17 research outputs found

    Resource management with adaptive capacity in C-RAN

    Get PDF
    This work was supported in part by the Spanish ministry of science through the projectRTI2018-099880-B-C32, with ERFD funds, and the Grant FPI-UPC provided by theUPC. It has been done under COST CA15104 IRACON EU project.Efficient computational resource management in 5G Cloud Radio Access Network (CRAN) environments is a challenging problem because it has to account simultaneously for throughput, latency, power efficiency, and optimization tradeoffs. This work proposes the use of a modified and improved version of the realistic Vienna Scenario that was defined in COST action IC1004, to test two different scale C-RAN deployments. First, a large-scale analysis with 628 Macro-cells (Mcells) and 221 Small-cells (Scells) is used to test different algorithms oriented to optimize the network deployment by minimizing delays, balancing the load among the Base Band Unit (BBU) pools, or clustering the Remote Radio Heads (RRH) efficiently to maximize the multiplexing gain. After planning, real-time resource allocation strategies with Quality of Service (QoS) constraints should be optimized as well. To do so, a realistic small-scale scenario for the metropolitan area is defined by modeling the individual time-variant traffic patterns of 7000 users (UEs) connected to different services. The distribution of resources among UEs and BBUs is optimized by algorithms, based on a realistic calculation of the UEs Signal to Interference and Noise Ratios (SINRs), that account for the required computational capacity per cell, the QoS constraints and the service priorities. However, the assumption of a fixed computational capacity at the BBU pools may result in underutilized or oversubscribed resources, thus affecting the overall QoS. As resources are virtualized at the BBU pools, they could be dynamically instantiated according to the required computational capacity (RCC). For this reason, a new strategy for Dynamic Resource Management with Adaptive Computational capacity (DRM-AC) using machine learning (ML) techniques is proposed. Three ML algorithms have been tested to select the best predicting approach: support vector machine (SVM), time-delay neural network (TDNN), and long short-term memory (LSTM). DRM-AC reduces the average of unused resources by 96 %, but there is still QoS degradation when RCC is higher than the predicted computational capacity (PCC). For this reason, two new strategies are proposed and tested: DRM-AC with pre-filtering (DRM-AC-PF) and DRM-AC with error shifting (DRM-AC-ES), reducing the average of unsatisfied resources by 99.9 % and 98 % compared to the DRM-AC, respectively

    Future Green Mobile Communication Technology Facing the “Double Carbon” Goal

    Get PDF
    The goal of “double carbon” (namely “peak carbon dioxide emissions” and “carbon neutrality”) proposed by China for the first time is an important layout in the Tenth Five-Year Plan, and it is also the key goal to realize the green and sustainable development of mobile communication networks in the future, and it is also the foundation for China’s international carbon asset pricing right and the world carbon trading platform. Among them, the difficulty in realizing green communication lies in maintaining the growth of business volume. Reduce network energy consumption and carbon emissions. This paper studies the green communication technology from the perspective of energy saving and emission reduction on the mobile communication network side and the perspective of the integrated architecture of communication network and multi-energy energy network. The research results show that the key to realize green communication technology lies in the mutual matching of network resources, energy resources and business distribution, while the existing technology can only achieve one-way matching of network resources and business distribution. Or the one-way matching of energy resources and service distribution. Based on this, this paper proposes a native green grid architecture with communication, perception and energy fusion, which has the ability of energy perception and service perception, supports the two-way matching method of network resources, energy resources and service distribution, and realizes the continuous growth of service while significantly reducing the energy consumption and carbon emissions on the mobile communication network side by eliminating the randomness and suddenness of service distribution and energy distribution

    Energy Cost Minimization in Heterogeneous Cellular Networks with Hybrid Energy Supplies

    Get PDF

    Open Cell-less Network Architecture and Radio Resource Management for Future Wireless Communication Systems

    Get PDF
    In recent times, the immense growth of wireless traffic data generated from massive mobile devices, services, and applications results in an ever-increasing demand for huge bandwidth and very low latency, with the future networks going in the direction of achieving extreme system capacity and ultra reliable low latency communication (URLLC). Several consortia comprising major international mobile operators, infrastructure manufacturers, and academic institutions are working to develop and evolve the current generation of wireless communication systems, i.e., fifth generation (5G) towards a sixth generation (6G) to support improved data rates, reliability, and latency. Existing 5G networks are facing the latency challenges in a high-density and high-load scenario for an URLLC network which may coexist with enhanced mobile broadband (eMBB) services. At the same time, the evolution of mobile communications faces the important challenge of increased network power consumption. Thus, energy efficient solutions are expected to be deployed in the network in order to reduce power consumption while fulfilling user demands for various user densities. Moreover, the network architecture should be dynamic according to the new use cases and applications. Also, there are network migration challenges for the multi-architecture coexistence networks. Recently, the open radio access network (O-RAN) alliance was formed to evolve RANs with its core principles being intelligence and openness. It aims to drive the mobile industry towards an ecosystem of innovative, multi-vendor, interoperable, and autonomous RAN, with reduced cost, improved performance and greater agility. However, this is not standardized yet and still lacks interoperability. On the other hand, the cell-less radio access network (RAN) was introduced to boost the system performance required for the new services. However, the concept of cell-less RAN is still under consideration from the deployment point of view with the legacy cellular networks. The virtualization, centralization and cooperative communication which enables the cell-less RAN can further benefit from O-RAN based architecture. This thesis addresses the research challenges facing 5G and beyond networks towards 6G networks in regard to new architectures, spectral efficiency, latency, and energy efficiency. Different system models are stated according to the problem and several solution schemes are proposed and developed to overcome these challenges. This thesis contributes as follows. Firstly, the cell-less technology is proposed to be implemented through an Open RAN architecture, which could be supervised with the near real-time RAN intelligent controller (near-RT-RIC). The cooperation is enabled for intelligent and smart resource allocation for the entire RAN. Secondly, an efficient radio resource optimization mechanism is proposed for the cell-less architecture to improve the system capacity of the future 6G networks. Thirdly, an optimized and novel resource scheduling scheme is presented that reduces latency for the URLLC users in an efficient resource utilization manner to support scenarios with high user density. At the same time, this radio resource management (RRM) scheme, while minimizing the latency, also overcomes another important challenge of eMBB users, namely the throughput of those who coexist in such a highly loaded scenario with URLLC users. Fourthly, a novel energy-efficiency enhancement scheme, i.e., (3 × E) is designed to increase the transmission rate per energy unit, with stable performance within the cell-less RAN architecture. Our proposed (3 × E) scheme activates two-step sleep modes (i.e., certain phase and conditional phase) through the intelligent interference management for temporarily switching access points (APs) to sleep, optimizing the network energy efficiency (EE) in highly loaded scenarios, as well as in scenarios with lower load. Finally, a multi-architecture coexistence (MACO) network model is proposed to enable inter-connection of different architectures through coexistence and cooperation logical switches in order to enable smooth deployment of a cell-less architecture within the legacy networks. The research presented in this thesis therefore contributes new knowledge in the cellless RAN architecture domain of the future generation wireless networks and makes important contributions to this field by investigating different system models and proposing solutions to significant issues.Programa de Doctorado en Multimedia y Comunicaciones por la Universidad Carlos III de Madrid y la Universidad Rey Juan CarlosPresidenta: Matilde Pilar Sánchez Fernández.- Secretario: Alberto Álvarez Polegre.- Vocal: José Francisco Monserrat del Rí

    Analysis, characterization and optimization of the energy efficiency on softwarized mobile platforms

    Get PDF
    Mención Internacional en el título de doctorLa inminente 5ª generación de sistemas móviles (5G) está a punto de revolucionar la industria, trayendo una nueva arquitectura orientada a los nuevos mercados verticales y servicios. Debido a esto, el 5G Infrastructure Public Private Partnership (5G-PPP) ha especificado una lista de Indicadores de Rendimiento Clave (KPI) que todo sistema 5G tiene que soportar, por ejemplo incrementar por 1000 el volumen de datos, de 10 a 100 veces m´as dispositivos conectados o consumos energéticos 10 veces inferiores. Con el fin de conseguir estos requisitos, se espera expandir los despligues actuales usando mas Puntos de Acceso (PoA) incrementando así su densidad con múltiples tecnologías inalámbricas. Esta estrategia de despliegue masivo tiene una contrapartida en la eficiencia energética, generando un conflicto con el KPI de reducir por 10 el consumo energético. En este contexto, la comunidad investigadora ha propuesto nuevos paradigmas para alcanzar los requisitos impuestos para los sistemas 5G, siendo materializados en tecnologías como Redes Definidas por Software (SDN) y Virtualización de Funciones de Red (NFV). Estos nuevos paradigmas son el primer paso hacia la softwarización de los despliegues móviles, incorporando nuevos grados de flexibilidad y reconfigurabilidad de la Red de Acceso Radio (RAN). En esta tesis, presentamos primero un análisis detallado y caracterización de las redes móviles softwarizadas. Consideramos el software como la base de la nueva generación de redes celulares y, por lo tanto, analizaremos y caracterizaremos el impacto en la eficiencia energética de estos sistemas. La primera meta de este trabajo es caracterizar las plataformas software disponibles para Radios Definidas por Software (SDR), centrándonos en las dos soluciones principales de código abierto: OpenAirInterface (OAI) y srsLTE. Como resultado, proveemos una metodología para analizar y caracterizar el rendimiento de estas soluciones en función del uso de la CPU, rendimiento de red, compatibilidad y extensibilidad de dicho software. Una vez hemos entendido qué rendimiento podemos esperar de este tipo de soluciones, estudiamos un prototipo SDR construido con aceleración hardware, que emplea una plataformas basada en FPGA. Este prototipo está diseñado para incluir capacidad de ser consciente de la energía, permiento al sistema ser reconfigurado para minimizar la huella energética cuando sea posible. Con el fin de validar el diseño de nuestro sistema, más tarde presentamos una plataforma para caracterizar la energía que será empleada para medir experimentalmente el consumo energético de dispositivos reales. En nuestro enfoque, realizamos dos tipos de análisis: a pequeña escala de tiempo y a gran escala de tiempo. Por lo tanto, para validar nuestro entorno de medidas, caracterizamos a través de análisis numérico los algoritmos para la Adaptación de la Tasa (RA) en IEEE 802.11, para entonces comparar nuestros resultados teóricos con los experimentales. A continuación extendemos nuestro análisis a la plataforma SDR acelerada por hardware previamente mencionada. Nuestros resultados experimentales muestran que nuestra sistema puede en efecto reducir la huella energética reconfigurando el despligue del sistema. Entonces, la escala de tiempos es elevada y presentamos los esquemas para Recursos bajo Demanda (RoD) en despliegues de red ultra-densos. Esta estrategia está basada en apagar/encender dinámicamente los elementos que forman la red con el fin de reducir el total del consumo energético. Por lo tanto, presentamos un modelo analítico en dos sabores, un modelo exacto que predice el comportamiento del sistema con precisión pero con un alto coste computacional y uno simplificado que es más ligero en complejidad mientras que mantiene la precisión. Nuestros resultados muestran que estos esquemas pueden efectivamente mejorar la eficiencia energética de los despliegues y mantener la Calidad de Servicio (QoS). Con el fin de probar la plausibilidad de los esquemas RoD, presentamos un plataforma softwarizada que sigue el paradigma SDN, OFTEN (OpenFlow framework for Traffic Engineering in mobile Network with energy awareness). Nuestro diseño está basado en OpenFlow con funcionalidades para hacerlo consciente de la energía. Finalmente, un prototipo real con esta plataforma es presentando, probando así la plausibilidad de los RoD en despligues reales.The upcoming 5th Generation of mobile systems (5G) is about to revolutionize the industry, bringing a new architecture oriented to new vertical markets and services. Due to this, the 5G-PPP has specified a list of Key Performance Indicator (KPI) that 5G systems need to support e.g. increasing the 1000 times higher data volume, 10 to 100 times more connected devices or 10 times lower power consumption. In order to achieve these requirements, it is expected to expand the current deployments using more Points of Attachment (PoA) by increasing their density and by using multiple wireless technologies. This massive deployment strategy triggers a side effect in the energy efficiency though, generating a conflict with the “10 times lower power consumption” KPI. In this context, the research community has proposed novel paradigms to achieve the imposed requirements for 5G systems, being materialized in technologies such as Software Defined Networking (SDN) and Network Function Virtualization (NFV). These new paradigms are the first step to softwarize the mobile network deployments, enabling new degrees of flexibility and reconfigurability of the Radio Access Network (RAN). In this thesis, we first present a detailed analysis and characterization of softwarized mobile networking. We consider software as a basis for the next generation of cellular networks and hence, we analyze and characterize the impact on the energy efficiency of these systems. The first goal of this work is to characterize the available software platforms for Software Defined Radio (SDR), focusing on the two main open source solutions: OAI and srsLTE. As result, we provide a methodology to analyze and characterize the performance of these solutions in terms of CPU usage, network performance, compatibility and extensibility of the software. Once we have understood the expected performance for such platformsc, we study an SDR prototype built with hardware acceleration, that employs a FPGA based platform. This prototype is designed to include energy-awareness capabilites, allowing the system to be reconfigured to minimize the energy footprint when possible. In order to validate our system design, we later present an energy characterization platform that we will employ to experimentally measure the energy consumption of real devices. In our approach, we perform two kind of analysis: at short time scale and large time scale. Thus, to validate our approach in short time scale and the energy framework, we have characterized though numerical analysis the Rate Adaptation (RA) algorithms in IEEE 802.11, and then compare our theoretical results to the obtained ones through experimentation. Next we extend our analysis to the hardware accelerated SDR prototype previously mentioned. Our experimental results show that our system can indeed reduce the energy footprint reconfiguring the system deployment. Then, the time scale of our analysis is elevated and we present Resource-on-Demand (RoD) schemes for ultradense network deployments. This strategy is based on dynamically switch on/off the elements that form the network to reduce the overall energy consumption. Hence, we present a analytic model in two flavors, an exact model that accurately predicts the system behaviour but high computational cost and a simplified one that is lighter in complexity while keeping the accuracy. Our results show that these schemes can effectively enhance the energy efficiency of the deployments and mantaining the Quality of Service (QoS). In order to prove the feasibility of RoD, we present a softwarized platform that follows the SDN paradigm, the OFTEN (Open Flow framework for Traffic Engineering in mobile Networks with energy awareness) framework. Our design is based on OpenFlow with energy-awareness functionalities. Finally, a real prototype of this framework is presented, proving the feasibility of the RoD in real deployments.FP7-CROWD (2013-2015) CROWD (Connectivity management for eneRgy Optimised Wireless Dense networks).-- H2020-Flex5GWare (2015-2017) Flex5GWare (Flexible and efficient hardware/software platforms for 5G network elements and devices).Programa de Doctorado en Ingeniería Telemática por la Universidad Carlos III de MadridPresidente: Gramaglia , Marco.- Secretario: José Nuñez.- Vocal: Fabrizio Giulian

    Optimization of 5G Second Phase Heterogeneous Radio Access Networks with Small Cells

    Get PDF
    Due to the exponential increase in high data-demanding applications and their services per coverage area, it is becoming challenging for the existing cellular network to handle the massive sum of users with their demands. It is conceded to network operators that the current wireless network may not be capable to shelter future traffic demands. To overcome the challenges the operators are taking interest in efficiently deploying the heterogeneous network. Currently, 5G is in the commercialization phase. Network evolution with addition of small cells will develop the existing wireless network with its enriched capabilities and innovative features. Presently, the 5G global standardization has introduced the 5G New Radio (NR) under the 3rd Generation Partnership Project (3GPP). It can support a wide range of frequency bands (<6 GHz to 100 GHz). For different trends and verticals, 5G NR encounters, functional splitting and its cost evaluation are well-thought-out. The aspects of network slicing to the assessment of the business opportunities and allied standardization endeavours are illustrated. The study explores the carrier aggregation (Pico cellular) technique for 4G to bring high spectral efficiency with the support of small cell massification while benefiting from statistical multiplexing gain. One has been able to obtain values for the goodput considering CA in LTE-Sim (4G), of 40 Mbps for a cell radius of 500 m and of 29 Mbps for a cell radius of 50 m, which is 3 times higher than without CA scenario (2.6 GHz plus 3.5 GHz frequency bands). Heterogeneous networks have been under investigation for many years. Heterogeneous network can improve users service quality and resource utilization compared to homogeneous networks. Quality of service can be enhanced by putting the small cells (Femtocells or Picocells) inside the Microcells or Macrocells coverage area. Deploying indoor Femtocells for 5G inside the Macro cellular network can reduce the network cost. Some service providers have started their solutions for indoor users but there are still many challenges to be addressed. The 5G air-simulator is updated to deploy indoor Femto-cell with proposed assumptions with uniform distribution. For all the possible combinations of apartments side length and transmitter power, the maximum number of supported numbers surpassed the number of users by more than two times compared to papers mentioned in the literature. Within outdoor environments, this study also proposed small cells optimization by putting the Pico cells within a Macro cell to obtain low latency and high data rate with the statistical multiplexing gain of the associated users. Results are presented 5G NR functional split six and split seven, for three frequency bands (2.6 GHz, 3.5GHz and 5.62 GHz). Based on the analysis for shorter radius values, the best is to select the 2.6 GHz to achieve lower PLR and to support a higher number of users, with better goodput, and higher profit (for cell radius u to 400 m). In 4G, with CA, from the analysis of the economic trade-off with Picocell, the Enhanced multi-band scheduler EMBS provide higher revenue, compared to those without CA. It is clearly shown that the profit of CA is more than 4 times than in the without CA scenario. This means that the slight increase in the cost of CA gives back more than 4-time profit relatively to the ”without” CA scenario.Devido ao aumento exponencial de aplicações/serviços de elevado débito por unidade de área, torna-se bastante exigente, para a rede celular existente, lidar com a enormes quantidades de utilizadores e seus requisitos. É reconhecido que as redes móveis e sem fios atuais podem não conseguir suportar a procura de tráfego junto dos operadores. Para responder a estes desafios, os operadores estão-se a interessar pelo desenvolvimento de redes heterogéneas eficientes. Atualmente, a 5G está na fase de comercialização. A evolução destas redes concretizar-se-á com a introdução de pequenas células com aptidões melhoradas e características inovadoras. No presente, os organismos de normalização da 5G globais introduziram os Novos Rádios (NR) 5G no contexto do 3rd Generation Partnership Project (3GPP). A 5G pode suportar uma gama alargada de bandas de frequência (<6 a 100 GHz). Abordam-se as divisões funcionais e avaliam-se os seus custos para as diferentes tendências e verticais dos NR 5G. Ilustram-se desde os aspetos de particionamento funcional da rede à avaliação das oportunidades de negócio, aliadas aos esforços de normalização. Exploram-se as técnicas de agregação de espetro (do inglês, CA) para pico células, em 4G, a disponibilização de eficiência espetral, com o suporte da massificação de pequenas células, e o ganho de multiplexagem estatística associado. Obtiveram-se valores do débito binário útil, considerando CA no LTE-Sim (4G), de 40 e 29 Mb/s para células de raios 500 e 50 m, respetivamente, três vezes superiores em relação ao caso sem CA (bandas de 2.6 mais 3.5 GHz). Nas redes heterogéneas, alvo de investigação há vários anos, a qualidade de serviço e a utilização de recursos podem ser melhoradas colocando pequenas células (femto- ou pico-células) dentro da área de cobertura de micro- ou macro-células). O desenvolvimento de pequenas células 5G dentro da rede com macro-células pode reduzir os custos da rede. Alguns prestadores de serviços iniciaram as suas soluções para ambientes de interior, mas ainda existem muitos desafios a ser ultrapassados. Atualizou-se o 5G air simulator para representar a implantação de femto-células de interior com os pressupostos propostos e distribuição espacial uniforme. Para todas as combinações possíveis do comprimento lado do apartamento, o número máximo de utilizadores suportado ultrapassou o número de utilizadores suportado (na literatura) em mais de duas vezes. Em ambientes de exterior, propuseram-se pico-células no interior de macro-células, de forma a obter atraso extremo-a-extremo reduzido e taxa de transmissão dados elevada, resultante do ganho de multiplexagem estatística associado. Apresentam-se resultados para as divisões funcionais seis e sete dos NR 5G, para 2.6 GHz, 3.5GHz e 5.62 GHz. Para raios das células curtos, a melhor solução será selecionar a banda dos 2.6 GHz para alcançar PLR (do inglês, PLR) reduzido e suportar um maior número de utilizadores, com débito binário útil e lucro mais elevados (para raios das células até 400 m). Em 4G, com CA, da análise do equilíbrio custos-proveitos com pico-células, o escalonamento multi-banda EMBS (do inglês, Enhanced Multi-band Scheduler) disponibiliza proveitos superiores em comparação com o caso sem CA. Mostra-se claramente que lucro com CA é mais de quatro vezes superior do que no cenário sem CA, o que significa que um aumento ligeiro no custo com CA resulta num aumento de 4-vezes no lucro relativamente ao cenário sem CA

    Improved planning and resource management in next generation green mobile communication networks

    Get PDF
    In upcoming years, mobile communication networks will experience a disruptive reinventing process through the deployment of post 5th Generation (5G) mobile networks. Profound impacts are expected on network planning processes, maintenance and operations, on mobile services, subscribers with major changes in their data consumption and generation behaviours, as well as on devices itself, with a myriad of different equipment communicating over such networks. Post 5G will be characterized by a profound transformation of several aspects: processes, technology, economic, social, but also environmental aspects, with energy efficiency and carbon neutrality playing an important role. It will represent a network of networks: where different types of access networks will coexist, an increasing diversity of devices of different nature, massive cloud computing utilization and subscribers with unprecedented data-consuming behaviours. All at greater throughput and quality of service, as unseen in previous generations. The present research work uses 5G new radio (NR) latest release as baseline for developing the research activities, with future networks post 5G NR in focus. Two approaches were followed: i) method re-engineering, to propose new mechanisms and overcome existing or predictably existing limitations and ii) concept design and innovation, to propose and present innovative methods or mechanisms to enhance and improve the design, planning, operation, maintenance and optimization of 5G networks. Four main research areas were addressed, focusing on optimization and enhancement of 5G NR future networks, the usage of edge virtualized functions, subscriber’s behavior towards the generation of data and a carbon sequestering model aiming to achieve carbon neutrality. Several contributions have been made and demonstrated, either through models of methodologies that will, on each of the research areas, provide significant improvements and enhancements from the planning phase to the operational phase, always focusing on optimizing resource management. All the contributions are retro compatible with 5G NR and can also be applied to what starts being foreseen as future mobile networks. From the subscriber’s perspective and the ultimate goal of providing the best quality of experience possible, still considering the mobile network operator’s (MNO) perspective, the different proposed or developed approaches resulted in optimization methods for the numerous problems identified throughout the work. Overall, all of such contributed individually but aggregately as a whole to improve and enhance globally future mobile networks. Therefore, an answer to the main question was provided: how to further optimize a next-generation network - developed with optimization in mind - making it even more efficient while, simultaneously, becoming neutral concerning carbon emissions. The developed model for MNOs which aimed to achieve carbon neutrality through CO2 sequestration together with the subscriber’s behaviour model - topics still not deeply focused nowadays – are two of the main contributions of this thesis and of utmost importance for post-5G networks.Nos próximos anos espera-se que as redes de comunicações móveis se reinventem para lá da 5ª Geração (5G), com impactos profundos ao nível da forma como são planeadas, mantidas e operacionalizadas, ao nível do comportamento dos subscritores de serviços móveis, e através de uma miríade de dispositivos a comunicar através das mesmas. Estas redes serão profundamente transformadoras em termos tecnológicos, económicos, sociais, mas também ambientais, sendo a eficiência energética e a neutralidade carbónica aspetos que sofrem uma profunda melhoria. Paradoxalmente, numa rede em que coexistirão diferentes tipos de redes de acesso, mais dispositivos, utilização massiva de sistema de computação em nuvem, e subscritores com comportamentos de consumo de serviços inéditos nas gerações anteriores. O trabalho desenvolvido utiliza como base a release mais recente das redes 5G NR (New Radio), sendo o principal focus as redes pós-5G. Foi adotada uma abordagem de "reengenharia de métodos” (com o objetivo de propor mecanismos para resolver limitações existentes ou previsíveis) e de “inovação e design de conceitos”, em que são apresentadas técnicas e metodologias inovadoras, com o principal objetivo de contribuir para um desenho e operação otimizadas desta geração de redes celulares. Quatro grandes áreas de investigação foram endereçadas, contribuindo individualmente para um todo: melhorias e otimização generalizada de redes pós-5G, a utilização de virtualização de funções de rede, a análise comportamental dos subscritores no respeitante à geração e consumo de tráfego e finalmente, um modelo de sequestro de carbono com o objetivo de compensar as emissões produzidas por esse tipo de redes que se prevê ser massiva, almejando atingir a neutralidade carbónica. Como resultado deste trabalho, foram feitas e demonstradas várias contribuições, através de modelos ou metodologias, representando em cada área de investigação melhorias e otimizações, que, todas contribuindo para o mesmo objetivo, tiveram em consideração a retro compatibilidade e aplicabilidade ao que se prevê que sejam as futuras redes pós 5G. Focando sempre na perspetiva do subscritor da melhor experiência possível, mas também no lado do operador de serviço móvel – que pretende otimizar as suas redes, reduzir custos e maximizar o nível de qualidade de serviço prestado - as diferentes abordagens que foram desenvolvidas ou propostas, tiveram como resultado a resolução ou otimização dos diferentes problemas identificados, contribuindo de forma agregada para a melhoria do sistema no seu todo, respondendo à questão principal de como otimizar ainda mais uma rede desenvolvida para ser extremamente eficiente, tornando-a, simultaneamente, neutra em termos de emissões de carbono. Das principais contribuições deste trabalho relevam-se precisamente o modelo de compensação das emissões de CO2, com vista à neutralidade carbónica e um modelo de análise comportamental dos subscritores, dois temas ainda pouco explorados e extremamente importantes em contexto de redes futuras pós-5G

    Learning Augmented Optimization for Network Softwarization in 5G

    Get PDF
    The rapid uptake of mobile devices and applications are posing unprecedented traffic burdens on the existing networking infrastructures. In order to maximize both user experience and investment return, the networking and communications systems are evolving to the next gen- eration – 5G, which is expected to support more flexibility, agility, and intelligence towards provisioned services and infrastructure management. Fulfilling these tasks is challenging, as nowadays networks are increasingly heterogeneous, dynamic and expanded with large sizes. Network softwarization is one of the critical enabling technologies to implement these requirements in 5G. In addition to these problems investigated in preliminary researches about this technology, many new emerging application requirements and advanced opti- mization & learning technologies are introducing more challenges & opportunities for its fully application in practical production environment. This motivates this thesis to develop a new learning augmented optimization technology, which merges both the advanced opti- mization and learning techniques to meet the distinct characteristics of the new application environment. To be more specific, the abstracts of the key contents in this thesis are listed as follows: • We first develop a stochastic solution to augment the optimization of the Network Function Virtualization (NFV) services in dynamical networks. In contrast to the dominant NFV solutions applied for the deterministic networking environments, the inherent network dynamics and uncertainties from 5G infrastructure are impeding the rollout of NFV in many emerging networking applications. Therefore, Chapter 3 investigates the issues of network utility degradation when implementing NFV in dynamical networks, and proposes a robust NFV solution with full respect to the underlying stochastic features. By exploiting the hierarchical decision structures in this problem, a distributed computing framework with two-level decomposition is designed to facilitate a distributed implementation of the proposed model in large-scale networks. • Next, Chapter 4 aims to intertwin the traditional optimization and learning technologies. In order to reap the merits of both optimization and learning technologies but avoid their limitations, promissing integrative approaches are investigated to combine the traditional optimization theories with advanced learning methods. Subsequently, an online optimization process is designed to learn the system dynamics for the network slicing problem, another critical challenge for network softwarization. Specifically, we first present a two-stage slicing optimization model with time-averaged constraints and objective to safeguard the network slicing operations in time-varying networks. Directly solving an off-line solution to this problem is intractable since the future system realizations are unknown before decisions. To address this, we combine the historical learning and Lyapunov stability theories, and develop a learning augmented online optimization approach. This facilitates the system to learn a safe slicing solution from both historical records and real-time observations. We prove that the proposed solution is always feasible and nearly optimal, up to a constant additive factor. Finally, simulation experiments are also provided to demonstrate the considerable improvement of the proposals. • The success of traditional solutions to optimizing the stochastic systems often requires solving a base optimization program repeatedly until convergence. For each iteration, the base program exhibits the same model structure, but only differing in their input data. Such properties of the stochastic optimization systems encourage the work of Chapter 5, in which we apply the latest deep learning technologies to abstract the core structures of an optimization model and then use the learned deep learning model to directly generate the solutions to the equivalent optimization model. In this respect, an encoder-decoder based learning model is developed in Chapter 5 to improve the optimization of network slices. In order to facilitate the solving of the constrained combinatorial optimization program in a deep learning manner, we design a problem-specific decoding process by integrating program constraints and problem context information into the training process. The deep learning model, once trained, can be used to directly generate the solution to any specific problem instance. This avoids the extensive computation in traditional approaches, which re-solve the whole combinatorial optimization problem for every instance from the scratch. With the help of the REINFORCE gradient estimator, the obtained deep learning model in the experiments achieves significantly reduced computation time and optimality loss

    Optimizations in Heterogeneous Mobile Networks

    Get PDF
    corecore