8 research outputs found

    Financial Applications of Copula-Models

    Get PDF
    The paper aims at introducing copula-models' concepts and its application to solving such financials programs as risk measurement, risk hedging, portfolio optimization, derivatives pricing and duration models evaluation. For the purpose the copula definition is firstly introduced. Then different copula families, model estimation and inference techniques are discussed. A detailed review of relevant literature is provided. Finally the unresolved issues are presented that might well become the subjects of further research.copula, archimidienne, extreme, risk, hedging, duration

    Improving k-nn search and subspace clustering based on local intrinsic dimensionality

    Get PDF
    In several novel applications such as multimedia and recommender systems, data is often represented as object feature vectors in high-dimensional spaces. The high-dimensional data is always a challenge for state-of-the-art algorithms, because of the so-called curse of dimensionality . As the dimensionality increases, the discriminative ability of similarity measures diminishes to the point where many data analysis algorithms, such as similarity search and clustering, that depend on them lose their effectiveness. One way to handle this challenge is by selecting the most important features, which is essential for providing compact object representations as well as improving the overall search and clustering performance. Having compact feature vectors can further reduce the storage space and the computational complexity of search and learning tasks. Support-Weighted Intrinsic Dimensionality (support-weighted ID) is a new promising feature selection criterion that estimates the contribution of each feature to the overall intrinsic dimensionality. Support-weighted ID identifies relevant features locally for each object, and penalizes those features that have locally lower discriminative power as well as higher density. In fact, support-weighted ID measures the ability of each feature to locally discriminate between objects in the dataset. Based on support-weighted ID, this dissertation introduces three main research contributions: First, this dissertation proposes NNWID-Descent, a similarity graph construction method that utilizes the support-weighted ID criterion to identify and retain relevant features locally for each object and enhance the overall graph quality. Second, with the aim to improve the accuracy and performance of cluster analysis, this dissertation introduces k-LIDoids, a subspace clustering algorithm that extends the utility of support-weighted ID within a clustering framework in order to gradually select the subset of informative and important features per cluster. k-LIDoids is able to construct clusters together with finding a low dimensional subspace for each cluster. Finally, using the compact object and cluster representations from NNWID-Descent and k-LIDoids, this dissertation defines LID-Fingerprint, a new binary fingerprinting and multi-level indexing framework for the high-dimensional data. LID-Fingerprint can be used for hiding the information as a way of preventing passive adversaries as well as providing an efficient and secure similarity search and retrieval for the data stored on the cloud. When compared to other state-of-the-art algorithms, the good practical performance provides an evidence for the effectiveness of the proposed algorithms for the data in high-dimensional spaces

    Active caching for recommender systems

    Get PDF
    Web users are often overwhelmed by the amount of information available while carrying out browsing and searching tasks. Recommender systems substantially reduce the information overload by suggesting a list of similar documents that users might find interesting. However, generating these ranked lists requires an enormous amount of resources that often results in access latency. Caching frequently accessed data has been a useful technique for reducing stress on limited resources and improving response time. Traditional passive caching techniques, where the focus is on answering queries based on temporal locality or popularity, achieve a very limited performance gain. In this dissertation, we are proposing an ‘active caching’ technique for recommender systems as an extension of the caching model. In this approach estimation is used to generate an answer for queries whose results are not explicitly cached, where the estimation makes use of the partial order lists cached for related queries. By answering non-cached queries along with cached queries, the active caching system acts as a form of query processor and offers substantial improvement over traditional caching methodologies. Test results for several data sets and recommendation techniques show substantial improvement in the cache hit rate, byte hit rate and CPU costs, while achieving reasonable recall rates. To ameliorate the performance of proposed active caching solution, a shared neighbor similarity measure is introduced which improves the recall rates by eliminating the dependence on monotinicity in the partial order lists. Finally, a greedy balancing cache selection policy is also proposed to select most appropriate data objects for the cache that help to improve the cache hit rate and recall further

    Clustering ensemble method

    Get PDF
    Clustering is an unsupervised learning paradigm that partitions a given dataset into clusters so that objects in the same cluster are more similar to each other than to the objects in the other clusters. However, when clustering algorithms are used individually, their results are often inconsistent and unreliable. This research applies the philosophy of Ensemble learning that combines multiple partitions using a consensus function in order to address these issues to improve a clustering performance. A clustering ensemble framework is presented consisting of three phases: Ensemble Member Generation, Consensus and Evaluation. This research focuses on two points: the consensus function and ensemble diversity. For the first, we proposed three new consensus functions: the Object-Neighbourhood Clustering Ensemble (ONCE), the Dual-Similarity Clustering Ensemble (DSCE), and the Adaptive Clustering Ensemble (ACE). ONCE takes into account the neighbourhood relationship between object pairs in the similarity matrix, while DSCE and ACE are based on two similarity measures: cluster similarity and membership similarity. The proposed ensemble methods were tested on benchmark real-world and artificial datasets. The results demonstrated that ONCE outperforms the other similar methods, and is more consistent and reliable than k-means. Furthermore, DSCE and ACE were compared to the ONCE, CO, MCLA and DICLENS clustering ensemble methods. The results demonstrated that on average ACE outperforms the state-of-the-art clustering ensemble methods, which are CO, MCLA and DICLENS. On diversity, we experimentally investigated all the existing measures for determining their relationship with the ensemble quality. The results indicate that none of them are capable of discovering a clear relationship and the reasons for this are: (1) they all are inappropriately defined to measure the useful difference between the members, and (2) none of them have been used directly by any consensus function. Therefore, we point out that these two issues need to be addressed in future research

    Generalized and efficient outlier detection for spatial, temporal, and high-dimensional data mining

    Get PDF
    Knowledge Discovery in Databases (KDD) ist der Prozess, nicht-triviale Muster aus großen Datenbanken zu extrahieren, mit dem Ziel, dass diese bisher unbekannt, potentiell nützlich, statistisch fundiert und verständlich sind. Der Prozess umfasst mehrere Schritte wie die Selektion, Vorverarbeitung, Evaluierung und den Analyseschritt, der als Data-Mining bekannt ist. Eine der zentralen Aufgabenstellungen im Data-Mining ist die Ausreißererkennung, das Identifizieren von Beobachtungen, die ungewöhnlich sind und mit der Mehrzahl der Daten inkonsistent erscheinen. Solche seltene Beobachtungen können verschiedene Ursachen haben: Messfehler, ungewöhnlich starke (aber dennoch genuine) Abweichungen, beschädigte oder auch manipulierte Daten. In den letzten Jahren wurden zahlreiche Verfahren zur Erkennung von Ausreißern vorgeschlagen, die sich oft nur geringfügig zu unterscheiden scheinen, aber in den Publikationen experimental als ``klar besser'' dargestellt sind. Ein Schwerpunkt dieser Arbeit ist es, die unterschiedlichen Verfahren zusammenzuführen und in einem gemeinsamen Formalismus zu modularisieren. Damit wird einerseits die Analyse der Unterschiede vereinfacht, andererseits aber die Flexibilität der Verfahren erhöht, indem man Module hinzufügen oder ersetzen und damit die Methode an geänderte Anforderungen und Datentypen anpassen kann. Um die Vorteile der modularisierten Struktur zu zeigen, werden (i) zahlreiche bestehende Algorithmen in dem Schema formalisiert, (ii) neue Module hinzugefügt, um die Robustheit, Effizienz, statistische Aussagekraft und Nutzbarkeit der Bewertungsfunktionen zu verbessern, mit denen die existierenden Methoden kombiniert werden können, (iii) Module modifiziert, um bestehende und neue Algorithmen auf andere, oft komplexere, Datentypen anzuwenden wie geographisch annotierte Daten, Zeitreihen und hochdimensionale Räume, (iv) mehrere Methoden in ein Verfahren kombiniert, um bessere Ergebnisse zu erzielen, (v) die Skalierbarkeit auf große Datenmengen durch approximative oder exakte Indizierung verbessert. Ausgangspunkt der Arbeit ist der Algorithmus Local Outlier Factor (LOF). Er wird zunächst mit kleinen Erweiterungen modifiziert, um die Robustheit und die Nutzbarkeit der Bewertung zu verbessern. Diese Methoden werden anschließend in einem gemeinsamen Rahmen zur Erkennung lokaler Ausreißer formalisiert, um die entsprechenden Vorteile auch in anderen Algorithmen nutzen zu können. Durch Abstraktion von einem einzelnen Vektorraum zu allgemeinen Datentypen können auch räumliche und zeitliche Beziehungen analysiert werden. Die Verwendung von Unterraum- und Korrelations-basierten Nachbarschaften ermöglicht dann, einen neue Arten von Ausreißern in beliebig orientierten Projektionen zu erkennen. Verbesserungen bei den Bewertungsfunktionen erlauben es, die Bewertung mit der statistischen Intuition einer Wahrscheinlichkeit zu interpretieren und nicht nur eine Ausreißer-Rangfolge zu erstellen wie zuvor. Verbesserte Modelle generieren auch Erklärungen, warum ein Objekt als Ausreißer bewertet wurde. Anschließend werden für verschiedene Module Verbesserungen eingeführt, die unter anderem ermöglichen, die Algorithmen auf wesentlich größere Datensätze anzuwenden -- in annähernd linearer statt in quadratischer Zeit --, indem man approximative Nachbarschaften bei geringem Verlust an Präzision und Effektivität erlaubt. Des weiteren wird gezeigt, wie mehrere solcher Algorithmen mit unterschiedlichen Intuitionen gleichzeitig benutzt und die Ergebnisse in einer Methode kombiniert werden können, die dadurch unterschiedliche Arten von Ausreißern erkennen kann. Schließlich werden für reale Datensätze neue Ausreißeralgorithmen konstruiert, die auf das spezifische Problem angepasst sind. Diese neuen Methoden erlauben es, so aufschlussreiche Ergebnisse zu erhalten, die mit den bestehenden Methoden nicht erreicht werden konnten. Da sie aus den Bausteinen der modularen Struktur entwickelt wurden, ist ein direkter Bezug zu den früheren Ansätzen gegeben. Durch Verwendung der Indexstrukturen können die Algorithmen selbst auf großen Datensätzen effizient ausgeführt werden.Knowledge Discovery in Databases (KDD) is the process of extracting non-trivial patterns in large data bases, with the focus of extracting novel, potentially useful, statistically valid and understandable patterns. The process involves multiple phases including selection, preprocessing, evaluation and the analysis step which is known as Data Mining. One of the key techniques of Data Mining is outlier detection, that is the identification of observations that are unusual and seemingly inconsistent with the majority of the data set. Such rare observations can have various reasons: they can be measurement errors, unusually extreme (but valid) measurements, data corruption or even manipulated data. Over the previous years, various outlier detection algorithms have been proposed that often appear to be only slightly different than previous but ``clearly outperform'' the others in the experiments. A key focus of this thesis is to unify and modularize the various approaches into a common formalism to make the analysis of the actual differences easier, but at the same time increase the flexibility of the approaches by allowing the addition and replacement of modules to adapt the methods to different requirements and data types. To show the benefits of the modularized structure, (i) several existing algorithms are formalized within the new framework (ii) new modules are added that improve the robustness, efficiency, statistical validity and score usability and that can be combined with existing methods (iii) modules are modified to allow existing and new algorithms to run on other, often more complex data types including spatial, temporal and high-dimensional data spaces (iv) the combination of multiple algorithm instances into an ensemble method is discussed (v) the scalability to large data sets is improved using approximate as well as exact indexing. The starting point is the Local Outlier Factor (LOF) algorithm, which is extended with slight modifications to increase robustness and the usability of the produced scores. In order to get the same benefits for other methods, these methods are abstracted to a general framework for local outlier detection. By abstracting from a single vector space, other data types that involve spatial and temporal relationships can be analyzed. The use of subspace and correlation neighborhoods allows the algorithms to detect new kinds of outliers in arbitrarily oriented subspaces. Improvements in the score normalization bring back a statistic intuition of probabilities to the outlier scores that previously were only useful for ranking objects, while improved models also offer explanations of why an object was considered to be an outlier. Subsequently, for different modules found in the framework improved modules are presented that for example allow to run the same algorithms on significantly larger data sets -- in approximately linear complexity instead of quadratic complexity -- by accepting approximated neighborhoods at little loss in precision and effectiveness. Additionally, multiple algorithms with different intuitions can be run at the same time, and the results combined into an ensemble method that is able to detect outliers of different types. Finally, new outlier detection methods are constructed; customized for the specific problems of these real data sets. The new methods allow to obtain insightful results that could not be obtained with the existing methods. Since being constructed from the same building blocks, there however exists a strong and explicit connection to the previous approaches, and by using the indexing strategies introduced earlier, the algorithms can be executed efficiently even on large data sets

    The Relevant-Set Correlation Model for Data Clustering

    No full text
    corecore