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ABSTRACT

Efficient computational resource management in 5G Cloud Radio Access Network (C-
RAN) environments is a challenging problem because it has to account simultaneously
for throughput, latency, power efficiency, and optimization tradeoffs. This work proposes
the use of a modified and improved version of the realistic Vienna Scenario that was
defined in COST action IC1004, to test two different scale C-RAN deployments. First, a
large-scale analysis with 628 Macro-cells (Mcells) and 221 Small-cells (Scells) is used
to test different algorithms oriented to optimize the network deployment by minimizing
delays, balancing the load among the Base Band Unit (BBU) pools, or clustering the
Remote Radio Heads (RRH) efficiently to maximize the multiplexing gain. After planning,
real-time resource allocation strategies with Quality of Service (QoS) constraints should
be optimized as well. To do so, a realistic small-scale scenario for the metropolitan area
is defined by modeling the individual time-variant traffic patterns of 7000 users (UEs)
connected to different services. The distribution of resources among UEs and BBUs is
optimized by algorithms, based on a realistic calculation of the UEs Signal to Interference
and Noise Ratios (SINRs), that account for the required computational capacity per cell,
the QoS constraints and the service priorities.

However, the assumption of a fixed computational capacity at the BBU pools may re-
sult in underutilized or oversubscribed resources, thus affecting the overall QoS. As
resources are virtualized at the BBU pools, they could be dynamically instantiated ac-
cording to the required computational capacity (RCC). For this reason, a new strategy for
Dynamic Resource Management with Adaptive Computational capacity (DRM-AC) using
machine learning (ML) techniques is proposed. Three ML algorithms have been tested
to select the best predicting approach: support vector machine (SVM), time-delay neural
network (TDNN), and long short-term memory (LSTM). DRM-AC reduces the average
of unused resources by 96 %, but there is still QoS degradation when RCC is higher
than the predicted computational capacity (PCC). For this reason, two new strategies
are proposed and tested: DRM-AC with pre-filtering (DRM-AC-PF) and DRM-AC with
error shifting (DRM-AC-ES), reducing the average of unsatisfied resources by 99.9 %
and 98 % compared to the DRM-AC, respectively.





This work was supported in part by the Spanish ministry of science through the project
RTI2018-099880-B-C32, with ERFD funds, and the Grant FPI-UPC provided by the

UPC. It has been done under COST CA15104 IRACON EU project.





CONTENTS

CHAPTER 1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1. C-RAN Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1.1. Advantages of C-RAN . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2. Research objective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3. Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

CHAPTER 2. State of the art . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1. Evolution of RAN architectures . . . . . . . . . . . . . . . . . . . . . . . 7

2.2. Resource management in C-RAN . . . . . . . . . . . . . . . . . . . . . . 10

2.3. Machine Learning in C-RAN . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.4. Challenges and open issues . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.4.1. Huge fronthaul capacities needed . . . . . . . . . . . . . . . . . . 13

2.4.2. RRH clustering (BBU-RRH mapping) . . . . . . . . . . . . . . . . 13

2.4.3. Security and management of network slicing . . . . . . . . . . . . 13

2.4.4. Energy efficiency, power consumption, and cost-saving . . . . . . 14

2.4.5. Resource management . . . . . . . . . . . . . . . . . . . . . . . 14

2.5. Partial conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

CHAPTER 3. Background on ML techniques . . . . . . . . . . . . . 17

3.1. Support Vector Machine . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.2. Time-Delay Neural Network . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.3. Long Short-Term Memory . . . . . . . . . . . . . . . . . . . . . . . . . . 20

CHAPTER 4. Scenario Description . . . . . . . . . . . . . . . . . . . . 23

4.1. Scenario 1: Large-scale C-RAN . . . . . . . . . . . . . . . . . . . . . . . 23

4.2. Scenario 2: Small-scale C-RAN . . . . . . . . . . . . . . . . . . . . . . . 25
4.2.1. Resource Demand Estimation . . . . . . . . . . . . . . . . . . . . 27



CHAPTER 5. Mathematical Model . . . . . . . . . . . . . . . . . . . . 29

5.1. RRH-BBU pools association strategies . . . . . . . . . . . . . . . . . . . 29
5.1.1. Minimum delay (MD) . . . . . . . . . . . . . . . . . . . . . . . . 29

5.1.2. Load balancing (LB) algorithm . . . . . . . . . . . . . . . . . . . 29

5.1.3. Multiplexing gain algorithm . . . . . . . . . . . . . . . . . . . . . 29

5.2. Dynamic resource management design . . . . . . . . . . . . . . . . . . . 30

5.3. DRM with adaptive capacity (DRM-AC) . . . . . . . . . . . . . . . . . . . 31

CHAPTER 6. Performance Evaluation . . . . . . . . . . . . . . . . . . 33

6.1. RRH-BBU pool association analysis . . . . . . . . . . . . . . . . . . . . 33

6.2. DRM performance discussion . . . . . . . . . . . . . . . . . . . . . . . . 35

6.3. DRM-AC performance discussion . . . . . . . . . . . . . . . . . . . . . . 36
6.3.1. Configuration of ML models and data analysis . . . . . . . . . . . 36

6.3.2. Evaluation and results . . . . . . . . . . . . . . . . . . . . . . . . 39

Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

Acronyms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51



LIST OF FIGURES

1.1 General C-RAN architecture. . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Daytime traffic profile depending on base station location . . . . . . . . . . . 3

2.1 RAN architecture evolution . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 Heterogeneous C-RAN architecture . . . . . . . . . . . . . . . . . . . . . . 8
2.3 Hierarchical software-defined RAN architecture . . . . . . . . . . . . . . . . 9
2.4 HVSD-CRAN architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3.1 Basic classification example of SVM. . . . . . . . . . . . . . . . . . . . . . . 18
3.2 General scheme of a time-delay neural network for time series forecasting

with N previous time instants. . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.3 General deep learning architecture with LSTM cells . . . . . . . . . . . . . . 21

4.1 Scenario 1: Vienna city map. . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.2 Realistic traffic profile for office, residential and mixed cells. . . . . . . . . . . 24
4.3 Scenario 2: C-RAN deployment over Vienna city downtown. . . . . . . . . . 25

5.1 Block diagrams of the dynamic resource management strategies . . . . . . . 32

6.1 Evaluation of the fronthaul connections. . . . . . . . . . . . . . . . . . . . . 34
6.2 Performance evaluation of the DRM . . . . . . . . . . . . . . . . . . . . . . 35
6.3 Instantaneous evolution of the RCC at BBU pool 1. . . . . . . . . . . . . . . 37
6.4 Partial autocorrelation function of the database concerning 500 previous time-

steps. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
6.5 Gaussian SVM and TDNN performance in terms of the number of previous

steps. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
6.6 Performance (RMSE) on the testing data of the deep learning LSTM architec-

tures. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
6.7 Performance of the DRM-AC for each ML technique . . . . . . . . . . . . . . 42
6.8 Evolution of the computational capacity at BBU pool 1 . . . . . . . . . . . . . 43
6.9 Error distribution for DRM-AC, DRM-AC-PF and DRM-AC-ES. . . . . . . . . 44





LIST OF TABLES

4.1 Main parameters of the scenario 1 . . . . . . . . . . . . . . . . . . . . . . . 24
4.2 Main parameters of the scenario 2. . . . . . . . . . . . . . . . . . . . . . . . 26
4.3 Service parameters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
4.4 Mapping between SINR and MCS. . . . . . . . . . . . . . . . . . . . . . . . 27
4.5 Scaling factors of the reference scenario . . . . . . . . . . . . . . . . . . . . 28

6.1 Resume table for Scenario 1 . . . . . . . . . . . . . . . . . . . . . . . . . . 35
6.2 Tested deep learning LSTM architectures . . . . . . . . . . . . . . . . . . . 40
6.3 Summary of the proposed ML techniques. . . . . . . . . . . . . . . . . . . . 41
6.4 Performance summary in terms of the MUR+ and MUR−. . . . . . . . . . . . 44





CHAPTER 1. INTRODUCTION

1.1. C-RAN Overview

The current paradigm on mobile communication uses base stations as responsible for
carrying out the Radio-Frequency (RF) functionalities and the baseband processing re-
quired to organize and schedule the transmission between the User Equipments (UEs)
and the Core Network. The fundamental strategy to increase the capacity under this
paradigm is becoming the network denser by introducing Small Cells (SCells), but this
approach increases the inter-cell interference and cost. On the other side, the mas-
sive growth of mobile data traffic and the creation of new technologies as Internet of
Things (IoT), Augmented Reality (AR), and autonomous vehicles have purchased mo-
bile network operator and the research community to design new Radio Access Net-
work (RAN) architectures for fifth-Generation (5G) systems.

Cloud Radio Access Network (C-RAN) is seen as a key technology to enable 5G sys-
tems, defined by [1]. C-RAN has been an interesting research field for many authors
in recent years. The RF and baseband functionalities are separated; depending on the
type of functional split option, a portion or all the baseband functionalities are central-
ized and shared among sites in the virtualized Baseband Unit (BBU) pools. The RF
and the portion of baseband functions that are not centralized remain in the Remote
Radio Head (RRH) device. Fig. 1.1 shows a general C-RAN architecture. Due to the
separation between BBUs and RRHs, a fronthaul link is needed to communicate those
entities.

RRHs transmit the In-phase and Quadrature (IQ) signals from UEs through the fron-
thaul link using synchronous protocol Common Public Radio Interface (CPRI). However,
a comparison among CPRI, Analogue Radio-over-Fiber (ARoF), and Physical Layer
Split (PLS) optical fronthaul networks has been addressed in [2], concluding that cost-
effective solutions for 5G scenarios could be achieved by means of PLS and ARoF ar-
chitectures.

As BBU pools centralize and virtualize the resources to handle dynamically many RRHs,
data traffic from different types of cells to the backhaul link is aggregated, favoring the
apparition of multiplexing gain if the traffic peaks of the cells are not overlapped in time.
Moreover, some of the most promising techniques of Long Term Evolution (LTE) Ad-
vanced as Coordinated Multipoint (CoMP), enhanced Inter-Cell Interference Coordina-
tion (eICIC), and beamforming could be easily implemented thanks to C-RAN structure,
contributing considerably to improve 5G network performance.
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Figure 1.1 General C-RAN architecture.

1.1.1. Advantages of C-RAN

1.1.1.1. Adaptability to non-uniform traffic and efficient use of resources

Mobile networks face dynamic environments with high user mobility and fluctuating data
traffic profiles. Fig. 1.2 shows an example of the traffic profile behavior of mobile net-
works along a day. The traffic profile presents high variations on a daily and weekly
basis. The busy hours (peak of traffic) of each cell depends on the zone where the base
station is allocated (office, residential, and mixed). Often, the demand in office cells be-
gins to increase at 10:00 am, remaining at a high level until 6:00 pm when people move
home, resulting in a drastic decrease in demand.

On the contrary, traffic becomes the highest in the evening at residential sites. This be-
havior is called: tidal effect. In the current paradigm of mobile communications (second-
Generation (2G), third-Generation (3G), and fourth-Generation (4G)), each Base Sta-
tion (BS) must have the processing capacity to satisfy the maximum demand of the
cell, which results in inefficient resource utilization. However, as C-RAN centralizes the
baseband processing capabilities in BBU pools, it adapts to non-uniform traffic profiles
addressing the tidal effect with more efficient use of resources. This strategy produces
a multiplexing gain because peaks of the traffic at different cells are not overlapped in
time.
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Fig. 2: Statistical multiplexing gain in C-RAN architecture for mobile networks.
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Fig. 1: Daily Load on base stations varies depending on base
station location [3].

We study the statistical multiplexing gain in C-RAN com-
paring resources needed in a traditional RAN to resources
needed in a C-RAN. As the amount of baseband resources
is proportional to the traffic they need to process, we compare
the sum of the traffic peaks in a traditional RAN to peak
throughput in a BBU Pool in a C-RAN, as shown in Equation
(1) for N base stations. We have varied the percentage of
office base stations and observed for which mix of office
and residential base stations the statistical multiplexing gain
is maximal.

MultiplexingGain =

N∑

n=i

PeakThroughputRAN (n)

PeakThroughputC−RAN
(1)

We performed the analysis for cells with a daily load dis-
tribution as presented in Figure 1 using analytical calculations
and network simulations.

A. Analytical approach

It is assumed that one RRH is able to cover one cell and that
a BBU is on average capable of handling traffic load equivalent
to a 70% loaded cell. This means, if an area is covered by seven

0

50

100

150

200

250

0 6 12 18 24

N
um

be
r o

f a
llo

ca
te

d 
BB

U
's 

Time (h) 

Traditional RAN

BBU Pool - Office

BBU Pool - Residential

BBU Pool (100 office cells + 100 Residential cells)

Fig. 3: Number of BBUs allocated during a day, for 100 office
and 100 residential cells in C-RAN compared to a traditional
RAN.

RRHs and each RRH/cell has a 10% traffic load, one BBU is
enough to handle all seven RRHs. It is also assumed that in
a traditional RAN setup all BBUs have the same capacity,
therefore seven RRHs would require seven BBUs.

Figure 3 shows that when using BBU Pooling the number
of needed BBUs is lowered. In the scenario for C-RAN, when
it is assumed that 100 of the cells are covering a residential
area and 100 of the cells are covering an office area, only
71 BBUs are needed. By using a BBU Pool compared to a
traditional RAN setup, it is possible to save up to 129 BBUs,
as a traditional RAN setup would require 200 BBUs.

But how many BBUs should be allocated, if there are
30% office cells and 70% residential cells? Figure 4 shows
the optimal balance between office cells and residential cells.
This is done by taking the required number of allocated BBUs
for varying percentage of office cells connected to BBU Pool
where the remaining percent is representing residential cells.

Figure 4 shows that the most optimal distribution is 21%

Figure 1.2 Daytime traffic profile depending on base station location [1,3]

1.1.1.2. Energy and cost saving

Other improvements oriented to increase mobile network capacity have been introduced,
such as Multiple-Input Multiple-Output (MIMO) and beamforming. The most successful
strategy has been the deployment of SCells or Pico Cell (PCell). However, the enormous
growth in mobile data traffic produced by the apparition of new technologies like IoT,
autonomous vehicles, or augmented reality causes that the deployment of BSs with all
the functionalities becomes no suitable due to the associated high cost and reduced
energy efficiency. On the contrary, cost and power consumption experiment a significant
reduction by centralizing the BSs in a C-RAN strategy.

1.1.1.3. Performance, scalability and network maintenance

The centralized architecture of C-RAN contributes to increasing the performance of the
mobile networks, the scalability allowing cell densification using low cost RRHs, and the
agility of network maintenance. Some of the most promising techniques of LTE networks
as eICIC, Joint Transmission (JT), and beamforming can be easy implemented and up-
graded. The network maintenance is also improved because most of the resources are
centralized at the BBU pools, and the RRHs remain as simple as possible, depending
on the function splitting option.

With Wireless Network Virtualization (WNV), multiple Mobile Network Operator (MNO)
can efficiently share various network resources through different network slices; hence,
the Capital Expenditures (CAPEX) and Operating Expenditures (OPEX) can be reduced
significantly [4]. Enormous technical challenges have to be addressed, such as manage-
ment of infrastructure resources for different MNO to optimize desired design objectives
while guaranteeing a high level of isolation in C-RAN.
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1.2. Research objective

As it has been mentioned above, the BBU pools concentrate and virtualize the resources
to dynamically handle multiple RRHs, aggregating data traffic from different types of cells
to the backhaul link and favoring the increase of the multiplexing gain.

As a consequence of centralization in C-RAN, the management of the computational
resources at BBU pools to satisfy the traffic demand of the RRHs becomes a challenge.
Previous works on BBU pool resource allocation has relied on the definition of opti-
mization problems such as mixed-integer linear programming (MILP) or multi-objective
optimization. These strategies allocate the resources assuming that the instantiated
computational capacity at BBU pools is fixed and equal to the maximum BBU pool ca-
pacity. Under this assumption, the computational resources could be over-provisioned
or under-provisioned, causing inefficient resource utilization or Quality of Service (QoS)
degradation, respectively.

This issue could be addressed, combining the flexibility of virtualization and the availabil-
ity of machine learning techniques to predict computational demands. As the resources
are virtualized, they could be instantiated dynamically according to an anticipated com-
putational capacity demand. For this reason, this work proposes the integration of
Dynamic Resource Management (DRM) with a prediction of the required computational
capacity based on machine learning (ML) techniques. It allows defining a DRM with
adaptive capacity (DRM-AC), to avoid under-utilization of the computational resources,
and to maintain QoS. Performance is evaluated on a realistic C-RAN platform over the
Vienna city, which takes into account the non-uniformity of wireless network environ-
ments.

1.3. Publications

The evolution of this research work has been periodically published. This section sum-
marizes the presented papers on conferences and journals.

1. Rolando Guerra-Gómez, Silvia Ruiz, M. Garcı́a-Lozano, and Joan Olmos, “Using
COST IC1004 Vienna scenario to test C-RAN optimization algorithms,” in COST
IRACON, Dublin, Ireland, Jan. 2019. Status: Presented [5].

2. Rolando Guerra-Gómez, Silvia Ruiz, M. Garcı́a-Lozano, and Joan Olmos, “A weighted-
sum multi-objective optimization for dynamic resource allocation with QoS con-
straints in realistic C-RAN,” in COST IRACON, Oulu, Finland, May 2019. Status:
Presented [6].

3. Rolando Guerra-Gómez, Silvia Ruiz, M. Garcı́a-Lozano, and Joan Olmos, “Pre-
dicting Required Computational Capacity in C-RAN networks by the use of differ-
ent Machine Learning strategies,” in COST IRACON, Gdańsk, Poland, September
2019. Status: Presented [7].



CHAPTER 1. INTRODUCTION 5

4. Rolando Guerra-Gómez, Silvia Ruiz, M. Garcı́a-Lozano, and Joan Olmos, “Dy-
namic Resource Allocation in C-RAN with Real-Time Traffic and Realistic Scenar-
ios,” in 2019 15th International Conference on Wireless and Mobile Computing,
Networking and Communications (WiMob). Status: Presented and published
in IEEE proceeding [8].

5. Rolando Guerra-Gómez, Silvia Ruiz, M. Garcı́a-Lozano, and Joan Olmos, “Ma-
chine Learning Adaptive Computational Capacity Prediction for Dynamic Resource
Management in C-RAN,” IEEE Access. Status: Under Review.

6. Rolando Guerra-Gómez, Silvia Ruiz, M. Garcı́a-Lozano, and Joan Olmos, “Machine-
Learning based Traffic Forecasting for Resource Management in C-RAN,” in 2020
29th European Conference on Network and Communications (EuCNC). Status:
Under Review [8].

The remainder of the document is organized as follows. Chapter 2 describes the state-
of-the-art, it emphasizes on the evolution of the C-RAN architectures and the resource
management strategies. Chapter 3 presents a theoretical background of the considered
machine learning techniques. On the other side, Chapter 4 details the characteristics of
the realistic scenarios of Vienna City. Chapter 5 contains the mathematical model of the
proposed algorithms. Finally, chapter 6 discusses and compares the results.





CHAPTER 2. STATE OF THE ART

2.1. Evolution of RAN architectures

The C-RAN architecture evolution through the last years has been widely described
in [9]; a brief graph representation of this evolution is shown in Fig. 2.1.

2011 2013 2014 2015 2016 2017 2018

C-RAN Soft-RAN

Open-RAN

SoftAirH-CRAN

Hierarchical H-CRAN

SDHC-RAN HSDRAN HVSD-CRAN

SDVRAN + Fog computing

Figure 2.1 RAN architecture evolution

As stated above, the concept of C-RAN is first proposed in 2011 [1]. In 2013, Software-
Defined for Radio Access Networks (Soft-RAN) and Open-RAN structures were pro-
posed in [10] and [11], respectively. Soft-RAN is a flexible programmable architecture
in which the control plane and data plane are decoupled. This structure enables a cen-
tralized management layer in a software-defined network controller entity to efficiently
manage the resources. Open-RAN is an extension of the Soft-RAN, where Network
Function Virtualization (NFV) is considered in the cloud infrastructure.

In 2014, the Heterogeneous Cloud Radio Access Network (H-CRAN) was defined by [12]
as an alternative to overcome the fronthaul capacity limitations of C-RAN. The proposed
architecture consists of an Macro Base Station (MBS) and a set of RRHs inside its cov-
erage area. MBS is connected to the BBU pool using a backhaul link while the RRHs
use the fronthaul links as Fig. 2.2 shows. The functions of the control plane are only im-
plemented in the MBS while RRHs manage the data traffic. Consequently, H-CRAN split
the control plane from the data plane to reduce the overhead through the fronthaul link,
enhancing the C-RAN capabilities. In 2015, another approach to overcome the fronthaul
capacity limitation (function splitting) was defined, which is splitting the baseband pro-
cessing tasks between RRHs and BBU pools. This method can overcome the additional
transmission delay of the fronthaul link, especially where the distance between RRH and
cloud center is significant. However, the disadvantage of this solution is financial cost
increment since each RRH should have baseband processing capabilities, also called
Remote Radio System (RRS).

Two different architectures were proposed in 2015. Firstly, a Hierarchical H-CRAN struc-
ture was proposed in [14]. This strategy combines both approaches to overcome the
fronthaul capacity limitation: H-CRAN and function splitting. There is a control MBS,
and the RRHs have function splitting capability, being able to process part of the re-
quired baseband functionalities. Although the fronthaul limitation is addressed, the over-

7
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M. Peng et al.: Inter-Tier Interference Suppression in H-CRANs

TABLE 1. Summary of abbreviations.

FIGURE 1. System model of an H-CRAN with one MBS and M RRHs.

processing in the physical layer and the CRRA in the upper
layer are introduced in Section VI. Section VII summarizes
this paper. For convenience, the abbreviations used in this
paper are listed in Table 1.

II. H-CRAN SYSTEM MODEL
Unlike in C-RANs, the MBS in H-CRANs delivers the con-
trol signaling for the whole network, which decouples the
user plane and control plane. Furthermore, to alleviate the
heavy burdens on the fronthaul, some UEs with high mobility
or with real-time traffic are given high priority to access the
MBS. As a result, we can limit our attention to one MBS
in the H-CRAN, under which multiple distributed RRHs
are underlaid within the same coverage of the MBS. Thus,
as illustrated in Fig. 1, the H-CRAN of interest consists of
one MBS andM RRHs. For any typical radio resource block,
K single-antenna MUEs are served by the MBS, while only

one single-antenna RUE is associated with each RRH.
To serve multiple MUEs simultaneously and suppress the
inter-tier interference at RUEs in the downlink, the MBS is
equipped with NB antennas (NB ≥ M +K ), while each RRH
is equipped with a single antenna.

The transmit power per antenna in the MBS and RRHs
is assumed to be PM and PR, respectively. The transmission
symbols for the j-th MUE and the RUE associated with the
i-th RRH are sMj and si, respectively, which are normalized

as E[
∥∥sMj

∥∥2] = E[‖si‖2] = 1. The received signal at the
k-th MUE and a typical RUE associated with the i-th RRH
can be written as

yMMk =

K∑
j

√
PMhMMkwjsMj +

M∑
i

√
PRhRiMk si + nMMk ,

yRRi =
√
PRgRRisi +

K∑
j

√
PMgMRiwjsMj + nRRi , (1)

respectively, where hMMk ∈ C1×NB represents the radio link
between the MBS and the k-th MUE, and hRiMk represents
the interference link from the i-th RRH to the k-th MUE.
gMRi ∈ C1×NB represents the interference link between the
MBS and the RUE associated with the i-th RRH, and gRRi
represents the radio link between the i-th RRH and its served
RUE. Note that the inter-RRH interference amongst RRHs
in H-CRANs can be ignored due to the centralized signal
processing in the BBU pool through the ideal fronthaul.
We assume the radio links experience independent Rayleigh
fading, so the components of hMMk and gMRi are indepen-
dent CN (0, 1), hRiMk ∼ CN (0, 1), and gRRi ∼ CN (0, 1).
nMMk and nRRi are independent normalized additive
zero-mean Gaussian noises experienced at the k-th MUE and
the typical i-th RUE, respectively, i.e., nMMk ∼ CN (0, 1),
and nRRi ∼ CN (0, 1). wj ∈ CNB×1 represents the precoding
vector applied at the MBS for the j-th MUE.

According to (1), the received SINR for the k-th MUE and
the typical RUE can be expressed as

γMMk =
PM
∣∣hMMkwk

∣∣2
K∑

j=1,j 6=k
PM
∣∣hMMkwj

∣∣2 + M∑
i=1

PR
∣∣hRiMk

∣∣2 + 1

, (2)

γRRi =
PR
∣∣gRRi ∣∣2

PM
K∑
j

∣∣gMRiwj
∣∣2 + 1

, (3)

respectively. Since the interference is much larger than the
noise in an interference-limited H-CRAN, the noise could be
ignored herein. Thus (2) can be approximated as

γMMk ≈
PM
∣∣hMMkwk

∣∣2
K∑

j=1,j 6=k
PM
∣∣hMMkwj

∣∣2 + M∑
i=1

PR
∣∣hRiMk

∣∣2 . (4)

The intra-tier interference among K MUEs and inter-
tier interference between MUEs and RUEs can be
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Figure 2.2 Heterogeneous C-RAN architecture [13]

all C-RAN advantages cannot be achieved, which is critical in high-density scenarios.
Secondly, SoftAir is another RAN structure that was defined in 2015. The software
approach is used in both RAN and the core network of communication systems. A
fexible and programmable platform for the software-defined RAN (Flex-RAN) is proposed
in [15].

Authors in [16] proposed an Software-defined Hyper-Cellular C-RAN (SDHC-CRAN) in
2016, which is a cloud-based software-defined RAN with physical decoupling and the
ability to turn off a set of RRHs during low traffic hours. The concept of fog in C-RAN
called Fog Radio Access Networks (F-RAN) is proposed in [17]. RRHs are equipped
with caching capability to decrease the latency of popular services.

In 2017, another RAN structure was defined in [18]. Fig. 2.3 shows this Hierarchical
Software-Defined RAN (HSD-RAN) architecture, instead of virtualizing all BSs in a single
centralized controller as in software-defined RAN; multiple clusters are formed concern-
ing the BS geographic locations, with each being assigned a virtual local controller. The
connections between the groups and their associated local controllers are established
via the capacity-limited fronthaul links. A virtual high-level controller is responsible for
coordinating control plane decisions among the local controllers [18]. The management
is split between the local controller and RRHs. This RAN is not suitable for dense re-
gions due to the high financial cost of RRHs with the processing ability [9]. Moreover,
authors in [19] proposed an integrated architecture for Software-Defined and Virtualized
RAN (SDVRAN) with fog computing.

Recently, authors in [9] proposed a density-aware C-RAN design, called Heterogeneous
Virtualized Software-Defined C-RAN (HVSD-CRAN) for 5G systems. The proposed ar-
chitecture is able to manage two different scenarios in terms of network density: high-
density and low-density modes. Fig. 2.4 shows the proposed architecture where the
radio access layer is split into two parts, depending on the operation mode. The low-
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Adapting Downlink Power in Fronthaul-Constrained
Hierarchical Software-Defined RANs

Xianfu Chen, Zhu Han, Zheng Chang, Guoliang Xue, Honggang Zhang, and Mehdi Bennis

Abstract—The proof-of-concept software-defined radio access
network (RAN) is not flexible enough due to the inherent
delay and the necessity of high-capacity fronthaul links. We are
hence motivated to propose a hierarchical software-defined RAN
architecture, over which the base stations (BSs) are abstracted
into multiple virtual local controllers while these local controllers
are administered by a high-level controller. Under such a hi-
erarchical network architecture, we particularly investigate in
this paper how to adapt the BS transmit power over a long
term according to the network dynamics under the constraints
of mobile user queue stability and limited fronthaul capacity. We
first formulate an off-line stochastic power adaptation problem.
Through developing the Lyapunov method, we transform the
problem into an approximate on-line optimization task. However,
the challenge arises from the introduced per-cluster fronthaul
capacity constraint. To solve the task efficiently and avoid
extensive information exchange between the high-level controller
and the local controllers, we put forward a novel low-complexity
algorithm by designing a non-cooperative power adaptation game
among the local controllers. Simulations are provided to evaluate
the efficacy of the proposed studies.

I. INTRODUCTION

The exponentially growing mobile data traffic leads to
the need of ever increasing capacity density in radio access
networks (RANs) [1]. To keep pace with such demands, one of
the promising solutions is to make the network infrastructure
heterogeneous and dense. In a dense environment, the base
stations (BSs) have to be operated over a common spectrum
band, making the network operations extremely complex due
to the tight coupling of control plane decisions at the neigh-
bouring BSs. Moreover, the traditional RANs are dimensioned
to cope with the peak traffic demands. Such designs are not
flexible enough to match the radio resources with the spatially
and temporally fluctuating traffics, resulting in low spectral
efficiency and inferior energy efficiency as well [2].

Applying the idea of software-defined networking to RANs
brings the immediate advantages of simplifying the manage-
ment of a dense network. In a software-defined RAN, the
control plane is decoupled from the data plane via virtualizing
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Fig. 1. Illustrative example of a hierarchical software-defined radio access
network.

all independent BSs as a controller which makes centralized
control plane decisions [3]. The centralized controller can
thus optimize the network performance with the global view
of the network and adapt radio resources to the network
dynamics, i.e., the channel quality variations and the mobile
traffic fluctuations from mobile users (MUs). However, the
problems with the software-defined RAN concept lie in the
inherent latency due to the totally centralized control plane
and the need of large-capacity fronthaul links to connect the
BSs and the controller [4], [5]. It thus becomes necessary to
design a more flexible software-defined RAN architecture.

In this paper, we first consider a new hierarchical architec-
ture of the software-defined RAN, which is shown in Fig. 1.
Instead of virtualizing all BSs as a single centralized controller,
multiple clusters are formed with regards to the BS geographic
locations, with each being assigned a virtual local controller.
The connections between the clusters and their associated local
controllers are established via the capacity-limited fronthaul
links [6]. A virtual high-level controller is responsible for co-
ordinating control plane decisions among the local controllers.
With the hierarchical design, the global network view at the
high-level controller is aggregated across the local clusters.
The local controllers make local decisions (e.g., intra-cluster
interference mitigation), which avoids distant control from the
high-level controller and thus alleviates control latency.

In spite of the benefits, challenges remain in facilitating
a hierarchical software-defined RAN (HSDRAN) in practice.
Particularly, mechanisms that efficiently utilize the decoupling
of control plane and data plane in a hierarchical network
architecture and the capacity-limited fronthaul links must be

978-1-5090-4183-1/17/$31.00 ©2017 IEEE

Figure 2.3 Hierarchical software-defined RAN architecture [18]

density mode consists of the deployment of RRSs that manage the UE data/control
signals. It is a suitable strategy because the distance among RRSs is long, and the
number of RRSs is low in these scenarios. The C-RAN advantages are not fully ex-
ploited; however, it is not a critical aspect due to low-density scenarios are not highly
demanding.

On the contrary, high-density mode scenarios demand all the advantages of fully cen-
tralized architecture. For this reason, the radio access layer of this mode is implemented
by an H-CRAN strategy where the control messages are sent through a coverage layer
(MBS) and data message through a traffic layer with caching capability. The BBU cloud
layer consists of a set of BBU processing servers and a virtualized layer where a slicing
controller manages the slicing resource allocation. Core and application layers complete
the structure.
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FIGURE 2. HVSD-CRAN system model.

C. HVSD-CRAN STRUCTURE AND RESOURCE
MANAGEMENT
To cover different aspects of low and high-density regions,
we propose a new system model depicted in Fig. 2 where
there exist two modes:

• High-density mode: where there exist two types of BSs,
i.e., control BS and D-RRHs in radio access of RAN
layer in Fig. 2. The heterogeneity of this mode comes
from these two types of BSs. In this topology, the end
devices in Fig. 2 should have two connections for control
and data messages due to the physical decoupling. The
coverage is guaranteed by control BS, called coverage
layer. However, there is a capability to turn off the subset
of D-RRHs in traffic layer of Fig. 2 in low traffic time.
The data signal of end device is sent to D-RRHs and all
their baseband processing functions are deployed in a
BBU cloud of RAN layer. According to the virtualoiza-
tion feature of our system model, the radio resources
can be sliced to use by different SPs to support various
services for users.

• Low-density mode: where there exists hierarchical pro-
cessing between cloud and RRSs in RAN layer of
Fig. 2. In this mode, the baseband function splitting is
used to overcome the high delay of large distance of
front-haul link. In this topology, each RRS processes
part of the baseband processing functions which can

be dynamically determined to improve desired perfor-
mance according to the instantaneous conditions of
system. According to the virtualization characteristics,
the radio resources are sliced in BBU cloud of RAN
layer to have view of whole network. As a result, the iso-
lation constrains between slices should be guaranteed in
a centralized manner.

For both modes, the flexibility for designed system is
achieved by software-defined structure. The resource slicing,
for both modes, can be categorized as [37]

• Transmission resources e.g., power and bandwidth
• Cloud resources e.g., processing and memory units of
BBUs

• Infrastructure resources e.g., RRHs, front-haul link,
switches

The resource management structure of HVSD-CRAN is
illustrated in Fig. 3. In this topology, two resource manage-
ment units are considered. In centralized radio management
(CRM), a subset of parameters, e.g., power and spectrum, that
should be allocated by view of whole network, are assigned.
Also, by considering virtualization, all the radio resources are
sliced between SPs. When the effects of resource allocation
in one RRS on the other RRSs are negligible, it is more con-
venient to implement local radiomanagement (LRM) in radio
access of RAN layer in Fig. 3. The resource management
policy of these two modes of HVSD-CRAN are

45182 VOLUME 6, 2018

Figure 2.4 HVSD-CRAN architecture [9]

2.2. Resource management in C-RAN

To face the fluctuating traffic between day and night, weekdays and weekends, residen-
tial, commercial, and mixed areas, dynamic resource allocation algorithms have been
proposed in many research works [9, 20–26]. However, resource allocation in C-RAN
faces many challenges that need attention because resource management strategies
for wireless communications are complex to design and implement. User mobility, ra-
dio channel variations, coverage, interference, frequency reuse, power control mecha-
nism, and QoS requirements are some of the most critical factors that contribute to the
complexity of wireless systems in terms of resource allocation. Furthermore, the unpre-
dictable nature of wireless systems adds more challenges. For these reasons, optimized
solutions for resource allocation are required to ensure adequate resource utilization and
the performance of the 5G wireless networks.

Authors in [20] survey the literature on clustering algorithms applied to C-RAN architec-
tures, evaluate the resulting configuration of BBU pools, and present different techniques
for RRH clusterings such as multi-objective optimization clustering and bin-packing ap-
proach. Those clustering techniques have similar performances. The authors conclude
that clustering can enhance the performance of the network. However, it is space for
more analysis to select the best technique depending on the metric to optimize.

Before 5G, the resource allocation strategies of wireless systems often use one perfor-
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mance metric as an objective function. However, the apparition services with different
QoS requirements in 5G imposes the design of more flexible resource allocation strate-
gies accounting for various features such as throughput, latency, power consumption,
and load balancing. The resource allocation problem becomes multi-objective (Multi-
Objective Resource Allocation (MORA)). In [9] have been recently proposed an adap-
tive architecture for C-RAN with two operation modes according to the average user
density: High and Low-density modes that will coexist in real 5G networks. A MORA
is presented, where data rate and power consumption are optimized in the high-density
mode while total cost and delay become the objective functions in the Low-density mode.
In high-density mode when there are many low-cost RRHs without baseband process-
ing capability, resource allocation strategy is implemented in a centralized architecture.
However, a small number of RRHs with baseband processing capability are deployed
in the low-density mode, where a distributed resource allocation strategy is proposed to
reduce latency and cost.

A multi-objective optimization problem for RRH clustering that minimizes the network
transmission delay and power consumption is defined in [21]. RRHs are organized in dis-
joint clusters to reduce the number of active BBUs without reducing the QoS. Weighted-
sum and e-constraint method are used to formulate the problem.

Letter [23] addresses the problem of maximizing the total throughput of the network
via joint user association and power allocation in H-CRAN, accounting for QoS require-
ments. A generalized Stackelberg game approach was applied to this problem. A com-
bination of centralized and distributed techniques was designed to achieve the solution.
Notably, the user association problem is solved using a centralized strategy, and the
power allocation scheme is implemented in a distributed manner.

A framework to optimize user association, radio resource allocation and power allocation
in H-CRAN is also proposed by [27]. In this case, the optimization problem is formulated
to maximize the overall rate while considering RRHs constraints, interference threshold
for macro RRHs associated devices, and QoS constraints. A matching game approach
is used to solve the formulated problem and a Lagrange dual-decomposition strategy
optimizes the transmitter power. The authors in [28] have recently formulated a joint user
association and resource allocation problem in the downlink of a fog network to provide
a better QoS to IoT devices. They take into account the demand of QoS imposed by
ultra-Reliable Low Latency Communication (uRLLC) and enhanced Mobile Broadband
(eMBB) services. A matching game approach is also used to initiate a stable association
between IoT users and Fog infrastructure.

A hybrid approach for RRH clustering based on game theory is presented in [24]. In
this paper, the authors address the BBU-RRH association problem in a decentralized
manner to reduce power consumption while the adequate number of active BBUs is
calculated using a centralized strategy. Two different algorithms were implemented to
solve the game among RRHs. The first relies on the best response algorithm, and the
second is based on a reinforcement learning method. The results show close perfor-
mance to the fully centralized approach. Using a similar hybrid strategy, authors in [25]
proposed an RRH clustering scheme that jointly optimizes the power consumption and
the re-association rate of the UEs that are performing handover. In this scheme, a non-
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cooperated game is used to solve the problem.

Authors in [26] have proposed two different strategies for RRH clustering. Firstly, a
centralized approach where a coalitional game is formulated. However, as this process is
an exhaustive search that explores all possible solutions, it is intractable for high-density
scenarios. For this reason, a distributed heuristic approach was proposed based on a
merge and split algorithm adapted from image processing theory. The algorithm consists
of two actions: coalitions are merged. Similarly, coalitions are divided if the sum of the
utility of each resulting part is higher than the utility of the joint coalition.

2.3. Machine Learning in C-RAN

Machine and deep learning techniques have been widely used in many research fields.
Primarily, they have been used in many tasks to the performance of mobile commu-
nications such as traffic classification, traffic load management, and cluster formation
[29–38].

In [31], multitasks learning architecture using deep learning was presented. Authors
use a big dataset of Telecom Italia to forecast minimum, average, and maximum traffic
loads employing a practical multitask learning (MTL) approach. Different deep learning
models were tested, such as Recurrent Neural Network (RNN), 3D-Convolutional Neural
Network (CNN) and a combination of RNN and CNN. Results show that RNN-CNN can
extract geographical and temporal traffic features.

Authors in [33] propose a centralized resource allocation scheme using online learning,
which addresses interference mitigation, maximizing energy efficiency while maintaining
QoS requirements challenge in H-CRAN for 5G networks. Resource block (RB) and
transmission power are allocated subjected to inter-tier interference and capacity con-
straints. The resource allocation is performed at a dedicated controller integrated with
the BBU pool and the MBS act as brokers between the controller and the RRHs for con-
trol exchange. The considered online learning model was a stochastic approximation
method that solves the Bellman’s optimality equation associated with the discrete-time
markovian decision process.

In [36], authors use a Random Forests algorithm to design of a learning-based resource
allocation scheme for 5G systems. The algorithm acts as a multi-class classifier to pre-
dict the modulation and coding scheme of a terminal at any given position served by the
C-RAN. One of the aims is to reduce the signal overhead in the network. Results show
that due to the reduction in signaling, the proposed algorithm has better performance in
high user density scenarios than Channel State Information (CSI) schemes.

A reinforcement learning-based resource allocation strategy is proposed in [37]. The
algorithm consists of two stages. First, to predict the user position, a neural network
model called Long Short-Term Memory (LSTM), which is a kind of RNN, is proposed.
Consequently, a reinforcement learning strategy based on the mobility pattern previously
estimated is used to maximize the network throughput.
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2.4. Challenges and open issues

As C-RAN has been identified as enabling technology for 5G systems, it must address
the radical evolution in flexibility, security, and performance to support uRLLC, eMBB,
and Massive Machine Type Communications (mMTC) services. Latency, throughput,
resource allocation, handover, energy efficiency, power consumption, and cost-saving
are parameters that must be enhanced. This improvement demands efforts from the
research community and the combination of some of the most promising technologies
as Software-Defined Network (SDN) and NFV. This complexity is a big challenge by
itself. In this section, a description of the leading open issues, the research community
is facing, are summarized.

2.4.1. Huge fronthaul capacities needed

Fronthaul links between BBUs and RRUs must have high bandwidth capability with low
delay and cost requirements. The fully centralized architecture demands the highest
fronthaul bandwidths due to the signal is completely processed at the BBU pool resulting
in considerable overhead. Different functionality split options have been defined by [39]
to reduce the fronthaul bandwidth requirements. However, the potential of C-RAN, de-
pending on the number of centralized functionalities, is reduced; [40] carries out a de-
tailed analysis of this situation. For this reason, this leaves space for improvement.

2.4.2. RRH clustering (BBU-RRH mapping)

Designing real-time RRH clustering, also called BBU-RRH mapping methods with effi-
cient BBU coordination algorithms with minimal overhead that optimize parameters or
strategies as load balancing, multiplexing gain, inter-cell interference, throughput using
CoMP, handover frequency, energy efficiency or power consumption is a real challenge.
Many authors are dedicating efforts to overcome this challenge [20,21,25,41–43].

2.4.3. Security and management of network slicing

Another significant challenge in C-RAN is the security in terms of user privacy and isola-
tion between slices. As resources are shared between BBUs, breaking user privacy, and
accessing secured data is a possibility. Besides, as C-RAN has to support services that
are provided by different Mobile Virtual Network Operator (MVNO) using network slicing
over the same infrastructure, isolation among slices is a vital challenge. The definition of
resource management strategies to overcome these issues has been the aim of many
researchers [9, 44–46]. Hence, providing reliable, cost-effective, and quality of service
guaranteed network slices under C-RAN architecture is one of the significant challenges
in 5G.
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2.4.4. Energy efficiency, power consumption, and cost-saving

Increasing the energy efficiency of the mobile communication systems while the cost is
reduced has been a relevant research field in recent years. The integration of different
technologies (e.g., SDN, NFV, Mobile Edge Computing (MEC)) to build the 5G networks
creates a new challenge: How to manage the high flexibility and capacity demanded by
the system while energy efficiency, power consumption, and cost are enhanced. Many
authors have proposed Green C-RAN deployments to address this challenge [3,47–51].
For instance, MEC and caching, energy-efficient designs, multi-dimensional resource
management, and physical layer security have been identified as an open issue.

For energy efficiency, power consumption, and cost-saving; authors in [47] have been
identified and explained the following aspects as open issues:

• Energy-Efficient Joint H-CRAN and Edge Computing Deployment

• Energy-Aware Revenue Maximization

• Cost and Energy-Aware Cell Site Selection in Hybrid Power Supplied Deployment

• Energy-Efficient Data-Oriented Design

2.4.5. Resource management

The required density of RRHs to provide high data rates incurs high computational com-
plexity due to the enormous amounts of data related to signal processing, resource
allocation, and RRHs/BBUs coordination. This complexity is a big challenge facing the
establishment of scalable networks. Resource allocation strategies, which determines
distribution of the computation resources, fronthaul capacity, radio spectrum, and power
allocation, is still a challenge. Some of the works that are related to this challenge have
been presented in [23,27,47,48,52].

One of the fundamental challenges is how to assign the isolated resources efficiently to
the different virtual operators. Resources allocation can be based on multiple criteria,
e.g., bandwidth, data rate, power, interference, pre-defined contracts, channel condi-
tions, traffic load, or a combination of these parameters. Coordination and communica-
tion protocols have to be well designed [53].

The introduction of adaptive machine learning techniques to achieve a proactive network
capable of adapting to data demands (e.g., IoT demands) that fluctuates over time and
places while optimizes the available resources is a significant challenge [31, 33, 38, 47,
54]. Due to that, Infrastructure Providers (InPs) rent the maximum peak of capacity de-
manded by each service provider or mobile network operator regardless of the required
instantaneous capacity.
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2.5. Partial conclusions

This chapter summarizes the leading papers in the context of resource allocation strate-
gies in C-RAN. Most of the resource management techniques in mobile networks, such
as game theory and machine learning combine with the design of a flexible architecture
based on SDN and NFV approaches, enable dynamic resource allocation strategies
for 5G systems. The presented study of the state-of-the-art shows that there is space
for more research in the context of C-RAN for 5G. Notably, the definition of real-time
resource management and the introduction of machine learning techniques to achieve
proactive networks capable of adapting to high fluctuation on data traffic has been iden-
tified as an open issue.





CHAPTER 3. BACKGROUND ON ML
TECHNIQUES

3.1. Support Vector Machine

Support Vector Machine (SVM) theory was first proposed in [55]; since then, it has been
widely used in classification and regression tasks of different scientific and engineering
fields. The original idea focuses on element classification. Let us assume a simple case
to illustrate how it works. Fig. 3.1 shows a set of training samples that belong to two
classes (circles and squares).

The aim is to find the best hyper-plane (dotted line in Fig. 3.1) that allows classifying the
data. The algorithm uses optimization theory to maximize the width of the street. Let us
assume that ω is a vector perpendicular to the hyper-plane, and u is a vector that points
to an unknown observation. The decision rule used to decide if u belongs to the circle
class is presented in (3.1)

u ·ω+b≥ 0 (3.1)

It means that if the projection of u onto the perpendicular line of the hyper-plane is
greater than the distance from the origin to the hyper-plane then the sample is on the
right side (circle), where b ∈ R and · is the scalar product. However, as the idea is to
find the line that maximizes the width of the street, let take the square (xs ∈ S ) and circle
examples (xc ∈ O) into (3.2) and (3.3) respectively, which guarantee that all the samples
on the dataset are out of the street. S and O represent the set of squares and circles,
respectively.

ω · xs +b≤−1 (3.2)

ω · xc +b≥ 1 (3.3)

Equations (3.2) and (3.3) are joint into (3.4) introducing the variable yi

yi(ω · xi +b)≥ 1 (3.4a)

yi =

{
+1, xi ∈ O
−1, xi ∈ S ,

(3.4b)

where xi represents the vector of the ith training sample. It is possible to compute the
width of the street (W) by taking one example per class over each boundary due to they
hold the equality condition in (3.4a), the result is shown in (3.5)

W= (xc− xs) · ω

‖ω‖
=

2
‖ω‖

(3.5)

where ‖·‖ denotes the Euclidean norm. SVM aims to maximize (3.5) subject to (3.4) to
obtain the best hyper-plane for classifying data. After solving this optimization problem
using a Lagrangian function, it is possible to realize that the solution depends only on
the samples, and vector ω is a linear combination of those samples [55].

17
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x1

x2

Figure 3.1 Basic classification example of SVM.

This strategy was also extended to address regression tasks in [56]. In this case, the
idea is to find a linear function f (x) = x ·ω+b that fits the training data. The optimization
problem is formulated to minimize the different (error) between the predicted value ex-
tracted from f (x) and the real observation of the regression. The mathematical process
is detailed in [56]. Equation (3.6) shows the fitting function

f (x) =
Nt

∑
i=1

αixi · x+b (3.6)

Where ai and b are real values obtained after the training process where the optimization
problem is solved, Nt is the number of samples in the training dataset.

The previous analysis of SVM strategies assumes that it is possible to classify or predict
data based on a linear hyper-plane or a linear fitting function. However, in many appli-
cations, linear approaches are not able to process the data. In those cases, it is not
suitable to find a linear function that describes the data. A transformation (Φ) over the
data plane to solve this problem is applied; this method is called kernel trick. After the
transformation, it is possible to use a linear approach in a higher-order space to fit or
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classify data. The fitting function after applying the kernel is shown in (3.7).

f (x) =
Nt

∑
i=1

αiK(xi,x)+b (3.7)

where K(xi,x) = Φ(xi)Φ(x) depicts the kernel function.

3.2. Time-Delay Neural Network

Artificial Neural Networks (NNs) have been widely used during the last years to solve
different machine-learning problems, even regression and time series forecasting tasks.
Time Delay Neural Network (TDNN) is a combination of typical NN architecture and an
input layer that reshapes sequence time series data into parallel (shift register), em-
ploying a set of delays (N) to use the previous time steps as features of the NN. The
learning process takes place in the hidden layers of the neural network. Fig. 3.2 shows
the TDNNs structure, as well as the basic block diagram of a neural network entity (also
called neuron). Equation (3.8) shows the behavior of a single neuron. The inputs are
multiplied by the weights (W ), and a bias (b) is added before applying the activation
function ( fa) to compute the output of the neuron. The knowledge is in the weights and
bias of each neuron in the hidden layers.

No = fa(W ·X +b) (3.8)

where X is the input vector, and No is the output of the neuron.
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Figure 3.2 General scheme of a time-delay neural network for time series forecasting
with N previous time instants.

3.3. Long Short-Term Memory

Traditional NNs have outstanding prediction performance when based on the status of
the input variables. However, they are not able to remember sequential data. RNNs try to
address this issue using a feedback loop to create a hidden state where the information
of previous time steps is stored. It means that RNNs predict the next output based on
the current input and the hidden state. Fig 3.3(a) shows a basic structure of a recurrent
neural network unit.

The hidden state of the RNN is upgraded recursively, using the same approach of a
neural network (see (3.8)) but considering the previous hidden state (ht−1) as another
input. Equation (3.9) shows the process to upgrade the hidden state (ht )

ht = fa(W · [ht−1,Xt ]+b) (3.9)

where W is the weight vector, fa the activation function and [ht−1,Xt ] denotes the con-
catenation or stack operation between the previous hidden state and the current input,
respectively. The scheme of an RNN shown in Fig 3.3(a) could be unrolled to create
deeper designs as the multilayer RNN in Fig. 3.3(b), where the hidden states of the first
layer are inputs of the second layer.
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Figure 3.3 General deep learning architecture with LSTM cells

Those architectures face the vanishing gradient problem that was solved by [57], defining
a different kind of RNN called LSTM. Moreover, LSTM improves long-term predictions.

The structure of an LSTM entity is shown in Fig 3.3(c). The critical aspect of an LSTM
unit is the cell state that has been denoted by ct . LSTM units could remove and aggre-
gate information to the cell state. Those processes are regulated by entities called gates
that are a combination of a neural network and a pointwise multiplication; it controls the
amounts of information at the output of the gate. The output of the neural network of
each cell is often obtained using a sigmoid activation function, which allows quantifying
the portion of the information that could pass through the gate with a coefficient from
zero to one. As the output is a pointwise product, zero means no signal to the output,
and one means the whole signal remains in the output.

First, the forget ( f ) gate decides what information to remove from the cell state. Con-
sequently, the input (i) and gate (g) gates decide what information aggregate to the cell
state. Finally, the output gate (o) decides what information go to the output. The whole
process of the LSTM is summarized in (3.10)

ft = σ(Wf · [ht−1,Xt ]+bf) (3.10a)

it = σ(Wi · [ht−1,Xt ]+bi) (3.10b)

ot = σ(Wo · [ht−1,Xt ]+bo) (3.10c)

gt = tanh(Wg · [ht−1,Xt ]+bg) (3.10d)

ct = ft ∗ ct−1 + it ∗gt (3.10e)

ht = ot ∗ tanhct , (3.10f)

where Wk and bk are the weights and the bias of the neural network in gate k, respec-
tively. The activation functions of the gates are σ or tanh that represent the sigmoid and
hyperbolic tangent functions, respectively; ∗ operation denotes the pointwise product.
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To analyze the performance of the proposals, two realistic scenarios have been defined:
a large scale scenario with a per hour daily traffic (see Fig.4.2), and a small case dense
scenario where individual data traffic on a per-service basis is considered. The whole
research of this thesis is based on these scenarios. Their details are summarized in this
section and they were also presented in [5,8], respectively.

4.1. Scenario 1: Large-scale C-RAN

COST IC1004 agreed on the definition of the realistic Vienna scenario that has been
widely used by researchers as a common platform to compare the performance of radio
resource optimization algorithms. The scenario has been modified to include C-RAN
deployment as well as dense small cell deployment in the city center. The scenario
covers an area of 455 km2 with a perimeter of 86 km. The blue and green points over
the map in Fig. 4.1, represent the MBSs and possible BBU pools coordinates, while the
red points are the Small Base Stations (SBSs) [58,59].
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Figure 4.1 Scenario 1: Vienna city map.

MBSs are sectorized in 3 or 2 cells. As a result, the scenario includes 628 MBSs al-
located in 233 sites and 221 SBSs, which represent a total of 849 RRHs and 21 BBU
pools (see Table 4.1).

Mobile networks face dynamic environments with high mobility and load fluctuations.
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Table 4.1 Main parameters of the scenario 1

Parameters Scenario 1
Dimension 455 km2

Sites 444
MBSs (sites) 628(233)
SBSs (sites) 221(221)
BBU pools 21

RRHs 849

Nowadays, operators allocate to each cell the resources needed to manage the peak
traffic per day, causing inefficient use of the allocated resources. On the contrary, C-RAN
architecture centralizes resources in a BBU pool gaining in flexibility to address the tidal
effect; aggregating traffic from different types of RRHs, a multiplexing gain is obtained.

To test this scenario three different types of cells have been considered in terms of
traffic profiles (office, residential and mixed). The traffic profiles are modeled by multiple
Gaussian functions. By controlling the mean and deviation of the Gaussian functions we
can adapt to realistic traffic profiles. The data traffic profiles used are shown in Fig. 4.2.

0 5 10 15 20

time [hours]

0

0.2

0.4

0.6

0.8

1

1.2

A
ve

ra
g

e
 t

ra
ff

ic
 [

G
B

p
h

]

office
residential
mixed

Figure 4.2 Realistic traffic profile for office, residential and mixed cells.
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MBS SBS BBU pools

Figure 4.3 C-RAN deployment over Vienna city downtown. Green points represent BBU
pools location while blue and red marks are MBSs and SBSs (RRHs), respectively.

4.2. Scenario 2: Small-scale C-RAN

Fig. 4.3 shows the location of the cells over the small-scale scenario. Blue and green
points depict MBSs, sectorized in three or two cells, and green points also represent BBU
pools coordinate. The location of BBU pools matches with macro site coordinates where
there are more infrastructure and resources. Red points are SBSs that are installed in
street corners to boost line-of-sight connections.

This scenario was first defined in [60], and it has been widely used as a common platform
to test the performance of different radio resource optimization algorithms [59, 61]. The
protocol stack and the processing capacity of each base station on the scenario are split
using option 8, defined by [39], so RRHs are only responsible for transmitting/receiving
the in-phase and quadrature components of the signal to/from the BBU pool, being the
remaining functionalities centralized at the BBU pools.

Table 4.2 summarizes the features of the scenario 2, where path-loss is computed by
a 3D ray-tracing tool as in [60]. RRHs to BBU pool association (fronthaul links) is done
by minimizing the delay, being the advantages and inconveniences of this assumption
discussed in [8].

After defining the scenario, realistic UEs, services, and consequently, traffic have been
modeled, accounting for QoS constraints and service priorities. Each UE is connected to
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Table 4.2 Main parameters of the scenario 2.

Parameters Value
Area (km2) 25

Sites 228
MBS (sites) 51(17)
SBS (sites) 221(211)
BBU pools 3

RRHs 272
Power (dBm) (43,24)∗

Quantization resolution (bit) (24,16)∗

RRH antenna gain (dB) (18,10)∗

Bandwidth (MHz) 20
Number of RBs 100

Total UEs 7000
UEs antenna gain (dB) 0

Noise + Interference (dBm) -97
∗ The format of the data is (MBSs,SBSs)

the RRH that maximizes the Signal-to-Noise-plus-Interference-Ratio (SINR), estimated
through (4.1):

SINR = PRRH +GRRH +GUE−L−10log(N + I), (4.1)

where PRRH is the power transmitted by the RRH, GRRH, and GUE are the RRH and UE
antenna gains respectively, L is the path-loss from the RRH to the UE, and N and I are
the UE noise and interference power respectively.

Conversational, streaming, and interactive services have been generated based on a
packet level model used in [3,49,62] and summarized in Table 4.3.

Table 4.3 Service parameters.

Services ws Size
Time

Duration (s)
Traffic

interval mix (%)

VoIP 83
packet:

20 ms Exp(120) 25
40 B

video 59
packet:

100 ms Exp(300) 25
[20-250] B

Web 36
mean page:

Exp(30) Exp(400) 30
315 kB

FTP 36
mean file:

Exp(180) − 20
2 MB

The traffic mix parameter describes the percentage of active sessions per service and
RRH. The ws weight column defines the service priority that is used by the scheduler
and the DRM to allocate the computational resources to each RRH, trying to guarantee
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the QoS. Higher priority has been assigned to Voice over IP (VoIP) and video flows due
to their delay restrictions. Session duration follows an exponential distribution, except
for File Transfer Protocol (FTP) services, where total duration depends on the size of
the packet to be transmitted and the UE throughput [62]. The time interval between
consecutive packets is fixed on 20 ms and 100 ms for VoIP and video streaming services,
respectively, and follows an exponential distribution for non-real time services.

To calculate the required computational resources, the Modulation and Coding Scheme
(MCS), as well as the number of RBs needed to transmit a packet should be known. The
mapping between MCS and SINR is summarized in Table 4.4 and has been obtained
using [63], which presents a link-abstraction model based on mutual information at the
modulation symbol level. The number of RBs required to transmit a packet is extracted
from [64].

Table 4.4 Mapping between SINR and MCS.

SINR [dB] Modulation order (M) code rate (ρ)
<−5 QPSK (2) 0.076
[−5,1] QPSK (2) 0.3
[1,3.1] QPSK (2) 0.44
[3.1,6.1] QPSK (2) 0.59
[6.1,9] 16QAM (4) 0.48
[9,13] 16QAM (4) 0.6
[13,16] 64QAM (6) 0.65
> 16 64QAM (6) 0.85

4.2.1. Resource Demand Estimation

The Required Computational Capacity (RCC) is defined as the minimum amount of
computational operations necessary to implement physical layer functions at the BBU
pool, such as channel coding, modulation, MIMO precoding, and Orthogonal Frequency-
Division Multiplexing (OFDM) symbol mapping. The RCC is calculated based on the
strategy proposed by [65] and modified by [62] to introduce parallel processing. The
strategy uses a LTE reference scenario, where the RCC and a set of scaling factors
that describe how the RCC evolves to other scenarios are tabulated. Those scaling fac-
tors depend on the network parameters and the physical function to be implemented.
Equation (4.2) describes this method.

C = ∑
iεI

Cref
i ∏

xεX

(
xact

xref

)si,x

X = {Bw,Na,Q,M,ρ,Ns} ,
(4.2)

where C represents the RCC of the desired scenario, Cref
i is the processing capac-

ity needed to address the function i in the reference scenario in Giga operations per
second (GOPS). Subscripts act and ref depict actual scenario and reference scenario
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Table 4.5 Scaling factors (si,x) for function i and RCC of the reference scenario (Cref
i )

(based on [62,65]).

Function index i Ci,re f Bw Na Q M ρ Ns
OFDM modulation (CF) 1.3 1 1 1.2 - - -

OFDM demodulation (CF) 2.7 1 1 1.2 - - -
MIMO precoding (UF) 1.3 1 1 1.2 0 0 1
MIMO decoding (UF) 5.3 1 2 1.2 0 0 0

Modulation (UF) 1.3 1 0 1.2 1.5 1.5 1
Demodulation (UF) 2.7 1 0 1.2 1.5 1.5 1

Channel coding (UF) 1.3 1 0 1.2 1 1 1
Channel decoding (UF) 8 1 0 1.2 1 1 1

respectively, si,x is the scaling factor of the function i and parameter x ∈ X . The set X
contains the operating bandwidth (Bw), the number of antennas (Na), the quantization
resolution (Q), the modulation order (M), the code rate (ρ) and the number of streams
(Ns ≤ Na). Finally, set I contains the PHY functionalities that has shown in Table 4.5.

As the resources are centralized at BBU pool entities and the functionalities are virtu-
alized, it is possible to split those functions into two groups: The functions that may be
implemented by user sessions, processed independently and in parallel are called user-
processing functions (UFs), such as channel coding and modulation. The functions that
are common to all users in the same carrier component/cell and could not be split by
user sessions, such as OFDM modulation, are denoted as common-processing func-
tions (CFs). Table 4.5 summarizes the reference computational-capacity, as well as the
scaling factors of the considered PHY functions. Function indexes are the identifiers of
the PHY functionalities. The total RCC of a BBU is calculated by (4.3):

Cr,t =
NCF

∑
i=1

CCF
r,i,t +

Nr,t

∑
u=1

NUF

∑
j=1

CUF
r,u, j,t , (4.3)

where Cr,t is the RCC to handle the RRH r at time t, CCF
r,i,t is the capacity associated with

the common functions i needed to handle the RRH r at time t, and CUF
r,u, j,t is the capacity

to run the UF j of the active UE u through the RRH r. NCF and NUF are the amount of
CFs and UFs respectively, while Nr,t is the number of active UEs in RRH r at time instant
t.
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5.1. RRH-BBU pools association strategies

To test C-RAN performance four different RRH-BBU pools association algorithms have
been considered: minimum delay, load balancing based on traffic or number of RRHs
and multiplexing gain optimization. This section presents a brief mathematical descrip-
tion of this strategies.

5.1.1. Minimum delay (MD)

The minimum delay algorithm only takes into account the distance to establish the con-
nections between RRHs and BBU pools. To minimize the delay, the algorithm selects for
each RRH the nearest BBU pool following (5.1).

si = { j | di j ≤ dmax∩ di j = min(di)} (5.1)

where di is a vector that contains the distance from the RRH i to each BBU pool, dmax
is the maximum allowed fronthaul distance, min(·) operator returns the minimum value
and si is the BBU pool selected to connect to RRH i.

5.1.2. Load balancing (LB) algorithm

The load balancing algorithms can use two different metrics: the number of RRHs al-
ready assigned and the capacity handled by BBU pools. The ith RRH is connected to
BBU pool c following (5.2).

c = { j | di j ≤ dmax∩C j = min(C)} (5.2)

where C is a vector that depending on the version used contains the number of RRH
connected to each BBU pool or the capacity handled per BBU pool. C j is the capac-
ity of the less loaded BBU pool ( j) that is selected for the algorithm to establish the
connections.

5.1.3. Multiplexing gain algorithm

This algorithm balances different type of traffic profiles to improve the multiplexing gain.
The connections are established following two steps, described by (5.3) and (5.4). First,
the algorithm connects RRH ith to BBU m using (5.3) where max(·) denotes maximum
operator.

m = { j | di j ≤ dmax

∩MG j < max(MG jn)

∩MG j = min(MG)}
(5.3)

29
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If m = /0 the algorithm uses the second condition to establish the connection (5.4), where
the RRH is connected to the BBU pool with the highest multiplexing gain. The algorithm
repeats this process until each RRH is connected to the network.

m = { j | di j ≤ dmax∩MG j = min(MG)} (5.4)

In (5.3) and (5.4) MG is a vector that contains the multiplexing gain of each BBU pool,
MG j is the multiplexing gain of the BBU pool j and MG jn is a vector that stores the
achievable multiplexing gain after connecting each possible RRH, computed as:

MG j =

NRRH, j

∑
k=1

CRRH,k[GBph]

C j[GBph]
(5.5)

where NRRH, j is the number of RRHs connected to the jth BBU pool, CRRH,k is the peak
traffic through the kth RRH and C j is the traffic handled by the jth BBU pool.

5.2. Dynamic resource management design

In this section, the dynamic resource allocation problem with QoS constraint is ad-
dressed. The aim is to optimize the allocated capacity at each BBU pool considering
the required computational capacity, the priority of running services and the maximum
capacity available at the BBU pool [8].

Let’s assume that the coverage area of a specific region is served by a set of R =
{1, . . . ,N} RRHs, managed by a BBU pool. The required computational capacities to
handle each RRH are Ct = {C1,t , . . .CN,t}, which are computed using (4.3). The ob-
jective is to maximize the allocated computational capacity, that is described by the set
ACCt = {ACC1,t , . . . ,ACCN,t}
The problem could be modeled using a game-theoretical approach where RRHs are
connected to BBUs that are competing for computational resources at each transmission
time interval (TTI). The allocated resources must not surpass the total capacity of the
BBU pool (M), as expressed in (5.6). We call this condition C1.

C1 : ∑
i∈R

ACCi,t ≤M ∀ t (5.6)

The weight of each service allows to establish priorities by aggregating QoS constraints.
We denote the average service weights at each RRH as wt = {w1,t , . . . ,wN,t}. A bar-
gaining power is defined in (5.7), where the average service weights at each RRH act
as a fitness parameter.

C2 : Bi,t =
wi,tCi,t

∑ j∈R w j,tC j,t
(5.7)

BBU allocated resources must not be greater than the required computational capacity
(5.8).

C3 : ACCi,t ≤Ci,t ∀ i ∈ R,∀ t (5.8)
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Then the underlying optimization problem to perform the proposed strategy is formulated
as:

maximize
ACCt

∑
i∈R

Bi,tACCi,t

subject to : C1,C2,C3

(5.9)

The problem becomes a weighted-sum multi-objective optimization problem, where BBUs-
RRHs running higher priority services are prioritized because the allocated resources
are weighted by the bargaining power factors.

Problem (5.9) is solved by CVX tool [66] iteratively during the simulation period.

5.3. DRM with adaptive capacity (DRM-AC)

Fig. 5.1(a) shows the general scheme of the DRM, where Cr,t depicts the required com-
putational capacity to handle the RRH r at time t (computed using (4.3)). Moreover,
ACCr,t represents the allocated computational capacity, where r ∈ [1,R], being R the
amount of RRHs connected to the BBU pool under analysis. The DRM allocates the
resources available at the BBU pool to manage each RRH with service priority as well
as QoS constraints. This strategy was presented in [8]. However, the instantiated com-
putational capacity at BBU pool is fixed (see 5.1(a)). It causes QoS degradation (under-
provisioned) or inefficient resource usage (over-provisioned). To tackle this issue, we
propose to dynamically instantiate resources using the schemes shown in 5.1(b), 5.1(c)
and 5.1(d).

Fig. 5.1(b) shows the block diagram of the DRM-AC. A machine learning entity is intro-
duced. Its mission is to predict the required computational resources at the BBU pools,
based on the current network load, is introduced. An aggregation block computes the
RCC(t) based on the current demand of each RRH (Cr,t ), which depicts the database of
the ML block to predict the computational capacity at the next time step PCC(t +1).

However, negative errors in the prediction produce QoS degradation. Two approaches
to address this issue are proposed as it will be detailed afterwards.

• Filtering the data before the training process using a sliding window method and
applying the maximum operation. Fig 5.1(c) shows the general diagram of this
approach that has been called DRM-AC with prefiltering (DRM-AC-PF).

• Establishing a margin amount of computational resources equal to the maximum
error in a previous time window. Fig 5.1(d) depicts the block diagram to implement
this strategy, which is a DRM with error shifting (DRM-AC-ES).

ML block contains the machine-learning algorithm to predict the computational capacity.
On the other hand, the delay block is a memory that stores the input value for the next
iteration. The Max{} block depicts a non-linear filter, it computes the maximum, sliding a
window through the input data. The output of the Max{} block is equal to the maximum
of the θ previous time steps.
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Figure 5.1 Block diagrams of the dynamic resource management strategies

DRM-AC-PF employs the Max{} block to filter the RCC and the ML block to predict the
computational capacity in terms of the envelope of the RCC. On the other hand, the
DRM-AC-ES predicts the computational resources based on the RCC; it makes use of a
delay block to save the previous Predicted Computational Capacity (PCC) for calculating
the error. Finally, it applies a Max{} filter to the error, which is aggregated to the PCC as
a marginal amount of computational operations to the predicted computational capacity.



CHAPTER 6. PERFORMANCE EVALUATION

This chapter describes the main results, the former section discusses the performance
of the RRH-BBU pool association strategies on the large-scale scenario (scenario 1).
It emphasizes on the fronthaul distribution and the network balancing. Moreover, the
performance of the proposals to manage the computational resources at BBU pools are
discussed in details.

6.1. RRH-BBU pool association analysis

The C-RAN architecture proposed in scenario 1 has been analyzed based on four dif-
ferent planning strategies: minimum delay, load balancing based on traffic or number of
RRHs and multiplexing gain algorithm. Those strategies have been adapted from [67].
The maximum fronthaul distance was fixed at 15 km in order to satisfy the delay require-
ment when optical fiber links are considered.

The minimum delay algorithm minimizes the fronthaul distance connecting each RRH to
the nearest BBU pool in order to reduce the round trip time. Load balancing algorithms
establish the connections balancing the capacity or the number of connected RRHs per
BBU pool in the network. Finally, the multiplexing gain algorithm mixes different types of
traffic in each BBU pool to achieve a good performance of the overall network.

Fig. 6.1(a) shows the cumulative distribution function (CDF) of the fronthaul distance for
each strategy. As expected, with minimum delay strategy most of the RRHs are con-
nected close to the BBU pool, while for the other strategies some RRHs are connected
with the maximum fronthaul distance. Minimum delay design not only minimizes the
latency, but also reduces the CAPEX of the fronthaul because all the RRHs are con-
nected with fronthaul distances below 6 km. The rest of the strategies exhibit similar
performance in terms of delay and fronthaul cost.

To increase flexibility, an important metric is network balancing. Fig. 6.1(b) shows the
distribution of the capacity handled by the BBU pools. For load balancing planning strate-
gies the capacity handled and the number of RRHs per BBU pool are almost constant
around 40 RRHs and 28 GBph, which is more robust to face dynamic network varia-
tions. On the opposite, minimum delay and multiplexing gain strategies exhibit wider
CDFs, hence the worst performance, because there are overloaded BBU pools while
others are underutilized.

Fig. 6.1(c) shows that multiplexing gain planning strategy achieves almost constant
values of multiplexing gain per BBU pool while the rest of the methods experience lower
values for some BBU pools. The performance of this strategy is strongly connected to
the traffic profiles handled by the network. Nevertheless, C-RAN architecture improves
the current paradigm in mobile communications due to the multiplexing gain, regardless
of the planning strategy used.

One of the most important requirements of 5G systems is the delay, which must take val-
ues up to 1 ms in applications such as virtual reality. The maximum fronthaul distance to
satisfy the delay constraint could be estimated: some authors have estimated distances
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Figure 6.1 Evaluation of the fronthaul connections according to each strategy.

between 20-40 km using optical fiber [68]. Furthermore, the cost to deploy a C-RAN
is strongly related to the cost of the optical fiber [3], for this reason in large scenarios
mobile operators will centralize the resources of only a certain percentage of the total
number of base stations to reduce the CAPEX.

Fig. 6.1(d) shows the performance of the proposed C-RAN deployment in terms of the al-
lowed maximum fronthaul distance. When the maximum fronthaul distance is decreased
the percentage of RRHs that are sharing resources in BBU pools also decreases, which
results in a degradation of the multiplexing gain because operators have to allocate addi-
tional resources to these RRHs. However, the cost to deploy the C-RAN is also reduced,
becoming more attractive for small size networks in dense environments as scenario 2.
Mobile operators or Infrastructure providers have to take into account this tradeoff in
order to reduce the investment. Table 6.1 summarizes the results obtained by each
planning strategy for scenario 1.
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Table 6.1 Resume table for Scenario 1

Algorithms dmax [km] ∆ RRHs ∆ C [GBph] ∆ MG
MD 6 104 75.18 0.17

LB traffic 15 7 1.14 0.13
LB RRHs 15 1 5.89 0.14

MG 15 32 22.45 0.01

6.2. DRM performance discussion

As we have discussed, the advantages of the C-RAN are highlighted in small and dense
environments. For this reason, the analysis of the proposed DRM is evaluated in the
densest urban zone of the Vienna city (Scenario 2). Fig. 6.2(a) shows the data traffic per
service for a residential RRH, during a second at 12:00 pm. It can be appreciated that
VoIP and video packets are prioritized by the scheduler. VoIP packets are transmitted in
intervals of 40 ms while video service generates 1 frame per 100 ms where each frame
contains 8 packets.
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Figure 6.2 Performance evaluation of the DRM
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The maximum capacity of each BBU pool has been fixed at 300, 100 and 300 GOPS
respectively. Although it is not an optimum selection, it is useful to analyze in detail the
behavior of the proposed algorithm. Fig. 6.2(b) shows the performance of the resource
management algorithm for each BBU pool, showing clearly the disadvantage of deploy-
ing a fixed amount of capacity. The required capacity at each BBU pool is described in
a solid line while the allocated capacity is in the dotted line. Assuming that the traffic
profile satisfies a fractal property of complex systems, the analysis has been done in an
interval of 50 ms.

While for BBU pools 1 and 3 allocated capacity equals the required capacity (there is no
difference between solid and discontinuous lines), it is clearly shown that the capacity of
BBU pool 2 is not enough to handle the traffic demand. The key performance indicator
(KPI) to quantify the QoS is defined as the ratio between the allocated capacity and
the required capacity (KPI ∈ [0,1]). At BBU pool 2 for most of the simulation time, the
required capacity is higher than the maximum capacity, which results in a degradation
of the QoS. Fig. 6.2(c) represents the percentage of unsatisfied resources per RRH,
which is calculated as 1−KPI, for each Transmission Time Interval (TTI) considered in
the simulation. Details are given only for BBU pool 2, which is in degradation because
less than the needed total capacity has been assigned. It can be appreciated that many
RRHs experience a high dissatisfaction level which corresponds to a low QoS. Also,
each RRH shows a high fluctuation in the QoS parameter along the simulation time. The
computational capacity of BBU pool 2 has been intentionally selected low with the aim of
highlighting how the proposed algorithm is powerful enough to reveal clearly those cases
that have not been properly designed. The influence of bargaining power is observed
in Fig. 6.2(c). Notice that at the same time instant there are BBUs with different QoS
because the optimization algorithm is allocating more resources to the cells with high
priority services.

BBU pools 1 and 2 have enough capacity to handle the demand, but as this capacity
is fixed there are intervals where it is underutilized as Fig. 6.2(d) remarks. A proactive
network capable of forecasting the required capacity while optimizing QoS with efficient
use of the contracted capacity is necessary. The increasing complexity of 5G networks
makes planning based on mathematical models not suitable anymore. So, intelligent
resource management tools based on Machine Learning (ML) approaches, where the
system is able to learn from past situations to proactively predict the traffic demand, are
required to optimize future dynamic infrastructure networks.

6.3. DRM-AC performance discussion

6.3.1. Configuration of ML models and data analysis

As it has been above-mentioned, ML based resource management tools are required
to optimize the use of the resources at BBU pools. In this case, the system would be
able to learn from past situations to proactively predict the traffic demand. This section
describes the database, and it establishes the simulation conditions of the supervised
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Figure 6.3 Instantaneous evolution of the RCC at BBU pool 1. Database of 60000
samples. First 80 % of the data is used as a training set and the remaining 20 % as a
testing set.

learning techniques (SVM, TDNN, and LSTM) in the DRMAC.

6.3.1.1. Data Configuration

For simplicity, the analysis of the forecasting models has been limited only to BBU pool 1,
and one minute of traffic database is generated. Fig. 6.3 shows the database, which is
split in a training set (first 80 %) and a testing set (the remaining 20 %); the dotted line
indicates the boundary between those sets.

6.3.1.2. Models Configuration

SVM and TDNN models predict the RCC based on a set of previous time steps. Hence,
an analysis of how many previous time-steps are required to predict the RCC is neces-
sary. First approximation is carried out by the calculation of the sample partial autocorre-
lation function (PACF), represented in Fig. 6.4. PACF values are split according to their
amplitudes in high and low contribution with a threshold of 10 % of the maximum value.
The PACF decreases with the number of previous time steps, with the exception of some
isolated values (four samples after 250 ms). The cumulative distribution function (CDF)
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Figure 6.4 Partial autocorrelation function of the database concerning 500 previous
time-steps.

of the high contribution values (CDF 1) is shown on Fig. 6.4, the 78 % of the values are
located before 150 ms. Furthermore, the CDF of the high contribution values without
concerning the isolated samples after 250 ms is also shown (CDF 2), where the 97 % of
the samples are before 150 ms. Based on this fact, previous 150 ms are considered as
a significant time window to adjust this parameter in SVM and TDNN.

After testing multiple configurations of SVM and TDNN, the best results were obtained
using SVM with a Gaussian kernel and TDNN with two hidden layers of 10 neurons and
sigmoid as the activation function. Fig. 6.5 shows the root-mean-square error (RMSE)
of SVM and TDNN using different amounts of previous time-steps until 150 ms. RMSE
decreases when the number of previous time-steps increases; however, after 100 ms
and 130 ms in SVM and TDNN respectively, RMSE remains almost constant. For this
reason, only θ = 100 ms and N = 130 ms previous time-steps are considered in the
subsequent analysis. Nevertheless, the method based on PACF is shown to be a per-
fectly valid rule-of-thumb and there would be no need to test the different cases each
time.

Regarding the LSTM approach, its performance does not depend on the number of pre-
vious time steps because their contribution is saved in the internal gates of the LSTM
cell. However, different network architectures were tested and compared to find a suit-
able deep learning scheme. Table 6.2 summarizes those architectures. Two hidden
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Figure 6.5 Gaussian SVM and TDNN performance in terms of the number of previous
steps.

layers with different numbers of LSTM cells, where the learning process takes place, are
used. Following [69] recommendation, dropout layers (with a dropping probability of 0.2)
are used after each hidden layer to prevent overfitting. Finally, a regression output layer
is aggregated to map the output of the last hidden layer to a predicted value.

Fig. 6.6 shows the performance of the network structures in Table 6.2, based on the
RMSE achieved in the testing dataset (last 20 % of the data). The RMSE decreases
when the number of LSTM cells increases, reaching the its minimum value for network
structure number four. For this reason, this structure is selected for the comparison with
SVM and TDNN strategies. It has less computational cost than higher network structure
labels. The RMSE under this architecture is 12.6 GOPS, which represents 7.6 % of the
mean value.

6.3.2. Evaluation and results

In this section, the performance of a DRM with fixed capacity is presented as a bench-
mark, as well as the results of the proposed strategies: DRM-AC, DRM-AC-PF, and
DRM-AC-PF.

However, although BBU pools 1 and 2 had enough capacity to handle the demand Fig.
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Table 6.2 Tested deep learning LSTM architectures

Network structure : index
1 2 3 4 5 6 7 8 9 10

L1 Sequential input layer
Hidden layer: number of LSTM cells

L2
20 40 60 80 100 120 140 160 180 200

L3 Dropout: probability of dropping out 0.2
Hidden layer: number of LSTM cells

L4
10 20 30 40 50 60 70 80 90 100

L5 Dropout: probability of dropping out 0.2
L6 Regression output layer

6.2(d) shows that resources were underutilized. Consequently, there is a trade-off be-
tween the QoS degradation when the computational capacity is under-provisioned and
the inefficient use of the resources when the network is over-provisioned. Hence, the
next subsections present how the proposed DRM-AC, DRM-AC-PF, and DRM-AC-ES
address this trade-off in the BBU pool 1.

6.3.2.1. DRM-AC results evaluation

Fig. 6.7 summarizes the performance of the DRM-AC using each ML approach. Fig.
6.7(a), 6.7(b) and 6.7(c) show the predicted computational capacity in terms of the real
computational demand of each strategy. Most of the predicted values are close to the
perfect prediction line, being the degree of dispersion an indicator of the quality of the
prediction strategy. The maximum error of SVM and TDNN approaches are around
35 GOPS, and the RMSE is close to 7.5 GOPS, which represents a deviation of 4.5 % of
the mean value of the overall dataset. The Pearson correlation coefficients (slope of the
regression line) are 0.92 and 0.89 for SVM and TDNN, respectively. On the other hand,
the LSTM strategy presents a RMSE = 12.6 GOPS that depicts the 7.6 % of the mean
value and the Pearson coefficient is r = 0.7, which is more deviated from the perfect
prediction line.

Fig. 6.7(d) shows the error distribution of each approach. Regardless of the used strat-
egy, the error distribution is almost a Gaussian curve with zero mean. As the ML al-
gorithms predict the required computational capacity at the BBU pool, it is important to
analyze the effect of these errors. Positive errors (right side of perfect prediction line on
Fig. 6.7(d)) represent the amount of underutilized resources, while negative errors are
the amount of unsatisfied resources. The main objective is to minimize the underutilized
resources while maintaining the QoS. Improving the prediction capacity of the machine
learning strategies is not enough to address this challenge because the negative er-
rors always reduce the QoS. Table 6.3 summarizes the behaviour of the three proposed
strategies.

SVM and TDNN improve the performance of LSTM in 3 %. However, as it is possible
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Figure 6.6 Performance (RMSE) on the testing data of the deep learning LSTM archi-
tectures in Table 6.2.

Table 6.3 Summary of the proposed ML techniques.

ML technique RMSE (GOPS) RMSE (%) Pearson coefficient
SVM 7.52 4.5 0.92

TDNN 7.45 4.47 0.91
LSTM 12.6 7.6 0.7

to see in Fig. 6.5, the behavior of SVM and TDNN strongly depend on the number of
previous time steps used in the prediction. As mobile networks experience large fluctu-
ations and they are not stationary processes, results obtained under the assumption of
variable parameters as the number of previous time-steps might be more robust. The
design based on LSTM cells is an example; it obtains similar performance to Gaussian
SVM and TDNN without requiring a fixed number of previous time steps. The useful
information of the previous time-steps is stored in the forget gates of the LSTM entities
in the hidden layers.

6.3.2.2. DRM-AC-PF and DRM-AC-ES performance evaluation

As it was afore-mentioned, the LSTM approach could be more robust to face high fluc-
tuation environments. For this reason and without losing generality, performances of
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Figure 6.7 Performance of the DRM-AC for each ML technique. (a), (b), and (c) show
the predicted computational capacity in terms of the real computational demand of SVM,
TDNN and LSTM respectively. Black lines denote perfect prediction lines, red line de-
picts the regression line and r is the Pearson correlation coefficient. (d) represents the
histogram of the error distribution.

DRM-AC-PF and DRM-AC-ES, reducing negative errors, are evaluated based on the
LSTM approach.

Fig. 6.8 shows the performance of the solution applying DRM-AC-PF. The Max{} block
extracts the envelope of the RCC acting as a low pass filter eliminating the fastest varia-
tions; the solid blue line represents the filtered computational capacity. The fixed capac-
ity (300 GOPS) is also represented to remark the advantage of predicting the required
computational capacity.

As it has been mentioned above, negative errors cause QoS degradation. Fig. 6.9
exhibits the distribution of the errors of the proposed schemes using the same LSTM
architecture. Although positive errors in DRM-AC-ES have increased, negative errors
are almost eliminated. In the case of the DRM-AC-PF, the results are similar; negative
errors appear only in isolated cases at the cost of increasing the positive error with
respect to the original LSTM approach (LSTM DRM-AC on Fig. 6.9).
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Figure 6.8 Evolution of the computational capacity at BBU pool 1 showing the fixed
maximum computational capacity, the RCC during the testing dataset, the filtered RCC
and the predicted computational capacity after applying DRM-AC-PF strategy.

Two key performance indicators have been defined to facilitate a numerical comparison
of the strategies: the mean of unused resources (MUR+) and the mean of unsatisfied
resources (MUR−), calculated by (6.1) and (6.2), respectively.

MUR+ =
1
K

K

∑
j=1

e+j (6.1)

MUR− =
1
K

K

∑
j=1

e−j , (6.2)

being K the number of time-steps in the whole database (K = 60000 ms), e+j and e−j
depict the absolute values of each kind of error at instant j in GOPS. Those errors are
complementary because only one of them could be different from zero.

Table 6.4 shows the advantage of using each strategy in terms of MUR+ and MUR−
key performance indicators. The DRM without adaptive capacity has an average of
138.56 GOPS/ms of unused resources. Under the considered traffic conditions and with
a fixed capacity (300 GOPS) in BBU pool 1, the resources are enough to handle the
instantaneous RCC (MUR− = 0). However, as the maximum capacity is fixed, if the
RCC surpasses the maximum capacity at BBU pool 1, UEs would be in degradation;
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Table 6.4 Performance summary in terms of the MUR+ and MUR−.

Proposals MUR+ (GOPS/ms) MUR− (GOPS/ms)
DRM 138.56 0

DRM-AC 5.5 4.49
DRM-AC-PF 41.15 0.0016
DRM-AC-ES 34.08 0.072

consequently, the MUR− would increase, and the QoS would be degraded. DRM-AC
reduces the MUR+ considerably (5.5 GOPS/ms), but the error in the prediction causes
that approximately 50 % of the time, the instantiated resources are not large enough to
satisfy the demand. DRM-AC-PF and DRM-AC-ES strategies reduce considerably the
MUR− at the cost to increase the average of unused resources but maintain the UEs
QoS.



CONCLUSIONS

Two different scale and realistic deployments of C-RAN in COST 1004 Vienna city sce-
nario have been proposed. Firstly, four RRH-BBU pool association strategies were
compared in the preliminary planning stage using a simple per hour traffic profile in a
large-scale scenario. A large-scale C-RAN design, in which a percentage of cells are
centralized to reduce the investment, is also presented. This analysis may support net-
work operators to implement an optimal design accounting for the cost of the optical
fiber, the area to be covered, and the users’ density.

The design of a C-RAN deployment for the metropolitan area has been analyzed jointly
with a resource management strategy to allocate resources at the BBU pools. The
study includes realistic traffic profiles where UEs generate traffic of different services at
the packet level. Results show that the proposed optimization algorithm is capable of
allocating resources introducing QoS constraints with service priority. However, due to
the classical assumption of fixed capacity at the BBU pools, there are intervals where
the resources are underutilized.

For this reason, this research work integrates ML techniques to dynamic resource man-
agement. Three ML strategies have been implemented and exhaustively compared:
SVM, TDNN, and LSTM in terms of their ability to predict the instantaneous computa-
tional capacity at the BBU pools. DRM-AC reduces the underutilized resources by 96 %
when compared with the DRM with fixed computational resources. However, it degrades
the QoS when the predicted computational resources are not enough to satisfy the de-
mand. This situation appears approximately 50 % of the time due to the error follows a
gaussian distribution with zero mean. This issue is solved by proposing two novel strate-
gies. Firstly, a DRM-AC with prefiltering, where high-frequency variations in input data
are removed. DRM-AC-PF extracts the envelope of the RCC, it improves the learning
process, and it almost eliminates the QoS degradation. Secondly, DRM-AC-ES monitors
the maximum error computed in past observation times. It allows estimating a marginal
amount of resources to be added to the predicted computational capacity.

As a consequence, DRM and DRM-AC are outperformed. DRM-AC-PF and DRM-AC-
ES reduce the unsatisfied resources by 99.9 % and 98 % compared to the DRM-AC,
respectively. Moreover, they reduce the underutilized resources by 70 % and 75 %
compared to the DRM, respectively.

45
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Future Works

Adaptive capabilities have already been aggregated to the network to avoid under and
over-provision of the resources. However, there is room for improvement using the nat-
ural big-data of the network to upgrade the performance. This work addresses the issue
of optimizing the resources at BBU pools, but there is a physical capacity limit at BBU
pools. The required computational capacity could surpass this physical limit. Conse-
quently, the prediction of high peaks of traffics to reallocate the traffic demands to an
available BBU pool proactively is a new challenge that needs attention. The introduc-
tion of network slicing to the current C-RAN model is a critical improvement to solve
this issue. Because the network should differentiate among services to reallocate the
traffic of not delay sensible services (e.g., uRLLC). It should be combined with a testbed
implementation using Universal Software Radio Peripherals (USRPs).

Besides, it is necessary to create an autonomous cognitive network to jointly account for
the previous concepts and the introduction of the proactive skill of reacting to failures.
To do so, the definition of a procedure for training the network is a key aspect. On the
other hand, a set of challenges and open issues that could be tackled in future works
have been identified in section 2.4..



ACRONYMS

BTS Base Transceiver Station

RF Radio-Frequency

UE User Equipment

SCell Small Cell

SBS Small Base Station

PCell Pico Cell

MCell Macro Cell

3GPP 3rd Generation Partnership Project

DRM Dynamic Resource Management

DRM-AC DRM with adaptive capacity

DRM-AC-PF DRM-AC with prefiltering

DRM-AC-ES DRM with error shifting

IoT Internet of Things

AR Augmented Reality

BBU Baseband Unit

RRH Remote Radio Head

RRS Remote Radio System

IQ In-phase and Quadrature

CPRI Common Public Radio Interface

ARoF Analogue Radio-over-Fiber

PLS Physical Layer Split

LTE Long Term Evolution

CoMP Coordinated Multipoint

JT Joint Transmission

eICIC enhanced Inter-Cell Interference Coordination

BS Base Station
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MBS Macro Base Station

2G second-Generation

3G third-Generation

4G fourth-Generation

5G fifth-Generation

MIMO Multiple-Input Multiple-Output

WNV Wireless Network Virtualization

OPEX Operating Expenditures

CAPEX Capital Expenditures

TCO Total Cost of Ownership

k-NN k-Nearest Neighbor

DT Decision Tree

NN Neural Network

TDNN Time Delay Neural Network

SVM Support Vector Machine

RL Reinforcement Learning

DRL Deep Reinforcement Learning

RAN Radio Access Network

C-RAN Cloud Radio Access Network

Soft-RAN Software-Defined for Radio Access Networks

NFV Network Function Virtualization

SDN Software-Defined Network

H-CRAN Heterogeneous Cloud Radio Access Network

Flex-RAN fexible and programmable platform for the software-defined RAN

SDHC-CRAN Software-defined Hyper-Cellular C-RAN

F-RAN Fog Radio Access Networks

HSD-RAN Hierarchical Software-Defined RAN

SDVRAN Software-Defined and Virtualized RAN
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HVSD-CRAN Heterogeneous Virtualized Software-Defined C-RAN

QoS Quality of Service

MORA Multi-Objective Resource Allocation

EH Energy Harvesting

uRLLC ultra-Reliable Low Latency Communication

eMBB enhanced Mobile Broadband

mMTC Massive Machine Type Communications

MTL multitask learning

ML machine learning

RNN Recurrent Neural Network

3D-CNN 3D convolutional-NN

CNN Convolutional Neural Network

RB Resource block

CSI Channel State Information

LSTM Long Short-Term Memory

OAI OpenAirInterface

IP Internet Protocol

UAV Unmanned Aerial Vehicle

SDR Software-Defined Radio

SBI Southbound Interface

MILP mixed-integer linear programming

RCC Required Computational Capacity

PCC Predicted Computational Capacity

MNO Mobile Network Operator

MVNO Mobile Virtual Network Operator

InP Infrastructure Provider

MEC Mobile Edge Computing

LOS Line of Sight
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MCS modulation and coding scheme

VoIP Voice over IP

FTP File Transfer Protocol

PRB Physical Resource Block

UF User Processing Function

CF Common Processing Function

CDF Cumulative Distribution Function

TTI Transmission Time Interval

KPI Key Performance Indicator

CAN Cognitive Autonomous Network

USRP Universal Software Radio Peripheral

MCS Modulation and Coding Scheme

UF user-processing function

CF common-processing function

SINR Signal-to-Noise-plus-Interference-Ratio
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