3,845 research outputs found

    Responses of seasonal indicators to extreme droughts in southwest China

    Get PDF
    Significant impact of extreme droughts on human society and ecosystem has occurred in many places of the world, for example, Southwest China (SWC). Considerable research concentrated on analyzing causes and effects of droughts in SWC, but few studies have examined seasonal indicators, such as variations of surface water and vegetation phenology. With the ongoing satellite missions, more and more earth observation data become available to environmental studies. Exploring the responses of seasonal indicators from satellite data to drought is helpful for the future drought forecast and management. This study analyzed the seasonal responses of surface water and vegetation phenology to drought in SWC using the multi-source data including Seasonal Water Area (SWA), Permanent Water Area (PWA), Start of Season (SOS), End of Season (EOS), Length of Season (LOS), precipitation, temperature, solar radiation, evapotranspiration, the Palmer Drought Severity Index (PDSI), the Normalized Difference Vegetation Index (NDVI), the Enhanced Vegetation Index (EVI), Gross Primary Productivity (GPP) and data from water conservancy construction. The results showed that SWA and LOS effectively revealed the development and recovery of droughts. There were two obvious drought periods from 2000 to 2017. In the first period (from August 2003 to June 2007), SWA decreased by 11.81% and LOS shortened by 5 days. They reduced by 21.04% and 9 days respectively in the second period (from September 2009 to June 2014), which indicated that there are more severe droughts in the second period. The SOS during two drought periods delayed by 3~6 days in spring, while the EOS advanced 1~3 days in autumn. All of PDSI, SWA and LOS could reflect the period of droughts in SWC, but the LOS and PDSI were very sensitive to the meteorological events, such as precipitation and temperature, while the SWA performed a more stable reaction to drought and could be a good indicator for the drought periodicity. This made it possible for using SWA in drought forecast because of the strong correlation between SWA and drought. Our results improved the understanding of seasonal responses to extreme droughts in SWC, which will be helpful to the drought monitoring and mitigation for different seasons in this ecologically fragile region

    Vegetation Dynamics Revealed by Remote Sensing and Its Feedback to Regional and Global Climate

    Get PDF
    This book focuses on some significant progress in vegetation dynamics and their response to climate change revealed by remote sensing data. The development of satellite remote sensing and its derived products offer fantastic opportunities to investigate vegetation changes and their feedback to regional and global climate systems. Special attention is given in the book to vegetation changes and their drivers, the effects of extreme climate events on vegetation, land surface albedo associated with vegetation changes, plant fingerprints, and vegetation dynamics in climate modeling

    Investigating the relationship between the inter-annual variability of satellite-derived vegetation phenology and a proxy of biomass production in the Sahel

    Get PDF
    In the Sahel region, moderate to coarse spatial resolution remote sensing time series are used in early warning monitoring systems with the aim of detecting unfavorable crop and pasture conditions and informing stakeholders about impending food security risks. Despite growing evidence that vegetation productivity is directly related to phenology, most approaches to estimate such risks do not explicitly take into account the actual timing of vegetation growth and development. The date of the start of the season (SOS) or of the peak canopy density can be assessed by remote sensing techniques in a timely manner during the growing season. However, there is limited knowledge about the relationship between vegetation biomass production and these variables at regional scale. This study describes a first attempt to increase our understanding of such a relationship through the analysis of phenological variables retrieved from SPOT-VEGETATION time series of the Fraction of Absorbed Photosynthetically Active Radiation (FAPAR). Two key phenological variables (growing season length, GSL; timing of SOS) and the maximum value of FAPAR attained during the growing season (Peak) are analyzed as potentially related to a proxy of biomass production (CFAPAR, the cumulative value of FAPAR during the growing season). GSL, SOS and Peak all show different spatial patterns of correlation with CFAPAR. In particular, GSL shows a high and positive correlation with CFAPAR over the whole Sahel (mean r = 0.78). The negative correlation between delays in SOS and CFAPAR is stronger (mean r = -0.71) in the southern agricultural band of the Sahel, while the positive correlation between Peak FAPAR and CFAPAR is higher in the northern and more arid grassland region (mean r = 0.75). The consistency of the results and the actual link between remote-sensing derived phenological parameters and biomass production were evaluated using field measurements of aboveground herbaceous biomass of rangelands in Senegal. This study demonstrates the potential of phenological variables as indicators of biomass production. Nevertheless, the strength of the relation between phenological variables and biomass production is not universal and indeed quite variable geographically, with large scattered areas not showing a statistically significant relationship.JRC.H.4-Monitoring Agricultural Resource

    Temporal Changes in Coupled Vegetation Phenology and Productivity are Biome-Specific in the Northern Hemisphere

    Get PDF
    Global warming has greatly stimulated vegetation growth through both extending the growing season and promoting photosynthesis in the Northern Hemisphere (NH). Analyzing the combined dynamics of such trends can potentially improve our current understanding on changes in vegetation functioning and the complex relationship between anthropogenic and climatic drivers. This study aims to analyze the relationships (long-term trends and correlations) of length of vegetation growing season (LOS) and vegetation productivity assessed by the growing season NDVI integral (GSI) in the NH (>30°N) to study any dependency of major biomes that are characterized by different imprint from anthropogenic influence. Spatial patterns of converging/diverging trends in LOS and GSI and temporal changes in the coupling between LOS and GSI are analyzed for major biomes at hemispheric and continental scales from the third generation Global Inventory Monitoring and Modeling Studies (GIMMS) Normalized Difference Vegetation Index (NDVI) dataset for a 32-year period (1982–2013). A quarter area of the NH is covered by converging trends (consistent significant trends in LOS and GSI), whereas diverging trends (opposing significant trends in LOS and GSI) cover about 6% of the region. Diverging trends are observed mainly in high latitudes and arid/semi-arid areas of non-forest biomes (shrublands, savannas, and grasslands), whereas forest biomes and croplands are primarily characterized by converging trends. The study shows spatially-distinct and biome-specific patterns between the continental land masses of Eurasia (EA) and North America (NA). Finally, areas of high positive correlation between LOS and GSI showed to increase during the period of analysis, with areas of significant positive trends in correlation being more widespread in NA as compared to EA. The temporal changes in the coupled vegetation phenology and productivity suggest complex relationships and interactions that are induced by both ongoing climate change and increasingly intensive human disturbances

    Responses and adaptation strategies of terrestrial ecosystems to climate change

    Get PDF
    Terrestrial ecosystems are likely to be affected by climate change, as climate change-induced shift of water and heat stresses patterns will have significant impacts on species composition, habitat distribution, and ecosystem functions, and thereby weaken the terrestrial carbon (C) sink and threaten global food security and biofuel production. This thesis investigates the responses of terrestrial ecosystems to climate change and is structured in four main chapters.;The first chapter of the thesis is directed towards the impacts of snow variation on ecosystem phenology. Variations in seasonal snowfall regulate regional and global climatic systems and vegetation growth by changing energy budgets of the lower atmosphere and land surface. We investigated the effects of snow on the start of growing season (SGS) of temperate vegetation in China. Across the entire temperate region in China, the winter snow depth increased at a rate of 0.15 cm•yr-1 (p=0.07) during the period 1982-1998, and decreased at a rate of 0.36 cm•yr-1 (p=0.09) during the period 1998-2005. Correspondingly, the SGS advanced at a rate of 0.68 d•yr-1 (p\u3c0.01) during 1982 to 1998, and delayed at a rate of 2.13 d•yr-1 (p=0.07) during 1998 to 2005, against a warming trend throughout the entire study period of 1982-2005. Spring air temperature strongly regulated the SGS of both deciduous broad-leaf and coniferous forests; whilst the winter snow had a greater impact on the SGS of grassland and shrubs. Snow depth variation combined with air temperature contributed to the variability in the SGS of grassland and shrubs, as snow acted as an insulator and modulated the underground thermal conditions. Additionally, differences were seen between the impacts of winter snow depth and spring snow depth on the SGS; as snow depths increased, the effect associated went from delaying SGS to advancing SGS. The observed thresholds for these effects were snow depths of 6.8 cm (winter) and 4.0 cm (spring). The results of this study suggest that the response of the vegetation\u27s SGS to seasonal snow change may be attributed to the coupling effects of air temperature and snow depth associated with the soil thermal conditions.;The second chapter further addresses snow impacts on terrestrial ecosystem with focus on regional carbon exchange between atmosphere and biosphere. Winter snow has been suggested to regulate terrestrial carbon (C) cycling by modifying micro-climate, but the impacts of snow cover change on the annual C budget at the large scale are poorly understood. Our aim is to quantify the C balance under changing snow depth. Here, we used site-based eddy covariance flux data to investigate the relationship between snow cover depth and ecosystem respiration (Reco) during winter. We then used the Biome-BGC model to estimate the effect of reductions in winter snow cover on C balance of Northern forests in non-permafrost region. According to site observations, winter net ecosystem C exchange (NEE) ranged from 0.028-1.53 gC•m-2•day-1, accounting for 44 +/- 123% of the annual C budget. Model simulation showed that over the past 30 years, snow driven change in winter C fluxes reduced non-growing season CO2 emissions, enhancing the annual C sink of northern forests. Over the entire study area, simulated winter ecosystem respiration (Reco) significantly decreased by 0.33 gC•m-2•day -1•yr-1 in response to decreasing snow cover depth, which accounts for approximately 25% of the simulated annual C sink trend from 1982 to 2009. Soil temperature was primarily controlled by snow cover rather than by air temperature as snow served as an insulator to prevent chilling impacts. A shallow snow cover has less insulation potential, causing colder soil temperatures and potentially lower respiration rates. Both eddy covariance analysis and model-simulated results showed that both Reco and NEE were significantly and positively correlated with variation in soil temperature controlled by variation in snow depth. Overall, our results highlight that a decrease in winter snow cover restrains global warming through emitting less C to the atmosphere.;The third chapter focused on assessing drought\u27s impact on global terrestrial ecosystems. Drought can affect the structure, composition and function of terrestrial ecosystems, yet the drought impacts and post-drought recovery potential of different land cover types have not been extensively studied at a global scale. Here, we evaluated drought impacts on gross primary productivity (GPP), evapotranspiration (ET), and water use efficiency (WUE) of different global terrestrial ecosystems, as well as the drought-resilience of each ecosystem type during the period of 2000 to 2011. We found the rainfall and soil moisture during drought period were dramatically lower than these in non-drought period, while air temperatures were higher than normal during drought period with amplitudes varied by land cover types. The length of recovery days (LRD) presented an evident gradient of high (\u3e 60 days) in mid- latitude region and low (\u3c 60 days) in low (tropical area) and high (boreal area) latitude regions. As average GPP increased, the LRD showed a significantly decreasing trend among different land covers (R 2=0.53, p\u3c0.0001). Moreover, the most dramatic reduction of the drought-induced GPP was found in the mid-latitude region of north Hemisphere (48% reduction), followed by the low-latitude region of south Hemisphere (13% reduction). In contrast, a slightly enhanced GPP (10%) was showed in the tropical region under drought impact. Additionally, the highest drought-induced reduction of ET was found in the Mediterranean area, followed by Africa. The water use efficiency, however, showed a pattern of decreasing in the north Hemisphere and increasing in the south Hemisphere.;The last chapter compared the differences of performance in trading water for carbon in planted forest and natural forest, with specific focus on China. Planted forests have been widely established in China as an essential approach to improving the ecological environment and mitigating climate change. Large-scale forest planting programs, however, are rarely examined in the context of tradeoffs between carbon sequestration and water yield between planted and natural forests. We reconstructed evapotranspiration (ET) and gross primary production (GPP) data based on remote-sensing and ground observational data, and investigated the differences between natural and planted forests, in order to evaluate the suitability of tree-planting activity in different climate regions where the afforestation and reforestation programs have been extensively implemented during the past three decades in China. While the differences changed with latitude (and region), we found that, on average, planted forests consumed 5.79% (29.13mm) more water but sequestered 1.05% (-12.02 gC m-2 yr -1) less carbon than naturally generated forests, while the amplitudes of discrepancies varied with latitude. It is suggested that the most suitable lands in China for afforestation should be located in the moist south subtropical region (SSTP), followed by the mid-subtropical region (MSTP), to attain a high carbon sequestration potential while maintain a relatively low impact on regional water balance. The high hydrological impact zone, including the north subtropical region (NSTP), warm temperate region (WTEM), and temperate region (TEM) should be cautiously evaluated for future afforestation due to water yield reductions associated with plantations

    Assessing the impact of extreme droughts on dryland vegetation by multi-satellite solar-induced chlorophyll fluorescence

    Get PDF
    Satellite-estimated solar-induced chlorophyll fluorescence (SIF) is proven to be an effective indicator for dynamic drought monitoring, while the capability of SIF to assess the variability of dryland vegetation under water and heat stress remains challenging. This study presents an analysis of the responses of dryland vegetation to the worst extreme drought over the past two decades in Australia, using multi-source spaceborne SIF derived from the Global Ozone Monitoring Experiment-2 (GOME-2) and TROPOspheric Monitoring Instrument (TROPOMI). Vegetation functioning was substantially constrained by this extreme event, especially in the interior of Australia, in which there was hardly seasonal growth detected by neither satellite-based observations nor tower-based flux measurements. At a 16-day interval, both SIF and enhanced vegetation index (EVI) can timely capture the reduction at the onset of drought over dryland ecosystems. The results demonstrate that satellite-observed SIF has the potential for characterizing and monitoring the spatiotemporal dynamics of drought over water-limited ecosystems, despite coarse spatial resolution coupled with high-retrieval noise as compared with EVI. Furthermore, our study highlights that SIF retrieved from TROPOMI featuring substantially enhanced spatiotemporal resolution has the promising capability for accurately tracking the drought-induced variation of heterogeneous dryland vegetation

    Critical climate periods for grassland productivity on China’s Loess Plateau

    Get PDF
    Strong correlations between aboveground net primary productivity (ANPP) of grasslands and mean annual temperature or precipitation have been widely reported across regional or continental scales; however, inter-annual variation in these climate factors correlates poorly with site-specific ANPP. We hypothesize that the reason for these weak correlations is that the impacts of climatic variation on grassland productivity depend on the timing and intensity of variation in temperature and precipitation. In this study, long-term records of grassland productivity on the Loess Plateau in China were related with daily temperature and precipitation during 1992–2011 using Partial Least Squares (PLS) regression to test the above-mentioned hypothesis. Our results suggested that temperature increases during the early stage of the growing season (April–May) were positively correlated with ANPP. However, these effects were canceled out when this phase was followed by a hot and dry summer (June–July). Impacts of drought and heat in August on productivity were negligible. Increased temperature and precipitation during the senescence period (September–October) and a warmer dormancy phase (November–March) were negatively correlated with productivity in the following year, while precipitation during the dormancy period had no detectable effects. Climatic variability in summer has thus far been the dominant driver of temporal variation in grassland productivity. Warming during winter and spring currently play minor roles, but it seems likely that the importance of these secondary impacts may increase as warming trends continue. This evaluation of climate variability impacts on ecosystem function (e.g. grassland productivity) implies that not only the magnitude but also the timing of changes in temperature and precipitation determines how the impacts of climate changes on ecosystems will unfold

    Vegetation response to extreme climate events on the Mongolian Plateau from 2000 to 2010

    Get PDF
    Climate change has led to more frequent extreme winters (aka, dzud) and summer droughts on the Mongolian Plateau during the last decade. Among these events, the 2000–2002 combined summer drought–dzud and 2010 dzud were the most severe on vegetation. We examined the vegetation response to these extremes through the past decade across the Mongolian Plateau as compared to decadal means. We first assessed the severity and extent of drought using the Tropical Rainfall Measuring Mission (TRMM) precipitation data and the Palmer drought severity index (PDSI). We then examined the effects of drought by mapping anomalies in vegetation indices (EVI, EVI2) and land surface temperature derived from MODIS and AVHRR for the period of 2000–2010. We found that the standardized anomalies of vegetation indices exhibited positively skewed frequency distributions in dry years, which were more common for the desert biome than for grasslands. For the desert biome, the dry years (2000–2001, 2005 and 2009) were characterized by negative anomalies with peak values between �1.5 and �0.5 and were statistically different (P \u3c 0:001) from relatively wet years (2003, 2004 and 2007). Conversely, the frequency distributions of the dry years were not statistically different (p \u3c 0:001) from those of the relatively wet years for the grassland biome, showing that they were less responsive to drought and more resilient than the desert biome. We found that the desert biome is more vulnerable to drought than the grassland biome. Spatially averaged EVI was strongly correlated with the proportion of land area affected by drought (PDSI \u3c �1) in Inner Mongolia (IM) and Outer Mongolia (OM), showing that droughts substantially reduced vegetation activity. The correlation was stronger for the desert biome (R2 D 65 and 60, p \u3c 0:05) than for the IM grassland biome (R2 D 53, p \u3c 0:05). Our results showed significant differences in the responses to extreme climatic events (summer drought and dzud) between the desert and grassland biomes on the Plateau

    The fingerprints of climate warming on cereal crops phenology and adaptation options

    Get PDF
    Growth and development of cereal crops are linked to weather, day length and growing degree-days (GDDs) which make them responsive to the specific environments in specific seasons. Global temperature is rising due to human activities such as burning of fossil fuels and clearance of woodlands for building construction. The rise in temperature disrupts crop growth and development. Disturbance mainly causes a shift in phenological development of crops and affects their economic yield. Scientists and farmers adapt to these phenological shifts, in part, by changing sowing time and cultivar shifts which may increase or decrease crop growth duration. Nonetheless, climate warming is a global phenomenon and cannot be avoided. In this scenario, food security can be ensured by improving cereal production through agronomic management, breeding of climate-adapted genotypes and increasing genetic biodiversity. In this review, climate warming, its impact and consequences are discussed with reference to their influences on phenological shifts. Furthermore, how different cereal crops adapt to climate warming by regulating their phenological development is elaborated. Based on the above mentioned discussion, different management strategies to cope with climate warming are suggested

    Trends in vegetation productivity and seasonality for Namaqualand, South Africa between 1986 and 2011: an approach combining remote sensing and repeat photography

    Get PDF
    This thesis presents an assessment of vegetation change and its drivers across a subset of Namaqualand, South Africa. Namaqualand forms part of the Succulent Karoo biome, which is characterised by exceptionally high species biodiversity but which has undergone severe transformation since the arrival of pastoral colonists. Vegetation productivity in Namaqualand is of great importance since there is a high dependence on natural resources, livestock and agriculture for both subsistence and income. However, there is considerable debate on the relative contribution of land-use change and climate change to vegetation change and land degradation in Namaqualand. Early studies based on bioclimatic envelop models suggest that an increase in temperature and more arid conditions could result in the vegetation cover of the Succulent Karoo being significantly reduced. On the other hand, more recent studies show that less extreme changes in rainfall could result in the vegetation of the biome remaining fairly stable with possible increases in the spatial extent by 2050. Furthermore, field observations and repeat photography, suggest that the change in vegetation in the region over the course of the 20th century generally portrays an increase in cover largely as a result of changes in land-use. By combining repeat photography and satellite data from NOAA-AVHRR and TERRA-MODIS sensors as well as baseline climatology data from the CRU TS 3.2 data set this study aimed to: (1) Determine the critical pathways of inter-annual and intra-seasonal vegetation change in the Namaqualand; (2) Investigate the role of land-use and climate variability as key drivers of vegetation change in Namaqualand
    corecore