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Abstract — This paper proposes a novel neural network training 
method that employs the hybrid exponential smoothing method and the 
Levenberg-Marquardt algorithm, which aims to improve the 
generalization capabilities of previously used methods for training 
neural networks for short-term traffic flow forecasting. The approach 
uses exponential smoothing to pre-process traffic flow data, by 
removing the lumpiness from collected traffic flow data, before 
employing a variant of the Levenberg-Marquardt algorithm to train the 
NN weights of a neural network model. This approach aids neural 
network training, as the pre-processed traffic flow data is more smooth 
and continuous than the original unprocessed traffic flow data. The 
proposed method was evaluated by forecasting short-term traffic flow 
conditions on the Mitchell freeway in Western Australia. In regards to 
the generalization capabilities for short-term traffic flow forecasting, the 
neural network models developed using the proposed approach 
outperform those that are developed based on the alternative tested 
algorithms, which are either designed particularly for short-term traffic 
flow forecasting or designed for enhancing generalization capabilities of 
neural networks. 

Index Terms:  Neural networks, exponential smoothing method, 
short-term traffic flow forecasting, Levenberg-Marquardt algorithm 

I. INTRODUCTION 

orecasting of road traffic flow conditions is essential for 
advanced traffic management information systems, which 
mainly aim to reduce traffic congestion and improve mobility 

of transportation. Short-term traffic flow forecasting, which has a 
horizon of only a few minutes, is highly suitable for traffic 
management information systems in supporting proactive 
dynamic traffic control to anticipate traffic congestion [3, 22, 57]. 
Short-term traffic flow forecasting models can be generated by 
conventional statistical methods such as filtering techniques [39, 
36], autoregressive integrated moving average (ARIMA) 
methods [43] and k-nearest-neighbor approaches [10]. Even if the 
models developed by such statistical methods can obtain 
reasonable prediction accuracy for future traffic flow conditions, 
they have two common limitations: a) it is difficult to specify the 
most suitable model without human expertise; b) the models 
generated by these methods may not be able to capture some 
strongly non-linear characteristics of short-term traffic flow data. 
In order to address these limitations, neural network (NN) 
approaches have commonly been used for short-term traffic flow 
forecasting [7, 12, 14, 15, 16, 28]. However, the sole use of NN 
approaches may not achieve the best generalization capability for 
traffic flow forecasting, and usually the methodologies for 
enhancing generalization capabilities are discussed within the 
following two classes: 

a) Hybrid NN approaches, that incorporate other 
computational intelligence methods or statistical prediction 
methods that have been investigated recently for enhancing the 
generalization capabilities of NNs. A commonly used method for 
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time series forecasting, Takagi-Sugeno fuzzy NNs [24, 25, 35, 
37], which combine the mechanisms of fuzzy logic and 
feed-forward NNs, has been proposed for short-term traffic flow 
forecasting [20, 40, 49]. Stathopoulos et al. [44] proposed a 
hybrid NN to forecast short-term traffic flow, which is developed 
by a fuzzy-rule-based system, which combines the forecasting 
outputs from a NN and a Kalman filter. Srinivasan et al. [42] 
proposed a hybrid NN which consists of two components: a fuzzy 
filter and a feed-forward NN. The fuzzy filter performs the 
clustering operation on traffic flow data and provides a rough 
prediction, which is the input of the feed-forward NN. Accurate 
short-term traffic flow forecasting is produced by the 
feed-forward NN, which utilizes each cluster as input for 
modeling the input–output relation. Tan et al. [45] has proposed a 
hybrid NN, which combines the mechanism of a NN with the 
classical forecasting methods including moving average and 
autoregressive moving averages. The output forecasting results 
obtained by the classical forecasting methods are used as inputs of 
the NN, and the NN generates the final traffic flow forecast based 
on these inputs. While these hybrid NN approaches outperform 
the pure NN approach on short-term traffic flow forecasting, 
more NN parameters are required to be tuned or optimized on 
these hybrid NNs than those on the pure NNs. More 
computational power and memory space are required when 
implementing hybrid NNs than are required by the pure NNs. The 
memory footprints of hybrid NNs were found to be very large 
which limits their potential applications. The hybrid NNs are 
therefore not suitable to be tuned adaptively compared with the 
pure NNs, as more expensive processors with more memory 
space and computational power are required for the hybrid NNs. 
 b) Preventing overfitting in neural network training 
enhances generalization capabilities. This can be done by adding 
noise to the available training data to generate larger sets of 
training samples [26]. Generalization performance can be 
enhanced, but more computational time and effort is required due 
to the additional training data that is required to be fitted by the 
NN models. Another commonly used approach is cross validation 
[41], where the training data is divided into two data sets: the 
fitting data set and the validation data set. Only the fitting data set 
participates in NN learning, and the validation data set is used to 
compute validation error, which approximates the generalization 
error. Once the validation error increases, the training is 
terminated because the NN model may begin to fit the noise in the 
training data and overfitting may occur. Liu et al. [32] mentioned 
that applying proper cross validation is not a straightforward way 
to avoid overfitting. However, it is difficult to ensure that the 
validation data set is representative enough regarding the data 
distribution so that the validation error can provide an unbiased 
estimate of the real generalization capability for short-term traffic 
flow forecasting [27]. 
 In this paper, a simple but effective approach, namely hybrid 
exponential smoothing and Levenberg-Marquardt (LM) 
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algorithm (EXP-LM), is proposed to train NNs, in order to 
produce high generalization capability in short-term traffic flow 
forecasted. EXP-LM incorporates the mechanisms of the 
exponential smoothing method and the LM algorithm. Observing 
the characteristics of the traffic flow data indicates that its 
landscape is highly lumpy. As lumpiness is included in training, 
training error can be decreased to a small value by fitting the 
lumpiness. However, having a small training error that is too 
small may degrade the generalization capability on the short-term 
traffic flow forecasting on unseen data. If the lumpiness of the 
original traffic flow data is removed, the generalization capability 
would be enhanced [55]. In EXP-LM, the exponential smoothing 
method [11, 48] is used to remove lumpiness in traffic flow data 
before applying the data to develop NN models. It is used because 
it is simple, and only a relatively small extra computational effort 
is required [29]. A similar approach has been applied on electric 
short term load forecasting in which better results can be achieved 
than those obtained by only using the original data [13]. After 
removing the lumpiness based on exponential smoothing, 
EXP-LM uses the LM algorithm to train NNs based on the 
exponential smoothed data. The resulting NNs are intended to fit 
the traffic flow characteristics where the lumpiness is removed. 
Comparisons were conducted based on the NNs generated by the 
EXP-LM and the other existing approaches to train NNs for 
traffic flow forecasting. The results show that NNs with better 
generalization capabilities in short-term traffic flow forecasting 
can be obtained by using the EXP-BP compared with the other 
tested methods. 
 The rest of the paper is organized as follows. Section II shows 
the configuration of the NN for short-term traffic flow 
forecasting. Section III discusses the mechanisms of the 
EXP-LM. Section IV shows and discusses the results obtained by 
EXP-LM and the other tested algorithms for forecasting 
short-term traffic flow conditions in different locations of the 
Mitchell freeway in Western Australia. Finally, a conclusion is 
given in Section V.  

II. NNS FOR SHORT-TERM TRAFFIC FLOW FORECASTING 

The NN for short-term traffic flow forecasting was developed 
based on traffic flow data collected from n detector stations (D1, 
D2, … Dn), which are located between the off-ramp and on-ramp 
of the freeway as illustrated in Fig. 1. Di  captures two traffic flow 
measures, the average speed si(t) of vehicles passing through and 
the average headway hi(t) between two consecutive vehicles 
passing through between time t and time t+Ts, where Ts is the 
sampling time. In general, if the average captured speeds of the 
vehicles are near the speed limit of the freeway and the average 
captured headway between vehicles is high, traffic flow condition 
is considered to be smooth on the freeway. 

Future short-term traffic flow can be forecasted by the NN, 
based on the current and past traffic flow. The current traffic flow 
at time t is indicated by the current average speed si(t) and current 
average headway hi(t). The past traffic flow is indicated by the 
past average speed si(t-k·Ts) and past average headway hi(t-k·Ts), 
which was collected by Di at time (t-k·Ts) with i=1, 2, …, n and 
k=1, 2, …, p, while the past traffic flow data within p sampling 
time interval/period is collected. The future short-term traffic 
flow, which is the output generated by the NN, is indicated by the 

predicted average speed of vehicles ( )ˆ
L s

s t mT+  passing through 

the L-th detector station DL at time (t+m·Ts), where future traffic 
flow with m sampling time ahead is forecasted. 

 
Fig. 1 Schematic of short-term traffic flow forecasting of the freeway 

To predict the future traffic flow at the location of DL, the 
following multilayer (3 layers) NN is implemented, where 
satisfactory results can be obtained for traffic flow forecasting [7, 
14, 16, 22]. The NN is formulated as: 
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γ  are the parameters of the NN, 

namely NN weights; and ( ).Ψ  is the activation function of the 

hidden set in which sigmoid functions is a commonly used 
function. The NN weights can be determined based on the ND 
collected traffic flow data which is in the form of  

( ) ( ) ( ),  d l l lθ ϕ=     with l=1, 2, … ND,       (2) 

where ND is the number of collected traffic flow data for training 

and the ( )θ l  is the l-th future traffic flow data, which is the 

average speed of vehicles collected from the L-th detector station 

at the time ( )( )st l mT+ ; ( )θ l is denoted by  

( ) ( )( )L sθ l s t l mT= + ;               (3) 

( )lϕ  is the l-th current and past traffic flow data, which is 

collected from the n detector stations and is denoted by: 
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( )( )i
h t l  and ( )( )i

s t l  are the average headway between cars 

and the average speed of cars collected by Di  respectively at time 

( )t l with respect to the l-th traffic flow data. Based on the 

collected traffic flow data ( ) ( ) ( ),  d l l lθ ϕ=     with l=1, 2, … 

ND , the NN can be evaluated based on the mean absolute relative 
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error (eMARE), which indicates the differences between the 
collected future traffic flow data and the predicted future traffic 
flow. The eMARE is formulated as: 

( ) ( )

( )
1

ˆ 
1

 

DN

l
MARE

D

l l

e
N l

θ θ

θ
=

−

=
∑

,          (5) 

where ( )lθ  is the l-th collected future traffic flow data; ( )ˆ lθ  is 

the prediction of future traffic flow, which is denoted by 

( ) ( )( )ˆ ˆ
L s

l s t l mTθ = + ;            (6) 

and ( )( )ˆ
L s

s t l mT+  is determined based on equation (1) to 

forecast the average future traffic speed at the location of DL. 
Then, the Levenberg-Marquardt algorithm, namely LM 

algorithm, is a commonly used method to train NNs by 
minimizing the mean absolute relative error 

MARE
e  [60]. It starts 

by randomly generating the first two initial guesses of NN weights 
(0)w  and (1)w  at the 0-th and the 1-st iterations, where  
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with i = 1,2, …, n, j = 1,2, …, M, and k = 1,2,…,p respectively. 

Then the LM algorithm updates the NN weights at the ( )1 -thς +  

iteration using the following formulation: 

( ) ( ) ( )( ) ( )( ) ( )( )
1

1 T Tw w J w J w I J w Rς ς ς ς µ ς
−

 + = + +   

                      (9) 

where ( ) ( ) ( ) ( ) ( ) ( )[ ]TDD NNR θθθθθθ ˆ...2ˆ21ˆ1 −−−=   (10) 

The details of determination of the Jacobian matrix, ( )( )J w ς , 

can be referred to [60]. To forecast average headway, similar 

formulation can be used by replacing ( )( )ˆ
L s

s t l mT+  with the 

forecast average headway, ( )( )ˆ
L s

h t l mT+ , in equation (1). Also, 

equation (3) is redefined by ( ) ( )( )L sθ l h t l mT= + . 

III. HYBRID EXPONENTIAL SMOOTHING AND 

LEVENBERG-MARQUARDT ALGORITHM 

When the NN is being trained by the LM algorithm, the 
goodness-of-fit of the NN increases, and at the same time eMARE 
decreases. When eMARE is equal to zero, the NN can fit all the 
collected traffic flow data, and also all the characteristics of the 
collected traffic flow data are included. For example, Fig. 2 
shows the traffic flow data regarding the average speeds of 
vehicles. The traffic flow data was collected from Mitchell 
Freeway, which is near the on-ramp of Reid Highway, Western 
Australia. It was collected over the 2-hour peak traffic periods 
(7.30 – 9.30 am) on 18 December 2008, where the sampling time 
was 1 minute. A NN can be obtained by fitting all the collected 
traffic flow data that has lumpy characteristics. However, these 
lumpy characteristics may not be helpful for forecasting future 
short-term traffic flow. The inclusions of these lumpy 
characteristics may overfit the NN, which can achieve a small 

eMARE with respect to the collected traffic flow data used for 
training purposes, but cannot achieve good generalization 
capability for unseen data. 

To avoid overtraining, it is essential that this lumpy 
characteristic be filtered from the collected traffic flow data 
before implementing the LM algorithm to train the NNs. In this 
research, a new algorithm, namely hybrid exponential smoothing 
and LM (EXP-LM), which incorporates the mechanisms of the 
exponential smoothing method and the LM algorithm, is 
proposed to train NNs for traffic flow forecasting. The EXP-LM 
first uses the mechanism of the exponential smoothing method, a 
simple and intensively used method for pre-processing time series 
data [4], by filtering out the lumpiness. It then uses the 
mechanism of the LM algorithm to train the NNs based on the 
pre-processed data which is denoted by 

( ) ( ) ( )' ' ,  d l l lθ ϕ=    with l =1, 2, …,ND. 
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Fig. 2 Traffic flow data collected from 18 December 2008 

In EXP-LM, the l-th filtered traffic flow data, ( )' lθ , is 

modified by the (l-1)-th filtered traffic flow data, ( )' 1lθ − , and 

the (l-1)-th collected traffic flow data, ( )1lθ − , based on a 

proportion of the error ( ) ( )( )1 ' 1l lθ θ− − − , which is expected at 

the l-th traffic flow data. The l-th filtered traffic flow data, ( )' lθ , 

with l≥ 3 is defined by the following equation: 

( ) ( ) ( ) ( )( )' ' 1 1 ' 1l l l lθ θ α θ θ= − + − − −       (11) 

where α is the smoothing constant within the range, 0.1 < α ≤ 0.9. 
The 1-st and the 2-nd filtered traffic flow data are initialized 

by ( ) ( )' 1 1θ θ=  and ( ) ( ) ( ) ( )( )' 2 1 2 3 3θ θ θ θ= + +  respectively. 

If the value of the exponential smoothing parameter α is 

larger, then the change in the filtered traffic flow data ( )' lθ  is 

more rapid, and the more lumpy characteristics in the traffic flow 
data can be retained. If the value of α is smaller, then the change in 

the filtered traffic flow data ( )' lθ  is slower, and the more lumpy 

characteristics in the traffic flow data can be filtered out. To 
estimate the best exponential smoothing parameter α which can 
be used by EXP-LM for filtering lumpiness in traffic flow data, a 

grid search with increments of ( )0.8 /
G

N  of the parameter space 

between α =0.1 and α =0.9 is used, where 
G

N  is the number of 

grids of the grid search. The higher 
G

N  is, the smaller ( )2R α  

can be obtained. The best α is chosen so as to produce the smallest 
sum of squares for the residuals which is defined as: 
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( ) ( ) ( )( )
2

2
2

2 2
1

'
DN

i

R i i
α

α θ θ
=

= −∑           (12) 

The filtered traffic flow data which was pre-processed by the 
exponential smoothing method is shown in Fig. 2. It shows that 
the filtered traffic data seeks to filter out the lumpiness due to 
irregular variation on the collected traffic flow data. Lumpiness 
may downgrade the generalization capability of the NN. If the 
filtered traffic flow data which excludes the lumpiness is used for 
training the NN, better generalization capability is more likely to 
be developed by the EXP-LM. The mechanism of EXP-LM is 
illustrated by the following steps: 

Step 1: Collect the traffic flow data ( ) ( ) ( ),  d l l lθ ϕ=     in the form of 

equation (2) with l=1, 2, … ND.  
Step 2: Select the best exponential smoothing parameter α by using the 

grid search where 0.1 < α ≤ 0.9: 
Step 2.1: Initialize NG exponential smoothing parameters as 

( ) ( )2 2

0.8
1 0.1

G

i i
N

α
 

= − + 
 

,  

with  i2=1, 2, …, NG, where NG is a constant. 

Step 2.2: Evaluate the sum of squares for the residuals, ( )( )2
2R iα , 

for all ( )2iα  with i2=1, 2, …, NG, based on (12). 

Step 2.3: Determine the best exponential smoothing parameter, 

( )2best iα α= , where ( )( ) ( )( )2 2
2 3R i R iα α<  with 2 3,i i∀ , but  

2 3i i≠ . 

Step 3: Generate the filtered traffic flow data ( ) ( ) ( )' ' ,  d l l lθ ϕ=     

based on exponential smoothing method in which αbest is used: 

Step 3.1: Initialize the first and second filtered data ( )' 1θ  and  

( )' 2θ , respectively.  

Step 3.2: Generate the l-th filtered traffic flow data based on 
equation (11), where l ≥ 3. 

Step 4: The NN is developed based on the filtered traffic flow data 

 ( ) ( ) ( )' ' ,d l l lθ ϕ=    using the LM algorithm: 

Step 4.1: Initialize the first and second sets of NN weights,  

( )0w  and ( )1w  by equations (7) and (8) respectively.  

Step 4.2: Update the NN weights, ( )1w ς + , based on equation 

 (9), where 
MAREe  and  ( )

( )
( )( )ˆ ˆ

L s
ww

l s t l mT
ς

θ = +  is  

determined by equations (5) and (1) respectively. 
Step 4.3: Goto Step 4.2 until the termination iteration is  

reached or eMARE reaches a satisfactory value. 

IV. EXPERIMENTAL RESULTS  

In this section, the effectiveness of the EXP-LM method for 
training NN models for short-term traffic flow forecasting is 
evaluated based on traffic flow data collected from a freeway in 
Western Australia. First, comparisons between the EXP-LM and 
the other LM algorithms, which involve mechanisms for avoiding 
overfitting, are undertaken. Then results based on the EXP-LM, 
which integrates with other advanced LM algorithms, are 
presented. Finally, the results of further evaluations are given to 
further demonstrate the effectiveness of the LM algorithms. 

A. Traffic flow data  

The NNs were developed using 12 traffic flow data sets, which 
are illustrated in Table 1, where the dates and locations of traffic 

flow data taken are shown. The traffic flow data sets were 
collected from weeks 38, 41 and 52 in 2008, and weeks 2, 12 and 
27 in 2009. Six of the traffic flow data sets (Reid-2008-38, 
Reid-2008-41, Reid-2008-52, Reid-2009-02, Reid-2009-12 and 
Reid-2009-27) were collected from the Reid Highway and 
Mitchell Freeway intersection, Western Australia, where the two 
detector stations were installed to collect the data. These two 
detector stations were located near the on-ramp and off-ramp of 
Reid Highway respectively. The other six traffic flow data sets 
(Erindale-2008-38, Erindale-2008-41, Erindale-2008-52, 
Erindale-2009-02, Erindale-2009-12 and Erindale-2009-27) 
were collected from the Erindale Street and Mitchell Freeway 
intersection, Western Australia, where the three detector stations 
were installed to collect data. These three detector stations were 
located near the off-ramp of Erindale Road, between the off-ramp 
and the on-ramp of Erindale Road, as well as near the on-ramp of 
Erindale Road, respectively. 

The traffic flow data sets were collected over the 2-hour peak 
traffic period (7.30 – 9.30 am) on the five business days of the 
week, Monday, Tuesday, Wednesday, Thursday and Friday. 60 
seconds (1 minute) of sampling time were used and a total of 600 
observations were included in each set of traffic flow data. Each 
traffic flow data set was divided into two sub-sets. The first 
sub-set of traffic flow data, namely training data, collected from 
Monday to Thursday (comprising 80% of all the observations), 
was used for training the NNs. The second sub-set of traffic flow 
data, namely test data, collected from Friday (comprising 20% of 
all the observations), was used to evaluate the generalization 
capability of the trained NNs.  

Table 1 Description of the 12 collected traffic flow data sets 
Data collection dates Data collected 

from the 

intersection of 

Reid Highway 

Data collected 

from the 

intersection of 

Erindale Road 

Week 38 in 2008 

(15 Sep. 2008 – 19 Sep. 2008) 

Reid-2008-38 Erindale-2008-38 

Week 41 in 2008 

(6 Oct. 2008 – 10 Oct. 2008) 

Reid-2008-41 Erindale-2008-41 

Week 52 in 2008 

(22 Dec. 2008 – 24 Dec. 2008) 

Reid-2008-52 Erindale-2008-52 

Week 02 in 2009 

(5 Jan. 2008 – 9 Jan. 2009) 

Reid-2009-02 Erindale-2009-02 

Week 12 in 2009 

(16 Mar. 2008 – 20 Mar. 2009) 

Reid-2009-12 Erindale-2009-12 

Week 27 in 2009 

(29 Jun. 2008 – 3 Jul. 2009) 

Reid-2009-27 Erindale-2009-27 

 

B. Experimental results 

The EXP-LM was implemented in Matlab. Four NNs (namely 
Re
2

id
NN , Re

6
id

NN , 2
Erindale

NN  and 6
Erindale

NN ) were developed to 

forecast short-term traffic flow regarding Reid Highway and 

Erindale Road. For Reid Highway, Re
2

idNN  and Re
6

idNN  were 

developed to forecast traffic flow condition near the on-ramp of 
Reid Highway with two and six sampling periods ahead of time, 

respectively. For Erindale Road, 2
ErindaleNN  and 6

ErindaleNN  were 

developed to forecast traffic flow between the on-ramp and 
off-ramp of Erindale Road with two and six sampling periods 
ahead of time, respectively. They all used the last six sampling 
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periods of the past traffic flow conditions to forecast the future 
traffic flow conditions. 

1) Comparison within LM methods 

To evaluate the effectiveness of EXP-LM, the following 
algorithms have been applied and the results have been compared 
with those obtained by the EXP-LM. 
1. Standard LM algorithm, namely S-LM, which is identical to 

EXP-LM except that no filtering method is involved. The 
results obtained by S-LM can be used to compare the effect of 
using the exponential smoothing method, as the only 
difference between S-LM and EXP-LM is that EXP-LM 
involves exponential smoothing method to pre-process data 
but S-LM does not. 

2. The hybrid simple moving average and LM algorithm 

namely SM-LM, uses a simple moving average method as a 
smoothing method to filter the lumpiness in traffic flow data 
before using the LM algorithm to train the NNs. In the 

SM-LM, the l-th filtered traffic flow data, ( )' lθ  is generated 

based on the past four traffic flow data as: 

( ) ( ) ( ) ( ) ( )( )
1

' 1 2 3 4
4

l l l l lθ θ θ θ θ= − + − + − + −  (13) 

with l>4, where ( ) ( )' 1 1θ θ= , ( ) ( )' 2 2θ θ= , ( ) ( )' 3 3θ θ=  

and ( ) ( )' 4 4θ θ= . 

3. The hybrid weighted moving and LM algorithm, namely 

WM-LM, use the weighted moving method to filter lumpiness 
in the traffic flow data. In the WM-LM, the l-th filtered traffic 

flow data, ( )' lθ , is generated based on the past four traffic flow 

data as: 

( )
( ) ( ) ( ) ( )( )4 1 3 2 2 3 4

'
10

l l l l
l

θ θ θ θ
θ

⋅ − + ⋅ − + ⋅ − + −
=  (14) 

with l>4, where ( ) ( )' 1 1θ θ= , ( ) ( )' 2 2θ θ= , ( ) ( )' 3 3θ θ=  

and ( ) ( )' 4 4θ θ= . 

The results obtained by SM-LM, WM-LM and EXP-LM can 
be used to compare different smoothing methods used on the 
algorithms for training neural networks. 

4. The cross-validation based LM algorithm, namely 

LM-CROSS-(τ ), uses the mechanisms of cross-validation [2, 
38] to avoid overtraining NNs. In LM-CROSS-(τ ), the fitting 
data (comprising 60% of all the observations) was used for 
computing the NN weights, while the cross-validation data 
(comprising 20% of all the observations) was used to prevent 
overfitting when training the NNs. The error for the 
cross-validation data is monitored during the training process. It 
normally decreases during the initial phase of training, as does 
the error for the training data. When the NN begins to overfit the 
training data, the error for the cross-validation data begins to 
increase. LM-CROSS-( τ ) stop training the NNs, when the 
error for the cross-validation data at the ( ς τ+ )-th iteration is 

higher than those at the ς -th iteration. LM-CROSS-(5) and 

LM-CROSS-(10) were implemented. As LM-CROSS-(τ ) is a 
commonly used method for avoiding overfitting, the results 
obtained by LM-CROSS-(τ ) is significant to compare with the 
results obtained by EXP-LM. 
The following parameters have been used in the five 

algorithms: the number of hidden nodes used in the NNs 

is 2log (480) 9≈ , in which the number of training data, 
D

N , is 

480 and 2log ( )
D

N  is the recommended number of hidden nodes 

suggested in other works, such as [47]; the termination iteration is 
100; termination occurs in EXP-LM, SM-LM, and WM-LM, 

when the termination iteration is reached or 
MARE

e  is less than 

0.01; termination occurs in LM-CROSS-(5) and 
LM-CROSS-(10), when the error for the validation data 
increases. 
 All these algorithms were run for 30 times with different initial 
guesses of NN weights, and the results for the 30 runs were 
recorded. Table 2 shows the mean training error and variance of 
training errors among the 30 runs of the algorithms on computing 

NN weight of Re
6

idNN  and Erindale
6NN  regarding all data sets. The 

ranks of mean training errors among the algorithms are also 
shown. The results show that averages of mean training errors 
obtained by S-LM, LM-CROSS-(2) and LM-CROSS-(5), which 
do not involve filtering of lumpiness in traffic flow data, are 
smaller than those obtained by the EXP-LM, SM-LM and 
WM-LM, which do involve filtering of lumpiness in traffic flow 
data. In other words, the poorer fitting capability for the collected 
traffic flow data was obtained by the EXP-LM, SM-LM and 
WM-LM. 
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Fig. 3 Mean test errors obtained for Reid Highway and Erindale Highway using 

EXP-LM, SM-LM, WM-LM, S-LM, LM-CROSS(5) and LM-CROSS(10) 
To evaluate the generalization capability of the NNs developed 

based on the algorithms, the test data, which was not involved on 
training the NNs, was used. The mean test errors and variances of 
test errors among the 30 runs were recorded in Table 3. Also, the 
results obtained are in bold font, when they achieve the smallest 
test errors among the others. The average mean test errors, 
average variance of test errors, average ranks and the number of 
first ranks obtained by the algorithms are shown in the last four 
rows of the table. It can be found from Table 3 that the NNs 
trained by EXP-LM yield the smallest average of mean test errors 
and the best average rank compared with those obtained by the 
other five algorithms. EXP-LM can achieve 9 first ranks out of 12 
tests, while SM-LM can achieve only 2 first ranks out of 12 tests 
and WM-LM can achieve only 1 first rank out of 12 tests. S-LM, 
LM-CROSS-(5) and LM-CROSS-(10) cannot achieve any first 
rank for the 12 tests. Therefore, these results indicate that in 
general EXP-LM can find the NNs with the best generalization 
capability when compared with those obtained by the other tested 
algorithms (S-LM, LM-CROSS-(5), LM-CROSS-(5), SM-LM 
and WM-LM). Also, the average variances of test errors obtained 
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by EXP-LM are the lowest among all algorithms. These results 
show that EXP-LM can produce a more stable generalization 
capability than the other algorithms. Also, Fig. 3 shows the mean 
test errors obtained by all algorithms. It shows, in general, the 
mean test errors obtained by EXP-LM are the smallest. 

 
Table 2 Training error obtained for Reid Highway based on EXP-LM, SM-LM, 

WM-LM, S-LM, LM-CROSS-(5) , LM-CROSS-(10) 
   EXP-LM SM-LM WM-LM S-LM LM-CROSS

-(5) 
LM-CROSS

-(10) 
mean 8.73 10.36 8.60 7.34 5.46 6.43 Reid-2008

-38 var 1.97 0.69 0.96 3.23 2.58 4.21 
mean 7.93 4.91 5.47 3.27 3.01 5.28 Reid-2008

-41 var 0.797 1.64 1.29 4.40 2.52 4.34 
mean 5.03 6.06 6.19 3.71 3.74 3.87 Reid-2008

-52 Var 0.31 0.53 0.64 0.32 1.25 0.59 
mean 3.72 5.08 3.85 3.69 3.42 3.99 Reid-2009

-02 Var 0.28 0.46 0.39 3.69 0.93 0.77 
mean 11.03 10.23 9.96 8.27 6.10 7.05 Reid-2009

-12 Var 0.33 0.82 0.65 3.14 4.33 1.83 
mean 8.23 8.42 7.70 7.51 6.97 6.48 

id
NN

Re
6  

Reid-2009
-27 Var 1.22 0.84 1.86 1.48 2.83 1.80 

mean 10.38 10.44 9.30 6.60 8.32 8.21 Erindale-2
008-38 Var 1.26 0.64 1.09 3.65 2.30 4.21 

mean 5.55 6.83 5.19 4.79 4.04 5.48 Erindale-2
008-41 Var 0.66 1.18 1.31 4.59 1.66 4.18 

mean 5.27 6.09 5.17 3.76 4.21 3.41 Erindale-2
008-52 Var 0.28 0.66 0.64 0.54 1.72 0.57 

mean 4.93 4.39 4.26 4.30 4.01 3.93 Erindale-2
009-02 Var 0.28 0.29 0.54 2.84 1.23 0.83 

mean 9.01 7.66 11.97 6.83 7.06 8.26 Erindale-2
009-12 Var 0.29 0.76 0.80 2.33 5.68 3.20 

mean 12.51 9.48 7.44 8.86 8.03 6.64 

Erindale
6NN

 

Erindale-2
009-27 Var 1.22 1.00 1.30 1.66 3.48 2.91 

Average mean  6.22 6.57 6.56 4.76 4.97 4.77 
Average variance  0.19 0.34 0.34 1.01 2.28 2.04 
Average rank  4 6 5 1 3 2 

 
Table 3 Test error obtained for Reid Highway and Erindale Highway based on 

EXP-LM, SM-LM, WM-LM, S-LM, LM-CROSS-(5) , LM-CROSS-(10) 
   EXP-LM SM-LM WM-LM S-LM LM-CROSS

-(5) 
LM-CROSS

-(10) 
mean 10.93 11.54 9.90 14.86 10.01 12.35 Reid-2008

-38 Var 53.00 42.28 37.17 46.34 19.80 36.22 
mean 9.34 12.08 10.81 16.24 10.73 15.44 Reid-2008

-41 Var 4.28 8.85 7.63 14.02 10.42 8.36 
mean 4.82 5.14 6.99 9.90 6.11 8.11 Reid-2008

-52 Var 9.90 11.09 7.85 76.10 4.32 91.41 
mean 2.31 2.09 2.44 4.61 3.15 3.26 Reid-2009

-02 Var 0.07 0.30 0.25 1.49 1.33 1.54 
mean 12.80 15.31 23.57 16.36 12.95 17.07 Reid-2009

-12 Var 57.11 235.3 170.8 34.28 44.09 67.58 
mean 8.52 7.94 8.10 10.86 11.88 12.08 

id
NN

Re
6  

Reid-2009
-27 Var 1.66 0.51 1.84 6.52 3.44 3.76 

mean 4.21 4.21 4.16 5.12 5.54 4.53 Erindale-2
008-38 Var 2.18 2.12 3.53 2.12 1.42 1.59 

mean 7.48 7.99 8.97 7.49 7.53 7.41 Erindale-2
008-41 Var 1.01 1.25 1.51 1.86 1.24 2.26 

mean 5.84 8.19 11.90 7.92 6.56 6.24 Erindale-2
008-52 Var 1.31 5.67 5.03 11.25 3.86 4.00 

mean 6.75 7.44 6.62 6.93 7.06 6.04 Erindale-2
009-02 Var 1.91 3.04 2.89 1.13 1.12 2.54 

mean 9.04 13.83 13.16 14.09 11.90 11.07 Erindale-2
009-12 Var 14.99 19.10 25.91 18.72 8.08 28.76 

mean 3.93 3.94 3.15 6.03 6.25 5.26 

Erindale
6NN

 

Erindale-2
009-27 Var 0.43 2.23 2.04 1.69 1.84 1.50 

Average mean  6.25 6.96 7.50 7.97 7.43 7.95 
Average variance  8.28 12.60 15.81 12.96 16.39 13.56 
Average rank  1 2 4 6 3 5 
Number of first ranks 9 2 1 0 0 0 

The results obtained are in bold font, when they achieve the smallest test errors among the others  
 

In addition, the t-test [56] was used to evaluate the significance 
of the hypothesis that the sample mean of the test errors of the 
NNs trained by EXP-LM are smaller than those trained by the 
other algorithms (S-LM, LM-CROSS-(5), LM-CROSS-(5), 
SM-LM or WM-LM). The t-values between EXP-LM and the 
other algorithms are shown in Table 4. Based on the t-distribution 
table, if the t-value is higher than 1.699, the significance is 95% 
confidence level, which means that the test errors of the NNs 
trained by EXP-LM are smaller than those trained by the other 

algorithm with 95% confidence level. The t-value can be 
determined by: 

 2 1

2 2
2 2 1 1

-value
/ /

t
N N

µ µ

σ σ

−
=

+
, 

where 1µ  is the mean test error of the NNs trained by the 

EXP-LM and 2µ  is the one for the other compared algorithm; 
2
1σ  is the variance of test errors of the NNs trained by the 

EXP-LM and 2
2σ  is the one for the other compared algorithm; 

1N  and 2N  are the number of tests performed by EXP-LM and 

the other compared algorithm, respectively. The t-values are in 
bold fonts when confidence level is above 95%. In the last row of 
the table, the number of data sets that the EXP-LM performs 
significantly better than the other algorithms is shown. For 
example, comparing EXP-LM and S-LM, EXP-LM is 

significantly better than S-LM on 10 data sets ( Re
6

id
NN  for 

Reid-2008-38, Reid-2008-41, Reid-2008-51, Reid-2009-02, 

Reid-2009-12 and Reid-2009-27, as well as Erindale
6NN  for 

Erindale-2008-38, Erindale-2008-52, Erindale-2009-02 and 
Erindale-2009-27). Although EXP-LM cannot outperform 
significantly on all data sets, EXP-LM in general offered much 
better performance than did all the other algorithms. 

 
Table 4 T-values between EXP-LM to the other algorithms (SM-LM, WM-LM, 

S-LM, LM-CROSS-(5), LM-CROSS-(10)) for Reid Hwy and Erindale Hwy 
  SM-LM WM-LM S-LM LM- 

CROSS-(5) 
LM- 

CROSS-(10) 
Reid-2008-38 0.34 2.97 2.16 0.59 0.82 
Reid-2008-41 4.14 6.39 8.84 1.99 9.40 

Reid-2008-52 0.38 1.74 3.00 1.88 1.79 

Reid-2009-02 1.91 9.03 10.10 3.92 4.13 

Reid-2009-12 0.81 2.76 2.04 0.085 2.10 

id
NN

Re
6  

Reid-2009-27 2.12 5.23 4.49 8.17 8.39 

Erindale-2008-38 0.00 0.11 2.40 3.83 0.90 
Erindale-2008-41 1.86 5.16 0.04 0.19 0.20 
Erindale-2008-52 4.88 13.20 3.22 1.73 0.95 
Erindale-2009-02 1.71 0.32 5.72 0.97 1.85 

Erindale-2009-12 4.49 3.53 0.99 3.26 1.68 

Erindale
6NN

Erindale-2009-27 0.03 2.72 7.89 8.43 5.24 

Number of data sets that 
EXP-LM can obtain significantly 
better results 

7 10 10 8 7 

Bolded t-values indicate that significance is 95% confidence level. 
 

These results show that the average of mean training errors 
obtained by EXP-LM are larger than those obtained by the other 

five algorithms on training Re
6

idNN  and Erindale
6NN , but the 

average of mean test errors and average of variances of mean test 
errors obtained by EXP-LM are smaller than those obtained by 
the other five algorithms. In other words, the better generalization 
capability of the six algorithms can generally be achieved by 
EXP-LM, while the fitting capability for the collected traffic flow 
data obtained by EXP-LM is generally poor in training the neural 
networks for forecasting traffic flow. The results show that, in 
general, NNs with better generalization capability can be 
developed by using the exponential smoothing method to remove 
lumpiness from traffic flow data.  

2) Incorporation with advanced NN configurations 

To further evaluate the effectiveness of using exponential 
smoothing method in pre-processing the collected traffic flow 
data, the approach is incorporated with other advanced NN 
configurations. It aims to further evaluate whether the exponential 
smoothing method can help to improve the effectiveness with 
more advanced NN configurations for short-term traffic flow 
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forecasting. The following two advanced NN configurations have 
been considered: 
1. A wavelet neural network, namely WNN-LM [53], which 

combines the mechanisms of feed-forward NNs and the wavelet 
theory [9, 34]. In WNN-LM, a wavelet function is used as the 
transfer function in the NNs, which provides a multi-resolution 
approximation for the discriminate functions. Based on 
WNN-LM, better performance in function learning [52], 
including short-term traffic flow forecasting [23], can be 
obtained than those of the conventional feed-forward NNs. 

2. A Bayesian neural network, namely BNN-LM [33], which 
combines the mechanisms of Bayesian regularization and the 
LM method [18]. Based on the Bayesian regularization, the 
insignificant hidden nodes in the NN are removed, in order to 
avoid developing an overtrained NN. Results show that 
generalization abilities of NNs are better than those obtained by 
the standard LM algorithm for time series forecasting [30], 
including short-term traffic flow forecasting [54]. 

 
Table 5 Training error for EXP-WNN, WNN, EXP-BNN and BNN 

   EXP-WNN WNN EXP-BNN BNN 
mean 14.12 14.67 13.73 13.48 Reid-2008

-38 var 0.65 20.79 1.11 0.93 
mean 8.94 8.19 7.66 6.90 Reid-2008

-41 var 1.19 3.95 3.98 0.28 
mean 5.16 4.78 4.12 3.93 Reid-2008

-52 var 1.05 2.41 0.15 0.14 
mean 1.44 1.56 1.81 1.15 Reid-2009

-02 var 0.03 0.20 0.01 0.00 
mean 10.18 10.57 9.62 9.37 Reid-2009

-12 var 1.42 3.34 1.09 1.04 
mean 17.93 16.01 13.61 13.17 

idNN Re
6  

Reid-2009
-27 var 6.31 25.68 0.17 1.45 

mean 14.12 14.67 13.73 13.48 Erindale-2
008-38 var 0.65 20.79 0.11 0.93 

mean 10.01 6.55 9.13 8.58 Erindale-2
008-41 var 0.34 1.18 3.95 0.14 

mean 6.89 4.21 5.44 4.59 Erindale-2
008-52 var 0.39 0.88 0.26 0.45 

mean 6.65 4.11 5.00 4.50 Erindale-2
009-02 var 0.32 0.87 0.02 0.03 

mean 11.38 7.95 9.37 8.27 Erindale-2
009-12 var 0.40 1.77 0.11 0.86 

mean 12.87 8.89 10.93 13.67 

Erindale
6NN

 

Erindale-2
009-27 var 1.42 2.29 0.59 55.20 

Average mean  8.36 6.48 7.35 7.13 
Average variance  1.60 2.58 0.49 1.41 
Average rank  4 1 3 2 

 
Table 6 Test error obtained for EXP-WNN, WNN, EXP-BNN and BNN 

   EXP-WNN WNN EXP-BNN BNN 
mean 6.11 6.26 3.54 4.09 Reid-2008

-38 var 7.16 8.39 2.16 0.66 
mean 9.90 10.56 6.63 6.86 Reid-2008

-41 var 1.36 2.39 0.06 0.12 
mean 2.82 3.18 1.81 1.79 Reid-2008

-52 var 0.44 0.80 0.28 0.03 
mean 2.43 2.94 1.71 1.69 Reid-2009

-02 var 0.11 0.20 0.00 0.00 
mean 4.94 7.04 2.60 3.47 Reid-2009

-12 var 2.76 3.23 0.10 0.42 
mean 11.77 12.92 6.80 7.29 

idNN Re
6  

Reid-2009
-27 var 15.32 32.20 0.09 1.03 

mean 5.14 9.95 3.37 3.75 Erindale-2
008-38 var 0.56 22.27 0.19 0.68 

mean 9.90 10.46 6.63 6.66 Erindale-2
008-41 var 1.36 2.39 0.06 0.12 

mean 5.11 5.93 3.21 3.91 Erindale-2
008-52 var 2.63 1.10 0.18 0.55 

mean 4.43 6.42 1.29 3.69 Erindale-2
009-02 var 1.06 1.96 0.16 0.97 

mean 5.43 6.42 2.29 2.69 Erindale-2
009-12 var 3.02 2.22 0.18 1.21 

mean 11.77 12.92 6.80 7.27 

Erindale
6NN

 

Erindale-2
009-27 var 15.32 32.20 0.09 1.03 

Average mean  5.41 7.26 3.90 4.14 
Average variance  0.97 7.10 0.70 0.25 
Average rank  1 2 1 2 
Number of first ranks 12 0 12 0 
The results obtained are in bold font, when they achieve the smallest test errors among the others  

 

Based on the configurations of BNN-LM and WNN-LM, the 
original collected traffic flow data was used for training the NNs 

for short-term traffic flow forecasting. The results for Re
6

idNN  

and 6
Erindale

NN  regarding training errors and test errors are shown 

in Table 5 and Table 6, respectively. The results of the NNs 
trained based on the mechanisms of BNN-LM and WNN-LM are 
labeled as BNN-LM and WNN-LM respectively. Other NNs 
were trained using the same mechanisms of BNN-LM and 
WNN-LM, but the data used for developing the NNs was based 
on the pre-processed traffic flow data in which the exponential 
smoothing method was used to remove the lumpiness in the 
original traffic flow data. These results are labeled as 
EXP-BNN-LM and EXP-WNN-LM respectively. The 
parameters used in EXP-WNN-LM, WNN-LM, EXP-BNN-LM 
and BNN-LM are the same as those used in the EXP-LM, as 
shown in Section IV.B.1. 
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Fig. 4 Mean test errors obtained for Reid Highway and Erindale Highway based 

on EXP-WNN, WNN, EXP-BNN and BNN 
To illustrate the capability of fitting the traffic flow data, Table 

5 shows that the average of mean training errors and average of 
ranks of mean training errors obtained by EXP-WNN-LM are 
generally higher than those obtained by WNN-LM, while those 
obtained by EXP-BNN-LM are also generally higher than those 
obtained by BNN-LM. To illustrate the generalization capability 
of the NNs developed based on these algorithms, Table 6 shows 
that EXP-WNN-LM yields smaller mean test errors and better 
ranks of mean test errors compared with those obtained by 
WNN-LM, while those obtained by EXP-BNN-LM are better 
compared with those obtained by BNN-LM. Also, the mean test 
errors obtained by each algorithm are shown in Fig. 4, indicating 
that the mean test errors obtained by EXP-WNN-LM and 
EXP-BNN-LM are smaller than those obtained by WNN-LM and 
BNN-LM respectively. The t-values in Table 7 show that in 
general, the test errors obtained by EXP-WNN-LM are 
significantly smaller than those obtained by WNN-LM, and the 
test errors obtained by EXP-BNN-LM are significantly smaller 
than those obtained by BNN-LM. Therefore, these results 
indicate that NN models with better generalization capability can 
be obtained by the algorithms involving exponential smoothing 
methods: EXP-BNN-LM and EXP-WNN-LM. 

Similar results were found on training NNs for forecasting 
traffic flow in two sampling periods ahead by using EXP-LM, 
EXP-BNN-LM and EXP-WNN-LM. Also, similar results were 
obtained when using the back-propagation algorithm, indicating 
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that better generalization capability can be obtained by training 
with traffic flow data which is pre-processed by the exponential 
smoothing method. These results are not presented here due to 
page limitation. 
Table 7 T-values between EXP-WNN to WNN, and between EXP-BNN to BNN 

  WNN  BNN 
Reid-2008-38 0.22 1.79 

Reid-2008-41 1.86 2.91 

Reid-2008-52 1.77 0.20 
Reid-2009-02 4.93 5.37 

Reid-2009-12 4.71 6.63 

id
NN

Re
6

 

Reid-2009-27 0.92 2.40 

Erindale-2008-38 5.52 2.12 

Erindale-2008-41 1.86 0.38 
Erindale-2008-52 2.30 4.45 

Erindale-2009-02 6.27 12.37 

Erindale-2009-12 2.37 1.86 

Erindale
6NN

 

Erindale-2009-27 0.92 2.40 

Number of data sets that 
EXP-LM can obtain 
significantly better results 

9 10 

Bolded t-values indicate that significance is 95% confidence level. 

C. Further evaluations 

In Section IV.B, the NNs were developed based on traffic flow 
data collected between off-ramp and on-ramp of a particular 
location. To further evaluate the effectiveness of the proposed 
approach, traffic flow data collected from different locations were 
used to develop NNs. These traffic flow data was collected from 
the location in the intersection of Reid Highway and Mitchell 
Freeway, as well as from the location in the intersection of Hutton 
Street and Mitchell Freeway, Western Australia. The distance 
between the two locations is about 6 km. If the traffic flow 
condition is smooth, drivers usually take 6 minutes to drive along 
Mitchell Freeway from Reid Highway to Hutton Street.  

30 traffic flow data sets were collected from Week 6, Week 7, 
Week 8, Week 9, Week 11, and Week 12 in 2009, and they were 
collected over the 2-hour peak traffic period (7.30 – 9.30 am). All 
these data sets were collected by two detection stations located 
near the off-ramp and on-ramp of Reid Highway, as well as the 
three detection stations located near the off-ramp of Hutton 
Street, located between the off-ramp and on ramp of Hutton 
Street, and located near the on-ramp of Hutton Street, 
respectively. 
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Fig. 5 Mean test errors obtained for Hutton Street for Weeks 11 and 12 

The five NNs, Hutton
MonNN , Hutton

TueNN , Hutton
WedNN , Hutton

ThuNN  and 
Hutton
FriNN , were developed for Monday, Tuesday, Wednesday, 

Thursday and Friday respectively. They were developed to 
forecast six sampling periods ahead the traffic flow conditions 
near the on-ramp of Hutton Street, by using the last six sampling 
periods of past traffic flow conditions. The traffic flow data sets 

collected from, Week 6 to Week 9, were used as the training data 
sets to train the five NNs. The rest of the two traffic flow data sets, 
collected from Week 11 and Week 12, were used as the test data 
sets to evaluate the generalization capability of the NNs.  

 

Table 8 Training error obtained for Hutton Street based on EXP-LM, SM-LM, 
WM-LM, S-LM, LM-CROSS-(5), LM-CROSS-(10) 

  EXP-LM SM-LM WM-LM S-LM LM-CROSS
-(5) 

LM-CROSS
-(10) 

mean 11.39 11.25 10.66 9.04 9.40 10.05 Hutton
MonNN

 

var 6.57 7.17 5.95 6.00 6.48 8.25 
mean 11.34 11.24 10.87 9.10 8.38 10.59 Hutton

TueNN
 

var 7.71 8.06 8.46 7.49 6.97 11.56 
mean 10.72 8.68 11.53 11.09 12.38 13.40 Hutton

WedNN
 

var 6.70 4.99 6.85 6.71 5.97 8.10 
mean 10.79 10.42 10.25 8.17 7.122 7.44 Hutton

ThuNN
 

var 11.83 11.61 11.05 9.12 11.16 10.51 
mean 10.80 10.61 10.33 8.24 9.20 10.41 Hutton

FriNN
 

var 11.61 12.02 12.10 7.79 6.87 9.60 
Average mean  11.15 10.39 11.02 9.74 10.05 11.35 
Average variance  7.14 7.61 7.21 6.74 6.72 9.91 
Average rank  5 3 4 1 2 6 

 

Table 9 Test errors obtained for Hutton Street for Week 11 and Week 12, based 
on EXP-LM, SM-LM, WM-LM, S-LM, LM-CROSS-(5), LM-CROSS-(10) 

   EXP-LM SM-LM WM-LM S-LM LM-CROSS
-(5) 

LM-CROSS
-(10) 

mean 9.63 19.74 21.40 23.58 22.03 21.66 Hutton
MonNN

 var 11.79 69.34 57.36 65.24 64.90 50.26 

mean 10.86 17.49 12.04 17.77 17.53 17.07 Hutton
TueNN

 var 2.44 65.82 53.75 23.10 31.55 33.50 
mean 11.67 16.14 13.06 19.16 15.29 14.44 Hutton

WedNN

 var 3.94 58.77 63.65 34.06 54.54 44.30 
mean 8.57 13.97 14.44 18.53 15.70 16.50 Hutton

ThuNN

 var 25.05 79.45 76.42 157.8 108.0  98.21 
mean 6.49 10.86 11.44 11.37 11.18 10.60 

Week 11 

Hutton
FriNN

 var 2.47 25.73 23.82 11.48 9.41 14.15 
mean 9.37 21.20 18.93 21.55 20.34 21.73 Hutton

MonNN

 var 9.30 73.31 56.65 64.74 67.49 57.82 

mean 11.78 12.87 17.24 16.78 16.17 17.30 Hutton
TueNN

 var 6.39 16.39 56.95 21.14 38.66 38.80 
mean 11.95 11.41 21.46 17.56 14.95 16.03 Hutton

WedNN

 var 4.42 26.09 67.23 36.34 49.51 46.62 

mean 6.09 16.80 16.16 15.93 12.86 14.11 Hutton
ThuNN

 var 30.86 77.28 81.24 155.2 113.4 102.2 
mean 3.70 5.36 10.48 11.30 13.20 10.62 

Week 12 

Hutton
FriNN

 var 1.13 48.75 27.16 16.01 12.59 15.32 
Average mean  9.01 14.59 16.61 17.35 15.92 16.00 

Average variance  9.78 54.09 56.42 58.50 55.00 50.12 
Average rank  1 2 5 6 3 4 

Number of first ranks 9 1 0 0 0 0 
The results obtained are in bold font, when they achieve the smallest test errors among the others  

 

Table 10 T-values between EXP-LM to the other algorithms (SM-LM, WM-LM, 
S-LM, LM-CROSS-(5), LM-CROSS-(10)) for Hutton Street 

  SM-LM WM-LM S-LM LM- 
CROSS-(5) 

LM- 
CROSS-(10) 

Hutton
MonNN

 
6.15 7.75 8.71 7.76 8.36 

Hutton
TueNN

 
4.39 0.86 7.49 6.26 5.67 

Hutton
WedNN

 
3.09 0.92 6.66 2.59 2.18 

Hutton
ThuNN

 
2.89 3.19 4.03 3.38 3.91 

Week 11 

Hutton
FriNN

 
4.51 5.29 7.15 7.46 5.52 

Hutton
MonNN

 
7.13 6.45 7.75 6.86 8.26 

Hutton
TueNN

 1.25 6.15 5.22 3.58 4.50 
Hutton
WedNN

 0.53 -2.10 4.82 2.24 3.12 
Hutton
ThuNN

 
5.64 5.21 3.95 3.08 3.80 

Week 12 

Hutton
FriNN

 1.29 6.98 10.78 15.37 10.06 

Number of data sets 
that EXP-LM can 
obtain significantly 
better results 

7 7 10 10 10 

Bolded t-values indicate that significance is 95% confidence level. 

Table 8 shows that the training errors obtained by EXP-LM are 
generally larger than those obtained by the other algorithms, 
SM-LM, WM-LM, S-LM, LM-CROSS-(5) and 
LM-CROSS-(10). Table 9 shows that the mean of test errors, 
variance of test errors and rank of test errors obtained by 
EXP-LM are generally smaller than those obtained by the other 
algorithms. Also, Fig. 5 illustrates further that the mean test errors 
obtained by EXP-LM are generally smaller than those obtained 
by the other algorithms. The t-values in Table 10 show that, in 
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general, the test errors obtained by EXP-LM are significantly 
smaller than those obtained by the other algorithms. Therefore, 
these results further evaluate that NNs with better generalization 
capability can be obtained by EXP-LM involving exponential 
smoothing methods. 

V. CONCLUSION 

In this paper, a hybrid exponential smoothing method and 
Levenberg-Marquardt algorithm, namely EXP-LM, is proposed 
to train NNs for short-term traffic flow forecasting. EXP-LM is 
developed based on the observation that the landscape of traffic 
flow data is highly lumpy. When lumpiness is included in the 
training of NN models, training errors of NN models can be 
decreased to a small value by fitting all of the lumpiness, but it 
may degrade the generalization capability, as the lumpiness may 
not be helpful in training NNs. In the proposed EXP-LM, the 
exponential smoothing method is employed to remove the 
lumpiness from traffic flow data before employing LM for 
training purposes. Results indicate that, in general, test errors 
obtained by EXP-LM are smaller than those obtained by the other 
tested algorithms. Therefore, in general, NNs with superior 
generalization capabilities for traffic flow forecasting can be 
obtained by using EXP-LM. 

Future research will be focused on three areas: 1) work is 
currently under way to build a prototype to capture real-time 
traffic flow data from a number of different freeway locations, 
under recurrent and non-recurrent congestion conditions, to 
further evaluate NN models trained using the EXP-LM algorithm; 
2) the proposed method will be applied to pre-process travel time 
data or congestion data which contain lumpiness. The 
pre-processed data will be applied, in order to develop travel time 
predictors [57, 59] or congestion predictors [58], which is an 
important issue of intelligent transportation systems; 3) we will 
develop a methodology to determine the optimal numbers of 
hidden nodes and input nodes, which are significant to prevent 
overfitting. 

REFERENCES 

[1] G.Ö. Ali and Y.T. Chen, “Design quality and robustness with neural 
networks”, IEEE Transactions on Neural Networks, vol. 10, no. 6, pp. 
1518-1527, 1999. 
[2] S. Amari, N. Murata, K. Muller, M. Finke and H.H. Yang, “Asymptotic 
statistical theory of overtraining and cross validation”, IEEE Transactions 

Neural Networks, vol. 8, no. 5, pp. 958-996, 1997. 
[3] V.B. Arem, H.R. Kirby, M.J.M. Van Der Vlist, and J.C. Whittaker, “Recent 
advances and applications in the field of short-term traffic forecasting”. 

International Journal of Forecasting, vol. 13, pp. 1-12, 1997. 
[4] R.G. Brown and R.F. Meyer (1961), “The fundamental theorem of 
exponential smoothing”, Operations Research, vol. 9, pp. 673 -685, 1961 
[5] M. Castro-Neto, Y.S. Jeong, M.K. Jeong and L.D. Han, “Online-SVR for 
short-term traffic flow prediction under typical and atypical traffic conditions”, 
Expert Systems with Applications, vol. 36, 6164-6173, 2009 
[6] P.C. Chang, Y.W. Wang and C.H. Liu, “The development of a weighted 
evolving fuzzy neural network for PCB sales forecasting”, Expert Systems with 

Applications, vol. 32, pp. 86-96, 2007. 
[7] S.C. Chang, R.S. Kim, S.J. Kim and B.H. Ahn, “Traffic flow forecasting 
using a 3-stage model”, Proceedings of the IEEE Intelligent Vehicles 

Symposium, pp. 451-456, 2000. 
[8] H.C. Co and R. Boosarawongse, “Forecasting Thailand’s rice export: 
statistical techniques vs. artificial neural networks”, Computers and Industrial 

Engineering, vol. 53, pp.610-627, 2007.  
[9] I. Daubechies, “The wavelet transform, time-frequency localization and 
signal analysis”, IEEE Transactions on Information Theory, vol. 36, no.5, pp. 
961-1005, 1990. 

[10] G.A. Davis, and N.L. Nihan, “Nonparametric regression and short-term 
freeway traffic forecasting”, Journal of Transportation Engineering, vol. 177, 
no. 2, pp. 178–188, 1991. 
[11] S. De Lurgio, Forecasting principles and applications. McGraw Hill, Inc, 
New York, 1998. 
[12] H. Dia, “An object-oriented neural network approach to short-term traffic 
forecasting”, European Journal of Operational Research, vol. 131, pp. 253-261, 
2001. 
[13] T.S. Dillon, S. Sestito and S. Leung, “Short term load forecasting using an 
adaptive neural network”, Electrical Power and Energy Systems, vol. 13, no. 4, 
pp. 186-192, 1991. 
[14] M. Dougherty, “A review of neural networks applied to transport”, 
Transportation Research Part C: Emerging Technologies, vol. 3, no. 4, pp. 
247-260, 1995. 
[15] M.S. Dougherty, H.R. Kirby, D. Boyce, “Using neural networks to 
recognize, predict and model traffic”, Artificial Intelligence Applications to 

Traffic Engineering, pp. 235-250, 1994. 
[16] M.S. Dougherty and M.R. Cobbett, “Short-term inter-urban traffic forecasts 
using neural networks”, International Journal of Forecasting, vol. 13, pp. 21-31, 
1997. 
[17] E.L. Faria, M.P. Albuquerque, J.L. Gonzalez, J.T.P. Cavalcanta, M.P. 
Albuquerque, “Predicting the Brazilian stock market through neural networks 
and adaptive exponential smoothing methods”, Expert Systems with 

Applications, vol. 36, pp. 12506-12509, 2009. 
[18] F.D. Foresee and M.T. Hagan, “Gauss-Newton approximation to Bayesian 
regularization”, Proceedings of the 1997 International Joint Conference on 

Neural Networks, pp. 1930–1935, 1997. 
[19] L. Fu and L.R. Rilett, “Estimation of time-dependent, stochastic route travel 
times using artificial neural networks”, Transportation Planning and 

Technology, vol. 24, pp. 25-48, 2000. 
[20] Y. Gao and M.J. Er, “NARMAX time series model prediction: feedforward 
and recurrent fuzzy neural network approaches”, Fuzzy Sets and Systems, vol. 
150, pp. 331-350, 2005. 
[21] R.S. Gutierrez and O.S. Adriano, S. Mukhopadhyay, “Lumpy demand 
forecasting using neural networks”, International Journal of Production 

Economics, vol. 111, pp. 409-420, 2008. 
[22] S. Innamaa, “Effect of monitoring system structure on short-term prediction 
of highway travel time”, Transportation Planning and Technology, vol. 29, no. 
2, pp. 125-140, 2006. 
[23] X. Jiang and H. Adeli, “Dynamic wavelet neural network model for traffic 
flow forecasting”, Journal of Transportation Engineering, vol. 131, no. 10, pp. 
771-779, 2005. 
[24] C.F. Juang, “Temporal problems solved by dynamic fuzzy network based on 
genetic algorithm with variable-lengthchromosomes”, Fuzzy Sets and Systems, 
vol. 142, pp. 199–219, 2004. 
[25] N.K. Kasabov and Q. Song, “DENFIS: dynamic evolving neural-fuzzy 
inference system and its application for time-series prediction”, IEEE 

Transactions Fuzzy Systems, vol. 10, pp. 144-154, 2002. 
[26] G.N. Karystinos and D.A. Pados, “On overfitting, generalization, and 
randomly expanded training sets”, IEEE Transactions on Neural Networks, vol. 
11, no. 5, pp. 1050-1057, 2000. 
[27] S. Lawrence, C. L. Giles, and A. C. Tsoi, “What size neural network gives 
optimal generalization? Convergence properties of backpropagation”, Instrument 
of Advanced Computational Studies, Univ. Maryland, College Park, MD, 
Technical Report, UMIACS-TR-96-22 and CS-TR-3617, Jun. 1996. 
[28] Ledoux C., “An urban traffic flow model integrating neural network”, 
Transportation Research 5C, 287-300, 1997. 
[29] G.L. Lilien and P. Kotler, Marketing Decision Making: A Model Building 

Approach”, New York, Harper and Row Publishers, 1983. 
[30] F. Liang, “Bayesian neural networks for nonlinear time series forecasting”, 
Statistics and Computing, vol. 15, pp. 13-29, 2005. 
 [32] Y. Liu, A.S. Janusz and Z. Zhen, “Optimized approximation algorithm in 
neural networks without overfitting”, IEEE Transactions on Neural Networks, 
vol. 19, no. 6, pp. 983-995, 2008. 
[33] D. MacKay, “A practical Bayesian framework for backpropagation 
networks”, Neural Computation, vol. 4, pp. 448-472, 1992. 
[34] S.G. Mallat, “A theory for multiresolution signal decomposition: the wavelet 
representation”, IEEE Transactions on Pattern Analysis and Machine 

Intelligence, vol. 11, no.7, pp. 674-693, Jul. 1989. 
[35] P.A. Mastorocostas and J.B. Theocharis, “An orthogonal least-squares 
method for recurrent fuzzy-neural modeling”, Fuzzy Sets and Systems, vol. 140, 
pp. 285-300, 2003. 



> IEEE Transactions on Intelligent Transportation Systems < 
 

10 

[36] I. Okutani and Y.J. Stephanedes, “Dynamic prediction of traffic volume 
through Kalman filtering theory”, Transportation Research, Part B: 

Methodology, vol. 18, no. 1, pp. 1–11, 1984. 
[37] S.E. Papadakis, J.B. Theocharis, A.G. Bakirtzis, “A load curve based fuzzy 
modeling technique for short-term load forecasting”, Fuzzy Sets and Systems, 
vol. 135, pp. 279-303, 2003. 
[38] L. Prechelt, “Automatic early stopping using cross validation: quantifying 
the criteria”, Neural Networks, vol. 11, no. 4, pp. 761-777, 1998. 
[39] P. Ross, “Exponential filtering of traffic data”, Transportation Research 
Record, vol. 869, Transportation Research Board, Washington,D.C., pp. 43–49, 
1982.  
[40] C. Quek, M. Pasquier and B.B.S. Lim, “POP-TRAFFIC: A Novel Fuzzy 
Neural Approach to Road Traffic Analysis and Prediction”, IEEE Transactions 

on Intelligent Transportation Systems, vol. 7, no. 2, pp. 133-146, 2006. 
[41] R. Setiono, “Feedforward neural network construction using cross 
validation”, Neural Computation, vol. 13, no. 12, pp. 2865-2977, 2001. 
[42] D. Srinivasan, C.W. Chan and P.G. Balaji, “Computational intelligence 
based congestion prediction for a dynamic urban street network”, 
Neurocomputing, vol. 72, pp. 2710-2716, 2009. 
[43] B.L. Smith, B.M. Williams and R.K. Oswald, “Comparison of parametric 
and nonparametric models for traffic flow forecasting”, Transportation Research 

Part C, vol. 19, pp. 303-321, 2002. 
[44] A. Stathopoulos, L. Dimitriou and T. Tskeris, “Fuzzy modeling approach for 
combined forecasting of urban traffic flow”, Computer-Aided Civil and 

Infrastructure Engineering, vol. 23, pp. 521-535, 2008. 
[45] M.C. Tan, S.C. Wong, J.M. Xu, Z.R. Guan and P. Zhang, “An aggregation 
approach to short term traffic flow prediction”, IEEE Transactions on Intelligent 

Transportation systems, vol. 10, no. 1, pp. 60-69, 2009. 
[46] R.J. Wai, R.Y. Duen, J.D. Lee, and H.H.. Chang, “Wavelet neural network 
control for induction motor drive using sliding-mode design technique”, IEEE 

Transactions Industrial Electronics, vol.50, no. 4, pp.733-748, Aug. 2003. 
[47] N. Wanas, G. Auda, M. S. Kamel and F. Karray, “On the optimal number of 
hidden nodes in a neural network”, 1998 IEEE Canadian Conference on 

Electrical and Computer Engineering, vol.2, pp. 918-921, 1998. 
[48] R.A. Yaffee and M. McGee, Introduction to Time Series Analysis and 

Forecasting. San Diego, CA: Academic, 2000. 
[49] H. Yin, S.C. Wong, J. Xu and C.K. Wong, “Urban traffic flow prediction 
using a fuzzy-neural approach”, Transportation Research Part C, vol. 10, pp. 
85-98, 2002.  
[50] S.J. Yoo, J.B. Park, and Y.H. Choi, “Adaptive dynamic surface control of 
flexible-joint robots using self-recurrent wavelet neural networks”, IEEE 

Transactions on Systems, Man and Cybernetics: Part B: Cybernetics, vol. 36, no. 
6, pp. 1342-1355, Dec. 2006. 
[51] G.P. Zhang and D.M. Kline, “Quarterly time series forecasting with neural 
networks”, IEEE Transactions on Neural Networks, vol. 18, no. 6, pp. 
1800-1814, 2007. 
[52] G.P. Zhang and M. Qi, “Neural network forecasting for seasonal and trend 
time series”, European Journal of Operational Research, vol. 160, pp. 501-514, 
2005. 
[53] Q. Zhang and A. Benveniste, “Wavelet Networks”, IEEE Transactions on 

Neural Networks, vol. 3, no. 6, pp. 889-898, 1992. 
[54] W. Zheng, D.H. Lee and Q. Shi, “Short-term freeway traffic flow prediction: 
Bayesian combined neural network approach”, Journal of Transportation 

Engineering, vol. 132, no. 2, pp. 114-121, 2006. 
[55] K.Y. Chan, J. Singh, T.S. Dillon and E. Chang, Traffic flow forecasting 
neural networks based on exponential smoothing method, Proceeding of the 6th 
IEEE Conference on Industrial Electronics and Applications, pp. 376-381, 2011. 
[56] G. E.-P. Box, J. S. Hunter, and W. G. Hunter, Statistics for Experiments: 

Design, Innovation, and Discovery, 2nd ed. New York: Wiley, 2005. 
[57] A. Simroth and H. Zahle, “Travel time prediction using floating car data 
applied to logistics planning”, IEEE Transactions on Intelligent Transportation 
Systems, vol. 12, no. 1, pp. 243-253, 2011. 
[58] T. Thomas, W. Weijermars and E. Berkum, “Predictions of Urban Volumes 
in Single Time Series”, IEEE Transactions on Intelligent Transportation Systems, 
vol. 11, no. 1, pp. 71-80, 2010. 
[59] M. Yang, Y. Liu and Z. You, “The reliability of travel time forecasting”, 
IEEE Transactions on Intelligent Transportation Systems, vol. 11, no. 1, pp. 
162-171, 2010. 
[60] M.T. Hagan and M.B. Menhaj, Training feedforward networks with the 
Marquardt algorithm, IEEE Transactions on Neural Networks, vol. 5, no. 6, pp. 
989-993, 1994. 

 
 

 

 Kit Yan Chan received his PhD degree in Computing from 
London South Bank University, United Kingdom in 2006. After his PhD study, he 
worked as a Postdoctoral Research Fellow in the Department of Industrial and 
Systems Engineering, The Hong Kong Polytechnic University, Hong Kong, until 
2009. Currently, he is a Senior Research Fellow in the Digital Ecosystems and 
Business Intelligence Institute, Curtin University of Technology, Australia. His 
research interests include computational intelligence and its applications to new 
product design, manufacturing process design, and traffic flow forecasting. 

 Tharam Dillon is a Fellow of the IEEE, ACS and IE(Aust). He 
is the research professor at the Digital Ecosystems and Business Intelligence 
Institute, Curtin University of Technology, Australia. He is head of the IFIP 
International Task Force WG2.12/24 on Semantic Web and Web Semantics, the 
chairman of the IFIP WG12.9 on computational intelligence, the IEEE/IES 
Technical Committee on Industrial Informatics, and the IFIP Technical 
Committee 12 on Artificial Intelligence. He has published more than 750 papers 
published in international conferences and journals and is the author of 5 books 
and has another 5 edited books. His current research interests include Web 
semantics, ontologies, Internet computing, e-commerce, hy-brid neurosymbolic 
systems, neural nets, software engineering, database systems, and data mining. 
He is the Editor-in-Chief of the International Journal of Computer Systems 

Science and Engineering as well as the Engineering Intelligent Systems. 
 

 Jaipal Singh received his PhD degree in computer science from 
La Trobe University, Melbourne, Australia in 2007. He has been doing research 
on network algorithms for more efficient routing, resource optimisation and 
improved quality of service. He is currently a research fellow at Curtin University 
working on short-term traffic forecasting, traffic visualisation and real-time 
congestion management. He is also developing new cyber-physical systems  
architectures in intelligent transportation systems. 
 

 Elizabeth Chang received a Bachelor’s Degree in Computer 
Science in 1985 from Beijing University, China. She received her Master’s 
Degree in Computer Science and PhD in Computer Science in 1991 and 1996 
respectively from La Trobe University, Australia. Since 2006, she has been the 
founder and professor of Digital Ecosystems and Business Intelligence Institute, 
Curtin University, Australia. She has been awarded the Vice Chancellor’s 
Outstanding Performance Award for 2005 and the Dean’s Best Researcher of 
Year Award for 2004 and 2005. She has co-authored 3 books and has published 
over 350 scientific papers as book chapters, and international journals and 
conferences She is currently holding 6 ARC grants and a Tier 1 Centre of 
Excellence grant and obtained cash from ARC, industry partners as well as 
Research Centre of Excellence funds of over $5 million for 2002-2011. Her 
research interest includes: ontology and multi-agent systems, data mining for 
business intelligence, trust, security and risk in e-Business, XML, Web Services, 
P2P for collaborative environments, web engineering, IT for business and 
commerce, IT for health informatics, and IT for education.  


