layer, we use a linear classifier for XNLI, NER, and

POS tagging, and Dozat and Manning (2017) for dependency parsing.

To avoid English-centric experiments, we consider two source languages: English and

Arabic. We choose 8 topologically diverse target languages: Arabic3, German, Spanish,

French, Hindi, Russian, Vietnamese, and Chinese. We train the source language only and

target language only monolingual model as well as a source-target bilingual model.

We compute the linear interpolated models as described in Section 7.3.1 and test it on

both the source and target language development set. We loop over {−0.5,−0.4, · · · , 1.5}

for α, α1 and α2.4 We report the mean and variance of three runs by using different random

seeds. We normalized both mean and variance of each interpolated model by the bilingual

model performance, allowing us to aggregate across tasks and language pairs.

We follow the implementation and hyperparameter of chapter 6. We optimize with

Adam (Kingma and Ba, 2014). The learning rate is 2e-5. The learning rate scheduler has

10% steps linear warmup then linear decay till 0. We train for 5 epochs and the batch size is

3Arabic is only used when English is the source language.
4We additionally select 0.025, 0.05, 0.075, 0.125, 0.15, 0.175, 0.825, 0.85, 0.875, 0.925, 0.95, and 0.975

for α due to preliminary experiment.
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32. For token level tasks, the task-specific layer takes the representation of the first subword,

following previous chapters. Model selection is done on the corresponding dev set of the

training set.

During fine-tuning, the maximum sequence length is 128. We use a sliding window of

context to include subwords beyond the first 128 for NER and POS tagging. At test time,

we use the same maximum sequence length with the exception of parsing, where the first

128 words instead of subwords of a sentence were used. We ignore words with POS tags of

SYM and PUNCT during parsing evaluation. For NER, we adapt the same post-processing as

Section 3.2.3. For POS tagging and dependency parsing, we use the following treebanks:

Arabic-PADT, German-GSD, English-EWT, Spanish-GSD, French-GSD, Hindi-HDTB,

Russian-GSD, Vietnamese-VTB, and Chinese-GSD. Since the Chinese NER is labeled on

character-level (including code-switched portion), we segment the Chinese character into

word using the Stanford Word Segmenter and realign the label.

7.5 Findings

In Figure 7.2, we observe that interpolations between the source monolingual and bilin-

gual model have consistently similar source language performance. In contrast, surprisingly,

the target language performance smoothly and linearly improves as the interpolated model

moves from the zero-shot model to bilingual model.5 Break down of Figure 7.2 by task

5We also show the variance of the interpolated models in Figure 7.3. The source language has much lower
variance compared to target language on the monolingual side of the interpolated models, echoing findings in
chapter 6.
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Figure 7.2: Normalized performance of a linear interpolated model between a monolingual
and bilingual model. A single plot line shows the performance normalized by the matching
bilingual model and aggregated over eight language pairs and four tasks, with the shaded
region representing 95% confidence interval. The x-axis is the linear mixing coefficient
α in Equation 7.1 and Equation 7.2, with α = 0 and α = 1 representing source language
monolingual model and source + target bilingual model, respectively. To allow aggregating,
for each encoder, language pair and task combination, we normalized the interpolated model
performance by its corresponding bilingual performance. Each subfigure title indicates the
source and target languages. Across all experiments, the source language dev performance
stays consistently high (red and purple lines) during interpolation while the target language
dev performance starts low and increases smoothly and linearly as it moves towards the
bilingual model (gray and blue lines). Break down of this figure by tasks can be found in
Figure 7.4a (NER), Figure 7.4b (Parsing), Figure 7.5a (POS), and Figure 7.5b (XNLI), and
we observe similar findings.
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Figure 7.3: Normalized variance of linear interpolation between monolingual model and
bilingual model. The source language has much lower variance compared to target language
on the monolingual side of the interpolated models.
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(a) NER

(b) Parsing

Figure 7.4: Normalized NER and Parsing performance of linear interpolated model between
monolingual and bilingual model

114



CHAPTER 7. WHY DOES ZERO-SHOT CROSS-LINGUAL TRANSFER HAVE HIGH
VARIANCE?

(a) POS

(b) XNLI

Figure 7.5: Normalized POS and XNLI performance of linear interpolated model between
monolingual and bilingual model
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shows different tasks follow similar trends. The only exception is mBERT, where the

performance drops slightly around 0.1 and 0.9 locally. In contrast, XLM-R has a flatter

slope and smoother interpolated models.

Figure 7.6 further demonstrates this finding with a 2D linear interpolation. The general-

ization error surface of the target language of XLM-R is much flatter compared to mBERT,

perhaps the fundamental reason why XLM-R performs better than mBERT in zero-shot

transfer, similar to findings in other computer vision models (Li et al., 2018). As we discuss

in Section 7.3, these two findings support our hypothesis that zero-shot cross-lingual trans-

fer is an under-specified optimization problem. As Fig. 7.6 shows, the solution found by

zero-shot transfer lies in a non-flat region of target language generalization error surface,

causing the high variance of zero-shot transfer on the target language. In contrast, the same

solution lies in a flat region of source language generalization error surface, causing the low

variance on the source language.

7.6 Discussion

In this chapter, we have presented evidence that zero-shot cross-lingual transfer is an

under-specified optimization problem, and the cause of high variance on target language

but not the source language tasks during zero-shot cross-lingual transfer. This finding holds

across 4 tasks, 2 source languages and 8 target languages. While this chapter focuses on

zero-shot cross-lingual transfer, similar high variance has been observed in cross-lingual
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(a) EN-HI Parsing with
mBERT

(b) EN-HI Parsing with
XLM-R

(c) EN-RU NER with
mBERT

(d) EN-RU NER with XLM-
R

(e) AR-DE POS with
mBERT

(f) AR-DE POS with XLM-
R

(g) AR-ZH XNLI with
mBERT

(h) AR-ZH XNLI with
XLM-R

Figure 7.6: Normalized performance of 2D linear interpolation between bilingual model
and monolingual models. The x-axis and the y-axis are the α1 and α2 in Equation 7.3,
respectively. By comparing mBERT and XLM-R, we observe that XLM-R has a flatter
target language generalization error surface compared to mBERT. Different language pairs
and tasks combination shows similar trends.
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transfer with silver data (chapter 8) and few-shot cross-lingual transfer (Zhao et al., 2021),

despite outperforming zero-shot cross-lingual transfer. It suggests that they are likely solving

a similar under-specified optimization problem, due to the quality of the silver data or the

variance of few-shot data selection impacting the gradient direction.

Therefore, addressing this issue may yield significant improvements to zero-shot cross-

lingual transfer. Training bigger encoders addresses this issue indirectly by producing

encoders with flatter cross-lingual generalization error surfaces. However, a more robust

solution may be found by introducing constraints into the optimization problem that directly

addresses the under-specification of the optimization.

Silver target data is a potential way to further constrain the optimization problem. Silver

target data can be created with machine translation and automatically labeling by either data

projection or self training. In chapter 8, we will explore using silver target data to constrain

the optimization problem and improve cross-lingual transfer performance.

Similarly, few-shot cross-lingual transfer is a potential way to further constrain the

optimization problem. Zhao et al. (2021) finds that few-shot overall improves over zero-shot

and it is important to first train on source language then fine-tune with the few-shot target

language example. Through the lens of our analysis, this finding is intuitive since fine-tuning

with a small amount of target data provides a guidance (gradient direction) to narrow down

the solution space, leading to a potentially better solution for the target language. The initial

fine-tuning with the source data is also important since it provides a good starting point.

Additionally, Zhao et al. (2021) observes that the choice of shots matters. This is expected
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as it significantly impacts the quality of the gradient direction.

Unsupervised model selection like Chen and Ritter (2020) and optimization regulariza-

tion like Aghajanyan et al. (2021) have been proposed in the literature to improve zero-shot

cross-lingual transfer. Through the lens of our analysis, both solutions attempt to constrain

the optimization problem. As none of the existing techniques fully constrain the optimiza-

tion, future work should study the combination of existing techniques and develop new

techniques on top of it instead of studying one technique at a time.
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8.1 Introduction

In chapter 7, we identify that zero-shot cross-lingual transfer is under-specified optimiza-

tion. Additionally, performance on the target language in zero-shot cross-lingual transfer is

often far below that of within-language supervision, especially in structured prediction tasks

(Ruder et al., 2021). To address these challenges, additional constraints need to be added to

the optimization problem. One way to achieve this is to add a learning signal for the target

language. However, in zero-shot cross-lingual transfer, no target language supervision is

available. Thus, we consider data projection and self-training. Before the advent of cross-

lingual representations, such as in multilingual word embeddings and mBERT, cross-lingual

transfer was approached largely as a data projection problem: one either translated and

aligned the source training data to the target language, or at test time one translated target

language inputs to the source language for prediction (Yarowsky and Ngai, 2001). Instead

of obtaining the label by alignment and projection, we could also obtain the label using the

zero-shot model, similar to traditional self-training (Yarowsky, 1995).

We show that by augmenting the source language training data with “silver” data in the

target language—either via projection of the source data to the target language or via self-

training with translated text—zero-shot performance can be improved, providing constraints

to the optimization. Further improvements might come from using better pretrained encoders

or improving on a projection strategy through better automatic translation models or better

alignment models. In this chapter, we explore all the options above, finding that everything

is all it takes to best constrain the optimization and achieve our best empirical results,
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suggesting that a silver bullet strategy does not currently exist.

Specifically, we evaluate: cross-lingual data projection and self-training techniques with

different machine translation and word alignment components, the impact of bilingual and

multilingual contextualized encoders on each data projection and self-training component,

and the use of different encoders in task-specific models. We also offer suggestions for

practitioners operating under different computation budgets on four tasks: event extraction,

named entity recognition, part-of-speech tagging, and dependency parsing, following recent

work that uses English-to-Arabic tasks as a test bed (Lan et al., 2020). We then apply data

projection and self-training to three structured prediction tasks—named entity recognition,

part-of-speech tagging, and dependency parsing—in multiple target languages. Additionally,

we use self-training as a control against data projection to determine in which situations data

projection improves performance.

This chapter is adapted from Yarmohammadi et al. (2021), which is a distillation of the

Phase 1 evaluation effort of the BETTER team at Johns Hopkins University and University

of Rochester, supported by IARPA BETTER (2019-19051600005). My colleagues on the

BETTER team are responsible for the codebase for our BETTER system, and their efforts

form the core of this paper. My co-first-author Mahsa Yarmohammadi and I designed and

ran most of the experiments reported in this paper and drafted the paper. Marc Marone and

Seth Ebner assisted in writing and editing. Other contributions made by my colleagues will

be indicated throughout the chapter.
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Figure 1: Process for creating projected “silver” data from source “gold” data (left). Downstream models are
trained on a combination of gold and silver data (right). Components in boxes have learned parameters.

Our contributions include the following:

• examination of the impact of statistical and
neural word aligners and publicly available
and custom machine translation (MT) models
on annotation projection,

• examination of the impact of publicly avail-
able and custom multilingual and bilingual
encoders of different model sizes, both as the
basis of models for downstream tasks and as
components of word aligners and MT models,

• use of self-training on translated text as a way
to automatically create labeled target language
data and as a controlled comparison to analyze
when data projection helps, and

• extensive experiments demonstrating improve-
ments over zero-shot transfer and analysis
showing that the best setup is task dependent.

We also make available models and tools that en-
abled our analysis.

2 Universal Encoders

While massively multilingual encoders like
mBERT and XLM-R enable strong zero-shot cross-
lingual performance (Wu and Dredze, 2019; Con-
neau et al., 2020a), they suffer from the curse
of multilinguality (Conneau et al., 2020a): cross-
lingual effectiveness suffers as the number of sup-
ported languages increases for a fixed model size.
We would therefore expect that when restricted to
only the source and target languages, a bilingual
model should perform better than (or at least on
par with) a multilingual model of the same size, as-
suming both languages have sufficient corpora (Wu
and Dredze, 2020a). If a practitioner is interested
in only a small subset of the supported languages,
is the multilingual model still the best option?

To answer this question, we use English and
Arabic as a test bed. In Table 1, we summarize ex-
isting publicly available encoders that support both

English and Arabic.1 Base models are 12-layer
Transformers (d_model = 768), and large mod-
els are 24-layer Transformers (d_model = 1024)
(Vaswani et al., 2017). As there is no publicly avail-
able large English–Arabic bilingual encoder, we
train two encoders from scratch, named L64K and
L128K, with vocabulary sizes of 64K and 128K,
respectively.2 With these encoders, we can deter-
mine the impacts of model size and the number of
supported languages.

3 Data Projection

We create silver versions of the data by automati-
cally projecting annotations from source English
gold data to their corresponding machine transla-
tions in the target language.3 Data projection trans-
fers word-level annotations in a source language
to a target language via word-to-word alignments
(Yarowsky et al., 2001). The technique has been
used to create cross-lingual datasets for a variety
of structured natural language processing tasks, in-
cluding named entity recognition (Stengel-Eskin
et al., 2019) and semantic role labeling (Akbik
et al., 2015; Aminian et al., 2017; Fei et al., 2020).

To create silver data, as shown in Figure 1, we:
(1) translate the source text to the target language
using the MT system described in Section 5.2, (2)
obtain word alignments between the original and
translated parallel text using a word alignment tool,
and (3) project the annotations along the word
alignments. We then combine silver target data
with gold source data to augment the training set
for the structured prediction task.

For step (1), we rely on a variety of source-to-

1We do not include multilingual T5 (Xue et al., 2021) as
it is still an open question on how to best utilize text-to-text
models for structured prediction tasks (Ruder et al., 2021).

2L128K available at https://huggingface.co/
jhu-clsp/roberta-large-eng-ara-128k

3Code available at https://github.com/
shijie-wu/crosslingual-nlp

Encoder
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Structured 
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Zero-shot 
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Figure 8.1: Process for creating projected “silver” data from source “gold” data. Downstream
models are trained on a combination of gold and silver data. Components in boxes have
learned parameters. This figure is made by Seth Ebner and Mahsa Yarmohammadi.

Base Large

Multilingual mBERT XLM-R
(Devlin et al.) (Conneau et al.)

Bilingual GBv4 L64K & L128K
(Lan et al.) (Ours)

Table 8.1: Encoders supporting English and Arabic.

8.2 Universal Encoders

While massively multilingual encoders like mBERT and XLM-R enable strong zero-shot

cross-lingual performance (Wu and Dredze, 2019; Conneau et al., 2020a), they suffer from

the curse of multilinguality (Conneau et al., 2020a): cross-lingual effectiveness suffers as

the number of supported languages increases for a fixed model size. We would therefore

expect that when restricted to only the source and target languages, a bilingual model should
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perform better than (or at least on par with) a multilingual model of the same size, assuming

both languages have sufficient corpora (Wu and Dredze, 2020a). If a practitioner is interested

in only a small subset of the supported languages, is the multilingual model still the best

option?

To answer this question, we use English and Arabic as a test bed. In Table 8.1, we

summarize existing publicly available encoders that support both English and Arabic.1

Base models are 12-layer Transformers (d model = 768), and large models are 24-layer

Transformers (d model = 1024) (Vaswani et al., 2017). As there is no publicly available

large English–Arabic bilingual encoder, we train two encoders from scratch, named L64K

and L128K, with vocabulary sizes of 64K and 128K, respectively.2 With these encoders, we

can determine the impacts of model size and the number of supported languages.

8.3 Data Projection and Self-Training

We create silver versions of the data by automatically projecting annotations from

source English gold data to their corresponding machine translations in the target language

or labeling the translations with the zero-shot model. Data projection transfers word-

level annotations in a source language to a target language via word-to-word alignments

(Yarowsky, Ngai, and Wicentowski, 2001). The technique has been used to create cross-

1We do not include multilingual T5 (Xue et al., 2021) as it is still an open question on how to best utilize
text-to-text models for structured prediction tasks (Ruder et al., 2021).

2L128K available at https://huggingface.co/jhu-clsp/
roberta-large-eng-ara-128k
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lingual datasets for a variety of structured natural language processing tasks, including

named entity recognition (Stengel-Eskin et al., 2019) and semantic role labeling (Akbik

et al., 2015; Aminian, Rasooli, and Diab, 2017; Fei, Zhang, and Ji, 2020). Labeling data

with learned models and using it to further train the model is referred to as self-training

(Yarowsky, 1995). This technique has been used for cross-lingual transfer including text

classification (Eisenschlos et al., 2019). However, we differ with prior work as we label

the translation of source gold data instead of assuming access to unlabeled corpus in target

language.

For data projection, to create silver data, as shown in Figure 8.1, we: (1) translate the

source text to the target language using the MT system described in Section 8.5.2, (2) obtain

word alignments between the original and translated parallel text using a word alignment

tool, and (3) project the annotations along the word alignments. We then combine silver

target data with gold source data to augment the training set for the structured prediction

task. For self-training, the step (1) is shared with data projection, and we use the zero-shot

model to label the translation.

For step (1), we rely on a variety of source-to-target MT systems. To potentially leverage

monolingual data, as well as contextualized cross-lingual information from pretrained

encoders, we feed the outputs of the final layer of frozen pretrained encoders as the inputs

to the MT encoders. We consider machine translation systems: (i) whose parameters are

randomly initialized, (ii) that incorporate information from massively multilingual encoders,

and (iii) that incorporate information from bilingual encoders that have been trained on only
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the source and target languages.

After translating source sentences to the target language, in step (2) we obtain a mapping

of the source words to the target words using publicly available automatic word alignment

tools. Similarly to our MT systems, we incorporate contextual encoders in the word aligner.

We hypothesize that better word alignment yields better silver data, and better information

extraction consequently.

For step (3), we apply direct projection to transfer labels from source sentences to target

sentences according to the word alignments. Each target token receives the label of the

source token aligned to it (token-based projection). For multi-token spans, the target span

is a contiguous span containing all aligned tokens from the same source span (span-based

projection), potentially including tokens not aligned to the source span in the middle. Three

of the IE tasks we consider—ACE, named entity recognition, and BETTER—use span-

based projection, and we filter out projected target spans that are five times longer than the

source spans. Two syntactic tasks—POS tagging and dependency parsing—use token-based

projection. For dependency parsing, following Tiedemann, Agić, and Nivre (2014), we

adapt the disambiguation of many-to-one mappings by choosing as the head the node that is

highest up in the dependency tree. In the case of a non-aligned dependency head, we choose

the closest aligned ancestor as the head.

To address issues like translation shift, filtered projection (Akbik et al., 2015; Aminian,

Rasooli, and Diab, 2017) has been proposed to obtain higher precision but lower recall

projected data. To maintain the same amount of silver data as gold data, in this chapter we
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do not use any task-specific filtered projection methods to remove any sentence.

8.4 Tasks

We employ our silver dataset creation approach on a variety of tasks. For English–Arabic

experiments, we consider ACE, BETTER, NER, POS tagging, and dependency parsing. For

multilingual experiments, we consider NER, POS tagging, and dependency parsing. We use

English as the source language and 8 typologically diverse target languages: Arabic, German,

Spanish, French, Hindi, Russian, Vietnamese, and Chinese. Because of the high variance

of cross-lingual transfer as shown in chapter 6, we report the average test performance of

three runs with different predefined random seeds (except for ACE).3 For model selection

and development, we use the English dev set in the zero-shot scenario and the combined

English dev and silver dev sets in the silver data scenario. Mahsa Yarmohammadi ran the

experiment on English–Arabic ACE and BETTER with the help of Shabnam Behzad.

8.4.1 ACE

Automatic Content Extraction (ACE) 2005 (Walker et al., 2006) provides named entity,

relation, and event annotations for English, Chinese, and Arabic. We conduct experiments

on English as the source language and Arabic as the target language. We use the OneIE

framework (Lin et al., 2020), a joint neural model for information extraction, which has

3We report one run for ACE due to long fine-tuning time.
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shown state-of-the-art results on all subtasks. We use the same hyperparameters as in Lin

et al. (2020) for all of our experiments. We use the OneIE scoring tool to evaluate the

prediction of entities, relations, event triggers, event arguments, and argument roles. For

English, we use the same English document splits as (Lin et al., 2020). That work does not

consider Arabic, so for Arabic we use the document splits from (Lan et al., 2020).

We used the OneIE v0.4.8 codebase4 with the following hyperparameters: Adam opti-

mizer (Kingma and Ba, 2014) for 60 epochs with a learning rate of 5e-5 and weight decay

of 1e-5 for the encoder, and a learning rate of 1e-3 and weight decay of 1e-3 for other

parameters. Two-layer feed-forward network with a dropout rate of 0.4 for task-specific

classifiers, 150 hidden units for entity and relation extraction, and 600 hidden units for event

extraction. βv and βe set to 2 and θ set to 10 for global features.

8.4.2 Named Entity Recognition

We use WikiAnn (Pan et al., 2017) for English–Arabic and multilingual experiments.

The labeling scheme is BIO with 3 types of named entities: PER, LOC, and ORG. On

top of the encoder, we use a linear classification layer with softmax to obtain word-level

predictions. The labeling is word-level while the encoders operate at subword-level, thus, we

mask the prediction of all subwords except for the first one. We evaluate NER performance

by F1 score of the predicted entity.

We use the Adam optimizer with a learning rate of 2e-5 with linear warmup for the first

4http://blender.cs.illinois.edu/software/oneie/
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10% of total steps and linear decay afterwards, and train for 5 epochs with a batch size of 32.

We adapt the same post-processing step as Section 3.2.3 to obtain valid BIO sequences. We

set the maximum sequence length to 128 during fine-tuning, and use a sliding window of

context to include subwords beyond the first 128. At test time, we use the same maximum

sequence length.

8.4.3 Part-of-speech Tagging

We use the Universal Dependencies (UD) Treebank (v2.7; Zeman, 2020b). We use the

following treebanks: Arabic-PADT, German-GSD, English-EWT, Spanish-GSD, French-

GSD, Hindi-HDTB, Russian-GSD, Vietnamese-VTB, and Chinese-GSD. Similar to NER,

we use a word-level linear classifier on top of the encoder, and evaluate performance by the

accuracy of predicted POS tags. We use the same fine-tuning hyperparameter and maximum

sequence length as NER.

8.4.4 Dependency Parsing

We use the same treebanks as the POS tagging task. For the task-specific layer, we use

the graph-based parser of Dozat and Manning (2016), but replace their LSTM encoder with

our encoders of interest. We follow the same policy as that in NER for masking non-first

subwords. We predict only the universal dependency labels, and we evaluate performance

by labeled attachment score (LAS), ignoring punctuations (PUNCT) and symbols (SYM).
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We use the same fine-tuning hyperparameter as NER. We set the maximum sequence length

to the first 128 subwords during fine-tuning, and the first 128 words at test time.

8.4.5 BETTER

The Better Extraction from Text Towards Enhanced Retrieval (BETTER) Program5

develops methods for extracting increasingly fine-grained semantic information in a target

language, given gold annotations only in English. We focus on the coarsest “Abstract” level,

where the goal is to identify events and their agents and patients. The documents come from

the news-specific portion of Common Crawl. We report the program-defined “combined

F1” metric, which is the product of “event match F1” and “argument match F1”, which are

based on an alignment of predicted and reference event structures.

To find all events in a sentence and their corresponding arguments, we model the structure

of the events as a tree, where event triggers are children of the “virtual root” of the sentence

and arguments are children of event triggers (Cai et al., 2018). Each node is associated with

a span in the text and is labeled with an event or argument type label.

We use a model for event structure prediction that has three major components: a

contextualized encoder, tagger, and typer (Xia et al., 2021).6 This model is designed by my

BETTER team colleague. The tagger is a BiLSTM-CRF BIO tagger (Panchendrarajan and

Amaresan, 2018) trained to predict child spans conditioned on parent spans and labels. The

typer is a feedforward network whose inputs are a parent span representation, parent label
5https://www.iarpa.gov/index.php/research-programs/better
6Code available at https://github.com/hiaoxui/span-finder
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embedding, and child span representation. The tree is produced level-wise at inference time,

first predicting event triggers, typing them, and then predicting arguments conditioned on

the typed triggers.

The codebase for event structure prediction uses AllenNLP (Gardner et al., 2018).

The contextual encoder produces representations for the tagger and typer modules. Span

representations are formed by concatenating the output of a self-attention layer over the

span’s token embeddings with the embeddings of the first and last tokens of the span. The

BiLSTM-CRF tagger has 2 layers, both with hidden size of 2048. We use a dropout rate of

0.3 and maximum sequence length of 512. Child span prediction is conditioned on parent

spans and labels, so we represent parent labels with an embedding of size 128. We use Adam

optimizer to fine-tune the encoder with a learning rate of 2e-5, and we use a learning rate of

1e-3 for other components. The tagger loss is negative log likelihood and the typer loss is

cross entropy. We equally weight both losses and train against their sum. The contextual

encoder is not frozen.

8.5 Experiments

8.5.1 Universal Encoders

We train two English–Arabic bilingual encoders. Both of them are 24-layer Transformers

(d model = 1024), the same size as XLM-R large. We use the same Common Crawl
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corpus as XLM-R for pretraining. Additionally, we also use English and Arabic Wikipedia,

Arabic Gigaword (Parker et al., 2011), Arabic OSCAR (Ortiz Suárez, Romary, and Sagot,

2020), Arabic News Corpus (El-Khair, 2016), and Arabic OSIAN (Zeroual et al., 2019).

In total, we train with 9.2B words of Arabic text and 26.8B words of English text, more

than either XLM-R (2.9B words/23.6B words) or GBv4 (4.3B words/6.1B words).7 We

build two English–Arabic joint vocabularies using SentencePiece (Kudo and Richardson,

2018), resulting in two encoders: L64K and L128K. For the latter, we additionally enforce

coverage of all Arabic characters after normalization.

We pretrain each encoder with a batch size of 2048 sequences and 512 sequence length

for 250K steps from scratch,8 roughly 1/24 the amount of pretraining compute of XLM-R.

Training takes 8 RTX 6000 GPUs roughly three weeks. We follow the pretraining recipe of

RoBERTa (Liu et al., 2019b) and XLM-R. We omit the next sentence prediction task and use

a learning rate of 2e-4, Adam optimizer, and linear warmup of 10K steps then decay linearly

to 0, multilingual sampling alpha of 0.3, and the fairseq (Ott et al., 2019) implementation.

8.5.2 Machine Translation

The machined translation component is developed by Haoran Xu and Kenton Murray,

initially developed for the BETTER program and later improved by Xu, Van Durme, and

Murray (2021). The detailed description of this component can be found in Yarmohammadi

7We measure word count with wc -w.
8While we use XLM-R as the initialization of the Transformer, due to vocabulary differences, the learning

curve is similar to that of pretraining from scratch.
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Encoder BLEU

Public 12.7

None 14.9

mBERT 15.7
GBv4 15.7

XLM-R 16.0
L64K 16.2

L128K 15.8

Table 8.2: BLEU scores of MT systems with different pre-trained encoders on English–
Arabic IWSLT’17.

et al. (2021). In summary, it uses the final contextual embeddings from a frozen bilingual

or multilingual encoder as the input of the MT encoder, instead of a randomly initialized

embedding matrix (“None”). We also include a publicly released model (“public”) that has

been demonstrated to perform well (Tiedemann, 2020).9 Table 8.2 shows the denormalized

and detokenized BLEU scores for English–Arabic MT systems with different encoders on the

IWLST’17 test set using sacreBLEU (Post, 2018). The use of contextualized embeddings

from pretrained encoders results in better performance than using a standard randomly

initialized MT model regardless of which encoder is used. The best performing system uses

our bilingual L64K encoder, but all pretrained encoder-based systems perform well and

within 0.5 BLEU points of each other.

9The public MT model is available at https://huggingface.co/Helsinki-NLP/
opus-mt-en-ar
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Model Layer† AER P R F

fast-align* n/a 47.4 53.9 51.4 52.6

Awesome-align w/o FT

mBERT 8 35.6 78.5 54.5 64.4
GBv4 8 32.7 85.6 55.4 67.3

XLM-R 16 40.1 78.6 48.4 59.9
L64K 17 34.0 81.5 55.5 66.0
L128K 17 35.1 80.0 54.5 64.9

Awesome-align w/ FT

mBERTft 8 30.0 81.9 61.2 70.0
GBv4ft 8 29.3 86.9 59.7 70.7

XLM-Rft 18 27.8 90.3 60.2 72.2
L64Kft 17 29.1 84.9 60.9 70.9
L128Kft 16 32.2 80.3 58.7 67.8

Awesome-align w/ FT & supervision

XLM-Rft.s 16 23.3 92.5 65.6 76.7
L128Kft.s 17 23.5 93.7 64.6 76.5

Table 8.3: Alignment performance on GALE EN–AR. *Trained on MT bitext. †We report
the best layer of each encoder based on dev alignment error rate (AER).

8.5.3 Word Alignment

Until recently, alignments have typically been obtained using unsupervised statistical

models such as GIZA++ (Och and Ney, 2003) and fast-align (Dyer, Chahuneau, and

Smith, 2013). Recent work has focused on using the similarities between contextualized

embeddings to obtain alignments (Jalili Sabet et al., 2020; Daza and Frank, 2020; Dou and

Neubig, 2021), achieving state-of-the-art performance.

We use two automatic word alignment tools: fast-align, a widely used statistical align-

ment tool based on IBM models (Brown et al., 1993); and Awesome-align (Dou and Neubig,
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2021), a contextualized embedding-based word aligner that extracts word alignments based

on similarities of the tokens’ contextualized embeddings. Awesome-align achieves state-of-

the-art performance on five language pairs. Optionally, Awesome-align can be fine-tuned on

parallel text with objectives suitable for word alignment and on gold alignment data. Mahsa

Yarmohammadi ran the experiment on word alignment with the help of Shabnam Behzad,

while I adapted the code to allow using any encoder.

We benchmark the word aligners on the gold standard alignments in the GALE Arabic–

English Parallel Aligned Treebank (Li et al., 2012). We use the same data splits as Stengel-

Eskin et al. (2019), containing 1687, 299, and 315 sentence pairs in the train, dev, and test

splits, respectively. To obtain alignments using fast-align, we append the test data to the MT

training bitext and run the tool from scratch. Awesome-align extracts the alignments for the

test set based on pretrained contextualized embeddings. These encoders can be fine-tuned

using the parallel text in the train and dev sets. Additionally, the encoders can be further

fine-tuned using supervision from gold word alignments.

8.5.3.1 Intrinsic Evaluation

Table 8.3 shows the performance of word alignment methods on the GALE English–

Arabic alignment dataset. Awesome-align outperforms fast-align, and fine-tuned Awesome-

align (ft) outperforms models that were not fine-tuned. Incorporating supervision from the

gold alignments (s) leads to the best performance.
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8.6 Cross-lingual Transfer

One might optimistically consider that the latest multilingual encoder (in this case XLM-

R) in the zero-shot setting would achieve the best possible performance, which suggest

data projection or self-training could not constrain the zero-shot cross-lingual optimization.

However, in our extensive experiments in Table 8.4 and Table 8.5, we find that data projection

and self-training could provide useful constraints and improve over zero-shot approach. In

this section, we explore the impact of each factor within the silver data creation process.

8.6.1 English–Arabic Experiments

In Table 8.4, we present the Arabic test performance of five tasks under all combinations

considered. The “MT” and “Align” columns indicate the models used for the translation and

word alignment components of the silver data creation process. For ACE, we report results

on the average of six metrics. 10 For a large bilingual encoder, we use L128K instead of

L64K due to its slightly better performance on English ACE.

8.6.1.1 Impact of Data Projection

By comparing any group against group Z, we observe adding silver data yields better

or equal performance to zero-shot in at least some setup in the IE tasks (ACE, NER, and

BETTER). For syntax-related tasks, we observe similar trends, with the exception of XLM-

10Six metrics include entity, relation, trigger identification and classification, and argument identification
and classification accuracies.
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MT Align ACE NER POS Parsing BET. ACE NER POS Parsing BET.

mBERT (base, multilingual) XLM-R (large, multilingual)

(Z) - - 27.0 41.6 59.7 29.2 39.9 45.1 46.4 73.3 48.0 50.8

(A) public FA +2.5 -3.8 +8.5 +7.3 +2.6 -7.5 -0.1 -7.7 -9.5 -1.6

(B) public mBERT +6.5 +0.2 +8.5 +7.6 +2.3 -4.4 +6.9 -6.1 -8.4 -2.6
(B) public XLM-R +0.9 -2.9 +9.5 +9.0 -1.2 -10.0 +0.0 -5.9 -8.8 -6.3

(C) public mBERTft +7.8 +5.6 +7.7 +10.0 +4.1 -0.6 +7.4 -8.0 -6.8 +0.3
(C) public XLM-Rft +7.7 +4.9 +6.2 +9.3 +4.5 -2.6 +7.0 -9.0 -7.6 +1.0
(C) public XLM-Rft.s +7.3 +1.5 +10.1 +12.4 +4.8 -3.0 +9.1 -3.8 -3.7 +2.3

(D) public GBv4ft +8.5 +4.3 +5.9 +8.9 +5.0 -1.5 +7.7 -9.4 -9.1 -0.1
(D) public L128Kft +6.4 +3.1 +6.5 +8.2 +1.6 -1.6 +6.1 -9.0 -9.4 -3.6
(D) public L128Kft.s +7.0 +3.7 +10.3 +11.8 +5.4 -0.3 +5.2 -4.4 -4.6 +2.1

(E) GBv4 mBERTft +8.4 +3.2 +7.7 +9.9 +4.7 -1.5 +3.2 -7.1 -6.7 +0.7
(E) GBv4 XLM-Rft +9.6 +1.8 +7.0 +9.5 +5.2 -0.4 +1.4 -8.3 -7.7 +1.4
(E) L128K mBERTft +12.1 +3.3 +7.9 +9.9 +4.7 -1.4 +7.2 -8.1 -6.7 +1.3
(E) L128K XLM-Rft +10.2 -1.9 +6.1 +9.4 +4.8 -0.5 +4.6 -9.8 -7.5 +2.0

(S) public ST - +5.5 +0.1 -20.3 +0.3 - +10.0 +1.8 -29.6 +1.2

GBv4 (base, bilingual) L128K (large, bilingual)

(Z) - - 46.0 45.4 64.7 33.2 41.7 42.7 46.3 67.9 36.7 40.9

(C) public mBERTft +0.6 +3.7 +2.6 +6.9 +7.5 +2.7 +8.2 -0.9 +4.9 +11.7
(C) public XLM-Rft -1.4 +4.5 +1.8 +6.0 +8.4 +1.2 +9.0 -2.5 +3.9 +10.5
(C) public XLM-Rft.s -0.1 +3.4 +5.1 +9.2 +8.0 +2.7 +7.0 +1.2 +7.2 +12.1

(E) GBv4 mBERTft -0.1 +0.1 +3.3 +7.2 +8.1 +4.2 -0.5 -0.1 +5.1 +11.2
(E) GBv4 XLM-Rft +0.1 +0.4 +1.5 +6.0 +9.7 +2.4 +0.0 -1.3 +4.2 +10.8
(E) L128K mBERTft -0.6 +1.0 +2.6 +6.1 +7.4 +5.5 +0.8 -0.7 +4.7 +10.6
(E) L128K XLM-Rft +0.9 -2.1 +1.1 +5.5 +7.8 +4.4 -3.6 -2.2 +4.1 +11.3

(F) GBv4 GBv4ft +0.0 -1.9 +1.6 +4.5 +9.1 +2.0 -0.3 -1.7 +3.2 +10.9
(F) GBv4 L128Kft -0.9 -1.4 +1.5 +4.1 +5.7 +2.3 -1.7 -2.4 +2.6 +8.3
(F) L128K GBv4ft -4.3 -1.0 +0.4 +4.1 +7.4 +4.1 -3.6 -2.1 +2.3 +11.4
(F) L128K L128Kft -3.5 -1.1 +0.3 +3.8 + 4.5 +2.9 +0.1 -2.9 +2.0 +6.7
(F) L128K L128Kft.s +1.9 +0.2 +3.3 +7.4 +7.2 +2.8 -1.8 +0.8 +6.0 +11.8

(S) public ST - -2.5 -1.3 -18.6 +1.9 - +7.1 +1.5 -21.7 +8.1

Table 8.4: Performance of Arabic on 5 tasks under various setups. Cells are colored by per-
formance difference over zero-shot baseline: +5 or more , +1 to +5 , -1 to -5 , -5 or more .
Highlights indicate the best setting for each task (best viewed in color). The best setting
for each task and encoder combination is bolded. We order four encoders along two axes,
similar to Table 8.1.
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R. We hypothesize that XLM-R provides better syntactic cues than those obtainable from

the alignment, which we discuss later in relation to self-training.

8.6.1.2 Impact of Word Aligner

By comparing groups A, B, and C of the same encoder, we observe that Awesome-

align performs overall better than statistical MT-based fast-align (FA). Additional fine-tuning

(ft) on MT training bitext further improves its performance. As a result, we use fine-tuned

aligners for further experiments. Moreover, incorporating supervised signals from gold

alignments in the word alignment component (ft.s) often helps performance of the task.

In terms of computation budget, these three groups use a publicly available MT system

(“public”; Tiedemann, 2020) and require only fine-tuning the encoder for alignment, which

requires small additional computation.

8.6.1.3 Impact of Encoder Size

Large bilingual or multilingual encoders tend to perform better than base encoders in the

zero-shot scenario, with the exception of the bilingual encoders on ACE and BETTER. While

we observe base size encoders benefit from reducing the number of supported languages

(from 100 to 2), for large size encoders trained much longer, the zero-shot performance of

the bilingual model is worse than that of the multilingual model. After adding silver data

from group C based on the public MT model and the fine-tuned aligner, the performance

gap between base and large models tends to shrink, with the exception of both bilingual and
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multilingual encoders on NER. In terms of computation budget, training a bilingual encoder

requires significant additional computation.

8.6.1.4 Impact of Encoder on Word Aligner

By comparing groups C and D (in multilingual encoders) or groups E and F (in bilingual

encoders), we observe bilingual encoders tend to perform slightly worse than multilingual

encoders for word alignment. If bilingual encoders exist, using them in aligners requires

little additional computation.

8.6.1.5 Impact of Encoder on MT

By comparing groups C and E, we observe the performance difference between the

bilingual encoder based MT and the public MT depends on the task and encoder, and neither

MT system clearly outperforms the other in all settings, despite the bilingual encoder having

a better BLEU score. The results suggest that both options should be explored if one’s

budget allows. In terms of computation budget, using pretrained encoders in a custom MT

system requires medium additional computation.

8.6.1.6 Impact of Label Source

To assess the quality of the projected annotations in the silver data, we consider a

different way to automatically label translated sentences: self-training (ST; Yarowsky, 1995).

For self-training, we translate the source data to the target language, label the translated data
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using a zero-shot model trained on source data, and combine the labeled translations with

the source data to train a new model.11 Compared to the silver data, the self-training data

has the same underlying text but a different label source.

We first observe that self-training for parsing leads to significantly worse performance

due to the low quality of the predicted trees. By comparing groups S and C, which use

the same underlying text, we observe that data projection tends to perform better than

self-training, with the exceptions of POS tagging with a large encoder and NER with a large

multilingual encoder. These results suggest that the external knowledge12 in the silver data

complements the knowledge obtainable when the model is trained with source language

data alone, but when the zero-shot model is already quite good (like for POS tagging) data

projection can harm performance compared to self-training.

8.6.2 Multilingual Experiments

In Table 8.5, we present the test performance of three tasks for eight target languages.

We use the public MT system (Tiedemann, 2020) and non-fine-tuned Awesome-align with

mBERT as the word aligner for data projection—a setup with the smallest computation

budget—due to computation constraints. We consider both data projection (+Proj) and

self-training (+Self). We use silver data in addition to English gold data for training. We use

11This setup differs from traditional zero-shot self-training in cross-lingual transfer, as the traditional setup
assumes unlabeled corpora in the target language(s) (Eisenschlos et al., 2019) instead of translations of the
source language data.

12“External knowledge” refers to knowledge introduced into the downstream model as a consequence of the
particular decisions made by the aligner (and subsequent projection).
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Encoder Data ar de en es fr hi ru vi zh Average

NER (F1)

mBERT Zero-shot 41.6 78.8 83.9 73.1 79.5 66.2 63.4 70.8 51.8 67.7
+ Self +7.7 -0.5 +0.4 +4.8 +2.4 -2.5 +2.7 +1.2 +1.4 +2.0
+ Proj -5.8 -0.6 +0.3 +3.6 +0.2 +0.4 -1.7 -2.0 +2.3 -0.4
+ Proj (Bi) +0.3 -0.7 +0.1 +5.2 -0.6 -2.1 -1.1 +0.3 +0.0 +0.2

XLM-R Zero-shot 46.4 79.5 83.9 76.1 80.0 70.9 70.5 77.0 40.2 69.4
+ Self +11.2 +0.9 +0.6 +1.0 +0.5 +2.1 -1.5 +1.7 +2.3 +2.1
+ Proj +1.7 -0.7 -0.1 -3.9 -1.2 +1.2 -4.8 -9.1 +14.2 -0.3
+ Proj (Bi) +6.9 +0.4 -0.2 -4.3 -1.5 +3.2 -3.3 -5.2 +15.1 +1.2

POS (ACC)

mBERT Zero-shot 59.7 89.6 96.9 87.5 88.7 69.5 81.9 62.6 66.6 78.1
+ Self +0.3 +0.5 +0.0 +0.4 +0.4 -0.3 +0.5 +0.4 +1.7 +0.4
+ Proj +6.9 -3.2 +0.0 -3.8 -3.9 +1.3 -6.6 -7.4 -4.1 -2.3
+ Proj (Bi) +8.5 -2.6 -0.1 -3.2 -3.0 +1.6 -5.7 -6.9 -3.9 -1.7

XLM-R Zero-shot 73.3 91.5 98.0 89.3 90.0 78.6 86.8 65.2 53.6 80.7
+ Self +1.6 -0.3 +0.0 +0.0 +0.0 +2.0 +0.1 -0.4 +11.7 +1.6
+ Proj -7.1 -5.4 -0.5 -6.3 -5.9 -6.0 -10.5 -8.9 +9.7 -4.6
+ Proj (Bi) -6.1 -4.6 -0.1 -4.9 -4.6 -5.5 -10.4 -8.7 +9.4 -4.0

Parsing (LAS)

mBERT Zero-shot 29.2 67.7 79.7 68.9 73.2 31.2 60.6 33.6 29.4 52.6
+ Self -20.6 -34.2 +0.1 -41.6 -41.1 -15.3 -35.2 -17.8 -14.5 -24.5
+ Proj +9.1 -2.1 +1.1 -4.9 -5.8 +6.0 -5.6 -7.2 -2.1 -1.3
+ Proj (Bi) +7.6 -1.6 +0.5 -3.8 -4.5 +5.7 -4.8 -7.2 -2.5 -1.2

XLM-R Zero-shot 48.0 69.6 82.6 73.6 76.1 43.1 70.3 38.4 15.0 57.4
+ Self -30.4 -29.4 +0.1 -39.9 -40.0 -18.3 -33.9 -16.1 -9.7 -24.2
+ Proj -8.5 -4.3 +0.0 -10.3 -10.1 -5.7 -14.8 -11.1 +14.5 -5.6
+ Proj (Bi) -8.4 -1.6 +0.1 -7.7 -7.4 -3.1 -12.7 -9.8 +15.1 -3.9

Table 8.5: Performance of NER, POS, and parsing for eight target languages. We use the
same color code as Table 8.4.
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multilingual training with +Self and +Proj, and bilingual training with +Proj (Bi).

We observe that data projection (+Proj (Bi)) sometimes benefits languages with the

lowest zero-shot performance (Arabic, Hindi, and Chinese), with the notable exception of

XLM-R on syntax-based tasks (excluding Chinese). For languages closely related to English,

data projection tends to hurt performance. We observe that for data projection, training

multiple bilingual models (+Proj (Bi)) outperforms joint multilingual training (+Proj). This

could be the result of noise from alignments of various quality mutually interfering. In fact,

self-training with the same translated text (+Self) outperforms data projection and zero-shot

scenarios, again with the exception of parsing. As data projection and self-training use the

same translated text and differ only by label source, the results indicate that the external

knowledge from frozen mBERT-based alignment is worse than what the model learns from

source language data alone. Thus, further performance improvement could be achieved with

an improved aligner.

8.7 Related Work

Although projected data may be of lower quality than the original source data due to

errors in translation or alignment, it is useful for tasks such as semantic role labeling (Akbik

et al., 2015; Aminian, Rasooli, and Diab, 2019), information extraction (Riloff, Schafer, and

Yarowsky, 2002), POS tagging (Yarowsky and Ngai, 2001), and dependency parsing (Ozaki

et al., 2021). The intuition is that although the projected data may be noisy, training on it
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gives a model useful information about the statistics of the target language.

Akbik et al. (2015) and Aminian, Rasooli, and Diab (2017) use bootstrapping algorithms

to iteratively construct projected datasets for semantic role labeling. Akbik et al. (2015)

additionally use manually defined filters to maintain high data quality, which results in a

projected dataset that has low recall with respect to the source corpus. Fei, Zhang, and

Ji (2020) and Daza and Frank (2020) find that a non-bootstrapped approach works well

for cross-lingual SRL. Advances in translation and alignment quality allow us to avoid

bootstrapping while still constructing projected data that is useful for downstream tasks.

Fei, Zhang, and Ji (2020) and Daza and Frank (2020) also find improvements when

training on a mixture of gold source language data and projected silver target language

data. The intuition of using both gold and projected silver data is to allow the model to see

high quality gold data as well as data with target language statistics. Ideas from domain

adaptation can be used to make more effective use of gold and silver data to mitigate the

effects of language shift (Xu et al., 2021).

8.8 Discussion

In this chapter, we explore the use of silver data via data projection or self-training to

constrain the zero-shot cross-lingual transfer optimization, facilitated by neural machine

translation and word alignment. Recent advances in pretrained encoders have improved

machine translation systems and word aligners in terms of intrinsic evaluation. We conduct
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an extensive extrinsic evaluation and study how the encoders themselves—and components

containing them—impact performance on a range of downstream tasks and languages.

With a test bed of English–Arabic IE tasks, we find that adding projected silver training

data overall yields improvements over zero-shot learning. Comparisons of how each factor

in the data projection process impacts performance show that while one might hope for the

existence of a silver bullet strategy, the best setup is usually task dependent. In multilingual

experiments, we find that silver data tends to help languages with the weakest zero-shot

performance, and that it is best used separately for each desired language pair instead of in

joint multilingual training.

We also examine self-training with translated text to assess when data projection helps

cross-lingual transfer, and find it to be another viable option for obtaining labels for some

tasks. Further directions include how to improve alignment quality and how to combine data

projection and self-training techniques.

As we observe in this chapter, the best setup to constrain the optimization for each

task is task-specific. Thus, to further constrain the optimization and to produce the best

performance with the existing encoders, we should consider a bag of techniques mentioned

in this chapter and Section 7.6, depending on the computation budget.
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9.1 Contributions

In this thesis, we have attempted to answer a set of questions raised by the surprising

cross-lingual effectiveness of Multilingual BERT. By understanding these models through

analysis, we have identified ways to improve its cross-lingual representation. In chapter 2,

we review the progress of representation learning in NLP and its impact on cross-lingual

transfer, and observe that cross-lingual transfer performance improves as better representa-

tion learning techniques are developed. With the release of Multilingual BERT (mBERT), in

chapter 3, we show that surprisingly mBERT learns cross-lingual representation even without

explicit cross-lingual signal, and probes the released model to gain more insight. In chapter 4,

we conduct an ablation study on these multilingual models, demonstrating that parameter

sharing of transformer contribute the most to the learning of cross-lingual representation,

and show monolingual BERT of different language are similar to each other. In chapter 5, we

find that mBERT does not learn high quality representation for its lower resource languages,

despite trying its best, as monolingual BERT or bilingual BERT paired with similar high

resource language performs worse that mBERT for lower resource languages. In chapter 6,

we propose two methods for injecting different cross-lingual signal—bilingual dictionary

and bitext—into these models, and show that while despite improvement on cross-lingual

representation, it is eclipsed by the improvement of scaling up the model. In chapter 7,

we show that zero-shot cross-lingual transfer is under-specified optimization, causing its

high variance on target languages and much lower variance on source language. To address

this issue, constraints need to be introduced into the optimization. Thus, in chapter 8, we
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consider using silver target data—created automatically with machine translation based

on supervision in source language—to constrain the optimization. We show that it indeed

improves zero-shot cross-lingual transfer, despite the best setup of data creation pipeline

with encoders is task specific.

9.2 Future Works

9.2.1 Continue Scaling of Multilingual Encoders

As we observe in chapter 6, while injecting cross-lingual signal explicitly into the model

helps improve cross-lingual representation for smaller model, simply scaling up the model

capacity and data size produces much better representation, as evidenced by Xue et al. (2021)

and Goyal et al. (2021). In an orthogonal direction, as we discuss in chapter 5, improving

the sample-efficiency of BERT pretraining objective likely leads to better representation, as

evidenced by Clark et al. (2020) and Chi et al. (2021b).

However, in this direction, there is one important open question: Is there a limit of

scaling up model size? In other words, Is there a peak model size, beyond which we will get

the same or even worse cross-lingual representation? Kaplan et al. (2020) study the scaling

law of monolingual language model, and observe that the cross-entropy loss of language

model scales as a power-law with model size and data size. However, it is unclear that

whether low cross-entropy loss in this scale translate to better cross-lingual representation.
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Chi et al. (2021a) argues that the cross-lingual representation of pretrained multilingual

models is the product of the bottleneck effect, which suggests a scenario where the model

learn each language well with low cross-entropy loss but fail to align the representation in

the cross-lingual fashion. As we observe in chapter 4, such natural alignment is the key to

the success of models like mBERT.

We hypothesize that this scenario might exist in theory but not in practise for model

sharing all parameters across languages. As the model is trained with gradient descent mixing

sentences of different languages, we will not discover such a solution with optimization.

Additionally, scaling up model size is much slower compared to scaling up data size, as new

data is continuously produced on the Web. Realistically, it is unlikely that we will hit such a

limit any time soon even if it exists.

Looking at the current literature, we still observe better cross-lingual representation by

scaling up to 10B parameters (Xue et al., 2021; Goyal et al., 2021). There are models like

GPT-3 (Brown et al., 2020) with 100B+ parameters or GShard (Lepikhin et al., 2021) and

Switch Transformer (Fedus, Zoph, and Shazeer, 2021) with 1T+ parameters. Notably, these

models are decoder-only or encoder-decoder based models. While the exact cross-lingual

capability of these models are unclear at the moment, as these models are not open sourced.

There is early evidence suggesting that these models might process similar cross-lingual

capability (Winata et al., 2021). Thus, a further model size scaling of 100x is possible with

the current techniques. However, such scaling requires answering new questions.

Can we develop a more scalable architecture and algorithm without sacrificing the

148



CHAPTER 9. CONCLUSIONS

natural alignment? Scaling to 1T (Lepikhin et al., 2021; Fedus, Zoph, and Shazeer, 2021)

rely heavily on sparse network or conditional computation—activating certain component

of the network depending on the input—with mixture of experts (Jacobs et al., 1991; Jordan

and Jacobs, 1994; Shazeer et al., 2017). However, it might harm the natural alignment across

languages, as less parameter is shared across all languages compared to dense network.

Thus, the model might learns better representation for each language, but worse cross-lingual

representation in comparison. To address this challenge, possible directions include continue

improvement of mixture of experts, Transformers, and more sample-efficient pretraining

algorithm.

Can we efficiently adapt a large pretrained model to a task? Such large models introduce

challenges for fine-tuning. GPT-3 (Brown et al., 2020), a model with 175B parameters,

addresses this challenge by relying on context-based few-shot learning, showing that with a

prompt and some examples, the model can perform new tasks without fine-tuning. However,

there is still much room for improvement. This is an active research area with new techniques

like prompt fine-tuning (Li and Liang, 2021; Qin and Eisner, 2021; Lester, Al-Rfou, and

Constant, 2021). Liu et al. (2021a) survey the ongoing research.

Can we distill knowledge from a large pretrained model for deployment? Large models

introduce significant challenges for deployment. We could distill the knowledge from large

pretrained models to smaller models to reduce inference time. It includes technique like

knowledge-distillation (Hinton, Vinyals, and Dean, 2015)—transferring logits of large mod-

els on target languages (soft label)—and self-training (Yarowsky, 1995) or semi-supervised
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learning—transferring the prediction of large models on target languages (hard label). As

we show in chapter 8, self-training with the same model improves the cross-lingual transfer

except for parsing. Additionally, the large model could be potentially pruned or quantized.

9.2.2 Multilingual Multi-modals Models

While this thesis mainly focuses on multilingual models for text, the lessons we learned

may transfer to multilingual multi-modals models, e.g. speech, text + speech, text + image,

text + video, and text + code. Similar to modern NLP systems, multi-modals systems usually

need to support more than one language. Similar to text, we do not have the same amount of

supervision for all languages. Thus, it is beneficial to consider the multilingual approach that

enable cross-lingual transfer. The main research question in this direction is that how well

do lessons we learn from text encoder transfer to multi-modals models? Does cross-lingual

representation emerge in multilingual multi-modals models?
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