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A Model of Risk-Sensitive Route-Choice Behavior and the
Potential Benefit of Route Guidance

J. Illenberger, G. Flötteröd, and K. Nagel

Abstract—In this paper, we present a simulation-based investigation 
of the potential benefit of route-guidance information in the context of 
risk-sensitive travelers. We set up a simple two-route scenario where 
travelers are repeatedly faced with risky route-choice decisions. The risk 
averseness of the travelers is implicitly controlled through a generic utility 
function. We vary both the travelers’ sensitivity toward risk and the 
equipment fraction with route-guidance devices and show that the benefits 
of guided travelers increase with their sensitivity toward risk.

 

I. INTRODUCTION

In recent years, much research has been conducted in advanced
traveler information systems (ATIS) [1]. Empirical insights have been
gained from emerging applications of ATIS and from in-laboratory 
experiments [2], where the experiments have proven to be useful
approaches to derive detailed behavioral models. Studies agree that the
benefit of ATIS is the greatest in the case of nonrecurrent congestion 
[3]. In such situations, congestion is usually caused by unpredictable
external shocks (e.g., accidents, extreme weather conditions, and large 
events). The literature also agrees that uncertainty in travel time is a
crucial aspect of the users’ decision-making processes [4] and that
the accuracy of information provision has an impact on the users’ 
acceptance [5]. Moreover, it has been shown that, as a system becomes
less reliable, the application of ATIS becomes more beneficial [6].

Simulation-based frameworks have been developed to evaluate the 
use of ATIS and to support local authorities in the implementation of

such technologies. However, those studies usually evaluate the benefit
of ATIS in terms of average travel times [7]. Only few simulation stud-
ies address the evaluation of uncertainty (e.g., [8]), and none addresses
the specific question on how ATIS can support users’ decisions by
reducing the costs of uncertainty only.

In this paper, we present simulation studies where we investigate
the potential benefit of route guidance in a system with risk-averse
travelers. The benefit of route guidance is measured in terms of the 
individual utility of simulated travelers, and we show that, as the
system is made more risk averse, the users’ utility increases.
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The remainder of this paper is organized as follows. Section II
discusses related work on decision making under uncertainty and
different levels of travel-time reliability. In Section III, the concepts
of risk aversion from psychology and economy are introduced and
translated into transport terms. The simulation model used for the
experimental studies is described in Section IV, and the results of the
simulation studies are presented in Section V. This paper is closed with
a discussion in Section VI and a summary of the results in Section VII.

II. RELATED WORK

Abdel-Aty et al. [9] show, through stated preference surveys, that
travel-time variability plays a significant role in explaining route-
choice behavior. They also show that ATIS has the potential to help
travelers, even if routes that differ from habitual ones are recom-
mended. In driving-simulation experiments, Katsikopoulos et al. [10],
[11] face participants with the decision whether to stay on a route with
a certain travel time or to divert to an alternative route that could
take a range of travel times. The experimental setup is similar to
the simulation scenario presented in this paper. Katsikopoulos et al.
observe that the participants are risk averse even when the average
travel time on the alternative route is shorter than the certain travel time
of the initial route. Furthermore, they show that the degree of travel-
time variability has an effect on the travelers’ behavior, and they also
discuss the potential of ATIS to support driver decisions by reducing
uncertainty.

Lam and Small [12] use loop detector data to estimate the value of
time (VOT) and value of reliability (VOR), where VOR is quantified
by the difference between the 90th percentile and the median of the
travel-time distribution. They show that unreliability is perceived as
significant additional cost. The same loop detector data are used by
Liu et al. [13] to estimate a mixed-logit route-choice model. Apart
from VOT and VOR, they also estimate a “degree of risk aversion” of
1.73, which means that the disutility of a certain amount of travel-time
unreliability is perceived 1.73 times more intensive than the disutility
caused by travel time of the same amount.

Existing behavioral models that account for travel-time variability,
both in terms of departure time choice and route choice, can roughly
be grouped into the following three approaches: 1) the “safety-margin”
approach; 2) the “mean-variance” approach; and 3) models that make
explicit use of a concave or convex utility function to represent risk-
averse or risk-loving behavior.

Travel-time variability can be modeled as an additional cost term
in a utility function. This idea, which corresponds to approach 1, is
embodied in the concept of a “safety margin” that travelers generate
by departing earlier than they would do without travel-time vari-
ability [14].

Another approach (which corresponds to approach 2) captures the
disutility of variability by cost terms for early or late arrival, which
is the approach of Small [15]. His model already captures risk-averse
behavior in that travelers would depart earlier or travel longer to avoid
the risk of being late.

The model has been extended by Noland and Small [16], [17] and
later by Ettema and Timmermans [18] to a model based on expected
travel times, rather than travel times assumed to be known to the user,
as in the case in [15]. Ettema and Timmermans conclude that the
provision of information leads to a significant reduction of scheduling
costs, amounting to up to one Euro per trip, whereas the quality of



Fig. 1. Expected utility theory with the log utility function.

information and the misperception of the quality have only a minor
effect.

De Palma and Picard [19] make use of a utility function to model
route choice under uncertainty. Their approach would correspond to
approach 3. More recently, Marchal and de Palma [8] have imple-
mented those models into a microscopic simulation framework to
evaluate the costs of uncertainty. To the knowledge of the authors, this
paper has been the only study that followed such a simulation-based
approach.

The simulation study presented here continues the research of
Marchal and de Palma in that it explicitly addresses the evaluation of
ATIS in an environment with uncertainty.

III. CONCEPTS OF RISK AVERSION

A. Risk Aversion in Psychology and Economy

Consider z as a random variable that can take the two discrete
values z1 and z2. Let p be the probability that z1 occurs and (1 − p)
the probability that z2 occurs. The expected outcome is 〈z〉 = pz1 +
(1 − p)z2. Let U(z) be a nondecreasing and strictly concave utility
function, which means that the marginal utility of the utility is dimin-
ishing as z increases. The expected utility is 〈U(z)〉 = pU(z1) + (1 −
p)U(z2).

For a concave utility function, Jensen’s inequality [20] implies
that the expected utility is not larger than the utility of the expected
outcome, i.e.,

〈U(z)〉 = pU(z1) + (1 − p)U(z2)

≤ U (pz1 + (1 − p)z2) = U (〈z〉) . (1)

This expression represents the utility-decreasing aspect of risk bearing.
We can think of a player who faces two lotteries. The risky lottery
pays z1 or z2 with probabilities p and 1 − p, respectively, whereas
the safe lottery pays 〈z〉 for sure. Although the expected outcome in
both lotteries is the same, a risk-averse player would prefer 〈z〉 with
certainty over an uncertain outcome z, even if the expectation is the
same. This case is what is captured in the inequality 〈U(z)〉 ≤ U(〈z〉).

Consider now a third lottery that yields in the outcome z(C) with
certainty. As depicted in Fig. 1, the utility of this allocation is equal
to the expected utility of the random lottery, i.e., U(z(C)) = 〈U(z)〉.
z
(C)
U is known as the outcome of the certainty equivalent lottery, i.e.,

the sure-thing lottery that yields in the same utility as the random
lottery, where the subscript U indicates that the certainty equivalent is
dependent on the utility function U(z). Although the certain outcome
z
(C)
U is less than the expected outcome 〈z〉 of the random lottery, a

player would be indifferent between the random and the certainty-
equivalent lotteries. The difference πU = 〈z〉 − z

(C)
U is known as the

risk premium, i.e., the maximum amount of outcome that a player is
willing to forgo to avoid an allocation with risk.

More generally, let U(z) be a utility function, z a random variable,
〈z〉 the expectation of z, and z

(C)
U the certainty equivalent. We have

Fig. 2. Utility function of a risk-averse traveler.

the following three definitions.

• Risk aversion: z
(C)
U < 〈z〉, i.e., U(z) is concave.

• Risk neutrality: z
(C)
U = 〈z〉, i.e., U(z) is linear.

• Risk proclivity: z
(C)
U > 〈z〉, i.e., U(z) is convex.

The aforementioned concepts date back to the 18th century and have
mainly been promoted by Bernoulli [21]. The ideas of Bernoulli have
intensively been seized by psychologists and economists since the 20th
century and led to the expected utility hypothesis [22] and later in
prospect theory [23].

B. Risk Aversion in Transport

The concept of risk aversion also has applications in transport. In
particular, consider the random variable as the uncertain travel time of
a route. For our studies, we model risk aversion, as shown in Fig. 2. The
utility for travel is linear in time. The traveler has a desired arrival time
or, equivalently, a maximum travel-time budget. If the traveler arrives
late (exceeds the travel-time budget), he/she incurs an extra penalty.

The following example clarifies the workings of this specification.
Consider a driver who travels along a route with an uncertain travel
time. The driver always departs at tdep and arrives on good days at
t+arr and on bad days at t−arr , where t+arr < t∗arr < t−arr , where t∗arr

is the desired arrival time. We assume that the expected arrival time
is 〈tarr〉 < t∗arr; thus, on average, the driver can expect to arrive on
time. However, because arriving late on bad days causes an extra
penalty, the expected utility 〈U(tarr)〉 is smaller than the utility of the
expected arrival time U(〈tarr〉). The driver will select an alternative
route, as long as the alternative route has a guaranteed travel time
talt
arr ≤ t

(C)
arr,U , where t

(C)
arr,U (certainty equivalent) is the guaranteed

travel time on the original route that induces 〈U(tarr)〉. The absolute
difference πU = 〈tarr〉 − t

(C)
arr,U is the additional amount of travel

time that a risk-averse traveler is willing to “pay” to eliminate the risk.
If the certain route is at t

(C)
arr,U , the traveler is indifferent between the

two routes.
In the context of ATIS, the certainty equivalent t

(C)
arr,U allows us

to capture the user’s willingness to pay for such services. Consider
a traffic management center (TMC) that provides real-time traffic
information to drivers and the aforementioned situation, together with
a second route that always operates at t(C)

arr,U . If the TMC can guarantee
a certain travel time for the uncertain route, then it can charge a
monetary equivalent of the difference between the users’ certainty
equivalent and the guaranteed travel time.

IV. SIMULATION MODEL

A. MATSim Framework

For the studies in this paper, we use the MATSim framework [24],
[25], which is a fully agent-based transport simulation. The key aspects
of MATSim can be summarized as follows. MATSim distinguishes
between a physical and a mental layer. The physical layer comprises
the simulation of the traffic flow, implemented as a queuing model



with physical queues and spillback [26]. The mental layer handles the
reasoning and decision-making processes, such as the choice of a route
to travel. Decisions made in the mental layer are based on the feedback
of the physical layer, which are usually travel times. MATSim iterates
between both layers until the system reaches a stationary state in the
sense of Cascetta [27], which is similar to a stochastic user equilibrium
[28]; more details are given as follows. In the following sections, we
first describe the simulation scenario and then discuss the details of the
behavioral model.

B. Simulation Scenario

Consider a simple road network with one origin and one destination
connected by two different routes. One route is denoted as the “safe”
route, and the other as the “risky” route, where the following condi-
tions hold.

• The safe route has a fixed capacity of 7200 vehicles per hour and
a free-flow travel time of 435 s.

• The risky route has a default capacity of 7200 vehicles per
hour; however, an incident is simulated in each iteration (i.e., in
each execution of the physical layer) with probability 0.5, which
reduces the capacity by a factor of 0.3. The free-flow travel time
of the risky route is 327 s, which is less than the travel time of the
safe route.

In the following discussion, iterations where an incident occurs are
referred to as “bad days” or “bad states of nature,” whereas iterations
without incidents are referred to as “good days” or “good states of
nature.” At the beginning of each iteration, the state of nature is
unknown to the agents.

The population consists of 1000 agents. Each agent has the fol-
lowing two options: 1) traveling along the safe or 2) traveling along
the risky route. Both options are a priori known to the agent. In the
following sections, the two options will be referred to as the “safe” and
“risky” plans. Departure times are prescribed such that, every second,
two agents enter the system, starting at 05:50. This condition means
that, without the capacity reduction of the risky route, no congestion
occurs, even if all users take the same route.

C. Behavioral Model

The simulation of the mental layer comprises the following two
steps: 1) updating the evaluation of the plan executed in the previous
run of the physical layer and 2) the selection of a plan to be executed
in the next run of the physical layer. We describe here only the aspects
of the behavioral model that are relevant for the understanding of this,
and more details can be found in [28] and [29].

To evaluate a plan, the model uses a utility function that is related
to the Vickrey bottleneck model [30]. The utility is composed of the
(negative) utility for traveling Utrav and an extra penalty for being late
Ulate, i.e.,

U = Utrav + Ulate. (2)

The utility for traveling is assumed to be linear in time, i.e.,

Utrav(ttrav) = βtravttrav (3)

where βtrav denotes the marginal utility for travel [C/h] and ttrav the
time spent traveling (in seconds). The extra penalty for being late is
(see Fig. 2) given as

Ulate =
{

βlate (tarr − t∗arr) , if tarr > t∗arr

0, else
(4)

where t∗arr is the desired arrival time, tarr is the experienced arrival
time, and βlate is the marginal utility for being late, which controls the
risk aversion of agents. Values less than zero make agents averse risk,
whereas βlate = 0 represents risk-neutral users. Risk-loving agents
could be represented by choosing βlate > 0, but this case is not
considered here.

The updating rule for a plan’s utility is

Ūk = αUk + (1 − α)Ūk−1 (5)

where k denotes the iteration index, Uk is the experienced utility in
iteration k, Ūk is its smoothed counterpart, and 0 < α < 1 is the
learning rate of the agents. The larger α is, the more the agents update
their utility perception in reaction to the most recent iteration.

Based on the evaluation, each agent selects one plan to be executed
in the next run of the physical layer. The selection rule specifies the
probability of a plan transition from the currently selected plan (the
plan that has been executed in the previous run of the physical layer)
to the alternative plan. We have

pi

pj

=
κ + eγ(Ūi−Ūj)

κ + eγ(Ūj−Ūi)
(6)

where pi is the selection probability of the currently selected plan,
pj is the selection probability of the alternative plan, κ is a nonneg-
ative parameter that controls explorative behavior, γ is a parameter
that controls the rationality of the agent’s decision, and Ūi and Ūj

are the utilities for the currently selected and the alternative plans,
respectively.

The aforementioned formula comprises two aspects. If κ is set to
zero, (6) results in a logit model (stochastic user equilibrium, e.g., [31])
pi/pj = exp(2γ(Ui − Uj)). The nonnegative γ coefficient controls
the randomness in the model: The larger it gets, the more likely is the
alternative of higher utility to be chosen. The parameter κ introduces
an explorative component to the behavioral model. Increasing κ leads
to less influence of the logit model, i.e., more explorative behavior.
Sufficiently high values for κ result in an equal distribution of the
selection probabilities such that the risky and the safe plans are
selected with equal probabilities.

It is required that agents are forced from time to time to select the
alternative plan and to “renew” the plan’s utility. Otherwise, the danger
that an agent gets stuck with only one plan exists. If, for instance, the
risky plan is executed once on a bad day, it receives a low utility. In
the next iteration, the safe plan is executed and gains a better score.
If the utility difference between the risky and safe plans is sufficiently
high, there is a low probability that the logit model will ever select the
risky plan again. If the agent is forced to again select the risky plan,
which is controlled by κ, then there exists a substantial probability that
the risky plan is eventually executed on a good day and gains a better
utility. Consequently, the probability of a plan transition increases.

D. Guidance

A certain fraction f of agents is equipped with an in-vehicle device.
We can regard this device as a personal digital assistant (PDA),
which is supplied with link travel-time information from a TMC
and generates route recommendations. If an agent is equipped with
such a device, it will request the fastest route at departure. The route
recommendations are based on estimated expected travel times. The
estimated expected travel time of a route at any point in time is given
by max[t0, tq], where t0 denotes the free-flow travel time and tq the
time that it takes to process all vehicles that are currently on the route.
The value of tq is estimated based on the standard queuing theory for a
congested route, with tq = n/f , where n is the number of vehicles on



Fig. 3. Travel time and utility for guided (black) and unguided (gray) agents. (a) and (c) βlate = 0 C/h. (b) and (d) βlate = −100 C/h.

the route (determined by counting incoming and outgoing vehicles),
and f is the downstream flow capacity. That is, the travel time of a
route is either the free-flow travel time, as long as the load is below
its capacity, or the estimated time required to process the vehicles that
are already on the route. This travel-time estimate is consistent with
workings of the deployed queuing simulation.

Travelers equipped with an in-vehicle device are denoted as
“guided” agents and always comply with the guidance. This specifica-
tion implicitly accounts for guidance compliance in that f constitutes
the fraction of equipped and compliant travelers.

V. SIMULATION RESULTS

A. Parameter Setup

In the following simulation studies, the effects of the parameters
βlate and f are investigated. The parameter βlate, which denotes the
penalty for being late, controls the risk aversion of the agents. The
values are varied from 0 C/h (risk neutral) to −100 C/h (risk averse).
The parameter f represents the effective fraction of compliant agents
equipped with guidance devices and is varied from 0 (no equipped
agents) to 0.7 (70% of agents are equipped and compliant). Simulation
results with f > 0.7 are not shown here, because the simulation
exhibits heavy fluctuations with high equipment fractions; a discussion
of these conditions would go beyond the scope of this paper. All
remaining parameters are given as the following fixed values.

• Plan evaluation. The marginal utility for travel βtrav is set to
−6 C/h, and the desired arrival time t∗arr is uniformly set to 6:00
for all agents. The learning rate α is set to 0.2, i.e., slow learning.

• Plan selection. The parameter γ, which controls the agent’s
objective rationality, is set to 5, and κ, which controls the ex-
plorative behavior, is set to 2.

Simulation runs are conducted with 1000 iterations, which ensures
that the system reaches a steady state.

B. Results

In the base case with βlate = 0 C/h and f = 0, the users approxi-
mately equally distribute over both routes (500:500). As the users are

made more risk averse, i.e., as βlate is made increasingly negative,
more agents switch to the safe route. With βlate = −100 C/h, roughly
600 travelers use the safe route. As a consequence, the travel time on
the risky route on bad days and the average travel time over good and
bad days decreases. On one hand, decreasing βlate pushes the system
toward the safe route. On the other hand, the decreasing travel time on
the risky route partially counteracts this effect.

To investigate the effects of the guidance, the fraction f of equipped
users is varied from 0 to 0.7. Fig. 3(a) shows the travel time of both
the unguided and guided agents in the risk-neutral system (βlate =
0 C/h). At low equipment fractions, the travel-time savings of the
guided over the unguided agents are about 40 s. With increasing equip-
ment fractions, the unguided agents also benefit, which reduces the
equipment gain to approximately 25 s at f = 0.7. This effect occurs
because, on bad days, the guided vehicles avoid the bottleneck, thus
making it faster for the unguided vehicles. The utility [see Fig. 3(c)]
behaves qualitatively similar to Fig. 3(a), because travel-time values
are just multiplied with the marginal utility of traveling, and there is
no penalty for being late.

The picture for βlate = −100 C/h is similar to the case with
βlate = 0. However, by the increased absolute value of βlate, the
utility reactions are more pronounced. At low equipment fractions, the
travel-time savings are comparable with the risk-neutral system [see
Fig. 3(a)]. On the contrary, at high equipment fractions, unguided users
benefit even more than in the risk-neutral system, and the equipment
gain is reduced to only 10 s. The following dynamics behind this case
are quite complicated.

• Initially, at a low equipment fraction, the risky route is used just
up to capacity on bad days, because any increase of travel time
over the safe route is heavily punished for the risk-averse users.
This case also means that the risky route is underutilized on good
days.

• As the equipment fraction increases, the guided users have a
tendency, on bad days, to equilibrate the risky route with the
safe route. This case means that the risky route becomes more
reliable. If the risky route becomes more reliable, it becomes
more attractive for the unguided users, and thus, there is a shift
back to the risky route. Overall, the load of unguided users on



the risky route decreases more slowly with increasing equipment
fraction in the risk-averse system compared with the risk-neutral
system, which, in turn, exhibits a more pronounced travel-time
gain for the unguided users.

The utility gain of guided over unguided travelers, which cor-
responds to the willingness to pay for guidance, is initially about
0.08 C and decreases to 0.04 C with increasing equipment frac-
tion in the risk-neutral system [see Fig. 3(c)]. In the risk-averse
system [Fig. 3(d)], the utility gain is much more pronounced [note
the different scaling in Fig. 3(c) and (d)]. Starting at 1.2 C,
the utility gain decreases to approximately 0.3 C per user, although the
travel-time savings are lower than in the risk-neutral system. This
condition means that risk-sensitive users are willing to pay more for
route guidance compared with risk-neutral users, even if the effective
travel-time savings are of the same magnitude.

VI. DISCUSSION

The results of this simulation study show that risk-sensitive users
exhibit higher willingness to pay for route guidance compared with
risk-neutral users. This condition may appear trivial, because the
utility is a function of βlate. However, it demonstrates that there is
a substantial difference if we use the objective travel-time savings as
evaluation criteria or the individual utility gain. Moreover, it shows
the potential of the agent-based approach, because it allows us to
distinguish between certain user groups, such as guided and unguided
users, and to identify the individual utility gain or loss of each group.
Furthermore, the microsimulation-based approach lends itself to the
evaluation of complex real-world scenarios that would be intractable
for a formal mathematical analysis.

The identified willingness to pay is hard to compare with existing
empirical studies, because they all use different approaches for mone-
tarizing VOR or the risk aversion of travelers. However, what this study
shows is that there is a significant cost of uncertainty. In the presented
scenario, risk-averse users are willing to pay about 1.2 C for roughly
40-s travel-time savings in the extreme case of βlate = −100 C/h. In
the literature, we find different values for βlate: varying from 18 $/h
in the Vickrey bottleneck scenario [30], [32] to 15 C/h to
21 C/h in studies from Amelsfort and Bliemer [15], [17], or, as esti-
mated by Small, et al. [15], [17], values that are, on the average, about
three times the cost of travel. If we use βlate = −18 C/h (βlate =
3 · βtrav = 3 · (−6 C/h) = −18 C/h), the simulation results show
a willingness to pay of approximately 0.30 C for travel-time savings
of 45 s, i.e., a willingness to pay of 24 C/h (approximately 34 $/h).
These values are in the same magnitude as the estimates for VOR by
Lam and Small (from 12 $/h to 29 $/h) [12] and Liu et al. (21 $/h)
[13]. We have found no study that evaluates the value of βlate by trip
purpose, e.g., for a business traveler who wants to catch an airplane.

There are further aspects that should be addressed for a real-world
scenario, such as heterogeneous risk-taking behavior, a more realistic
route-guidance device, individual preferred arrival times, larger route-
choice sets, as well as departure time choice. The last aspect is rather
important, because we may argue that changes in departure time choice
more frequently occur than changes in route choice.

VII. CONCLUSION

This paper has presented simulation studies where travelers are
repeatedly faced with risky route-choice decisions. The sensitivity
of drivers toward risk and the effective equipment rate with route-
guidance devices are varied to investigate the potential benefit of such
devices in a system with uncertainty. For the synthetic scenario of this
paper, the following conclusions can be drawn.

• In a system with risk-neutral travelers (βlate = 0 C/h), the
average disutility of travel for a guided traveler is about 4% less
compared with an unguided traveler. This condition results in a
willingness to pay of about 0.08 C.

• In a risk-averse system (βlate = −100 C/h), the average disu-
tility of travel for a guided traveler is about 19% less compared
with an unguided traveler. This condition results in a willingness
to pay of about 1.2 C, i.e., a factor of 15 larger.

• Deploying guidance reduces the variance of travel time on the
risky route, which also results in less uncertainty for the unguided
users.

The model shows that the inclusion of risk aversion increases the
willingness to pay for guidance compared with risk-neutral agents,
even if the travel-time savings are of the same magnitude. This
evaluation is crucial for the design of ATIS. It demonstrates the benefit
for the user by not only reducing travel time but by reducing variability
as well.

In that context, note that, in the simulation-based approach, the
willingness to pay (economic benefit) directly comes from the indi-
vidual agents. This condition makes it possible to differentiate the
willingness to pay by attributes such as trip purpose or income. For
a private-sector ATIS provider, this condition will help test certain
market strategies and identify potential user groups, such as people
with tight schedules, where ATIS will really make a difference.
For a public-sector ATIS provider, this condition will help target
parts of the system that yield high overall economic benefits. Fi-
nally, the deployed microsimulation-based approach quite naturally
carries over to more complex scenarios, circumventing the diffi-
culties of capturing such scenarios with closed-from mathematical
equations.

REFERENCES

[1] C. Chorus, E. Molin, and B. van Wee, “Use and effects of advanced
traveler information services (ATIS): A review of the literature,” Transp.
Rev., vol. 26, no. 2, pp. 127–149, Mar. 2006.

[2] C. Chorus, E. Molin, T. Arentze, S. Hoogendoorn, H. Timmermans, and
B. van Wee, “Observing the making of travel choices under uncertainty
and information: Validation of a travel simulator,” presented at the Transp.
Res. Board Annu. Meeting, Washington, DC, 2006.

[3] D. Levinson, “The value of advanced traveler information systems for
route choice,” Transp. Res. Part C, vol. 11, no. 1, pp. 75–87, Feb. 2003.

[4] E. Avineri and J. N. Prashker, “Sensitivity of travel time variability: Trav-
elers’ learning perspective,” Transp. Res. Part C, vol. 13, no. 2, pp. 157–
183, Apr. 2005.

[5] M. Yang, Y. Liu, and Z. You, “The reliability of travel time forecasting,”
IEEE Trans. Intell. Transp. Syst., vol. 11, no. 1, pp. 162–171, Mar. 2010.

[6] B. Bartin and K. Ozbay, “Determining the optimal configuration of high-
way routes for real-time traffic information: A case study,” IEEE Trans.
Intell. Transp. Syst., vol. 11, no. 1, pp. 225–231, Mar. 2010.

[7] R. Balakrishna, H. N. Koutsopoulos, M. Ben-Akiva, B. M. F. Ruiz, and
M. Mehta, “Simulation-based evaluation of advanced traveler information
systems,” Transp. Res. Rec., vol. 1910, pp. 90–98, 2005.

[8] F. Marchal and A. de Palma, “Measurement of uncertainty costs with
dynamic traffic simulations,” Transp. Res. Rec., vol. 2085, pp. 67–75,
2008.

[9] M. A. Abdel-Aty, R. Kitamura, and P. P. Jovanis, “Using stated preference
data for studying the effect of advanced traffic information on drivers’
route choice,” Transp. Res. Part C, vol. 5, no. 1, pp. 39–50, Feb. 1997.

[10] K. V. Katsikopoulos, Y. Duse-Anthony, D. L. Fisher, and S. A. Duffy,
“The framing of drivers’ route choices when travel time information is
provided under varying degrees of cognitive load,” Hum. Factors, vol. 42,
no. 3, pp. 470–481, 2000.

[11] K. V. Katsikopoulos, Y. Duse-Anthony, D. L. Fisher, and S. A. Duffy,
“Risk attitude reversals in drivers’ route choice when range of travel time
information is provided,” Hum. Factors, vol. 44, no. 3, pp. 466–473, 2002.

[12] T. C. Lam and K. A. Small, “The value of time and reliability: Mea-
surement from a value pricing experiment,” Transp. Res. Part E, vol. 37,
no. 2/3, pp. 231–251, Apr.–Jul. 2001.



[13] H. X. Liu, W. Recker, and A. Chen, “Uncovering the contribution of
travel time reliability to dynamic route choice using real-time loop data,”
Transp. Res. Part A, vol. 38, no. 6, pp. 435–453, Jul. 2004.

[14] T. E. Knight, “An approach to the evaluation of changes in travel time
unreliability: A ‘safety margin’ hypothesis,” Transportation, vol. 3, no. 4,
pp. 393–408, Dec. 1974.

[15] K. A. Small, “The scheduling of consumer activities: Work trips,” Amer.
Econ. Rev., vol. 72, no. 3, pp. 467–479, Jun. 1982.

[16] R. B. Noland and K. A. Small, “Travel-time uncertainty, departure time
choice, and the costs of morning commutes,” Transp. Res. Rec., vol. 1493,
pp. 150–158, 1995.

[17] R. B. Noland and J. W. Polak, “Travel time variability: A review of
theoretical and empirical issues,” Transp. Rev., vol. 22, no. 1, pp. 39–54,
2002.

[18] D. Ettema and H. Timmermans, “Costs of travel time uncertainty and
benefits of travel time information: Conceptual model and numeri-
cal examples,” Transp. Res. Part C, vol. 14, no. 5, pp. 335–350,
Oct. 2006.

[19] A. de Palma and N. Picard, “Route-choice decision under travel time
uncertainty,” Transp. Res. Part A, vol. 39, no. 4, pp. 295–324, May 2005.

[20] J. L. W. V. Jensen, “Sur les fonctions convexes et les inégalités en-
tre les valeurs moyennes,” Acta Math., vol. 30, no. 1, pp. 175–193,
Dec. 1906.

[21] D. Bernoulli, “Exposition of a new theory on the measurement of risk,”
Econometrica, vol. 22, no. 1, pp. 23–36, Jan. 1954.

[22] J. von Neumann and O. Morgenstern, Theory of Games and Economic
Behavior. Princeton, NJ: Princeton Univ. Press, 1944.

[23] D. Kahneman and A. Tversky, “Prospect theory: An analysis of decision
under risk,” Econometrica, vol. 47, no. 2, pp. 263–291, Mar. 1979.

[24] Jul. 2009. [Online]. Available: www.matsim.org
[25] M. Balmer, K. W. Axhausen, and K. Nagel, “A demand generation frame-

work for large-scale micro simulations,” presented at the Transp. Res.
Board 85th Annu. Meeting, Washington, DC, 2006.

[26] N. Cetin, A. Burri, and K. Nagel, “A large-scale agent-based traffic mi-
crosimulation based on queue model,” presented at the Transp. Res. Board
Annu. Meeting, Washington, DC, 2003, Paper 03-4272.

[27] E. Cascetta, “A stochastic process approach to the analysis of temporal
dynamics in transportation networks,” Transp. Res. Part B, vol. 23, no. 1,
pp. 1–17, 1989.

[28] K. Nagel and G. Flötteröd, “Agent-based traffic assignment: Going from
trips to behavioral travelers,” in Proc. 12th Int. Conf. Travel Behav. Res.,
Jaipur, India, Dec. 2009.

[29] B. Raney and K. Nagel, “An improved framework for large-scale mul-
tiagent simulations of travel behavior,” in Towards Better Perform-
ing European Transportation Systems, P. Rietveld, B. Jourquin, and
K. Westin, Eds. Evanston, IL: Routledge, 2006, pp. 305–347.

[30] W. S. Vickrey, “Congestion theory and transport investment,” Amer. Econ.
Rev., vol. 59, no. 2, pp. 251–260, May 1969.

[31] Y. Sheffi, Urban Transportation Networks: Equilibrium Analysis With
Mathematical Programming Methods. Englewood Cliffs, NJ: Prentice-
Hall, 1985.

[32] R. Arnott, A. de Palma, and R. Lindsey, “A structural model of peak-
period congestion: A traffic bottleneck with elastic demand,” Amer. Econ.
Rev., vol. 83, no. 1, pp. 161–179, Mar. 1993.

[33] D. H. van Amelsfort and M. C. Bliemer, “Valuation of uncertainty in travel
time and arrival time: Some findings from a choice experiment,” in Proc.
45th Congr. Eur. Regional Sci. Assoc., 2005, pp. 1–24.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues false
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA <>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice




