14 research outputs found

    A Model of Risk-Sensitive Route-Choice Behavior and the Potential Benefit of Route Guidance

    Get PDF
    In this paper, we present a simulation-based investigation of the potential benefit of route-guidance information in the context of risk-sensitive travelers. We set up a simple two-route scenario where travelers are repeatedly faced with risky route-choice decisions. The risk averseness of the travelers is implicitly controlled through a generic utility function. We vary both the travelers' sensitivity toward risk and the equipment fraction with route-guidance devices and show that the benefits of guided travelers increase with their sensitivity toward risk

    Short Duration Traffic Flow Prediction Using Kalman Filtering

    Full text link
    The research examined predicting short-duration traffic flow counts with the Kalman filtering technique (KFT), a computational filtering method. Short-term traffic prediction is an important tool for operation in traffic management and transportation system. The short-term traffic flow value results can be used for travel time estimation by route guidance and advanced traveler information systems. Though the KFT has been tested for homogeneous traffic, its efficiency in heterogeneous traffic has yet to be investigated. The research was conducted on Mirpur Road in Dhaka, near the Sobhanbagh Mosque. The stream contains a heterogeneous mix of traffic, which implies uncertainty in prediction. The propositioned method is executed in Python using the pykalman library. The library is mostly used in advanced database modeling in the KFT framework, which addresses uncertainty. The data was derived from a three-hour traffic count of the vehicle. According to the Geometric Design Standards Manual published by Roads and Highways Division (RHD), Bangladesh in 2005, the heterogeneous traffic flow value was translated into an equivalent passenger car unit (PCU). The PCU obtained from five-minute aggregation was then utilized as the suggested model's dataset. The propositioned model has a mean absolute percent error (MAPE) of 14.62, indicating that the KFT model can forecast reasonably well. The root mean square percent error (RMSPE) shows an 18.73% accuracy which is less than 25%; hence the model is acceptable. The developed model has an R2 value of 0.879, indicating that it can explain 87.9 percent of the variability in the dataset. If the data were collected over a more extended period of time, the R2 value could be closer to 1.0.Comment: Shooting writing. Good researc

    Modeling the Effect of a Road Construction Project on Transportation System Performance

    Get PDF
    Road construction projects create physical changes on roads that result in capacity reduction and travel time escalation during the construction project period. The reduction in the posted speed limit, the number of lanes, lane width and shoulder width at the construction zone makes it difficult for the road to accommodate high traffic volume. Therefore, the goal of this research is to model the effect of a road construction project on travel time at road link-level and help improve the mobility of people and goods through dissemination or implementation of proactive solutions. Data for a resurfacing construction project on I-485 in the city of Charlotte, North Carolina (NC) was used evaluation, analysis, and modeling. A statistical t-test was conducted to examine the relationship between the change in travel time before and during the construction project period. Further, travel time models were developed for the freeway links and the connecting arterial street links, both before and during the construction project period. The road network characteristics of each link, such as the volume/ capacity (V/C), the number of lanes, the speed limit, the shoulder width, the lane width, whether the link is divided or undivided, characteristics of neighboring links, the time-of-the-day, the day-of-the-week, and the distance of the link from the road construction project were considered as predictor variables for modeling. The results obtained indicate that a decrease in travel time was observed during the construction project period on the freeway links when compared to the before construction project period. Contrarily, an increase in travel time was observed during the construction project period on the connecting arterial street links when compared to the before construction project period. Also, the average travel time, the planning time, and the travel time index can better explain the effect of a road construction project on transportation system performance when compared to the planning time index and the buffer time index. The influence of predictor variables seem to vary before and during the construction project period on the freeway links and connecting arterial street links. Practitioners should take the research findings into consideration, in addition to the construction zone characteristics, when planning a road construction project and developing temporary traffic control and detour plans

    Travel time prediction for congested freeways with a dynamic linear model

    Full text link
    Accurate prediction of travel time is an essential feature to support Intelligent Transportation Systems (ITS). The non-linearity of traffic states, however, makes this prediction a challenging task. Here we propose to use dynamic linear models (DLMs) to approximate the non-linear traffic states. Unlike a static linear regression model, the DLMs assume that their parameters are changing across time. We design a DLM with model parameters defined at each time unit to describe the spatio-temporal characteristics of time-series traffic data. Based on our DLM and its model parameters analytically trained using historical data, we suggest an optimal linear predictor in the minimum mean square error (MMSE) sense. We compare our prediction accuracy of travel time for freeways in California (I210-E and I5-S) under highly congested traffic conditions with those of other methods: the instantaneous travel time, k-nearest neighbor, support vector regression, and artificial neural network. We show significant improvements in the accuracy, especially for short-term prediction.Comment: in IEEE Transactions on Intelligent Transportation Systems, 202

    How to Provide Accurate and Robust Traffic Forecasts Practically?

    Get PDF

    Neural Network Based Models for Short-Term Traffic Flow Forecasting Using a Hybrid Exponential Smoothing and Levenberg–Marquardt Algorithm

    Get PDF
    This paper proposes a novel neural network (NN) training method that employs the hybrid exponential smoothing method and the Levenberg–Marquardt (LM) algorithm, which aims to improve the generalization capabilities of previously used methods for training NNs for short-term traffic flow forecasting. The approach uses exponential smoothing to preprocess traffic flow data by removing the lumpiness from collected traffic flow data, before employing a variant of the LM algorithm to train the NN weights of an NN model. This approach aids NN training, as the preprocessed traffic flow data are more smooth and continuous than the original unprocessed traffic flow data. The proposed method was evaluated by forecasting short-term traffic flow conditions on the Mitchell freeway in Western Australia. With regard to the generalization capabilities for short-term traffic flow forecasting, the NN models developed using the proposed approach outperform those that are developed based on the alternative tested algorithms, which are particularly designed either for short-term traffic flow forecasting or for enhancing generalization capabilities of NNs

    A two-stage stochastic inventory management model for an intermodal trucking company

    Get PDF
    Master of ScienceDepartment of Industrial & Manufacturing Systems EngineeringAshesh SinhaIntermodal transportation faces several challenges due to uncertainty in rail schedules and customer demand. However, this uncertainty is rarely considered for determining asset management at the Intermodal rail yards. Typically, each Intermodal rail yard requires certain inventory of chassis to serve the demand for either empty containers or loaded containers. It is crucial for any transportation firm to optimally allocate and move chassis between rail ramps to overcome random demand. This thesis develops a two stage stochastic optimization model to determine the optimal allocation and repositioning decisions for chassis and empty boxes across the rail yards to minimize costs and meet service levels. The first stage formulation contains the initial chassis allocation decisions which are independent from random parameters in the following time periods. The second stage formulation determines the empty boxes and chassis repositining decisions for subsequent time periods when the random demand is realized. This thesis applies the L-Shaped Method to efficiently solve this problem. Using numerical experiments, this thesis analyzes the impact of system parameters on the run time performance. The thesis also analyzes the impact of initial chassis inventory and demand patterns on the optimal decisions. We observe that the higher initial inventory or demand at one location than the other results in an increase in the required repositioning moves and expected cost. Conversely, the model is fairly robust to how inventory and demand values are distributed between resource types

    Short-Term Traffic Flow Uncertainty Prediction Based on Novel GM(1,1)

    Get PDF
    Anticipating uncertainty in short-term traffic flow is crucial for effective traffic management within intelligent transportation systems. Various methods for predicting uncertainty have been proposed and implemented. However, conventional techniques struggle to provide accurate forecasts when confronted with sparse data. Hence, this study focuses on developing an uncertainty prediction model for short-term traffic flow under limited data conditions. A novel grey model that considers the volatility of the traffic data is proposed, which extends the grey model (GM) by integrating two techniques: smooth pre-processing and background value construction. The performance of the proposed novel grey model is mainly illustrated by comparing the novel grey model with the traditional GM model. Our results, in terms of uncertainty quantification, demonstrate that the proposed model outperforms the GM model regarding mean kick-off percentage (KP), width interval (WI) and width amplitude

    Short-term Gini coefficient estimation using nonlinear autoregressive multilayer perceptron model

    Get PDF
    Poverty, an intricate global challenge influenced by economic, political, and social elements, is characterized by a deficiency in crucial resources, necessitating collective efforts towards its mitigation as embodied in the United Nations' Sustainable Development Goals. The Gini coefficient is a statistical instrument used by nations to measure income inequality, economic status, and social disparity, as escalated income inequality often parallels high poverty rates. Despite its standard annual computation, impeded by logistical hurdles and the gradual transformation of income inequality, we suggest that short-term forecasting of the Gini coefficient could offer instantaneous comprehension of shifts in income inequality during swift transitions, such as variances due to seasonal employment patterns in the expanding gig economy. System Identification (SI), a methodology utilized in domains like engineering and mathematical modeling to construct or refine dynamic system models from captured data, relies significantly on the Nonlinear Auto-Regressive (NAR) model due to its reliability and capability of integrating nonlinear functions, complemented by contemporary machine learning strategies and computational algorithms to approximate complex system dynamics to address these limitations. In this study, we introduce a NAR Multi-Layer Perceptron (MLP) approach for brief term estimation of the Gini coefficient. Several parameters were tested to discover the optimal model for Malaysia's Gini coefficient within 1987–2015, namely the output lag space, hidden units, and initial random seeds. The One-Step-Ahead (OSA), residual correlation, and residual histograms were used to test the validity of the model. The results demonstrate the model's efficacy over a 28-year period with superior model fit (MSE: 1.14 × 10−7) and uncorrelated residuals, thereby substantiating the model's validity and usefulness for predicting short-term variations in much smaller time steps compared to traditional manual approaches
    corecore