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Abstract

Intermodal transportation faces several challenges due to uncertainty in rail sched-

ules and customer demand. However, this uncertainty is rarely considered for deter-

mining asset management at the Intermodal rail yards. Typically, each Intermodal

rail yard requires certain inventory of chassis to serve the demand for either empty

containers or loaded containers. It is crucial for any transportation firm to optimally

allocate and move chassis between rail ramps to overcome random demand.

This thesis develops a two stage stochastic optimization model to determine the

optimal allocation and repositioning decisions for chassis and empty boxes across

the rail yards to minimize costs and meet service levels. The first stage formulation

contains the initial chassis allocation decisions which are independent from random

parameters in the following time periods. The second stage formulation determines

the empty boxes and chassis repositining decisions for subsequent time periods when

the random demand is realized. This thesis applies the L-Shaped Method to efficiently

solve this problem.

Using numerical experiments, this thesis analyzes the impact of system parameters

on the run time performance. The thesis also analyzes the impact of initial chassis

inventory and demand patterns on the optimal decisions. We observe that the higher

initial inventory or demand at one location than the other results in an increase in

the required repositioning moves and expected cost. Conversely, the model is fairly

robust to how inventory and demand values are distributed between resource types.
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Chapter 1

Introduction

With the advent of globalization and distributed customer base, transportation ser-

vices account for the majority of the product life cycle. Depending on the type of

the products and the length of the haul, transportation services can be classified into

the following categories: Truckload, Intermodal, and Bulk transportation. Truckload

transportation serves short distance hauls and covers multiple trips in a day. How-

ever, the Intermodal transportation requires multiple modes of travel (truck services

within a hub and rail services across hubs) to cover long distances hauls. Bulk trans-

portation is completely different and involves transportation of bulk products (like

aerosols, oils, chemicals, etc.) and requires specialized operations. This thesis focuses

on the inventory management issues in the Intermodal transportation industry.

The Intermodal transportation within a hub experiences much shorter and more

frequent trips. Many of the efficiencies gained in improving truck routing is in the

reduction of empty miles. Empty miles are typically created when the repositioning

of a driver and/or chassis is required for the next fulfillment task. Minimizing these

non-value-added repositioning moves is often the main mechanism through which a

transportation management system increases operational efficiency. The main oppor-
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tunities in the system examined in this research for reducing the number of empty

miles is through the ordering of a larger chassis inventory and the better reposition-

ing of assets at the end of the day. This thesis examines such issues with reposi-

tioning chassis and containers under uncertainty in demand and costs and develops

a stochastic optimization model to efficiently solve across the possible realizations of

these parameters.

The specific problem setting modeled in this research is that of a trucking company

operating in a location with two transportation yards, such as two railyards or a

railyard and a shipping dock. The primary role of the company in this setting is

to facilitate the movement of both full and empty intermodal containers between

these two hubs. In order to perform the movement of a container from one location

to the other, an unloaded chassis must be present at that location. While initial

inventory and additional inventory ordering costs are known at the beginning, future

movement costs and demands are uncertain and could take on many different values

with estimated probabilities. During each day, the company has the opportunity to

move empty containers and chassis to better prepare for the next day’s demand.

The stochastic chassis management model developed in this thesis would prove

uniquely valuable to the intermodal trucking company for three main reasons. First,

this model provides the framework for both ordering additional resources for each lo-

cation in addition to the transfer of chassis between locations. Secondly, the proposed

model is able to consider any random distribution for demands and costs. This pro-

vides value to the company by recommending management decisions that are robust

to a variety of possible demands rather than optimal for a single value, which may

not be the value that is actually seen in practice. Finally, the decomposition of the

proposed model provides quicker solutions for the large problem sizes necessary for

accurate chassis management recommendations.
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Most research and industry applications in the transportation optimization field

model problems using known and set parameters. The solutions generated by these

models work very well when the values used as inputs to the model are the same as

those realized in the real world. However, parameters such as travel times, demand,

and costs very often take different values from those that were predicted at the begin-

ning of a day or week. These different realizations of parameters can have out-sized

effects on the performance of models that only considered their predicted values.

In contrast, this research aims to incorporate many different realizations of param-

eters into the model using stochastic optimization. In a sense, this stochastic model

adds a layer of sensitivity analysis and risk management to a deterministic model.

Having a reputation of reliability is very valuable in the transportation industry. Not

being able to fulfill a client’s order due to a slight increase in demand from what was

expected can have large tangible and intangible costs to a company. Having a trans-

portation management system that can account for variations in input data allows a

company to position its fleet in a way that minimizes its average cost over a range of

scenarios instead of one that minimizes the individual cost of the most likely scenario.

The solutions generated by this model will be more robust to variations in param-

eters at the expense of increased model complexity. The L-Shaped Method is applied

in the proposed model to combat this increase in complexity and run-time. The goals

of this research are to assess the feasibility of such a modeling technique, analyze

the benefit of solution robustness, and examine how the distribution of stochastic

parameters can impact decision-making.
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1.1 Truckload Transportation

In the United States, the trucking industry employs about 6% of the total population

and moves 71% of all freight (John, 2019). However, the way in which it moves varies

within the trucking industry. Truckload transportation is typically used to carry

goods short to medium distances and is categorized as either Full Truckload (FTL)

or Less Than Truckload (LTL) shipping.

Figure 1.1: LTL vs. FTL (FTL vs. LTL Trucking, 2018)

FTL shipping is used when a single business has the volume to completely fill

trucks with the products they are shipping between an origin and destination (LaGore,

2018). FTL could be used by a company that has the size to justify having its own

dedicated supply chain, but wishes to outsource the ownership and/or management

of the trucking fleet. Because the company is essentially renting entire trucks, it gets

a much higher degree of control over when and how deliveries are made (“LTL vs.
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FTL”, 2019). This control can be especially valuable to companies that are shipping

high-value or time-sensitive products (“LTL vs. FTL”, 2019). This industry has fairly

simple routes as each truck completely fills its trailer and then delivers it directly to

the destination.

Comparatively, LTL shipping collects multiple smaller loads from different cus-

tomers and delivers them to multiple destinations. Companies with shipment sizes

generally less than 6 pallets will find LTL to be more cost-effective than FTL ship-

ping (“LTL vs. FTL”, 2019). While this option can provide less flexibility and lower

service levels than FTL trucking, being able to combine shipments from multiple

companies allows for a much higher truck utilization and lower costs than shipping

multiple half-full trucks. Routing decisions in this industry are more complex as the

company must decide on the order of both picking up the loads and delivering them,

while accounting for the capacity of the truck.

1.2 Intermodal Transportation

Intermodal shipping refers to all modes of transportation that use intermodal contain-

ers. This often includes some combination of truck, rail, and waterway transportation.

The usage of rail and cargo ships is the most economical option for shippers making

deliveries to a distant destination. Shipping lanes over 700 miles typically use inter-

modal and generally see a 10% savings compared to using truckload shipping for that

lane (LaGore, 2018).

Routing decisions in intermodal shipping have similarities to both FTL and LTL

trucking. Similar to FTL trucking, intermodal containers are full, discrete loads that

have one origin and one final destination. However, any intermodal container will

be handed off between different entities and have multiple intermediate destinations

5



Figure 1.2: LTL vs. FTL (Intermodal Container Loading, n.d.)

before reaching its final destination. Intermodal trucking is most often used in these

interactions between longer haul shipping entities, such as rail or cargo ships, and as

a final mile delivery service. The specific problem setting examined in this research is

that of an intermodal trucking company operating between intermodal transportation

hubs. This company serves as an intermediary between these two hubs by transporting

intermodal containers between the two locations.

The resources available to this company are loaded containers, empty containers,

and chassis. Loaded containers contain product to be delivered from one location

to the other. There is also demand for empty containers to be shipped from each

transportation hub. Unlike loaded containers, empty containers are considered to be

homogeneous and can be stored in inventory at each location. Finally, the company

has access to an inventory of chassis which the containers are loaded onto and are

required to transport resources from one location to the other.
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1.3 Inventory Management

At its core, the problem that this research is modeling is one of inventory management.

The key decision variables are the inventory levels of chassis and empty containers

at each of the transportation hubs. These inventory levels determine the capacity

of loaded container movement, the ability to fulfill empty demand, and the costs

of potentially necessary chassis repositioning movements. However, this problem

deviates from traditional inventory control models in a few important ways.

The first difference is that multiple locations share a total inventory supply and

must allocate this supply between them. Most inventory control models examine

how much inventory to order at a certain location given a distribution of demand

realizations. This problem instead introduces the ability to reposition resources by

incurring a travel cost. This allows for overall lower inventory levels as the resources

required by one facility may be acquired from another facility.

The second distinction is that, after the first time period, no additional resources

can be ordered. The inventory levels determined in the first time period decide how

much of each resource is available to the system in all future time periods. This

initial inventory ordering must take into account the distribution of demands for each

location not only in the next time period but all following time periods in the problem.

The main decisions made before parameters are realized are how much of each

resource is needed in the system and where to allocate those resources. These decisions

will influence all other routing decisions after demands and costs are realized. In terms

of chassis inventory, it will determine the number of repositioning moves required to

satisfy demands at each location. For empty inventory, it will determine the number

of repositioning moves as well as whether or not the realized demands are able to be

satisfied.
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1.4 Complexity Due to Uncertainty

The base deterministic model for many stochastic optimization applications can often

be quite large and require a significant amount of computation time to solve. Adding

uncertainty to a model roughly multiplies the original problem size by the number of

random scenarios that are being considered. For example, if a problem has 10 vari-

ables present in 10 constraints that contain a parameter that will now be modeled as

a random variable with 100 realizations, the new problem will contain 1,000 variables

and constraints.

The solution time for general linear programming problems can be solved in poly-

nomial time (Borgwardt, 1987). This non-linear relationship between problem size

and solution-time can quickly become prohibitive for practically sized applications of

stochastic optimization.

Many stochastic optimization techniques have been developed to combat this

model complexity problem. In particular, the L-Shaped Method takes advantage

of the independence of random variable realizations to separate each realization sce-

nario into smaller models that can be solved faster individually than the aggregation

of all scenarios (Birge & François, 2011). The L-Shaped Method’s algorithm is based

upon the logic in Benders’ Decomposition (Benders, 2005).

Benders’ Decomposition was developed to solve mixed-integer programming prob-

lems. It accomplishes this by separating the continuous and integer variables into

different model classes (Benders, 2005). It then iterates between these model classes

until an optimal integer-feasible solution is found. The L-Shaped Method adapts this

by separating the decisions that happen before the realizations of random variables

occur into a first-stage model and those decisions made afterward into a second-stage

model (Birge & François, 2011).
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The benefit of using this decomposition in stochastic optimization is that in-

stead of having one model with 10,000 variables, the L-Shaped Method can have 100

second-stage models each with 100 variables. This allows the solution time of the

overall problem to increase linearly with the number of scenarios considered instead

of exponentially. Additionally, these models are completely independent within each

iteration. This allows for separate cores within a computer, or separate computers

within a server, to solve these models simultaneously and significantly improve overall

computation time.

1.5 Research Tasks

The main objective of this research is to examine the optimal inventory and resource

repositioning decisions made by an intermodal trucking company that operates in

moving containers between two major transportation hubs with uncertain demands

and costs. The company has three main resources: loaded containers that contain

product to be shipped, empty containers that can be stored as inventory or shipped to

meet external or internal demand, and chassis that are stored at each location and are

used to carry the containers between hubs. In reality, not all intermodal containers are

the same. They are typically either 20 or 40 feet long and can have other variations,

such as refrigeration units or tanks for liquids. In the interest of keeping the base

modeling of this problem simple in order to instead examine the complexity of adding

uncertainty, these differences are neglected in this research. The goal of the company

is to satisfy its clients’ demands at the least cost to itself.

Figure 1.3 shows how resources are able to flow between the two rail ramps.

In each time period, the intermodal company must determine how to reposition its

resources between the two locations in order to best prepare for the next time period’s

9



Figure 1.3: Intermodal Transportation Between Hubs

uncertain demand. In the initial time period, the company must also determine how

many additional chassis and empty containers should be ordered to each location.

Optimally positioning its resources allows the company to save costs and improve

service rates, even when key parameters are uncertain.

To solve this problem, this thesis first proposes an extensive form model that

captures all decisions and costs in all considered realizations of stochastic parameters.

This extensive form model is then decomposed into a stochastic optimization model

using the L-Shaped Method. This model is then solved and analyzed to investigate

the following research questions:

RQ1: What are the optimal container and chassis inventory management decisions?

RQ2: How does the stochastic solution compare to the solution of a deterministic

adaptation?

RQ3: How do system parameters such as demand distribution and initial inventory

impact the optimal inventory decisions?
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Answering these research questions will provide an in-depth understanding of the

solutions generated by the model and how changes in parameter values/distributions

affect the optimal resource allocation strategies.

1.6 Thesis Outline

This thesis is organized into five chapters. Chapter 2 provides a literature review of

the material examined in this thesis. This includes reviews of intermodal trucking,

parameter estimation, and optimization modeling techniques.

In Chapter 3, the problem is described in detail and an extensive form model is

proposed to solve the problem. This extensive form model is then decomposed using

the L-Shaped Method and an equivalent stochastic optimization model is proposed.

The chapter also provides insights to research question RQ1.

This stochastic optimization model is solved and analyzed using numerical exper-

iments in Chapter 4. Each section in this chapter examines experiments designed to

investigate a different research question outlined in the previous section. The chapter

also provides insights to research questions RQ2 and RQ3.

Finally, the thesis is concluded in Chapter 5 with a summary of the model, the

results of the numerical experiments, and a discussion of possible future work.

11



Chapter 2

Literature Review

2.1 Intermodal Trucking Industry

Intermodal transportation refers to the transportation of goods using two or more

types of carriers. Any product that travels part of its journey on one type of carrier,

such as a cargo ship, and then must switch to a different carrier, such as a railway, is

considered to have traveled via intermodal transportation. The intermodal industry

has a few standard shipping containers, typically either 20 or 40 feet long, that allow

for easy transitions between rail, water, road and even air carriers (Mohit, 2019).

This thesis focuses specifically on the intermodal trucking industry. While the

other modes of transportation typically haul containers over the greatest distance,

trucking usually carries containers at the beginning or end of their journey or serves

as an intermediary link between carriers (“What is Intermodal Trucking”, 2018).

Transferring containers from and to other transportation hubs makes up a large por-

tion of a product’s total transportation costs with estimates between 25-80% (Daham

et al., 2017). Intermodal trucking companies often see a large volume of short dis-

tance trips when compared to other modes of transportation. Because of this, there
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is a large opportunity for efficiency gains through smart fleet positioning and routing.

Much of the research into how to realize these efficiency gains is focused on how to

reduce the number of empty miles driven by a fleet’s trucks. Empty miles occur when

a truck reaches its delivery location and then must drive some distance to its next

pickup location. This distance traveled is not value-added to the trucking company

or their clients. It is estimated that 20-30% of the trucking industry’s total miles

are empty miles (Berman, 2019; Schulz, 2016). The largest portion of the cost of

empty miles is in the drivers’ time, but other costs range from fuel and truck wear to

increased carbon emissions (Berman, 2019).

Strategies for mitigating the number of empty miles traveled include combining

pickup and delivery trips (Daham et al., 2017), smarter routing algorithms, and

even posting empty return lanes online to attract potential shippers (Kerr, 2010).

Most studies that look at more efficient vehicle routing strategies use mixed integer

programming models (Daham et al., 2017) to minimize total travel costs to the fleet.

Examples of these models will be discussed in Section 2.3.2.

2.2 Data Estimation and Modeling

2.2.1 Travel Time Estimation

Optimization models depend heavily on the parameters input to them in order to

determine the best solution. For transportation applications, this mostly includes

the travel time and demand estimates. Travel time estimates heavily influence when

and where a model decides to route products (Yang et al., 2010). Most transportation

systems only consider the expected travel times, so research into better understanding

travel times focuses heavily on their mean values rather than their associated variance.
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Methods for estimating travel times vary widely in complexity. Perhaps the sim-

plest is to use the historical average for a given starting point and destination (Yang

et al., 2010). However, increasing the estimation complexity a small amount to in-

clude a departure time allows the expected travel time to account for fluctuations

through the time of the day or day of the week (Rice & van Zwet, 2004; Wedin &

Norinder, 2015). Relatively simple models that include this information can achieve

fairly high accuracy. Daniel Wedin (2015) showed that using historical GPS data

to estimate travel times given an expected departure time could give results with a

mean absolute percentage error of 16.5%, outperforming Google Maps on the same

data set.

It is expected that more complex models can provide more accurate and reliable

results. Ghiani et al. (2008) look at a prediction model that accounts for two sets

of parameters: deterministic and stochastic. Deterministic parameters include values

that do not change for a given route. Examples of deterministic parameters include

the length of the route and the number of lanes on the roads in the route. Stochastic

parameters include values that are expected to change depending on when the route

is traveled. Examples of stochastic parameters include weather and traffic conditions.

Using these value, the authors developed two neural network models to predict travel

times. Both models found the traffic conditions to be useful predictors, while one

model found the weather conditions to be useful predictors (Ghiani et al., 2008).

Wei et al. (2018) further expand on the idea of using traffic conditions to predict

travel times by predicting how congestion on downstream sections of a road propagate

toward upstream sections. The authors also use neural networks to predict travel

times, however they incorporate a feature that captures the time-shifted delays caused

by downstream traffic congestion. This feature was calculated using historical data

for the major roads in their study.
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2.2.2 Demand Estimation

Demand estimations are traditionally used to plan inventory levels in production

planning. In settings with variable demand, the estimate plus a safety stock level

is often used to accommodate for fluctuations in the realized demand. While this

research focuses on the shipment, rather than production, of goods, having accurate

predictions of what resources are going to be needed and when is important to the

efficiency of the company as well as the accuracy of a decision-making model using

these predictions.

Estimating a future demand level from historic demand data is typically mod-

eled as a time series forecasting problem. One of the most well-known time series

forecasting methods is Autoregressive Integrated Moving Average (ARIMA) (Box

& Jenkins, 1976). This method is a good starting point as it is very general and

accounts for trends over time as well as seasonality. However, many applications

have unique qualities that require more complex methods to model. Flores, Graff,

and Rodriquez (2012) propose an algorithm for automatically setting parameters and

performing feature selection for ARIMA and artificial neural network models using

a genetic algorithm. The goal of this research was to create a general application

that could accurately forecast the availability of fuel for renewable energy plants,

such as wind speed or solar radiation levels, without the expertise of someone skilled

in model tuning. They found that the artificial neural networks generally outper-

formed the ARIMA models and that the genetic algorithm was able to improve both

methods through model tuning (Flores et al., 2012). This research shows that while

simple methods can provide good and quick predictions, performing further tuning

and testing on forecasting models can provide valuable gains in accuracy.

Gilbert (2005) researches how ARIMA time series models apply to multistage
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supply chains and proposes a model that demonstrates how variations in demand

propagate through a supply chain. In this research, the author models a supply chain

as multiple entities preparing for demand according to their own ARIMA time series

equation based on historical values with a lead-time delay between each subsequent

entity receiving new demand values. This delay in information sharing causes varia-

tions in demand values to increase in magnitude as they propagate through a supply

chain. This phenomenon is commonly known as the bullwhip effect. By modeling a

multistage supply chain in this way, it was shown that the main determinant in the

magnitude of the bullwhip effect is the total supply chain cycle time and not the num-

ber of entities in the supply chain (Gilbert, 2005). This research also demonstrates

how the bullwhip effect can occur through normal variation in demand values as well

as actual shifts in the underlying demand distribution (Gilbert, 2005).

Most of the research into time series forecasting is focused on predicting a single

value for each future time period. However, one of the main motivations for the

model proposed in this thesis is that it is able to optimize inventory repositioning

decisions for a range of random demand values. Simple statistics, such as mean and

variance, can be collected from historical demand data and used to provide demand

estimates and their respective probabilities. Demand data could also be used estimate

a statistical distribution for the population using methods such as the Chi-Squared

test. However, neither of these methods accounts for the fact that historical demand

data are from a time series and could exhibit trends or seasonality. Not modeling these

factors could significantly overestimate the variance in demand and negatively impact

the accuracy of the stochastic optimization model. While there is not much research

into this niche use of time series data, a good solution would be to simply adapt

the methods discussed previously to forecast multiple parameters of a distribution

rather than just the expected value. For example, if historical demand data are best
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represented by a Normal distribution, then ARIMA could be used to predict both

the mean and variance of the next time period.

2.3 Optimization Techniques

2.3.1 Deterministic Models

Transportation routing problems are generally modeled using mixed integer program-

ming (MIP) models. The general formulation for these problems fall into the vehicle

routing problem (VRP) category (Daham et al., 2017; Garćıa et al., 2013; Rais et al.,

2014). Even for medium-sized problems with deterministic parameters, this class of

problems is computationally hard to solve (Daham et al., 2017). The general problem

formulation must consider all routes that a fleet could take to serve its customers in

certain time windows.

Rais et al. (2014) consider an extension of the general vehicle routing problem

that allows for the transshipment of products along their route. Transshipment in this

case is defined as the ability of a product to be handed off from one vehicle to another,

even vehicles of different types (Rais et al., 2014). The authors build upon the general

MIP model with additional variables and constraints to account for which products

can be transshipped to specific customers. This model can be seen as incorporating

the intermodal routing decisions into the larger supply chain routing model. While

this thesis only looks at a particular slice of the supply chain industry, it is important

to consider how decisions in the intermodal trucking industry can impact decisions

in the rail and water transportation industries to which it is connected.

Because the general vehicle routing problem is hard to solve, many researchers

attempt to model specific applications using different techniques. Similar to the
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strategy this paper uses in splitting one big problem into smaller and more manageable

pieces, Garćıa et al. (2013) break up a large intermodal shipping problem into several

assignment models that are solved using linear programming. An artificial intelligence

then looks at the set of truck and route assignment solutions and selects the best

combinations it can find for the fleet (Garćıa et al., 2013). The results of this study

show that breaking a problem into several smaller models and then optimizing over

their solutions can be effective strategy in reducing the solving times of large problems.

Another strategy for reducing the complexity of the VRP is to instead model it

as a project assignment problem (Daham et al., 2017; Elimam & Dodin, 2013). The

basic premise is that instead of considering routes for vehicles to take, the project

assignment models consider how to pair vehicles with pickup and delivery tasks.

These models are very effective in applications where the solution space of the VRP

is able to be reduced to these simpler pairings of vehicles and tasks. Elimam and

Dodin, (2013) show that this technique can handle complex scenarios in a supply

chain model that encompasses everything from production to customer delivery of a

product.

2.3.2 Stochastic Models

Stochastic optimization models consider similar problems to those of general opti-

mization models, except they consider uncertainty in their parameters in the form

of probability distributions or scenarios. There are many reasons to incorporate un-

certainty into optimization models. Transportation companies may be motivated by

reducing the likelihood of dissatisfied customers and being prepared for demands out-

side of their expected averages. However, many studies in stochastic optimization are

centered around disaster relief logistics. Disaster relief planners must not only con-

sider highly variable demand sizes and locations but also the possibility of supplies
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and even roads being destroyed in the disaster (Bozorgi-Amiri et al., 2013; Chang

et al., 2007). Chang et al. (2007) and Borzogi-Amiri et al. (2013) examine two

techniques for solving very similar disaster relief planning problems. Most stochastic

optimization problems consider a first-stage set of decisions that are optimized prior

to the realization of the stochastic parameters and a second-stage set of decisions that

are optimized after the realization of the stochastic parameters, with the decisions

and outcomes of one influencing the other. In both studies, the first stage deci-

sion is where to position supplies/distribution centers to most effectively service their

surrounding communities. After making these decisions, a disaster occurs, which po-

tentially destroys supplies and distribution centers. Now a fulfillment strategy must

be enacted. This strategy is determined by a second-stage set of decisions. Chang et

al. (2007) use two extensive form models (containing all scenarios in each model) and

prioritize minimizing the variance in their solutions. Borzogi-Amiri et al. (2013) use

a two-stage stochastic model that examines each second-stage scenario individually

before aggregating the solutions to provide a first-stage solution.

While some problems can be solved in their extensive form (Chang et al., 2007;

Lima et al., 2018), the solution time and memory space required for solutions becomes

prohibitive with larger problems. One method for addressing this issue is through

Monte-Carlo simulation. Instead of looking at all scenarios at once, these models

solve scenarios one at a time. The results of these simulations can then be analyzed

to identify trends common throughout and extract a decision policy (Pironet, 2015;

Wang & Yang, 2013). Wang and Yang (2015) demonstrate how this idea can be

used by applying a simple probability-based constraint in a simulation for optimizing

sea cargo movements. Pironet (2013) shows that this can also be useful in much

larger transportation problems that consider stochasticity in many parameters and

constraints.
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Another method for solving larger stochastic optimization problems is the L-

Shaped Method. This method is based off of Benders Decomposition and separates

the problem into first-stage and second-stage models that can be solved iteratively

(Bozorgi-Amiri et al., 2013; Chu & You, 2013; Dentcheva & Martinez, 2012). Chu

and You (2013) use this technique in modeling how to schedule batched sequential

production processes while considering the uncertainty of individual task processing

times. While expanding upon the base algorithm, the authors were able to solve a

case study with more than 3 million variables and equations across 100 scenarios.

Dentcheva and Martinex (2012) expand upon the general formulation by analyzing

a risk-averse model. Their formulation adds a first-stage constraint that requires all

second-stage scenario costs must below a set value. The authors go on to develop

solution techniques for solving problems of this form.
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Chapter 3

Stochastic Models for Chassis

Management

3.1 Introduction

In this chapter, two-stage stochastic models are developed to manage chassis inventory

in intermodal transportation. For an intermodal transportation company, the chassis

are shared across multiple rail ramps in the same hub. For instance, Chicago has

multiple rail ramps where one ramp serves demand for eastern hubs and the other

serves demand for western hubs. Typically, the demands at each rail ramp are for

either empty containers or loaded containers. Both of these containers share the same

chassis. It is crucial for any transportation firm to optimally allocate and move chassis

between rail ramps to overcome random demand. Using stochastic models, we aim

to answer the following questions: (1) When and how many chassis to move between

each rail ramp to leverage against random demand and (2) How do such decisions

vary with system parameters and problem size.
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3.2 Intermodal Chassis Management Model

This section describes the Intermodal Chassis Management Model and the possible

decisions available to the intermodal trucking company in all time periods and sce-

narios. The resource flow for the Intermodal Chassis Management Model is shown in

Figure 3.1.

Figure 3.1: Intermodal Chassis Management Model Layout

There are two locations i (i ∈ A) in the problem representing the ramps that serve

both railroads. The trucking company is able to store resources at each location Ii,j,k

(i ∈ A, j ∈ Γ, j 6= L, k ∈ T ). Loaded containers are not kept in inventory because they

must be shipped to their destination location in the same time period in which they

arrive. After the first time period, a random demand for empty and loaded containers

δsi,j,k (s ∈ S, i ∈ A, j ∈ Γ, j 6= C, k ∈ T ) arrives at each location. Because empty

containers are homogeneous, their demand may be filled from existing inventory at

that location or by repositioning existing inventory from the other location. Loaded
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demand must be filled by moving that loaded container Y s
i,L,k (s ∈ S, i ∈ A, k ∈ T )

from the other location to location i. Additional chassis and empty containers can be

ordered ∆Ii,j (i ∈ A, j ∈ Γ, j 6= L) in the first time period. Inventory repositioning

moves can be made for both chassis Xs
i,k (s ∈ S, i ∈ A, k ∈ T ) and empty container

resources Y s
i,E,k (s ∈ S, i ∈ A, k ∈ T ) to location i from the other location. Loaded and

empty container repositioning moves require a chassis to be present at that location

or transferred to that location in the same time period.

3.3 Extensive Form Model for Intermodal Chassis

Management

This section proposes an extensive form model to solve problems of the type described

in Section 3.2. This formulation contains all time periods t (t ∈ T ) and random

scenarios s (s ∈ S) in one model.
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Table 3.1: Sets for the Itermodal Chassis Management Model

Sets

S Set of scenarios S = {1,2,3,...,|S|}

A Set of hub locations A = {a1, a2}

T Set of time periods T = {1,2,3,...,|T |}

Γ

Types of loads that a trailer can carry,

denoted as E for empty containers, L for

loaded containers, and C for chassis

Γ = {E, L, C}

Table 3.2: Variables for the Intermodal Chassis Management Model

Variables

Isi,j,k
Inventory in scenario s at location

i for load type j in time period k

s ∈ S, i ∈ A, j ∈ Γ, j 6=L,

k ∈ T

X0
i,j,0

Beginning repositioning moves

before the first time period at location i

for load type j

i ∈ A, j ∈ Γ, j 6= L

∆Ii,j

Additional inventory resources ordered

before the first time period at location i

for load type j

i ∈ A, j ∈ Γ, j 6= L

Xs
i,k

Chassis moves to location i

in time period k in scenario s
s ∈ S, i ∈ A, k ∈ T

Y s
i,j,k

Container moves in scenario s

to location i of load type j

in time period k

s ∈ S, i ∈ A, j ∈ Γ, j 6=C,

k ∈ T
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Table 3.3: Parameters for the Intermodal Chassis Management Model

Parameters

δsi,j,k
Demand in scenario s at location

i for load type j in time period k
s ∈ S, i ∈ A, j ∈ Γ, j 6=C, k ∈ T

I1i,j
Initial inventory at location

i of load type j
i ∈ A, j ∈ Γ

Cs
i,j,k

Cost of move in scenarios s to

location i of load type j

in time period k

s ∈ S, i ∈ A, j ∈ Γ, k ∈ T

P s Probability of scenarios s s ∈ S

∆ICi,j

Cost of adding resources before

the first time period of

load type j at location i

i ∈ A, j ∈ Γ, j 6= L

Extensive Form model

min
∑
i∈A

∑
j∈Γ,j 6=L

∆ICi,j ∗∆Ii,j +
∑
i∈A

∑
j∈Γ,j 6=L

C0
i,j,0 ∗X0

i,j,0 +
∑
s∈S

[
∑
i∈A

∑
j∈Γ,j 6=C

∑
k∈T

P s ∗ Cs
i,j,k ∗ Y s

i,j,k+

∑
i∈A

∑
k∈T

P s ∗ Cs
i,j,k ∗Xs

i,k]

(3.1)

25



Subject to:

δsi,L,k ≤ Y s
i,L,k ∀ s ∈ S, i ∈ A, k ∈ T (3.2)

δsi,E,k ≤ Y s
i,E,k + Isi,E,k ∀ s ∈ S, i ∈ A, k ∈ T (3.3)

Isa1,C,k+1 = Isa1,C,k +Xs
a1,k −Xs

a2,k + Y s
a1,L,k − Y s

a2,L,k (3.4)

+Y s
a1,E,k − Y s

a2,E,k ∀ s ∈ S, k ∈ T, k 6= |T |

Isa2,C,k+1 = Isa2,C,k +Xs
a2,k −Xs

a1,k + Y s
a2,L,k − Y s

a1,L,k (3.5)

+Y s
a2,E,k − Y s

a1,E,k ∀ s ∈ S, k ∈ T, k 6= |T |

Isa1,E,k+1 = Isa1,E,k + Y s
a1,E,k − Y s

a2,E,k (3.6)

−δsa1,E,k ∀ s ∈ S, k ∈ T, k 6= |T |

Isa2,E,k+1 = Isa2,E,k + Y s
a2,E,k − Y s

a1,E,k (3.7)

−δsa2,E,k ∀ s ∈ S, k ∈ T, k 6= |T |

Isa2,C,k +Xs
a2,k ≥

∑
j∈Γ,j 6=C

(Y s
a1,j,k − Y s

a2,j,k) ∀ s ∈ S, k ∈ T (3.8)

Isa1,C,k +Xs
a1,k ≥

∑
j∈Γ,j 6=C

(Y s
a2,j,k − Y s

a1,j,k) ∀ s ∈ S, k ∈ T (3.9)

Isi,C,k ≥
∑

i2∈A,i2 6=i

Xs
i,k ∀ s ∈ S, i ∈ A, k ∈ T (3.10)

Isi,C,1 =
∑

j2∈Γ,j26=L

X0
i,j2,0 −

∑
i2∈A,i26=i

∑
j2∈Γ,j26=L

X0
i2,j2,0 + I1i,C (3.11)

+∆Ii,C ∀ s ∈ S, i ∈ A, j ∈ Γ

Isi,E,1 = X0
i,E,0 −

∑
i2∈A,i2 6=i

X0
i2,E,0 + I1i,E (3.12)

+∆Ii,E ∀ s ∈ S, i ∈ A, j ∈ Γ

X0
i,C,0 +X0

i,E,0 ≤
∑

i2∈A,i2 6=i

(I1i2,E + ∆Ii2,E) ∀ i ∈ A, j ∈ Γ (3.13)

X0
i,E,0 ≤

∑
i2∈A,i2 6=i

(I1i2,E + ∆Ii2,E) ∀ i ∈ A, j ∈ Γ (3.14)

The extensive form objective function (3.1) has two main components: the cost

of first stage decisions and the cost of second stage decisions. The first stage cost
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has two terms: the cost of ordering additional empty containers and chassis and the

cost of repositioning moves before the first time period. The second stage costs are

expected costs over scenarios. The second stage cost are also comprised of two terms:

the expected cost of empty and loaded repositioning moves and the expected cost of

chassis repositioning moves.

Constraint (3.2) forces all the loaded demand to be sent to its destination in the

same time period and scenario as it arrived. Constraint (3.3) ensures that there is

enough empty inventory available at or arriving to the location in the time period

and scenario that it is needed. Constraints (3.4) and (3.5) are the inventory balance

equations for chassis at each location. The next period’s inventory includes all chassis

that were there previously, plus any chassis that were sent there, minus any chassis

that were sent to the other location. Constraints (3.7) and (??) are the inventory

balance equation for empty containers at each location. The next time period’s

empty container inventory is equal to the previous period’s inventory, plus any empty

containers sent to that location, minus those sent to the other location and those used

to fulfill empty container demand. Constraints (3.8) and (3.9) state that we cannot

move more empty or loaded containers to a location than were already available

at that location or sent there in that time period. Constraint (3.10) states that we

cannot move more chassis to a location than were present at the origin location at the

beginning of the time period. Constraints (3.11) and (3.12) determine the chassis and

empty container inventory for the first time period after initial adjustments through

repositioning or additional chassis inventory ordering. Constraints (3.13) and (3.14)

ensure that we do not reposition more chassis or empty containers from a location

than were already available or added there before the first time period.
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3.4 Two-Stage Stochastic Model

This section describes the two-stage stochastic optimization formulation of the prob-

lem described in Section 3.2. This formulation decomposes the extensive form model

using the L-Shaped Method (Birge & François, 2011; Dantzig & Wolfe, 1960). The

motivation for this decomposition is to improve the solution time of the model. The

extensive form model’s solution time increases exponentially with the size of the

problem. One of the largest factors in determining the extensive form model’s size

is the number of scenarios. The two-stage stochastic model presented below im-

proves this exponential relationship by separating each scenario into an independent

model. These second-stage independent models generate optimality and feasibility

constraints that are added to the first-stage model. Both model classes are solved

iteratively until an optimal solution is achieved.

3.4.1 Master Problem Model

min
∑
i∈A

∑
j∈Γ,j 6=L

∆ICi,j ∗∆Ii,j +
∑
i∈A

∑
j∈Γ,j 6=L

Ci,j,0 ∗Xi,j + θ (3.15)

Subject to:
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Ii,C,1 =
∑

j2∈Γ,j26=L

Xi,j2 −
∑

i2∈A,i2 6=i

∑
j2∈Γ,j2 6=L

Xi2,j2 (3.16)

+I1i,C + ∆Ii,C ∀ i ∈ A, j ∈ Γ

Ii,E,1 = Xi,E −
∑

i2∈A,i26=i

Xi2,E + I1i,E (3.17)

+∆Ii,E ∀ i ∈ A, j ∈ Γ

Xi,C +Xi,E ≤
∑

i2∈A,i26=i

(I1i2,E + ∆Ii2,E) ∀ i ∈ A, j ∈ Γ (3.18)

Xi,E ≤
∑

i2∈A,i26=i

(I1i2,E + ∆Ii2,E) ∀ i ∈ A, j ∈ Γ (3.19)∑
i∈A

∑
j∈Γ,j 6=L

DIi,j,1,r ∗ Ii,j,1 ≥ dr ∀ r ∈ Ω (3.20)∑
i∈A

∑
j∈Γ,j 6=L

EIi,j,1,p ∗ Ii,j,1 + θ ≥ ep ∀ p ∈ Φ (3.21)

There are three terms in the master problem’s objective function. The first cap-

tures the cost of adding additional inventory of a certain type to a location. The

second term captures the cost of repositioning resources in the first time period. The

final term θ is the average cost of the second stage models.

Constraints (3.16) - (3.19) are described in Section 3.3. Constraints (3.20) and

(3.21) are the cutting constraints generated by the L-Shaped Method algorithm.

(3.20) is the feasibility cut constraint. Its parameters, DIi,j,1,r and dr, are computed

by the feasibility model formulation described in the next section. The set Ω repre-

sents the infeasible scenarios r in the current iteration of the L-Shaped Method. This

thesis uses the single-cut method for feasibility cuts, so each infeasible second stage

model will generate a constraint of this form. Constraint (3.21) is the optimality cut

constraint. Its parameters, EIi,j,1,p and ep, are generated by the optimality model

described in Section 3.4.3. The set Φ represents the iterations completed p by the

L-Shaped Method. The θ term represents the average cost of the optimality mod-
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els. This research uses the multi-cut method for optimality cuts, so each L-Shaped

Method iteration that contains no infeasible scenarios will generate a constraint of

this form.

3.4.2 Feasibility Model

The feasibility model contains an additional set κ, which represent the set of second

stage constraints. This set is used to define two additional variables: v+
κ and v−κ . v+

κ is

a positive slack variable for each second stage constraint, while v−κ is a negative slack

variable. Each constraint in this formulation contains one or both of these terms.

min
∑
κ∈K

v+
κ + v−κ (3.22)

Subject to:

δsi,L,k − v−κ ≤ Y s
i,L,k ∀ i ∈ A, k ∈ T (3.23)

δsi,E,k − v−κ ≤ Y s
i,E,k + Isi,E,k ∀ i ∈ A, k ∈ T (3.24)

Isa1,C,k+1 + v+
κ − v−κ = Isa1,C,k +Xs

a1,k −Xs
a2,k + Y s

a1,L,k − Y s
a2,L,k (3.25)

+Y s
a1,E,k − Y s

a2,E,k ∀ k ∈ T, k 6= |T |

Isa2,C,k+1 + v+
κ − v−κ = Isa2,C,k +Xs

a2,k −Xs
a1,k + Y s

a2,L,k − Y s
a1,L,k (3.26)

+Y s
a2,E,k − Y s

a1,E,k ∀ s ∈ S, k ∈ T, k 6= |T |

Isa1,E,k+1 + v+
κ − v−κ = Isa1,E,k + Y s

a1,E,k − Y s
a2,E,k (3.27)

−δsa1,E,k ∀ k ∈ T, k 6= |T |
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Isa2,E,k+1 + v+
κ − v−κ = Isa2,E,k + Y s

a2,E,k − Y s
a1,E,k (3.28)

−δsa2,E,k ∀ k ∈ T, k 6= |T |

Isa2,C,k +Xs
a2,k + v+

κ ≥
∑

j∈Γ,j 6=C

Y s
a1,j,k − Y s

a2,j,k ∀ k ∈ T (3.29)

Isa1,C,k +Xs
a1,k + v+

κ ≥
∑

j∈Γ,j 6=C

Y s
a2,j,k − Y s

a1,j,k ∀ k ∈ T (3.30)

Ii,C,k + v+
κ ≥

∑
i2∈A,i26=i

Xi,k ∀ i ∈ A, k ∈ T (3.31)

The feasibility model is solved after the master problem for each scenario in the

list of possible scenarios. The objective function to determine the feasibility cut is

given by (3.22) and minimizes the positive and negative slack variables summed across

all constraints in the model. The second stage scenario is feasible if and only if the

objective function is zero.

Each constraint in this formulation has a v+
κ and/or a v−κ slack variable term. The

κ in these variables represents the specific constraint that the variable is found in.

The constraints in this model are similar to the constraints described in the extensive

form model in Section 3.3 with the addition of slack variable terms. Constraints with

strict equality have both the slack variable terms added. The negative slack variable

v−κ is added only to constraints with less-than-or-equal relations. The positive slack

variable v+
κ is added only to constraints with greater-than-or-equal relations.

Feasibility Cut Generation

After solving each feasibility model r, the L-Shaped Method computes the associated

feasibility cut parameter values DIi,j,1,r and dr, which will be used in constraint (3.20)

of the master problem model. For each first stage variable Ii,j,1 and infeasible scenario

r, the cut coefficient DIi,j,1,r is defined as the dual value of each constraint σκ,r mul-

tiplied by the coefficient of the first stage variable in that constraint τκ,Ii,j,1 , summed
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over all constraints κ ∈ K. Note that this τκ,Ii,j,1 term signifies the coefficient value if

the variable were to be moved to the left-hand side of the constraint. Equation (3.32)

defines the parameter DIi,j,1,r.

DIi,j,1,r =
∑
κ∈K

σκ,r ∗ τκ,Ii,j,1 ∀ i ∈ A, j ∈ Γ, j 6= L, r ∈ Ω (3.32)

The calculation for dr is similar to that of DIi,j,1,r, except it is computed as a single

value for each infeasible model. The cut coefficient dr is defined as the dual value of

each constraint σκ,r multiplied by the constant in that constraint hκ,r, summed over

all constraints κ ∈ K. Note that this hκ,r term signifies the value of the constant

if all parameters were moved to the right-hand side of the constraint and summed.

Equation (3.33) defines the parameter dr.

dr =
∑
κ∈K

σκ,r ∗ hκ,r ∀ r ∈ Ω (3.33)

3.4.3 Optimality Model Formulation

The optimality models are solved for each scenario in each iteration of the L-Shaped

Method. These models are used to generate optimality cut constraints to be added

the master problem. These models contain all second stage decision variables and

parameter realizations for a random scenario and use the previous first stage decision

variables as parameters in determining recourse actions.

min
∑
i∈A

∑
j∈Γ 6=C

∑
k∈T

Cs
i,j,k ∗ Y s

i,j,k +
∑
i∈A

∑
j∈Γ 6=L

∑
k∈T

Cs
i,j,k ∗Xs

i,k (3.34)

Subject to:
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δsi,L,k ≤ Y s
i,L,k ∀ i ∈ A, k ∈ T (3.35)

δsi,E,k ≤ Y s
i,E,k + Isi,E,k ∀ i ∈ A, k ∈ T (3.36)

Isa1,C,k+1 = Isa1,C,k +Xs
a1,k −Xs

a2,k + Y s
a1,L,k − Y s

a2,L,k (3.37)

+Y s
a1,E,k − Y s

a2,E,k ∀ k ∈ T, k 6= |T |

Isa2,C,k+1 = Isa2,C,k +Xs
a2,k −Xs

a1,k + Y s
a2,L,k − Y s

a1,L,k (3.38)

+Y s
a2,E,k − Y s

a1,E,k ∀ k ∈ T, k 6= |T |

Isa1,E,k+1 = Isa1,E,k + Y s
a1,E,k − Y s

a2,E,k − δsa1,E,k ∀ k ∈ T, k 6= |T | (3.39)

Isa2,E,k+1 = Isa2,E,k + Y s
a2,E,k − Y s

a1,E,k − δsa2,E,k ∀ k ∈ T, k 6= |T | (3.40)

Isa2,C,k +Xs
a2,k ≥

∑
j∈Γ,j 6=C

Y s
a1,j,k − Y s

a2,j,k ∀ k ∈ T (3.41)

Isa1,C,k +Xs
a1,k ≥

∑
j∈Γ,j 6=C

Y s
a2,j,k − Y s

a1,j,k ∀ k ∈ T (3.42)

Ii,C,k ≥
∑

i2∈A,i2 6=i

Xi,k ∀ i ∈ A, k ∈ T (3.43)

The objective function (3.34) minimizes the costs of all loaded and empty container

moves plus the costs of all chassis repositioning moves. All the constraints in this

model are the same as ones found in the extensive form model described in Section

3.3, except that a model is created for each scenario instead of all constraints being

rewritten for each scenario.

Optimality Cut Generation

After solving all optimality models in an iteration (p), the L-Shaped Method computes

the associated optimality cut parameter values, EIi,j,1,p and ep, which will be used

in Constraint (3.21) in the next iteration of the master problem model. For each

first stage variable Ii,j,1, the cut coefficient EIi,j,1,p is defined as the dual values of
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each constraint πκ,p,s multiplied by the coefficient of the first stage variable in that

constraint τκ,Ii,j,1 and probability of that scenario ps, summed over all constraints

κ ∈ K and all scenarios s ∈ S. Note that this τκ,Ii,j,1 term signifies the coefficient

value if the variable were to be moved to the left-hand side of the constraint. Equation

(3.44) defines the parameter EIi,j,1,p.

EIi,j,1,p =
∑
s∈S

∑
κ∈K

ps ∗ πκ,p,s ∗ τκ,Ii,j,1 ∀ i ∈ A, j ∈ Γ, j 6= L (3.44)

The calculation for e is similar to that of E, except it is computed as a single value

in each iteration. The cut coefficient e is defined as the dual value of each constraint

πκ,p,s multiplied by the constant in that constraint hκ,s and the probability of the

scenario ps, summed over all constraints κ ∈ K and all scenarios s (s ∈ S). Note that

this hκ,s term signifies the value of the constant if all parameters were moved to the

right-hand side of the constraint and summed. Equation (3.45) defines the parameter

ep.

ep =
∑
s∈S

∑
κ∈K

ps ∗ πκ,p,s ∗ hκ,s (3.45)

The master problem model, feasibility model, and optimality model and their

respective cut equations define the two-stage stochastic decomposition of the extensive

form model. This two-stage stochastic optimization model can be used to determine

optimal intermodal transportation inventory management under uncertain demands

and costs. The next chapter will solve and analyze this model to answer the research

questions of this thesis.
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Chapter 4

Numerical Experiments

In this chapter, we conduct multiple experiments and examine their impact on the

Intermodal Chassis Management Model described in Chapter 3. In Experiment 4.1,

we analyze the run-time performance of the L-Shaped Method on the stochastic

Intermodal Chassis Management Model and investigate the impact of problem size

on run-time. In Experiment 4.2, we analyze how the chassis management decisions

change under uncertainty when compared with a deterministic model. Next, we

analyze the impact of demand distribution on the optimal decisions in Experiment

4.3. Finally, we conduct sensitivity analysis with respect to initial inventory and

additional ordering cost values in Experiment 4.4. Python 3.0 and CPLEX 12.9 were

used to develop the code for all experiments. This code was executed on a computer

with a 3.00 GHz processor and 24 GB of RAM.
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4.1 Experiment 1: Impact of System Size on Run-

Time Performance

The primary motivation for implementing the L-Shaped Method is to reduce the time

complexity of the model by decomposing the problem into two stages. Note that

the time complexity of the extensive form increases exponentially with the problem

size. The two main factors affecting the size of the problem are the range of the

time horizon and the number of random scenarios. By further decomposing each

second-stage scenario into independent models, the L-Shaped Method is theoretically

able to create a linear relationship between the number of scenarios and the solution

time. This section analyzes experiments performed to demonstrate both of these

relationships.

Experiments in this section used the parameter values described in Table 4.1. For

each scenario in an experiment, random values were sampled from the parameter

distributions given in the table. In this experiment, we set the initial inventories to

zero, which forces ordering of all of the resources the model determines necessary

in the first time period. Setting the additional inventory ordering cost significantly

higher than the average movement cost provides an incentive to the model to find

a balance between higher inventory costs and higher resource repositioning costs.

These trade-offs result in non-trivial model decisions, such as ordering a chassis for

each move or ordering the minimum feasible number of chassis.

Figure 4.1 shows that the run-time for the two-stage stochastic models increases

exponentially in relation to the time range. In the extensive form model, the number

of scenarios have a similar effect as the time range on the overall problem size. It

is expected that an extensive-form model would demonstrate a similar relationship

between the number of scenarios and the solve-time. However, the L-Shaped Method
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Table 4.1: Solution Time Experiment Parameters

Parameter Value/Distribution

δsi,E,k Normal(20,4)

δsi,L,k Normal(50,10)

∆ICi,j 1000

Cs
i,j,k Normal(100,10)

I1i,j 0

Figure 4.1: Time Range vs. Run-time (sec.)

should improve this relationship by decomposing the model.

Figure 4.2 shows a linear relationship between the number of scenarios and the

solution time of the model. The number of scenarios in each of the 20 tests was varied

between 50 and 1000. These two experiments validate the assumption that the model
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Figure 4.2: Scenarios vs. Run-time (sec.)

this thesis proposes exhibits an exponential relationship between problem size and

solution time within each second stage model, but a linear relationship between the

number of second stage models and solution time.

4.2 Experiment 2: Stochastic and Deterministic

Cases

This section compares the optimal chassis management decisions obtained using the

stochastic formulation to ones with a deterministic adaptation of the problem. The

deterministic version is the same as the stochastic version except it ignores all ran-

domness in parameters. Table 4.2 describes the parameters used in this experiment

for the stochastic version. The deterministic adaptation uses the same values, except
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it uses the mean value for parameters modeled with distributions and a scenario size

of one. The parameters used are similar to those used in the previous experiment.

The average loaded container demand is higher than the average empty container de-

mand, although they have the same coefficient of variance. The additional ordering

cost is ten times the average movement cost. This ratio is important as it determines

the break-even point between the average cost of repositioning moves a resource is

expected to make versus the value of ordering another unit of that resource. Table

4.3 shows the results of this experiment.

Table 4.2: Deterministic Comparison Experiment Parameters

Parameter Value/Distribution

∆ICi,j 1000

Cs
i,j,k Normal(100,10)

δsi,E,k Normal(20,4)

δsi,L,k Normal(50,10)

I1i,E 10

I1i,C 10

|S| 500

|T | 10

These results show that the deterministic version ordered less additional empty

containers and had a lower expected cost. The variance in the stochastic model

caused ordering of additional resources to meet demand in scenarios with higher de-

mand values. The decision to order additional resources causes the stochastic version

to have a higher expected cost, but this value is a better estimation of the actual costs

realized in practice than the optimal cost calculated when only considering average
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Table 4.3: Deterministic Comparison Experiment Results

Total Expected

Cost

Additional Empty

Container Orders

Additional Chassis

Orders

Stochastic 495061 390 0

Deterministic 444000 340 0

values. The empty container inventory value generated by the deterministic adapta-

tion is insufficient to fulfill empty demand in 47.2% of the 500 scenarios modeled in

the stochastic version. There is an average of 13.5 missed empty container demand

in these under-supplied scenarios. Depending on the opportunity cost of lost demand

and the desired service rate of the company, ignoring the distribution of parameters

in the problem could have large negative operational impacts. The stochastic ver-

sion provides optimal chassis decisions that are much more robust to variability in

parameters.

4.3 Experiment 3: Impact of Demand Distribu-

tion

This section analyzes the relationship between the demand distribution and optimal

inventory management decisions. This relationship is examined by conducting ex-

periments that vary the demand by location, type, average value, and coefficient of

variance.

The first study examines how changing the location of the demand affects the

Intermodal Chassis Inventory Management model’s optimal inventory allocations.

Table 4.4 outlines the parameter settings for this experiment. The chassis reposition-
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ing and ordering costs are lower than than the empty to encourage chassis movements

in this experiment and better demonstrate how adjusting the demand parameters af-

fect decisions affecting chassis resources. The initial inventory levels are 10 for both

empty containers and chassis at each location. While the average demand is varied,

the variance of the demand distribution is kept at a constant value of 5.

Table 4.4: Demand Distribution Experiment Parameters

Parameter Value/Distribution

∆ICi,C 20

∆ICi,E 100

Cs
i,j,E Normal(20,2)

Cs
i,j,L Normal(20,2)

Cs
i,j,C Normal(2,0.2)

I1i,E 10

I1i,C 10

|S| 100

|T | 5

Table 4.5 shows how the total costs and inventories required in this experiment are

impacted by how the demand is split between locations. The location of the invento-

ries varies with where the demand is expected to be, but the total empty inventory

level does not change much. A small number more are ordered in the cases where

the demand is more unbalanced. The cost of ordering additional empty containers to

accommodate unbalanced demand is far more than the cost of just repositioning the

empty containers as needed. The opposite is true for the total chassis inventory as it

increases dramatically with the imbalance in demand. The cases with more demand
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Table 4.5: Demand Location Experiment Results

A1 Avg.

Demand

A2 Avg.

Demand

Expected

Cost

Total Empty

Inventory

Total Chassis

Inventory

Expected Chassis

Repositions

0 100 57410 441 143 80.6

25 75 53900.7 429 61 41.28

50 50 52619.3 432 20 1.74

75 25 54026.6 430 130 40.7

100 0 56998.6 435 147 80.69

at one location than the other require more resource repositioning, and thus more

chassis, to meet those demands. These additional repositioning moves are reflected in

the cost with the imbalanced cases having higher costs. In the fully unbalanced cases,

nearly every chassis that fulfills demand to a location must travel with no cargo back

to its original location to be of use again. In the more balanced cases, more chassis

are able to travel to where they will next be required by simultaneously meeting a de-

mand at that location. This is reflected in the number of expected chassis repositions

varying from 1.74 to 80.69.

Next, we examine the impact of varying the demand type on the the optimal

inventory allocations. The same parameters described in Table 4.4 were used in this

experiment.

Table 4.6 shows the results of varying the average demand of both empty and

loaded containers between 0 and 100. As would be expected, the total empty inven-

tory increases with the empty demand. Because all cases in this study have demand

that are balanced between locations, the same chassis inventory as the balanced case

in the last study are required for all cases in this study. These results also show that

the total expected cost increases as the ratio of empty to loaded demand increases.
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Table 4.6: Demand Type Experiment Results

Empty

Demand

Loaded

Demand

Expected

Cost

Total Empty

Inventory

Total Chassis

Inventory

Expected Chassis

Repositions

0 100 22540.1 45 20 1.36

25 75 36359.9 229 20 2.11

50 50 52659 433 20 1.94

75 25 68255.4 628 20 1.84

100 0 84953.7 831 20 1.4

This is largely because the empty containers have both ordering and movement costs

associated with them, instead of just the movement costs associated with loaded con-

tainers. The number of expected chassis repositions are low due to the demand being

balanced between location. Overall, the distribution of demand between container

types had a large impact on cost and empty container inventory, but a small impact

on decisions concerning chassis.

Figures 4.3 and 4.4 show how the the demand distribution impacts the total

inventory requirements of the inventory management model. The same parameters

described in Table 4.4 were used in these analyses. Figure 4.3 shows the relationship

between total inventory and total average demand as the demand is varied between 20

and 200 in increments of 20 for loaded container demand and varied between 10 and

100 in increments of 10 for empty container demand. Figure 4.4 shows the relationship

between total inventory and the demand distribution’s coefficient of variance. The

average demand for this analysis was kept at a constant 100 for loaded containers and

50 for empty containers. The coefficient of variance for both of these distributions

was varied between 2% and 66% in increments of 2%.

Figures 4.3 and 4.4 show a linear relationship between the total inventory require-
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Figure 4.3: Inventory vs. Average Demand

ments and their respective demand distribution variable. For the average demand,

this relationship is fairly intuitive. An increase in empty container demand has a

direct relationship to the number of empty containers required to fulfill that demand.

Increasing loaded or empty container demand also increases the number of chassis

moves required and increases the value of ordering additional chassis inventory. The

same basic logic is true for the coefficient of variance. The scenarios with higher

demands that are unable to be satisfied have a larger affect on the initial inventory

decisions than the scenarios of low demands with too much inventory. The linear

relationship between initial inventory and the variance of demand exists because in-

creasing the variance in demand increases the upper extremities of the demand across

scenarios and these higher demand scenarios have a proportionally higher impact on

the initial inventory.
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Figure 4.4: Inventory vs. Demand Coefficient of Variance

4.4 Experiment 4: Impact of Initial Chassis

This section of experiments analyzes the relationship between the beginning inventory

values and the optimal inventory allocation of the problem. These experiments vary

the initial inventory type, location, and ordering cost to demonstrate how these factors

impact costs and decisions in the model. The parameters used in the inventory

location and type experiments are described in Table 4.7 and are similar to those

used in the last experiment with the average empty and loaded container demand set

to 20 and 50 respectively.

The first experiment varies the initial inventories between 0 and 1000 for each

location. These values are used for both the empty and chassis starting inventories.

Table 4.8 shows the results of this experiment. Because there was a fairly large
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Table 4.7: Inventory Experiment Parameters

Parameter Value/Distribution

δsi,E,k Normal(20,4)

δsi,L,k Normal(50,10)

∆ICi,C 20

∆ICi,E 100

Cs
i,j,E Normal(20,2)

Cs
i,j,L Normal(20,2)

Cs
i,j,C Normal(2,0.2)

|S| 100

|T | 20

starting chassis inventory and the chassis and empty containers started in the same

location, no chassis repositioning moves are required in any of the cases. In the first

case, no unloaded chassis repositioning moves were required. However, 287 empty

containers were repositioned and this allows chassis to be available at both locations

at the start of the next time period. The number of empty container repositions

were highly sensitive to the balance of initial inventories between locations. This

experiment shows that the Intermodal Inventory Management model is affected by

how initial inventories are distributed between locations. In particular, matching

empty and chassis inventory levels at locations helps decrease the number of unloaded

repositioning moves.

The next experiment analyzes how varying the initial inventory type between 0

and 200 affects the optimal inventory allocations. Table 4.9 shows the results of this

experiment. These results show that the initial empty inventory value is much more
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Table 4.8: Inventory Location Experiment Results

A1 Initial

Inventory

A2 Initial

Inventory

Expected

Cost

Empty

Repositions

Expected Chassis

Repositions

0 1000 4297.67 287 0

250 750 4040.72 36 0

500 500 3953.59 0 0

750 250 4064.77 32 0

1000 0 4335.21 287 0

important to determining the total expected cost than the initial chassis inventory.

The parameters in this experiment assign a high cost to ordering additional empty

containers, so more empty container resources provided at the beginning significantly

reduce the cost of the model. While the cost of additional chassis resources is the

same as empty containers, the initial chassis inventory does not have as large an

impact on expected cost because the overall number required by the model is lower

and these resources can be reused across time periods. There are not very many first

stage repositioning moves in any scenario because the inventories and demands are

balanced between locations in this experiment.
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Table 4.9: Inventory Type Experiment Results

Initial Empty

Inventory

Initial Chassis

Inventory

Total Expected

Cost

Additional

Empty Orders

Additional

Chassis Orders

200 0 31730.9 266 7

150 50 36636.2 318 0

100 100 41603.6 368 0

50 150 46469.2 417 0

0 200 52640.5 480 0

The final analysis examines how the ratio of additional inventory ordering costs

to movement costs affects optimal inventory management decisions. The parameters

used for this experiment are described in Table 4.10. Let α represent this ratio for

this experiment, thus α = ∆ICi,j/C
s
i,j,k. To generate cases in this experiment, Cs

i,j,k

was then set equal 100, ∆ICi,j set equal to 100 ∗ α, and α was varied between .01

and 1 in increments of .05. Figure 4.5 shows the amount of total additional inventory

ordered, empty containers and chassis, compared to this ratio.

This graph shows that there is an inverse relationship between α and the total ad-

ditional inventory ordered.The model effectively computes a break-even cost for each

additional resource that compares the cost of ordering that resource to the cost of

the expected number of moves that resource will be required to make. When the cost

of ordering resources goes up compared to the movement cost, the model prioritizes

using fewer resources to perform the required number of movements. There looks to

be a minimum of around 300 additional resources required to meet demands in all

scenarios. This is the number of empty resources required to fulfill demands. As α

decreases, the number of additional inventory resources ordered increases dramati-
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Table 4.10: Inventory Costs Experiment Parameters

Parameter Value/Distribution

δsi,E,k Normal(20,4)

δsi,L,k Normal(50,10)

I1i,E 10

I1i,E 10

|S| 100

|T | 10

Cs
i,j,k 100

∆ICi,j 100 ∗ α

Figure 4.5: Additional Inventory vs. Additional Inventory Cost/Movement Cost
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cally. This shows that the model prioritizes ordering more resources to each location

instead of repositioning them as needed. The upper bound for this value would be the

maximum total empty demand and chassis moves required across all scenarios. In this

case, all demands and chassis moves would be satisfied from the existing inventory at

that location.
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Chapter 5

Conclusion

In this thesis, we present a two-stage stochastic optimization model to determine

optimal inventory management strategies in the intermodal trucking industry. The

motivation for this model is to reduce empty miles driven and improve service levels,

with respect to uncertainty in demands and costs. By considering the randomness

in certain parameters, a more robust inventory management policy is produced. The

transportation industry is highly competitive and operates on low margins, so reduc-

ing operational costs while meeting customer demands is a high priority for companies.

This research differentiates itself through a combination of its specific application

and its decomposition method. The model is able to optimize decisions made by

an intermodal trucking company by considering their pooled chassis inventory, their

vehicle routing requirements, and the presence of uncertainty in demand parame-

ters. The decomposition methods takes advantage of the structure of these inventory

management decisions to improve solution time and problem complexity.

First, an extensive form model was developed to optimize the inventory manage-

ment of an intermodal trucking company operating between two transportation hubs.

Due to problem size and solution time issues inherent in stochastic optimization, this
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extensive form was decomposed into the Intermodal Chassis Inventory Management

model that this thesis proposes. This model uses the L-Shaped Method to separate

independent realizations of random variables into scenarios that can be solved indi-

vidually. Included in the proposed Intermodal Chassis Inventory Management model

are formulations for the master problem, feasibility problem, and optimality problem,

with equations for how each of these problems generates cuts in each iteration of the

L-Shaped Method.

The Intermodal Chassis Inventory Management model was then analyzed to de-

termine 1. How the problem size affects solution time, 2. How the stochastic solution

differs from a deterministic adaptation, and 3. How inventory and demand values

affect optimal inventory management.

The analysis of problem size shows that the solution time of this model increases

exponentially with the number of time periods, but that the decomposition had the

desired effect of creating a linear relationship between solution time and number of

random variable realizations.

The experiment comparing the stochastic solution to a deterministic model us-

ing only mean values highlights the value of considering the variance in parameters.

Using the deterministic solution would cause the company to be under-prepared for

realized demand in roughly half of the scenarios possible. While the stochastic op-

timal inventory management solution reports a higher expected cost, this cost is a

better estimate of the cost that would be realized in practice as it incorporates a

range of different demands rather than a single predicted demand for each location

and time period.

Finally, the analysis on system parameters shows that the model is highly sensitive

to balance of values between the two transportation hubs. Having a significantly

higher initial inventory or demand at one location than the other results in an increase
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in the required repositioning moves and expected cost. Conversely, the model is fairly

robust to how inventory and demand values are distributed between resource types.

This thesis provides insights into the dynamics of intermodal trucking inventory

management. Considering uncertainty in system parameters adds value to inventory

management models of this type by providing more robust optimal strategies and

more realistic cost estimations. This thesis also proposes a viable decomposition of

the stochastic problem to improve the solution times of the larger problem sizes seen

in the intermodal trucking industry.

Future work for this research may include expanding upon the base problem by

considering additional hubs. Repositioning moves in the current model are implied

to have come from the other location. Adding another location would significantly

increase the complexity of the problem, because routing decisions would have to

consider origin options as well as destination options. The model could also be re-

formulated as a multistage stochastic optimization problem. In this adaptation, each

time period must make inventory management decisions prior to the realization of

random variables.
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