Clustering Ensemble Method

Tahani Muqbil Alqurashi

A thesis submitted in fulfilment
of the requirements for the degree of
Doctor of Philosophy

School of Computing Sciences
University of East Anglia
January, 2017

EA

University of East Anglia

(©This copy of the thesis has been supplied on condition that anyone who consults it is understood
to recognise that its copyright rests with the author and that use of any information derived there-
from must be in accordance with current UK Copyright Law. In addition, any quotation or extract
must include full attribution.



Abstract

Clustering is an unsupervised learning paradigm that partitions a given dataset into
clusters so that objects in the same cluster are more similar to each other than to the
objects in the other clusters. However, when clustering algorithms are used individ-
ually, their results are often inconsistent and unreliable. This research applies the
philosophy of Ensemble learning that combines multiple partitions using a consensus

function in order to address these issues to improve a clustering performance.

A clustering ensemble framework is presented consisting of three phases: En-
semble Member Generation, Consensus and Evaluation. This research focuses on
two points: the consensus function and ensemble diversity. For the first, we pro-
posed three new consensus functions: the Object-Neighbourhood Clustering Ensem-
ble (ONCE), the Dual-Similarity Clustering Ensemble (DSCE), and the Adaptive
Clustering Ensemble (ACE). ONCE takes into account the neighbourhood relation-
ship between object pairs in the similarity matrix, while DSCE and ACE are based

on two similarity measures: cluster similarity and membership similarity.

The proposed ensemble methods were tested on benchmark real-world and arti-
ficial datasets. The results demonstrated that ONCE outperforms the other similar
methods, and is more consistent and reliable than k-means. Furthermore, DSCE
and ACE were compared to the ONCE, CO, MCLA and DICLENS clustering en-
semble methods. The results demonstrated that on average ACE outperforms the

state-of-the-art clustering ensemble methods, which are CO, MCLA and DICLENS.

On diversity, we experimentally investigated all the existing measures for deter-

mining their relationship with the ensemble quality. The results indicate that none



of them are capable of discovering a clear relationship and the reasons for this are:
(1) they all are inappropriately defined to measure the useful difference between the
members, and (2) none of them have been used directly by any consensus function.

Therefore, we point out that these two issues need to be addressed in future research.
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Chapter 1

Introduction

1.1 Background

In the context of machine learning, an ensemble is generally defined as “a machine
learning system that is constructed with a set of individual models working in paral-
lel, whose outputs are combined with a decision fusion strategy to produce a single

answer for a given problem” [106].

The ensemble method was first introduced and well-studied in the supervised
learning field. Due to its successful application in classification tasks over the past
decades, researchers have attempted to apply the same paradigm to the unsupervised
learning field, particularly to clustering problems. However, this may be challenging
for the following two obvious reasons. Firstly, in unsupervised learning, as there is
normally no prior knowledge about the underlying structure or about any particular
properties that we want to find or what we consider as good solutions about the data
[55, 95], different clustering algorithms often produce different clustering results for
the same data. Secondly, according to the “no free lunch” theorem [108], there is
no single clustering algorithm that performs consistently well in finding the correct
underlying structure for different data, and there are no clear guidelines in the

literature for choosing individual clustering algorithms for a given problem.



Chapter 1. Introduction

Conceptually speaking, a clustering ensemble, which is also referred to as consen-
sus ensemble or clustering aggregation, can be simply defined in the same manner as
for classification. In other words, it is the process of combining multiple clustering
models (partitions) into a single consolidated partition [94]. In principle, an effective
clustering ensemble should be able to produce better results than that of the indi-
vidual clustering algorithms in terms of quality and consistency. From the clustering
point of view, the quality is measured either using external information (class label)
or internal information. If the external information is available the quality is defined
by some degree of similarity between the clustering results and the known labels of
the data (class label). If not, the quality is defined as how well the clustering result
fits the data using only internal information [95]. The consistency is defined as the
ability that the clustering ensemble method has to produce similar performances on

a multiple number of test datasets [32].

However, the transmission from supervised learning to unsupervised learning is
not as straightforward as this conceptual definition because there are some unique
and challenging issues when building an ensemble for clustering. Of these issues, the
key and tricky one is how to combine the clusters that are generated by the indi-
vidual clustering models (members) in an ensemble, as this cannot be done through
simple voting or averaging as in classification. Instead, it requires more complicated
aggregating strategies and mechanisms. Therefore, developing an effective aggre-
gation strategy as well as efficient is essential for building a successful clustering

ensemble.

1.2 Research Motivation

This thesis focuses on two central points, which are the consensus function and the
diversity of the clustering ensemble. This section explains the motivation behind

them.
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1.2.1 Consensus Function

A consensus function is the main component of a clustering ensemble method. It
combines a number of members to produce single improved clustering results, com-
pared to the individual member in the ensemble. In the past decade, a number of

researchers have studied clustering ensemble methods [94, 26, 97, 27, 98].

One simple, popular consensus approach focuses on combining members by map-
ping them onto a new representation, that contains similarity information. This
similarity information can be estimated from members at object level or at cluster
level. Generally, solving the problem of clustering the data through similarity infor-
mation is not a new concept; it is a widely used concept in clustering analysis, and
it is in fact the core of some of the most popular cluster algorithms such as k-means
and the hierarchical clustering algorithm. It is simple and easy to understand and

implement.

In the similarity-based consensus function approach, which calculates the object
pairwise similarity matrix from members, the Co-association matrix (CO) [32] is
the most popular method in this approach. The idea of CO is to avoid the label
correspondence problem in which the clustering result is obtained through a voting
process among the objects. It assumes that similar objects are very likely clustered
together by some clustering algorithm, so any objects that co-occur frequently in
the same cluster should be regarded as being very similar. Each entry in CO matrix
counts the number of times that a given pair of objects is placed in the same cluster

among ensemble members.

However, there is a common and tricky issue that appears when roughly half of
the members place some object pairs in the same cluster but the other half place
them in a different cluster. In this case, we have uncertain agreement between
members on how to cluster these pairs and we call them uncertain pairs of objects,
and they cause problems in generating reliable consensus clustering results [111, 81].
Recently, researchers such as Wang et al. [107] and Vega-Pons et al. [103] enhanced

the CO matrix to extract more information from the members. We believe that
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when we build a clustering ensemble, there may be some other useful information
in the generated members that could be extracted, rather than relying solely on
the pairwise relationship between objects. Consequently, we were motivated to
design a consensus function based on object pairwise similarity that considers more
information than the pair itself to overcome the problem of the uncertain agreement

to some extent.

Moreover, one obvious drawback in most similarity-based consensus functions is
that they require an ordinary clustering algorithm to be applied over the similarity
matrix. This leads to two adverse effects. Firstly, it is difficult to decide which one
is to be used, as most of them require a parameter, so there is the question of which
is the best value. Therefore, this approach unintentionally suffers from the same
difficulties as the single clustering algorithm which the clustering ensemble method
aims to solve. Secondly, it takes time to do a further clustering, and this makes the

whole clustering ensemble inefficient.

1.2.2 Clustering Ensemble Diversity

Furthermore, it is widely believed that having diverse members in an ensemble is
essential for its success. Although many researchers have investigated the effect
of diversity on the quality of clustering ensembles, they have not yet arrived at
any agreement on the relationship between diversity and ensemble quality. Some
researchers have concluded that, through high levels of diversity among members,
high levels of ensemble quality can be achieved [25, 20, 51]. By contrast, other
researchers suggest that median diversity among members is better in terms of

improving the ensemble’s quality [39].

Nevertheless, most of these diversity studies either investigated the effect of di-
versity on one specific consensus function or their own proposed consensus function.
Therefore, more studies need to be conducted in order to investigate diversity defi-

nitions in their relation with multiple consensus functions.
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1.3 Research Questions

The main research question that we would like to answer in this thesis is:

How can we develop an effective clustering ensemble that can improve the quality and
consistency of the clustering result ¢ In order to answer this question, we believe
this research has to consider two essential issues: consensus function and diversity

by addressing the following associated questions.

1. How can we design a consensus function that addresses the problem of uncer-

tain pairs of objects?

2. Is there any other information in the ensemble members that we can use to
design a new effective consensus function? If so, what is it and how can we

design consensus functions?

3. How can we design a similarity-based consensus approach that does not require
an additional step of using an ordinary clustering algorithm to produce the
final clustering result, which can be implemented in the clustering ensemble

framework to generate a reliable and accurate clustering result?

4. How are the existing diversity measures defined in the context of the clustering

ensemble?

5. Does the diversity influence ensemble performance?

Questions 1 to 3 are our key questions regarding to the consensus function issue,

while, questions 4 and 5 are our key questions regarding to the diversity issue.

1.4 Thesis Organisation

The reminder of this thesis is organised as follows:

Chapter 2: Literature Review This chapter provides a review of clustering

analysis, which includes the different clustering techniques and clustering validation

7
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index. The clustering ensemble is then introduced in more detail. Work relating to
the consensus function is discussed. Finally, this chapter details some of the current

clustering ensemble applications.

Chapter 3: Research Methodology In this chapter, our research design is
explained, including the adapted clustering ensemble framework, and the strategy
used to test the proposed consensus functions. We also describe the implementation

and tools used in our research.

Chapter 4: Object-Neighbourhood Clustering Ensemble (ONCE) In this
chapter, we present two new consensus functions ONCE and £-ONCE, and discuss
the results of testing the effectiveness of ONCE and £-ONCE. We also compare
the performance of the proposed methods with a number of clustering ensemble

methods. This chapter presents an answer to research question 1.

Chapter 5: Adaptive Clustering Ensemble (ACE) In this chapter, we de-
scribe two new consensus functions based on two novel similarity measurements,
which are Dual-Similarity Clustering Ensemble (DSCE) and Adaptive Clustering
Ensemble (ACE). We conduct some experimental studies to test the effectiveness of
DSCE and ACE and compare them to other clustering ensemble methods. We also
discuss and analyse the results obtained. This chapter presents answers to research

questions 2 and 3 of this thesis.

Chapter 6: The Diversity of the Clustering Ensemble In this chapter,
we investigate diversity measurements by looking at their influence on ensemble
performance. We analyse and discuss the experimental results obtained. Moreover,
we design two experiments to investigate two issues raised from our experimental
study, and discuss and analyse the results obtained. This chapter presents answers

to research questions 4 and 5.
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Chapter 7: Conclusions and Further Work In this chapter, we draw our
overall conclusions on the two central points of this research, and we also suggest

further work to be done in the future.



Chapter 2

Literature Review

This chapter reviews the literature related to this research, including the background
of clustering analysis in Section 2.1, and clustering ensembles in Section 2.2, along
with details on their process. In Section 2.4, clustering ensemble applications are

reviewed, and finally Section 2.5 includes a summary of this chapter.

2.1 Clustering Methods

Clustering is a task of assigning each object (sometimes called a pattern, observation
or data point) in a dataset to a group or cluster in order to identify natural groups
within that dataset. Thus, objects in the same cluster are more similar to each other

than to the objects in the other clusters [54].

In machine learning, clustering is used to search for groups that reflect hidden
structured patterns. This is widely known as unsupervised learning, in contrast to
supervised learning, which requires the dataset to be labelled in advance for training
purposes. The supervised learning problem is related to predicting categorical and
numerical data (i.e., the data classification problem corresponds to categorical data,
and the regression problem corresponds to numerical data). However, all of the

available data in data clustering problems are unlabelled, so the task is to group
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the objects based only on the natural relationships among them and the underlying

population model [55].

The main problem in clustering is how to define any similarity/dissimilarity be-
tween the objects. Generally, similarity between two objects measures the degree
to which they are alike on a numerical scale, while the dissimilarity measures the

degree to which they are different

A common and important measure is the distance (Dis) between two objects.
Several similarity and distance measures exist in the literature; each of them is
defined based on the type of measured feature, and more details of these measures
can be found in [109]. However, the best-known distance measure is the Euclidean
distance. Suppose we have the dataset X = {x1, 2o, -+ ,2,} € R?, where each object
x; is a set of d features (sometimes called attributes, dimensions or variables). The

Euclidean distance (E) can be calculated between two objects z; and z; as follows:

1/2
E(x;, x;) (Z |zy — :c]l|2> (2.1)

In fact, the Euclidean distance is a special case, p = 2, of the Minkowski distance

(M), which is defined as follows:

1/p
M(x;,x;) = <Z |z — xj|P ) (2.2)

Many techniques have been proposed for cluster analysis due to the fact that clus-
tering analysis has been used in a wide variety of applications. However, we may
distinguish three main types of clustering techniques: hierarchical, partitional and
fuzzy. The main difference between them is that hierarchical and partitional clus-
tering are classified as hard clustering, where each object in the dataset belongs to
only one cluster, whereas in fuzzy clustering, which is sometimes called soft clus-
tering, some objects in the dataset can belong to more than one cluster (this kind

of clustering is also called overlap clustering). The following sections explain these

11
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clustering techniques in more detail.

2.1.1 Hierarchical Clustering

Hierarchical clustering builds clusters in a hierarchy that represents the similarity
levels at which the clusters are formed [57]. Compared with partitional clustering,
hierarchical clustering is a nested sequence of partitions that are represented as a
dendrogram (tree). Hierarchical clustering builds clusters gradually, while parti-

tional clustering is a single partition that learns clusters directly [95].

Hierarchical clustering can be categorised into two different procedures: agglom-
erative (bottom-up technique) and divisive (top-down technique). The agglomera-
tive technique starts by assigning each object to its own cluster and then gradually
merges similar clusters to form larger clusters. This continues until a stopping cri-
terion is achieved. On the other hand, the divisive procedure starts by assigning all
objects into one cluster and then splitting this into smaller clusters. This continues

until a stopping criterion is achieved [95].

The merge or split procedure is based on the similarity between objects in a
cluster and on the dissimilarity between objects in different clusters. An important
example of measuring (dis)similarity between two objects is the measure of the
distance between them; such measuring is called a linkage metric. There are different
linkage methods, such as Single linkage, Complete linkage, Average linkage and
Centroid linkage. In the Single linkage method, the distance between two clusters
is defined as the minimum distance between a pair of objects drawn from the two
clusters (i.e., one object from one cluster, the other from another). This is also
called the nearest neighbour method. In contrast, the distance between two clusters
in the Complete linkage algorithm is the maximum of all pairwise distances. In
the Centroid linkage method, the distances between clusters are determined by the
Euclidean distance between centroid objects. The Average linkage method considers

the average pairwise distance between all objects in two clusters [95].

12
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Although hierarchical clustering does not require information about the number
of clusters, it has many disadvantages. The main disadvantage is high computational
complexity, which in most algorithms is O(n?), where n is the number of objects in
the dataset. Thus, they have limited application in large datasets because a distance
matrix must be calculated at each step. Moreover, it is sensitive to noise and outliers

[109).

2.1.2 Partition Clustering

Partition clustering is “simply a division of the data objects into non-overlapping
subsets (clusters)” [95]. It does not have a hierarchical structure, and the partition-
ing is based on a specific criterion, called the criterion function, such as minimising
the sum of the squared distances. It is divided into two main sub-categories: centroid

algorithms and medoid algorithms:

Centroid Algorithms These represent each cluster by centre of gravity of
the objects. The best-known centroid algorithm is k-means [44], which requires
the number of clusters k& for the dataset to be specified, and then it partitions the
data into k clusters. Cluster similarity is measured based on the mean value of the
objects in the cluster, which is viewed as the cluster’s centre. Thus, all objects in
the dataset are assigned to their closest centre [95]. The k-means algorithm is the

best-known squared error-based clustering algorithm, which is presented below:

1. Set the value of k.
2. Select k random objects as initial centroids, Cj, j = {1,...,k}

3. For each object z; in dataset X.

(a) Compute the distance between z; and each centroid C; (for example using

the Euclidean distance as in equation 2.1)

(b) Assign x; to its nearest centroid.

13
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4. Update the centroid for each cluster by taking the mean of all the objects in
that cluster.

5. Repeat steps 3 and 4 until a stable clustering result is reached and/or no

change is made to the centroids.

Generally, the main property of the k-means algorithm is that it is efficient for large
datasets, and it often terminates at a local optimum; the resultant clusters have
spherical shapes [109]. However, it is sensitive to noise, as well as outliers in data
and initial centroids, and also needs a pre-selected value for k. Each run of k-means

may generate a different clustering result [95].

Medoid Algorithms In this method, each cluster is represented by one of
its elements. The best-known is the k-medoids algorithm, also called Partitioning
Around Medoids (PAM) [59]. One of its advantages is that it deals with noisy data
by setting the mean of a cluster to be the object that is nearest to the ‘centre’ of
the cluster. Moreover, it is efficient for categorical data [109]. The key steps of

k-medoids are as follows [59]:

1. Randomly select k objects as medoids from dataset X.
2. Assign each object to its closest medoid based on the distance metric.
3. Calculate the sum of distances from all objects to their medoids.

4. Calculate a swapping cost for each pair of non-medoids and medoids. Swapping
means using a non-medoid to replace a medoid. If the replacement can decrease
the value of the objective function, the swap will be confirmed; otherwise, the

medoid will not be replaced by the non-medoid.

5. Repeat steps 2, 3 and 4 until there is no change in the medoids.

One of the disadvantages of this method is that it assumes that each cluster can
be well-represented by its medoid, which might not be the case in some datasets
where this assumption cannot be applied. Moreover, because the time complexity

is O(k(n — k)?), it is not efficient in dealing with large datasets [59].
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2.1.3 Fuzzy Clustering

This allows for an overlap between clusters; it is thus sometimes called soft clustering
[109]. The best-known fuzzy clustering algorithm is c-means, which was developed
by Dunn [22] and improved by Bezdek [8]. c-means assigns a degree for each object
to express, if it belongs to a cluster. It is similar to k-means in that it minimises

the objective function. The key steps in c-means are as follows [8]:
1. Choose a value for k clusters.
2. Randomly assign fuzzy coefficients to each object in the clusters.
3. Based on the fuzzy coefficients, compute the centroid for each cluster.
4. Based on the new cluster centres, re-calculate the coefficients of each object.
5. Compare the variance with a predefined sensitivity threshold.
6. Repeat steps 3, 4 and 5 until the variance of the fuzzy coefficients is less than

the sensitivity threshold.

c-means is also sensitive to noise and outliers, and like most clustering algorithms,

it requires prior knowledge of the number of clusters [109].

2.1.4 Issues with Clustering Algorithms

There are a number of issues related to clustering algorithms. Firstly, several optimal
solutions are possible. Different structures for the same dataset can be achieved by a
single algorithm (but with different parameters) or by several algorithms. The use of
different distance metrics produces different clustering results. This makes the selec-
tion of the most appropriate clusters more difficult because the data are unlabelled
and the parameters cannot be tuned by using cross-validation [2]. Furthermore,
exploring all possible solutions is an expensive computation and, in practice, it is

infeasible for large datasets.

Secondly, the correct number of clusters for any given data is often unknown.

Current applications involve increasingly complex and large datasets, which may
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have complex clustering shapes, highly unbalanced clustering sizes, differing densi-
ties, and possible overlap clustering; all these issues create several challenges in the
selection of a suitable single clustering algorithm for extracting meaningful cluster
structures [4]. Therefore, it is logical to combine multiple clustering models to build

a clustering ensemble.

2.2 Clustering Ensemble Methods

Ensemble clustering is the process of combining the multiple clustering results of a
set of objects into a single improved clustering. It is sometimes referred to as the
Consensus solution or Clustering Aggregation. In recent years, various studies have
been conducted to develop clustering ensemble methods inspired by the success of
the ensemble method in the supervised learning field [94, 26, 97, 27, 98]. However,
compared to the research on classification ensemble methods, building a clustering

ensemble is not straightforward, and further work is required in this field.

There are several reasons that make the task of building a clustering ensemble
more challenging than that of classification. One is that clustering is unsupervised
learning in which the data are unlabelled, so there is no prior knowledge with which
the algorithm can discover the true cluster structure, and there is no “ground truth”
to validate the clustering result. Moreover, no cross-validation technique can be car-
ried out to tune the clustering algorithm’s parameters, thus there are no guidelines
with which the user can select the most appropriate clustering algorithm for a given
dataset. Another challenge is that the number of clusters produced may differ among
the generated solutions by different clustering algorithms. In addition, the number
of clusters in the final solution is unknown in advance. The final solution is ob-
tained by accessing a set of base solutions, which in fact are cluster labels, and not

the original data used.

Ghosh and Acharya [34] pointed out that there are several motivations for us-

ing clustering ensembles, and that these are much broader than those for using a
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classification ensemble, where the main motivation of the latter is to improve the

classification accuracy. These reasons include:

e To improve the quality of the clustering results compared to those produced

by single clustering algorithms.

e To reuse existing clustering (knowledge reuse): in some applications a variety
of partitions may exist, so they can be combined to obtain a final clustering
result. This delivers a more consolidated clustering result; several examples

are provided in [94].

e To generate robust clustering results across different types of datasets. It is
widely known that the popular clustering algorithms often fail to produce a

good clustering result when the data do not match with their assumptions.

Among these objectives, the first point is the most widely accepted one. The
cluster quality is usually measured with a numerical measurement to assess different

aspects of cluster validation [95]. Section 2.2.4 reviews some of these in more detail.

2.2.1 The Process of the Clustering Ensemble Method

Recently, Vega-Pons and Ruiz-Shulcloper [102] summarised the process of clustering
ensemble into two main steps: generation and consensus. Figure 2.1 illustrates this
process, in which the input is the original dataset and the output is the consensus

clustering.

Generation Step This is the first step in the clustering ensemble process, where
a number of ensemble members are generated by using particular generation tech-
niques. Vega-Pons and Ruiz-Shulcloper [102] pointed out that greater variance in
the set of ensemble members means that more information is available to the consen-
sus function. Moreover, there are no constraints on how the ensemble members must

be obtained [102]. Therefore, different strategies could be applied. In the literature,
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Figure 2.1: The Clustering Ensemble Process [102]

several generation techniques have been used to generate members for building an

ensemble; more details on these techniques can be found in section 2.2.2.

Consensus Step The second step is where the generated members are combined
using a consensus function to obtain the final clustering result. The success of a
clustering ensemble relies on choosing a consensus function that can improve the
quality of the final clustering solution [36]. As a result, a number of consensus func-
tions have been proposed in the literature; section 2.2.3 will review some common

consensus functions.

2.2.2 Ensemble Generation Techniques

Some researchers have applied techniques based on the types of data or applications
that have been used. For high dimensional data, Strehl and Ghosh [94] applied ran-
dom feature subspaces; members are generated for each of the data subspaces. They
also generated members by selecting different subsets of objects for each member.
They called this technique object distribution and they applied it to big data. Fern
and Brodley [25] generated members based on random projections of objects onto
different subspaces, and the Expectation Maximization algorithm (EM) is applied
to these subspaces. The resampling method was used by [74, 76, 5|, in particular
bootstrap, which is a sampling with replacement. Minaei-Bidgoli et al. [74] used

the bootstrap technique with a random restart of k-means [74], while Monti et al.

18



Chapter 2. Literature Review

[76] used the bootstrap technique with different clustering algorithms, including k-
means, model-based Bayesian clustering and self-organising map. Moreover, Ayad
and Kamel [5] used bootstrap resampling in conjunction with k-means to generate

the ensemble members.

Others used the most popular clustering algorithm k-means to generate the mem-
bers (with a random initialisation of cluster centres). k-means has been widely used
due to its simplicity and its low computational complexity [31, 97, 32, 35, 6, 51].
For instance, Fred and Jain [32] used it with random initialisations of cluster cen-
tres and a randomly chosen k& (number of clusters) from a pre-specified interval for
each member. They used a large k£ value in order to obtain a complex structure
within the ensemble members. They also ran k-means with a fixed k& to compare
the two generation techniques and they found that members with a random k are
more robust than other members. Dimitriadou et al. [19] and Sevillano et al. [89]
applied fuzzy clustering algorithms in particular c-means in order to generate soft

clustering members, while in Hore et al. [45] they applied fuzzy k-means.

Strehl and Ghosh [94] used a graph-clustering algorithm with different distance
functions for each member. Topchy et al. [98] used a weak clustering algorithm,
which produces a clustering result that is slightly better than a random result in
terms of quality by using two different techniques. In the first technique, they used
a random projection on one dimension from the original features, whereas in the
second technique they split the data into a random number of hyperplanes. The
weak algorithm is simple, fast at generating members, and it has been shown that

it is able to produce high-quality ensemble results.

lam-on et al. [50] examined different techniques, including a multiple run of k-
means with a fixed k for each member and a randomly chosen k from an interval,
where the maximum £k is equal to y/n. However, setting k equal to this value appears
to be unrealistic for a big dataset. Furthermore, Tam-on et al. [48] applied different
generation techniques to categorical data; they ran k-mode algorithm with full space

and random subspaces with also a fixed k£ and random k. They found that these two
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techniques allowed their ensemble method to achieve high performance compared to

the k-mode clustering algorithm, as well as some other ensemble methods such as

those proposed by Strehl and Ghosh [94].

Another popular technique is to use different clustering algorithms for each mem-
ber [111, 35], where all of the algorithms may complement each other. Yi et al. [111]
used the best-known clustering algorithms, such as Hierarchical clustering and k-
means. Gionis et al. [35] used the Single, Average, Ward and Complete linkage
methods and k-means to generate ensemble members. Recently, Yu et al. [113] ap-
plied the Gaussian mixture model in conjunction with bagging techniques. k-means

and EM were used to estimate the Gaussian mixture models’ parameters.

lam-on et al. [48] classify the techniques used in the generation step into five

categories as shown in Figure 2.2, these are:
e Homogeneous ensemble: A single clustering algorithm is used to generate
a number of members.
e Different-k: Each member is generated with different randomly selected k.

e Data subspace/subsample: Each member is generated by a random sub-
sample of the data, or onto different subspaces, or by using a random subset

of features.

e Heterogeneous ensemble: Each member is generated using a different clus-

tering algorithm.

e Mixed heuristics: Any combination of the above techniques can be mixed

to generate a number of members.

2.2.3 Review of Consensus Functions

A number of consensus functions have been proposed in the literature; some of

them are based on how they represent the clustering ensemble problem, others by
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Ensemble Generation
Techniques

Homogeneous Different-k Data subspace/ Heterogeneous Miked Feuristics
ensembles subsample ensembles

Figure 2.2: Diagram of the five categories of the ensemble generation techniques, as
classified by lam-on et al. [48].

applying well-known mathematical concepts to the problem. As the clustering en-
semble is motivated by the preceding work on classification ensembles [64], the voting
combination strategy was one of the early developments, where the labelling corre-
spondence problem needs to be solved first. Another representation of the cluster
labels is as categorical data [98], where some researchers represent the members as
categorical features in which a category-based clustering algorithm is applied. Oth-
ers transform the members into a binary membership matrix in which the pairwise
similarity matrix can be calculated [32] (i.e Co-association matrix (CO)). Other re-
searchers used such a matrix to formulate a graph to which a graph-based clustering

method is applied [94].

Recent reviews on clustering ensemble methods can be found in [102, 34], where
the authors have been trying to classify these methods according to their techniques.
Among them we consider the classification scheme originally proposed by Vega-Pons
and Ruiz-Shulcloper [102] due to its simplicity. This facilitates the introduction of
the main ensemble methods presented in the literature. Thus, according to them,
the consensus function can be classified into two main approaches: Object Co-

occurrence-based approaches and Median Partition, which are as follows:

1. The Object Co-occurrence Approach: This first computes the co-occurrence
of objects in the members and then determines their cluster labels to produce a con-
sensus result. Basically, it counts the occurrence of an object in one cluster, or the

occurrence of a pair of objects in the same cluster, and generates the final clustering
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result by a voting process among the objects. Examples of such approach are: the
Relabelling and Voting method [21, 6, 114], the Co-association matrix [32] and the
Graph-based method [94, 26].

2. The Median Partition Approach: This treats the consensus function as
the optimisation problem of finding the median partition with respect to the cluster
ensemble. The median partition is defined as “the partition that maximises the
similarity with all partitions in the clustering ensemble ” [102]. Examples of this
approach include the Non-Negative Matrix Factorisation based method [67], the
Genetic-based method [112, 70] and the Kernel-based method [101]. More details

on these methods can be found in [102].

Vega-Pons and Ruiz-Shulcloper [102] pointed out that consensus functions were
primarily studied on a theoretical basis, and as a result many consensus functions
based on the median partition approach were proposed in the literature, whereas
only a few studies focused on the object co-occurrence approach. The following sub

sections review the most common clustering ensemble methods.

2.2.3.1 Graph-based Methods

One of the early methods was proposed by Strehl and Ghosh [94], where they trans-
formed the clustering ensemble problem into a graph problem, and proposed three
different consensus functions: the cluster-based similarity partitioning algorithm
(CSPA), the hypergraph partitioning algorithm (HGPA) and the meta-clustering
algorithm (MCLA). In CSPA, the similarity matrix is used as the adjusted simi-
larity matrix of a fully connected graph, where nodes correspond to objects and
edge weights to their similarities. The final result is obtained by using the METIS
package' in particular PMETIS [58]. This method is similar to the evidence accu-
mulation method described by Fred and Jain [32], where the hierarchal clustering

algorithm is applied to obtain the final clustering result.

LA set of multilevel graph partition algorithms.
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On the other hand, a hypergraph is constructed in HGPA and MCLA, in which
each ensemble member is represented as a hyper-edge. In HGPA, the hyper-graph
is directly partitioned by cutting a minimal possible number of hyper-edges, where
all hyper-edges have the same weight, into k£ connected nodes of approximately the
same size. To do that, the authors used the hypergraph partitioning algorithm
HMETIS [58]. In contrast, MCLA first defines the similarity between two clusters
in terms of the amount of objects grouped in both, using the Jaccard index. Then
a meta-graph is constructed where nodes represent clusters and the edges represent
the similarity relations between pairs of clusters. The final partition, which is called
meta-clustering, is obtained using PMETIS [58], where the meta-graph is then par-
titioned into k balanced meta-clusters. The complexity of CSPA, HGPA and MCLA
is estimated in [94] as O(kn*m), O(knm), and O(k*nm?), respectively.

Furthermore, Fern et al. [26] proposed the hybrid bipartite graph formulation
(HBGF) algorithm by building a bipartite graph. In this type of graph there are
only two different types of nodes, and edges exist between nodes of different types.
In HBGF, one type of node represents an object, whereas the other type represents
clusters, and an edge exists only between the cluster and the object belonging to
that cluster. Then, they applied a spectral clustering algorithm to obtain the final
partition. Its computational and storage complexity is O(knm), as estimated by

Fern et al. [26].

Al-Razgan and Domeniconi [2] proposed two graph-based algorithms: the weighted
bipartite partition algorithm (WBPA) and the weighted subspace bipartite parti-
tion algorithm (WSBPA). They combine members generated by the local adaptive
clustering algorithm (LAC), which designed to work with numerical data and as-
signs weights to the features in the cluster. PMETIS is also used to obtain the final
clustering result. The only difference between these two algorithms is that WSBPA

adds a weight vector to each cluster in the final clustering result.
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2.2.3.2 Object Pairwise Similarity-based Methods

The most popular pairwise similarity-based method is the Co-association method,
which avoids the labelling correspondence problem by mapping the ensemble mem-
bers onto a new representation in which the similarity matrix is calculated between
a pair of objects in terms of how many times a particular pair is clustered together
for all ensemble members [32]. The final partition is obtained by applying any
similarity-based clustering algorithm to this matrix. This method is Evidence Ac-
cumulation (EAC), and each entry in the matrix represents evidence collected from
all ensemble members for a pair of objects. EAC calculates the percentage of mem-
bers in the ensemble in which a given pair of objects is placed in the same cluster

as follows:

COw ) = 37 D 0(Pu(ae), Pal,) (2.3

m=1

Where z; and x; are objects, P, is a partition, and 0(P,,(z;), Pn(z;)) is defined as:

1, if x; and x; are in the same cluster in member m.

5= (2.4)

0, if z; and z; are in different clusters in member m.

In Fred and Jain [32], the final partition is obtained by applying Single and Av-
erage linkage hierarchical clustering algorithms to the Co-association matrix. Build-
ing the hierarchical tree is achieved using the Single linkage edges with a minimum
weight, which are cut based on a specific threshold. This threshold is obtained based
on the decision of the number of clusters, and they defined this criterion as the range
of threshold values needed to obtain k clusters, which they call the k-cluster lifetime.
On the other hand, Fred [30] used a fixed threshold equal to 0.5 to obtain the final
partition, where objects are joined in the same cluster if they have a similarity value

greater than 0.5.

While, the Co-association matrix seems to be an ideal tool for collecting all of the
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information available in the clustering ensemble, it should be noted that the original
Co-association matrix [32] captures only the pairwise relationship between objects
in the ensemble members. Recently (in 2009), researchers have realised that more
information within the generated members can be obtained to create this matrix.
Wang et al. [107] proposed Probability Accumulation (PA) which extends the Co-
association method by considering the cluster size and the dimensions of the objects

within the data when calculating the Co-association matrix.

In PA, a more informative similarity matrix is obtained from the ensemble mem-
bers compared with the Co-association method, which means that the chance of
obtaining several pairs of objects with the same similarity score is less than that of
using Co-association. Vega-Pons et al. [103] proposed a weighted-association matrix
that takes three different factors into consideration. These are: the number of ele-
ments in the cluster to which a pair of objects belongs; the number of clusters in the
ensemble member analysed; and the similarity value between the objects that were
obtained by this member. They follow the same philosophy of Co-association by cal-
culating the similarity matrix and then applying a hierarchical clustering algorithm
and selecting the one with the highest lifetime criterion. They call this method
Weighted Evidence Accumulation (WEA). In their work, they also proposed an-
other algorithm based on the weighted-association matrix, by introducing a new
intermediate step, called Information Unification, after the matrix is obtained. This
aims to unify the different data representations and (dis)similarity measures into a
new data representation, where each object is represented by (dis)similarity values

(as new features).

However, we believe that there is more information in the generated members
that we should consider when we calculate the similarity matrix, rather than just

considering the pairwise relationship between objects.

Recently (in 2012), Yi et al. [111] highlighted an issue that is often overlooked by
other methods: how to handle the uncertain data pairs when calculating the simi-

larity matrix. They defined uncertain pairs of objects as the “pairs that have been
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assigned to the same cluster by approximately half of the partitions in the ensemble,
and assigned to different clusters by the other half” [111]. They assumed that if the
number of uncertain pairs is large, then this could mislead the consensus function
into producing inappropriate final result. They addressed this issue by proposing a
new clustering ensemble, based on the matrix completion theory, where they filtered
out the uncertain pairs in the Co-association matrix, and then they estimated their
value to complete the matrix by applying a matrix completion algorithm, namely
the Augmented Lagrangian as proposed by Lin et al. [68]. However, by using a
matrix completion process, their approach has the disadvantage that it may cause

information loss.

Moreover, a method called weighted-object clustering ensemble (WOEC) was
proposed by Ren et al. [81]. It uses the Co-association matrix to define a one-
shot weight assignment to objects, where a large object’s weight means that it is
hard to cluster, whereas a small weight means that it is easy to cluster. In fact,
they follow the same idea as the Boosting algorithm [85]. Ren et al. [81] proposed
three weighted object versions of the classical clustering ensemble algorithms CSPA,

HGPA and MCLA [94] reviewed earlier.

2.2.3.3 Voting-based Methods

In this kind of method, the labelling correspondence problem is first solved, and
then a voting process ensues, in which each object should vote for the cluster to
which it will belong in the final clustering result. Dudoit and Fridly [21] proposed
a consensus function similar to the (Bagging) plurality voting used in classification
ensembles, in which they solved the labelling correspondence problem using the
Hungarian method [29]. They assumed that all members have the same number
of clusters, and they obtained the final clustering result, which also has the same

number of cluster as the members, by applying the plurality voting process.

Zhou and Tang [114] proposed a new voting method, where the clusters in the

members are aligned by counting their overlapped objects, and the pairs of clusters
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that have the largest overlap are matched. Then simple voting is used to combine
these aligned clusters. They also proposed a weighted voting method where they
employed Normalised Mutual Information (NMI) [94] to weight the aligned clusters.
Moreover, they proposed two selecting methods based on the NMI weight, where
they included in the ensemble just the clusters whose NMI weight was larger than

the specified threshold.

On the other hand, three different cumulative voting methods were proposed by
Ayad and Kamel [6]; these are Un-normalised fixed-Reference Cumulative Voting
(URCV), fixed-Reference Cumulative Voting (RCV) and Adaptive Cumulative Vot-
ing (ACV). In these methods, each ensemble member provides a soft or probabilistic
vote for each object on which clusters they should belong to in the ensemble result.
Then they are thresholded to determine the membership of each object to the en-
semble clusters. This process requires a mapping function between the selected
reference member and the other members. For this purpose, they used a theoretical

information criterion based on the information bottleneck principle [6].

Vega-Pons and Ruiz-Shulcloper [102] argue that the main drawback of these
methods is that they restrict the clustering ensemble problem because they require
all the members to have the same cluster numbers, as well as the final clustering
results produced by the consensus function, and that affects the ensemble quality.
Furthermore, these methods require more time to solve the labelling correspondence

problem than other consensus functions.

2.2.3.4 Probability-based Methods

The probability model has been used to find the median partition, which is a par-
tition that best summarises the ensemble members. Topchy et al. [97] proposed a
method based on a finite mixture model, where each member is modelled as a mix-
ture of multivariate multinomial distributions and the maximum likelihood problem
is solved by using the EM algorithm. They applied their method to deal with in-

complete members, where some of the cluster labels are missing. Another work
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by Topchy et al. [98] represented the clustering ensemble as a categorical clustering
problem, and the combined partitions were produced based on the median partition.
They named their proposed algorithm the Quadratic Mutual Information Algorithm
QM) [95].

Wang et al. [105] proposed a Bayesian version of the multinomial mixture model;
they called it the Bayesian Cluster Ensemble (BCE). They used variational ex-
pectation maximisation and Gibbs’ sampling to estimate the parameters and the
inference. They generalised their algorithm to work when the original features of
the data were available. They compared it with BCE and found that the generalised

version achieved higher quality.

Louren et al. [69] proposed a probabilistic consensus clustering based on the Co-
association matrix, where each entry is regarded as a Binomial random variable,
parametrised by the unknown class assignments. They determined the object prob-
ability assignments to a cluster by minimising a Bregman divergence between the
observed Co-association frequencies and the corresponding co-occurrence probabili-
ties expressed as functions of the unknown assignments. Then to solve the problem
under any double-convex Bregman divergence, they proposed an optimisation algo-

rithm. They also adapted their proposed method for large scale datasets.

Recently, Yu et al. [113] proposed a Gaussian Mixture Model Cluster Structure
Ensemble method (GMMCE), where as we said they used the Gaussian mixture
model to generate the members; each one of them captures the underlying structure
from different data sources. The main aim of the ensemble is to identify the most
applicable structure of the data. For estimating the parameters of the Gaussian
mixture models they used k-means and the EM algorithm. Each model is then
represented as a new data sampling in which a matrix is constructed representing
the relationship between components. They measured the similarly between two
components corresponding to their respective Gaussian distributions, measured by

a distance function called Bhattycharya.
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2.2.3.5 Link-based Methods

Iam-on et al. [49, 51| applied link network analysis to clustering ensembles and
they proposed a number of methods. First, they proposed two consensus functions
based on pairwise similarity, named the Connected-Triple based similarity (CTS)
matrix and the SimRank based similarity (SRS) matrix [49]. They then proposed
an improved version of SRS, called approximate SimRank-based similarity (ASRS)
[52]. Basically, they represented the ensemble members as a link network and then
they implemented the well-known link-based similarity measures developed in the
classification of web document areas to this member/cluster network, as their names

indicate.

In CTS, the members are represented as a cluster network. For example, let us
say that we have 3 members, P, = {a,b}, P, = {c,d} and P; = {f, ¢}, and there
are two objects, x1 and x5, which belong to different clusters a and b respectively in
member P;, whereas they belong to the same cluster ¢ and f in members P, and P
respectively. According to members P, and P, the pairs x; and x5 are considered
to be similar, but according to P; their similarity is equal to zero. Applying the
connected triple concept, it is found that clusters a and b are justified as similar
as they have 2 connected-triples, which are clusters ¢ and f from the two other

members.

The object pairwise similarity matrix for a given pair (z;, ;) in CTS is calculated
as follows:

M
1
CTS(x;,xj) = ZS (i, xj) (2.5)
m:l

Where S(x;,x;) is defined as:

1, if x; and x; belong to same cluster.
Sets(c(z;), c(xj)) x DC' Otherwise.

¢
Where Ses(c(x;), c(z;)) = maj;{T}, and Tj; = > min(wj e, w;.).

e=1
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The w; . is the link weight between two clusters 7 and e, which is calculated as a
Jaccard index (equation 2.16). The DC' is “the confidence level of accepting two

non-identical objects” [49], and it takes value € [0, 1].

The SimRank (SRS) represents ensemble members as a bipartite graph, which
has two types of nodes: clusters and objects, and the link exists only between
clusters and objects. It assumes that if two objects have similar neighbours then
they are similar as well. The similarity between a given pair of objects is calculated

as follows:

1, it v;=x;.

SRS (i, ;) = (2.7)

m > > SRS(d,b) Otherwise.
v 7" a'€Ng, b’esz
Where N,, is the set of cluster nodes connected to object z;. The similarity SRS
matrix can be calculated between a pair of objects, and is defined as the average
similarity between clusters to which they belong, which in turn is calculated as the
average similarity between their objects. The final SRS similarity matrix is obtained

after a number of iterations (¢) in order to refine the similarity values to stable values

that do not change.

. DC ! 1/
Jim SRSy (a,0) = e > > SRS(dV) (2.8)

N, ||Ny.
| T4 wJ’ a’EN;ci b’Gij

The iteration process starts at the outset of: SRSy = 1if x; = z; and 0 otherwise.
In the ASRS, the SRS is improved by eliminating the iteration process to make it

more efficient. It is calculated between a given pair of objects as follows:

1, if v;=x;.

> 8d,b')  Otherwise.

1
Ny ||Nz.,
el 25, R,

S¢ is the similarity between two clusters, which is represented as a subgraph, where
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the node represents a cluster, the edge connects two clusters together, and the weight

of edge wyy connecting clusters @’ and b is calculated as the Jaccard index.

wSe(a’,b')
‘(b)) = ———"%x D 2.1
54, ¥) max{wSe} < b (2.10)
wS(a' V) = TV Z Z (Wary X Wy, (2.11)
NI || ol yeny sy

However, the final clustering result is obtained by applying a hierarchical clus-
tering algorithm over the obtained similarity matrices. Tam-on et al. [51] also pro-
posed three improved versions of the above algorithms named Weighted Connected
Triple (WCT), Weighted Triple-Quality (WTQ), and Combined Similarity Measure
(CSM). In these consensus functions, they considered the relationship between and
within the members (clusters) in the consensus function. In other words, they con-
sidered the similarity within clusters to reflect the similarity between objects in one
cluster and the similarity between clusters in different members. In WCT, they
extended CTS to represent a weighted network, where nodes represent clusters and
edges represent the overlap between them. The concept is very similar to the MCLA
method. The similarly between two nodes is measured with respect to their centre
of triple as the average of the sum of their minimum edge weight multiplied by DC

(decay factor).

The WTQ is inspired by the work in [1], where the quality of the shared triple
is taken into account when calculating the similarity between two nodes (clusters).
The CSM, on the other hand, combines WCT and WTQ algorithms together. The
final clustering result is obtained by applying k-means, k-medoids, and spectral graph
partition to the constructed link similarity matrices. This work shows that mathe-
matical concepts from other disciplines can be applied to the clustering ensemble to
represent the members in a way that makes most of their information available to
the consensus function. One disadvantage with these methods is that they require
a clustering algorithm to be applied to the calculated similarity matrices; which one

to use is a question yet to be answered, and may affect the final clustering results
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just as a common clustering algorithm does in the first place.

2.2.4 Clustering Ensemble Evaluation

Evaluating the quality of the clustering result is called clustering validity assessment.
There are three different cluster validation indices: external, internal and relative

[82]. The following subsections describe them in more detail.

2.2.4.1 External Validation Index

The external index is the most common validation method used in the clustering
ensemble method. It is based on previous knowledge about the data. It measures
the similarity of the clustering results to the external information “ground-truth”.
Hence, any valid similarity measure suitable for partition comparison can be used
as an external index [40]. In the literature, most external indices that have been
used either to validate the final clustering ensemble result or in diversity measures

(Section 2.3.1), are as follows:

Rand Index and Adjusted Rand Index

The Rand index (RI), as well as the Adjusted Rand index (ARI), are classified as
counting pair similarity-based measurements. They are the most relevant similarity
measures in this type of measurement, which is based on four count situations.
Suppose that we have two partitions P; and P, of the dataset X of n objects, and
all pairs of objects are x; and x;, where ¢ # j. There are four possible situations in

which those pairs could be accommodated:

® 1y - the number of object pairs assigned to different clusters in P, and Ps.

e n11- the number of object pairs assigned to the same clusters in both P, and

Ps.
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e nyo- the number of object pairs assigned to the same cluster in P; and to

different clusters in Ps.

e ng; - the number of object pairs assigned to different clusters P, and to the

same cluster in P;.

The four counts satisfy the following equation:

noo + M1 + nio + nor = U (2.12)

where U is the maximum number of all pairs in the dataset, that is

— n(n=1)
U=—="5—-.

The RI was proposed by Rand [80]. Basically, it measures similarity and enables
the evaluation of the final clustering result by comparing two partitions, assuming

one of them to be the ground-truth partition. It is defined as:

n11 + Noo

RI(Py, Py) = i

(2.13)

It measures the level of similarity within the range [0, 1], where 0 indicates that
the two partitions being compared are completely different, and the value 1 indi-
cates that the two partitions being compared are identical. Comparing two random
partitions using the Rand index does not give a constant value, which is a problem

that has been corrected in its new version, the Adjusted Rand index, as proposed

by Hubert and Arabie [47]. It is defined as follows:

RI(Py, Py) — Expected|RI|

ARI(Py, P,) = 2.14
(P1, F2) 1 — Expected|RI] (2.14)
With simple algebra, the ARI can be simplified to:
k k ni;\ k n; k n; n

k n; k ni\1 _ k 4 k n; n
S0 () + 5 (9] =2 (5) 5= (D1 (5)
where n;; is the number of objects in the intersection of clusters ¢; € P, and ¢; € P,
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n; and n; are the numbers of objects in clusters ¢; € P and ¢; € Py respectively,

and (72‘) is the binomial coefficient 2,(%2),

The maximum value of ARI is equal to 1, which means that P; is identical to Ps,
and it has an expected value 0 for independent clusterings. It is not necessary for

the number of clusters in P, and P, to be the same [60].

Jaccard Index
The Jaccard index (J) is also classified as a counting pair similarity-based mea-

surement, and it gives similarity within the range [0, 1] [87]. It is defined as follows:

ni1

J(P, P) =
(P1, P2) n11 + Nio + Not

(2.16)

Mutual Information and Normalised Mutual Information

These two measures are classified as information-theoretic similarity-based mea-
surements. They measure how much information is shared by two partitions. Mutual
Information treats the compared partition as a random partition. It is defined as

follows:
7]
(P, Py) = g - E m 0, (2.17)

where n; is the number of objects in cluster ¢; € P; n; is the number of objects in

cluster ¢; € P»; and n, ; is the number of shared objects between clusters ¢; and c;.

Strehl and Ghosh [94] showed that MI(P;, P) is a metric and that there is no
upper bound for MI(P;, P,). Thus, they proposed Normalised Mutual Information
(NMI), which normalises mutual information to a [0, 1] range; 1 is attained when P;
is identical to P,, and 0 is attained when P; is completely different from P,. It is

defined as follows:

MI(Py, P)
\/Zl L i log ™ Z] L njlog %

NMI(Py, P) = (2.18)
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2.2.4.2 Internal Validation Index

The internal validation index only relies on information in the data, without any
additional information. It is usually employed for the task of class discovery. Most of
the internal validation indices are based on two criteria: compactness and separation
[95]. The compactness is defined as a measure of how close objects are in a cluster. It
is often measured by the variance, and a lower variance indicates better compactness.
The separation is defined as a measure of how well-separated a cluster is from other
clusters. It is usually measured by the distance between cluster centroids. Such
internal validation indices based on these criteria are the Dunn index, the Davies-
Bouldin index, the Silhouette index, the SD index and SDbw index. More details

on these indices are given below:

Dunn index
The Dunn index is the ratio of the smallest distance between two objects from

different clusters to the largest intra-cluster distance [23]. It is calculated as follows:

I Trece; C'D. b
D(P) = .mink{.min ( Moo yee, Dis(z, y) )} (2.19)

j=L ok \ MAT|=1,... jepdiam(c)

diam is the diameter, which is the maximum distance between two objects among
all clusters, and the Dis is the standard Euclidean distance. The Dunn index has a
value between 0 and co. A large value of D indicates that the partition P is compact

and well-separated. So, this index should be maximised.

Davies-Bouldin Index
The Davies-Bouldin Index (DB) is proposed by Davies and Bouldin [17]. It is

calculated as follows:

k : :
1 diam(c;) + diam(c;)
DB(P) = — z 2.20

(P) k ;j:l%%}?,i;ﬁj{ Dis(c;, ¢j) (2.20)
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Where diam is the diameter of a cluster calculated as the average Euclidean distance

of objects in cluster ¢ to the centroid of cluster i.

Silhouette Index

The silhouette index is a well-known measurement for estimating the number of
clusters in a dataset. The silhouette is based on the pairwise difference between the
compactness and the separation. The compactness is measured based on the distance
within the cluster, which is measured as the average distance between all objects
in the same cluster. The separation is measured based on the nearest neighbour

distance. The silhouette is calculated as follows:

Si(P) = % Yoy el —alra) (2.21)

vyt max{a(x,c;),b(z, c;)}

a(x,c;) |ZDzsxy

yec;

= D
)=, Dites

SD Index

The SD index was proposed by Halkidi et al. [42], and is based on the average
scattering and the total separation of clusters. The compactness Comp is measured
as the variance of cluster objects, and the separation Sep is measured as the total
separation between cluster centres C'. The value of this index is the summation of

these two terms, which is as follows:
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SD = Sep(¢pmaz)-Comp(c) + Sep(c) (2.22)
max; ; Dis(c;, ¢;) i i -
Sep(€) = {im Dis(Cr. C) 2 (Z Dis(ci’cj)>
2y 2 i=1 i

Comp(c) Z\Iacz I/ e(X) ]

Where o is the variance vector of cluster. The optimal partition can be obtained

by minimising the value of SD.

SDbw Index

Similarly, the S Dbw index is the summation of the compactness and the separation
[41]. The compactness is measured in the same way as in the SD index, while the
separation is measured based on the density of the clusters. It is calculated as

follows:

SDbw(P) = Comp(c) + Dens_bw(c) (2.23)
1 k k IECZUC S, uig)
Pens =350y 22 | 2 (S .G S Fa:C5)

i=1 =Lj ree; rece;

where wu;; is an object in the middle of the line segment between the centres of
clusters ¢; and ¢;, and f(x,u; ;) is equal to 0 when the Dis(z, u; ;) is larger than the
average standard deviation of clusters, and 1 otherwise. The minimum value of this

index indicates optimal partition [41].
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2.2.4.3 Relative Validation Index

The concept of the relative validation index is based on comparing the partition to
another partitioning resulting from the same algorithm, but under different condi-
tions (e.g. using different parameter values). In other words, it is a measurement of
the consistency of the algorithms. Two popular indices are Figure of Merit (FOM)
[110] and Stability [65], and they are defined as follows:

Figure of Merit (FOM)

The Figure of Merit is an estimator of the clustering algorithm consistency, which
was originally developed for gene expression data, and was proposed by Yeung and
Haynor [110]. A gene expression dataset X contains n genes (objects) measured un-
der u experimental conditions (features). Suppose a clustering algorithm is applied
to all features in dataset X except feature e to obtain k clusters, {c{,c5---c}. The

figure of merit for feature e (FOM(e,k)) is calculated as follows:

k
FOM(e, k) = % S (@i —7h)2 (2.24)

=1 iec
Where z; . is the object value i in feature e in dataset X, and ZJ is the average of

feature e values only for objects belonging to cluster cf.

Therefore, the FOM is defined as an estimate of the total clustering algorithm

consistency over all the features for £k clusters as follows:
FOM(k) =) FOM(e,k) (2.25)
e=1

A lower value of FOM indicates a more consistent and better clustering result of the

dataset.

Stability

The Stability measure is used to select the number of clusters in the model selec-
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tion application. It is also used to compare between two partitions. The Stability
measure is mainly developed to assess the capability of the clustered dataset to
predicate the clustering of another same size dataset sampled from the same source
[65, 66]. Assume that we have two datasets X and X' sampled from the same dis-
tribution. Applying a clustering algorithm to X and X', we get P = {c1,¢o--- ¢}
and P’ = {c|,c}---c,} respectively. For x € X if z € ¢; then P(z) = j, where
j=A{1,---,k}and for 2’ € X" if 2’ € ¢} then P'(z’) = j. The dataset X and its
partition P can be used to train a classifier f to predict a new partition P; on X',
Then the consistency between the two sets (X, P) and (X', P’) is measured as the
dissimilarity between the original labels P’ and the predicted labels P; using the

modified Hamming distance as follows:

STB. (P, P,) m1n—Z5 (P'(z}), m(Py(x)))) (2.26)

TeCE N

Where (; is the set of all the permutations of the k clusters for partition P’,
and 6(P'(z}), m(Py(27))) = 0 if P'(z) = m(Pi(x7))) and 6(P'(x7), w(Pi(x7))) = 1
if P'(x}) # m(Py(7)))-

Then the stability of the clustering algorithm is computed as the average distance
between partitions using the expectation E of the stability for pairs of independent

datasets X, X’ of size n drawn from the same source as follows:

STB(P) = Ex x/STBe, (P, P,) (2.27)
A smaller value of STB € [1,0] indicates a more stable clustering result for the
data.
2.3 Clustering Ensemble Diversity

Generally speaking, when somebody wants to form a sports team he/she has to

ensure that each member of the team has a different and better skill in a particular

39



Chapter 2. Literature Review

aspect, hence each one plays a role and as a whole team they perform better than
the individual members and better than a team with players who have identical

skills.

The clustering ensemble problem can be seen in a similar way to this example.
Intuitively, there is no point in building an ensemble with an infinite set of identical
members as they are not going to produce a final clustering result any better than
they were at the start. Thus, the ensemble members have to be different enough from
each other to provide complementary information and to improve clustering quality
over an individual partition when combined, the difference between the members is

called diversity.

2.3.1 Related Work on Clustering Ensemble Diversity Mea-

sures

In the clustering ensemble, it has been found that diversity is the fundamental and
crucial factor for building a successful clustering ensemble because an ensemble of
identical members will not outperform the individual members [94, 39, 25]. Accord-
ingly, a number of diversity measures have been proposed [60, 39, 37], most of them

based on the matching of labels acquired from the two clustering results.

Two different approaches have been proposed for measuring diversity among
members: the pairwise method (p) and the non-pairwise method (np) as seen in

Figure 2.3.

2.3.1.1 Pairwise Diversity Measure (p)

In the pairwise method, each ensemble member is compared with the others, and
then a common diversity measurement is used to measure the level of disagreement
between any two partitions (which is the complement of a similarity measure S),
such as DV(P;, P;) = 1 — S(P;, P;); the Adjusted Rand index can be used as the

measure of similarity (S), as defined in 2.15. This pairwise diversity measure (DV,),
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Grbup Individual
Diversity Diversity

Figure 2.3: The two categories of diversity measures that have been proposed in the
literature and the subdivision of the Non-Pairwise measure.

based on the Adjusted Rand index of m members, is defined as follows:
DV, = S(P;, P; 2.28
= TS Ya ) (2.25)

Where S is the ARI calculated as in 2.15

Fern and Brodley [25] used the same measurement DV, but with NM [ index to

measure diversity, as follows:

3

m—

DVonmr = Z (1 - NMI(P;, P))) (2.29)
1

+

=1 j=1

They use it to analyse the influence of the quality and the diversity of the individ-
ual members on the ensemble performance. They found that, based on a number of
experiments, there is a strong relationship between improving the ensemble’s quality

and both the diversity and the quality of its members. They also point out that
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high diversity leads to better ensemble performance [25].

2.3.1.2 Non-Pairwise Diversity Measures (np)

As discussed in Hadjitodorov et al. [39], the ensemble result is first obtained in the

non-pairwise measurement, and then each member is compared with it.

This measurement is divided into: group diversity and individual diversity.

Group Diversity Greene et al. [37] proposed an entropy measurement as a group

diversity measure, defined as:

2 n n
Entropy = wn=1) > > —(pbijlogypbi; + (1= pbij) logy(1 — pbij))  (2.30)
i=1 j=it+1

Where pb;; represents the probability of clustering the two objects ¢ and j to-
gether; the greater the entropy, the greater the diversity obtained among the mem-
bers. They highlighted that diversity as well as the selection of the consensus func-

tion is important in producing better ensemble results; not diversity alone.

Individual Diversity Another measure, proposed by Hadjitodorov et al. [39], is
the average diversity between the members and the ensemble result P*, which is

classified as an individual diversity and it defined as follows:

DV, = %Zm:(l — ARI(P,, P¥)) (2.31)

i=1
Moreover, they measured the spread of diversity between ensemble members com-

pared to P* by measuring the standard deviation as follows:

m

1
DV = \| ——= D (1= ARI(P,, P*) = DViy1)? (232)

m— 1
=1
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Using DV,,p2, they discovered that a larger spread is not strongly related to
ensemble quality, and based on this they proposed another measurement, which is

as follows:

1
DVips = 5(1 — DVip1 + DVipyo) (2.33)

In these measurements, they assume that the ensemble result P* is close to
the ground truth partition of the data, and therefore the quality of each ensemble
member is estimated based on how close they are to the ensemble result. They also
compared the diverse ensemble members with the non-diverse ones and found that
the diverse ones produced more high-quality ensemble results than the non-diverse
members, even when the non-diverse members were more accurate than the diverse
ones. Furthermore, they constructed another diversity measure as the coefficient of

variation as follows:

DV,po
DV,

DViyps = (2.34)

2.3.2 The Relationship between Diversity and Ensemble

In the clustering ensemble, the above diversity measures have been used to discovered
the relationship between the diversity and the clustering ensemble performance.
Domeniconi and Al-Razgan [20] compared DV,nyr and DV,,,3, the latter applied
the Adjusted Rand Index. They found that measuring diversity using the Adjusted
Rand Index gives more robust and consistent results than NMI. This result is based
on using the graph-based consensus function, and is the same as the results found

by Hadjitodorov et al. [39], in which they used Co-association method.

However, Table 2.1 summaries the researches that have been done in the lit-
erature to discover the relationship between diversity and ensemble performance.
Domeniconi and Al-Razgan [20] conclude that high diversity leads to high ensemble
quality by using DV,nur and DV,,3, whereas Hadjitodorov et al. [39] discovered

that selecting median diverse members leads to better ensemble performance than
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Table 2.1: Summary of diversity research proposed in the literature for discovering
the relationship between the diversity and the performance of the ensemble, along

with the diversity measures proposed/used.

Authors

Measure Pro-

Type of Mea-

The Recommended Di-

Dvnph Dvnp27

posed/Used sure versity Level
Fern and Brod- | DV, D High level
ley [25]
Greene et.al. | Entropy np (Group diver- | —
[37] sity)
Hadjitodorov DV, arr, p and np (Indi- | Median level
et.al. [39] Entropy, vidual diversity)

DV,3 and
Dvnp4
Domeniconi and | DV, and | p High diversity
Al—Razgan [20] D‘/pNM]
Rozmus [83] DV, DV, p and np (Indi- | DV, discovered low diver-
DV,p2, DVips vidual Diversity) | sity,
and DV,p4 while other measures dis-
covered high diversity
l[am-On  et.al. | DVyur D High diversity
[51]

selecting highly diverse members by using all their proposed measures, including

Entropy.

Rozmus [83] studied the relationship between diversity and the performance of
the ensemble by using five measurements: DV,,, DV,,,,1, DV,,0, DV,,,3 and DV,,,,4, and
he applied this using four different similarity indexes, which are the ARI index, the
Rand index, the Jaccard index and the Fowlkes and Mallows index. He found that,
in detecting a clear relationship between diversity and ensemble quality (using these
measurements, in some cases using DV, ), it is observed that lower diversity leads
to higher ensemble quality. Whereas in other cases (using the other measurements),
it is observed that higher diversity leads to higher ensemble quality. Furthermore,
he pointed out that it is hard to distinguish between the indices in delivering a
strong correlation between diversity and ensemble quality, but in some cases, using

the Jaccard index delivers a more robust result.
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It is clear that there is no generally accepted agreement in the literature on how
to measure diversity and there is no measurement that is considered particularly
effective and popularly accepted. Thus, we think that this is the main reason why
there is no agreement on the relationship between diversity and ensemble perfor-
mance. In addition, there is no single diversity definition specifically defined for
clustering ensembles, and most of the proposed diversity measures in the literature
are derived from other fields such as clustering validation methods and classification
ensembles and not designed specifically in relation to clustering ensembles. In this
research, we will investigate the clustering ensemble diversity experimentally using
the current measurements to find out whether or not it has an influence on the

ensemble performance.

However, diversity has been intensively studied in supervised learning; it is com-
monly defined as the level of variability between ensemble members. In other words,
it is the level of dissimilarity among ensemble members [62]. It has been shown that
ensemble learning in the context of classification and regression outperforms single
learners both theoretically and empirically [12]. Moreover, there is a wide agreement
that there is a trade-off between the accuracy of members and the diversity between
them. In other words, it is essential that the ensemble members are highly diverse
and sufficiently accurate [14, 62]. Brown et al. [12] reviewed the existing qualita-
tive and quantitative diversity definitions in regression and classification contexts,
in terms of how they are defined and how to create diversity in the ensemble. They
suggested a taxonomy of methods to create diversity for a classification ensemble, by
varying “starting points within the hypothesis space 7, varying the “set of accessible
hypotheses” and “traversal of hypothesis space” for each member differently. They
concluded that there is no agreed-upon theory to explain why and how the diversity
affects the ensemble accuracy, and in classification tasks diversity is still an open

question.

Tang et al. [96] studied the relationship between diversity and classification

ensembles using 6 diversity measures. In fact, they analysed these diversity measures
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by relating them to the concept of classifiers’ margin. Simply, the concept of margin
is defined according to [86] as “the difference between the number of correct votes
and the maximum number of votes received by any incorrect label”. Tang et al.[96]
showed that when they considered the average accuracy of the ensemble members as
a constant, they achieved a maximum diversity, which is equivalent to maximising
the minimum margin of the ensemble on training sets. They concluded that large
diversity may not always correspond to better ensemble performance, so it cannot

be explicitly used for selecting the best ensemble members [96].

2.4 Clustering Ensemble Application

The main aim of clustering ensemble methods is to improve the quality of the
clustering result compared to the single clustering algorithm. Clustering ensemble
methods can be applied to any clustering problems, such as privacy-preserving clus-
tering problems, image segmentation, document clustering, detecting outliers and
heterogeneous data clustering problems [35]. Thus, its huge potential has motivated

researchers to continuously develop new clustering ensemble methods.

For example, Strehl and Ghosh [94] developed clustering ensemble methods in
order to reuse existing clustering results, which they called knowledge reuse. This
is where a variety of partitions may already exist, so they are combined to obtain a
final clustering result in order to produce an improved clustering result. Clustering
ensembles on data from multiple sources, where in some situations, objects in the
dataset have multiple views or sources, so the clustering ensemble can be carried
out on a restricted view of the dataset [94]. Strehl and Ghosh [94] illustrated two
different scenarios for using clustering ensembles: Feature Distributed Clustering,
where each member is built by selecting different subsets of features and using all
the objects in the dataset, and Object Distribution Clustering, where each member

is built by different subsets of objects, using all the features.

Another useful application is to enable clustering over distributed computing,
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where in some situations, the dataset is distributed and it is not possible to collect
it in one place due to privacy issues or data migration costs. Thus, clustering
ensembles can be used in these situations where each member has access to a subset
of features and/or to a subset of objects [94, 72]. Sevillano et al. [88] used a clustering
ensemble and feature diversity in a document clustering application, where they

presented several empirical findings on the robustness of their clustering results.

Some researchers have applied clustering ensembles to gene expression data such
as lam-On et al. [50] and Monti et al. [76]. Other researchers applied clustering
ensembles to categorical data such as lam-O et al. [48] and Gionis et al. [35]. Chang
et al. [15] applied a clustering ensemble based on Expectation-Maximisation (EM)

to a colour image quantisation application.

Recently (in 2013), Saeed et al. [84] applied a graph-based clustering ensemble
proposed by Strehl and Ghosh [94] to a chemical structures dataset. Furthermore,
clustering ensembles have been developed that have the ability to identify the “cor-
rect” number of clusters in the data. Mimaroglu and Aksehirli [73] developed a
clustering ensemble method in which the number of clusters can be automatically
determined. However, there are still other issues that need to be investigated, such

as detecting outliers and heterogeneous data clustering problems.

2.5 Summary

In this chapter, the background of this study was reviewed, including the most well-
known clustering techniques; hierarchical, partitional and fuzzy clustering methods.
A number of difficulties with clustering algorithms have been reported in the litera-
ture, including the fact that different clustering structures can be achieved by single
clustering algorithms with different parameters, or by several algorithms. The clus-
tering ensemble method was introduced to overcome the inherent difficulties with
single clustering algorithms. It is the process of combining a set of partitions gen-

erated from the same data in order to produce a single improved partition of the
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data. The main process of the clustering ensemble requires two main steps: gen-
eration and consensus. In the generation step, a number of ensemble members are
generated from the same data, which are then combined using a consensus function

in the consensus step.

This review of the related work has indicated that the consensus function is the
key component in a clustering ensemble as it determines whether an ensemble is suc-
cessful or not. Some common consensus functions in the literature were reviewed in
this chapter. They are based on how the clustering ensemble problem is represented
or on applying well-known mathematical concepts to the problem. A commonly used
one is based on the object pairwise similarity (Co-association matrix). Moreover,
a number of clustering ensemble applications were reviewed in this chapter, which
include the privacy-preserving clustering application, knowledge reuse and multi-
view application. In conclusion, through the review in this chapter, some important

research issues are identified, which will be investigated in this research.
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Research Methodology

This chapter describes our research methodology in five sections. Section 3.1 intro-
duces the general clustering ensemble framework. Section 3.2 explains the strategy
we used throughout the thesis to test the effectiveness of our proposed clustering
ensemble methods, which include the experimental study design, the data used and
evaluation measures used. Section 3.3 explains the strategy we used to investigate
the diversity and its relationship with the ensemble performance. Section 3.4 intro-
duces the implementation of our methods and the tools used in this thesis. Finally,

Section 3.5 summarises this chapter.

3.1 The Clustering Ensemble Framework

For a dataset of n objects: X = {x1,29,...,2,}, let P, = {c‘f,cg,...,czq} be a
clustering result of k, clusters produced by a clustering algorithm as the ¢ partition,
so that ¢f Ncf = ) and quzlc‘;- = X. A clustering ensemble ® can then be built with
m members, I' = {Py, P», P3,..., P, } and a consensus function C'F' is denoted by

®(CF,T) = CF(Py, Py, Ps, ..., P,) = CF(D).

It should be noted that the members may not necessarily have the same number

of clusters in their partitions, i.e., k, may not be equal to a pre-set value k.
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The problem of a clustering ensemble is to find a partition P* of dataset X by
combining the ensemble members { Py, P, Ps, ..., P, } with CF without accessing
the original features, so that P* is better in terms of consistency and quality than

the individual members in the ensemble.

The quality of the ensemble Q(®) can be defined as a non-linear function of a

number of factors, which can be denoted by:

Q(®) = F(Q(T), DV,CF,m) (3.1)

Where Q(I') is the quality of the individual members {Pi, Py, Ps,..., Py} in
ensemble @, m is the total number of members, and DV is the diversity of the

ensemble.

Figure 3.1 shows that the generic clustering ensemble framework consists of
three components: ensemble member generation, consensus function and evalua-
tion, which operate in three consecutive phases. As we can see, the input of the
clustering ensemble framework is a given dataset to be clustered, and the output is

the clustering result of this dataset, which we call the final clustering result P*.

Ensemble C P
Dataset > Members l;)nsetx}sus » . __
X Generation unct:' Flon Evaluation S
Final
Clustering
Result

Figure 3.1: A Clustering Ensemble Framework.

Ensemble Member Generation Phase This phase aims to generate m mem-
bers, using the provided dataset as input. As seen in the previous chapter, there
are several techniques that can be used to produce ensemble members. However,

in the literature, there is no single clustering algorithm that is universally used and
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there are no generally agreed criteria for selecting the most suitable algorithms. In
this case, it is better to apply the principle of Occam’s Razor [9] and choose the one
with the greatest simplicity and efficiency, if there is no prior specific knowledge on
a given problem. This is why we decided to use two simple widely used generation

techniques [98, 32, 94, 111]. Details are given in Section 3.2.2.

Consensus Phase Having obtained the ensemble members, we now need to
combine these members using a consensus function in order to produce an improved
clustering result. It can determine the quality of the final solution directly, thus it
is considered the most important component in an ensemble, and that is why it was

chosen as the first focus of this research.

In Chapter 4 we propose a consensus function based on object-neighbourhood
similarity in order to solve to some extent the problem of uncertain agreement
between members. While, in Chapter 5, we introduce two new consensus functions
based on cluster similarity which will not require an ordinary cluster algorithm as

final step. More details are given in these chapters.

Evaluation Phase In this phase, the aim is to evaluate the final clustering
result in terms of quality and consistency. From the clustering point of view, the
quality of the clustering result and the consistency of the clustering algorithm can be
evaluated either using external information (i.e. a known clustering) if it is available
or internal information. In real world applications, it is common not to have any
external information. In this case, the quality is defined as how well the clustering
result fits the data using internal information such as a measure of cluster cohesion
and cluster separation [95]. Whereas, when the external information is available the
quality is represented by the degree of similarity between the clustering result and
the known clusters of the data (e.g. class labels) [95]. The consistency is defined as
the ability that the clustering ensemble method has to produce similar performances
on a multiple number of test datasets, and is usually represented by the average of

a performance/quality measure and a variance (e.g. standard deviation) [32].

o1



Chapter 3. Research Methodology

The quality and the consistency of the proposed method will be evaluated us-
ing datasets that have a class label and through comparing it with other ensemble
methods as well as with single clustering algorithms in order to demonstrate that the
clustering ensemble is more reliable and consistent than a single clustering method.
Moreover, we will evaluate our proposed consensus function in terms of time com-

plexity.

3.2 Strategies to Test the Effectiveness of the Pro-

posed Consensus Functions

Each of the proposed consensus functions will be tested in a separate experimental
study reported in its own chapter. Figure 3.2 summarises the experimental design

along with information pertaining to each chapter.

For each experiment, we implement the aforementioned clustering ensemble frame-
work. Then each experiment is repeated 10 times, with different generated members,
and the average and the standard deviation of the results of 10 runs are calculated
in order to verify the quality and consistency of the ensembles. Moreover, in each
experiment we report the average performance for each method across all datasets
as well as the standard deviation. More details on the different strategies that are
used for each experiment are explained according to each component in the frame-
work as follows: Section 3.2.1, provides detailed information about the datasets that
are used in each experiment. Section 3.2.2 reports the ensemble member generation
techniques that are used to carry out each experiment. Section 3.2.3 explains our
comparison strategy with other clustering ensemble methods. Section 3.2.5 includes

details on the used statistical significance test of multiple runs for each experiment.
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Research Focus and Questions Experiments Design Chapter
v Two experiments are conducted using
. . artificial and real datasets to compare the
* Designing consensus function based .
on Object-neighbourhood similarity. performance of ONCE with:
g » Others ensemble methods. Chapter 4
- . - » k-means algorithm.
g * We will answer Question 1. v’ An experiment to test the effectiveness of &-
© ONCE, and compare it with ONCE and CO.
8 —
% v" An experiment is conducted using real
g * Designing consensus functions datasets to test the effectiveness of DSCE and
o based on Clusters-Similarity, that do compare it with other ensemble methods
= not require clustering algorithm.
v Two experiments are conducted using real Chapter S
* We will answer Questions 2 and 3. datasets to test ACE under two different
situations, and we compare it with other
L ensemble methods.
* Investigation Diversity
Measurements. v’ An experimental study is conducted to
investigate all the current diversity measures
* In this chapter, we will answer on discovering its relationship with the
Questions 4 and 5. performance of multiple consensus functions.
>
‘» * Moreover, this chapter investigation v’ An experimental study is conducted to
8 two issues raised from studying the discover the success and the failure pattern of Chapter 6
>
[=) diversity measures: the clustering ensemble.
1. The positive & negative effects of
diversity on ensemble quality. v’ A pilot study is designed using a factorial
2. The existence of the interaction design experiment to investigate the
effect on ensemble quality. interaction effect.

Figure 3.2: Summary of the thesis experimental chapters.

3.2.1 Dataset

Up to thirteen datasets, as listed in table 3.1, are used to test our proposed consensus
functions at different stages of this research. In chapter 4, we use artificial datasets
as well as real-world datasets, whereas for the other experimental chapters, we use
only real-world datasets. For artificial data, it is easy to obtain the class labels; for
real datasets, we use data that already have class labels. We assume that the class
labels correspond to clusters in the dataset, which is called ground-truth clustering.
Using real benchmark datasets with known class labels has been widely used to

evaluate clustering algorithms in the literature. We should mention that these class
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labels are excluded from the data as the clustering is unsupervised learning and they

are used only for the evaluation purpose.

In Chapter 4, the experiments are conducted using 3 artificial datasets, which
are shown in Figure 3.3. The D31 and R15 datasets were generated by Veenman et
al [100]. D31 contains 31 clusters generated from two-dimensional Gaussian distri-
butions, and R15 has 15 clusters from two-dimensional Gaussian distributions. The
aggregation dataset was generated by Gionis et al. [35]; it contains 7 uneven-sized
clusters, unequal but with narrow bridges between some clusters. These datasets
create difficulties for single clustering algorithms to solve. In the same chapter,
the first 8 real datasets are also used to test the proposed consensus functions,
which are from the UCI Machine Leaning Repository [77]; these are: Iris, Wine,
Thyroid, User modelling (Um), Multiple Features (Mfeatures), Breast Cancer Wis-
consin (Bew), Glass and Contraceptive Method Choice (Cmc). The characteristics
of these datasets are given in Table 3.1. In chapters 5, 6 and 6.2, we use only real
datasets and as the results in Chapter 4 suggested that the Um and Cmc datasets
are not suitable for clustering analysis, we therefore replaced them with the Soybean

and Tonosphere datasets in the experiments of other chapters.

As we can see from Table 3.1, three datasets have been modified: Um, Bew and
Tonosphere. Um and Bew have missing attribute values in some objects which we
have removed, and we also removed the second attribute in Ionosphere dataset as

only a single value (0) was present for it.

3.2.2 Ensemble Member Generation Techniques Used

For the Ensemble Member Generation Phase, in the experiment in Chapter 4, we
use heterogeneous generation techniques, by using different clustering algorithms to
generate 7 ensemble members with the pre-defined k value (number of clusters) for

each dataset. These are: k-means, agglomerative hierarchical clustering using Single
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Figure 3.3: Three artificial datasets are used in this study. The number of clusters
is given in parentheses.

1

and Average linkage, k-medoids and c-means' as well as kernel k-means [91]> and

the Normalised cut algorithm [92]°.

However, in Chapter 5, we implement mixed heuristics generation techniques,
precisely the same techniques used by Ren et al. [81] to generate 10 members. Thus,
we use k-means to generate 5 members with a random sampling of 70% of the data,
and we calculate the Euclidean distance between the remaining objects and the
cluster centres and assign them to the closest cluster. For each of the remaining

members, we use k-means on 70% of randomly selected features.

We set k value (number of clusters) equal to the pre-defined cluster (class) value

"'We use the MATLAB Statistics Toolbox for these algorithms

2We use the code available at http://www.mathworks.co.uk/matlabcentral/fileexchange/
26182-kernel-k-means/content/knkmeans.m

3We use the code available at http://www.cis.upenn.edu/~jshi/software/
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Table 3.1: Details of datasets.

Dataset # Objects | # Features | # Cluster | Dataset type | Modified
D31 3100 2 31 Artificial No
R15 600 2 15 Artificial No

Aggregation 788 2 7 Artificial No
Iris 150 4 3 Real No
Wine 178 13 3 Real No

Thyroid 215 5 3 Real No

Um 399 5 4 Real Yes

Mfeatures 2000 2 10 Real No
Glass 214 9 6 Real No
Bew 683 9 2 Real Yes
Cmc 1473 9 3 Real No
Soybean 47 35 4 Real No
Tonosphere 351 34 2 Real Yes

for each dataset, in all the experiments, except in one experiment in chapter 5, where

we set a different k for each member chosen randomly from the interval [k —2, k+2].

3.2.3 Comparison Strategy

We compare our proposed consensus functions with other competitive clustering
ensemble methods. In the experiment in Chapter 4, we compare our proposed
consensus function with other consensus functions which are also an object pair-
wise similarity based approach including the Co-assoication (CO) [32] and the re-
cent approaches, which are the connected-Triple based similarity (CTS) matrix, the
SimRank-based similarity (SRS) matrix [49] and the approximate SimRank-based
similarity (ASRS) matrix [52]. As these consensus functions require a clustering
algorithm to be used as a final step, in the first experiment we use three differ-
ent hierarchical clustering methods: Single (Si), Complete (Cm) and Average (Av)
Linkage to compare between them, and for all the following experiments we use the
one that achieve better performance. In Chapter 4, we also compare the proposed

consensus function with k-means, as it is the most well-known clustering algorithm
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in the literature, and the aim is to find out whether a clustering ensemble is more

effective than a single clustering algorithm.

In Chapter 5, we compare the proposed consensus functions with CO [32] (using
the Average linkage method), DICLENS [73] and MCLA [94]. Moreover, we compare
them with the one proposed in Chapter 4. The CO and MCLA are state-of-the-art
clustering ensemble techniques, and they were early successful techniques developed
in the clustering ensemble area. CO [32] has around 774 citations, while MCLA [94]
has around 2717 citations, according to Google Scholar. DICLENS is the most recent
one, and its authors claim that DICLENS outperforms state-of-the-art clustering

methods, including CO and MCLA [73].

3.2.4 Evaluation Measures Used

In the evaluation phase, we evaluate the performance of the final clustering results
in terms of quality and consistency using the external validation method, and in
particular we use the Normalised Mutual Information (NMI) [94] and the Adjust
Rand Index (ARI) [47]. When ARI and N M1 are applied to evaluate the clustering
results, one of the clustering partitions should be the ground “true” partition of the
data, which in practice, is normally assumed to be the class labels as there are no
other true answers that can be used to verify the quality (accuracy) of the clustering
result. The other partition is the clustering result of the ensemble that needs to be

evaluated P*. In Chapter 2, we described how these indices are calculated.

3.2.5 Tests of Statistical Significance

In order to assess the performance of the proposed method in terms of being signif-
icantly better or worse than other methods, statistical analysis is necessary. Gen-
erally speaking, statistical analysis has been widely used in classification research
to assess the performance of different classifiers, but it has not been widely used in

clustering analysis research. Recently, researchers have realised the importance of
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using statistical analysis in clustering analysis research and clustering ensemble, for

example, Kuncheva et al.[61], Fern and Lin [28] and Azimi and Fern[7].

According to the recommendations of Demsar [18], we consider the non-parametric
testing approach due to the fact that parametric tests, such as t-test, assume that
the data are drawn from the normal distribution or homogeneity of variance. Al-
though these tests have been designed for comparing multiple classifiers and have
been widely used in supervised learning, we consider the non-parametric approach
for comparing the clustering ensemble algorithms as clustering shares a number of

key similarities with supervised learning.

To check whether all the results obtained by a number of clustering ensemble
algorithms present any equality, we use the Iman-Davenport test proposed by Iman
and Davenport [53], who derived a correct measure F' of the Friedman test X [33],

which been shown to be undesirably conservative.

To demonstrate how these tests are implemented, let us run a number of clustering
ensemble methods ¢g using ¢ datasets, and the quality of the result is measured using
the NMI or ARI indices. So, given a t by g matrix D of quality, the first stage is to
rank the competing algorithms for each dataset recorded in the matrix R, where R;
is the rank of the j* algorithms on the i dataset. For those algorithms that have

equal quality, the average rank is obtained. Then the mean rank for each algorithm
t

is obtained as R; = ) % Under the null hypothesis that the mean ranks are
i=1

equal for all the chosen methods, the Friedman test score X is defined as:

o et > glg+1)?
vl

And the Iman-Davenport test F' is computed by:

(t—1)Xr

F=———20F
tlg—1) - Xrp

(3.3)

According to the suggestion of Demsar [18], if there are statistically significant
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differences in the performance of compared clustering ensemble methods, we can
proceed with the Nemenyi test as a post hoc test for a pairwise comparison, to
discover where the differences lie. If the corresponding average ranks differ by at
least the critical difference C'D = ¢, %, where ¢, is based on the studentised
range statistic, it is said that the performance of two ensembles is significantly

different, as we reject the null hypothesis using the Iman-Davenport test.

In summary, to test the significance between multiple clustering ensembles over
a number of datasets, we use the Iman-Davenport test with post-hoc Nemenyi test

at a significance level of 0.1.

3.3 Strategies Used to Investigate Diversity

As we saw in the first chapter, two questions (4 and 5) are asked on the diversity
issue. In Chapter 2, we answered question 4 by reviewing the literature on all exist-
ing diversity definitions in the context of the clustering ensemble. In Chapter 6, we
answered question 5 by designing an experimental study to investigate the relation-
ship between diversity and ensemble performance, using all of the existing diversity
measures and using a number of different consensus functions — CO, MCLA and
the one proposed in this research. The experiment set-up and the results are given

in Section 6.1.

Furthermore, we investigate two issues raised from our experimental study on
diversity (in Section 6.1) by experimentally studying them. These issues are an
analysis of the positive and negative effects of diversity on ensemble performance,
and studying the interaction between members’ qualities and diversity. In the fol-

lowing sections we briefly review them and the strategy we use to investigate them.
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3.3.1 Analysis of the Positive and Negative Effects of Di-

versity on the Ensemble Performance

In the classification ensemble, it has been shown that diversity is not always a
beneficial factor for the ensemble performance [63]. In relation to the ensemble
accuracy, Kuncheva et al. [63] derived a functional relationship between the ensemble
accuracy (given by the majority voting method) and the diversity (measured by
pairwise dependence Q-statistics), and accordingly two different effects of diversity
were discovered. These were represented by two extreme patterns: the “pattern
of success”and the “pattern of failure”, in terms of the voting combinations that
the ensemble can have. In the success pattern, the ensemble accuracy (majority
voting) is a monotone decreasing function of Q-statistics, while the failure pattern
is a monotone increasing function of Q-statistics. They showed that diversity can
have a positive effect on the ensemble performance, such as the case in the pattern
of success (best pattern), but it can also have a negative effect on the ensemble

performance, such as the case in the pattern of failure (worst pattern).

Different effects of diversity are also found in the clustering ensemble context,
as some results in Section 6.1 showed that for some datasets there are some “Ups”
(positive diversity effects) and “Downs” (negative diversity effects) for the quality
of the ensemble. Moreover, these two effects were also reported in the literature, in
particular in [83] and [39], where they did not investigate them deeply. Therefore,
in Chapter 6, we formally define these two different effects and we conduct an
experiment in order to find out the characteristics of these ensemble combination

patterns to avoid the negative effect of diversity.

3.3.2 Studying the Interaction between Members’ Qualities

and Diversity

The results in Section 6.1, as well as the analysis of the first issue in Section 6.2.1,

show that an interaction may exist between the diversity and the members’ qualities.
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If such an interaction exists, then the effect on the ensemble performance might be
determined jointly by them. This leads us to implement a factorial design experi-
mental study to investigate the interaction between the diversity and the members’
quality, and if such an interaction exists we will study the impact of the interaction
between them on the ensemble performance. The following section gives a brief
introduction to the Factorial Design Experiment, and in Chapter 6 (Section 6.2.2)
the factorial experiment study is conducted, and its results are reported, along with

the interpretation of the results.

Factorial Design Experiment

Generally, a factorial design experiment is used to study the effects of one or more
factors (independent variables) on one or more responses (dependent variables). It
is therefore designed to address more complex problems than an experimental study
of one variable at time. In a factorial experiment, each factor can be subdivided into
different levels, and it is conducted under a set of conditions, where each condition
is a combination of two levels from different factors. It is possible to determine the
effect of each factor alone (main effect), which is a consistent trend among the dif-
ferent levels of a factor, and the effect of both factors in a combination (interaction).
The interaction is defined as how the effect of one of the independent variables differs
according to the level of the second independent variable [75]. There are two fac-
tor categories, within-subject and between-subject, where subject means the thing
that is being experimented on. In our case, the subject is the set of the generated
members in different runs in the experiment. In the within-subject factor, the same
subjects are used in different conditions in the experiment, while in the between-
subject factor, a different set of subjects is used for each condition in the experiment

[16].

Analysing a factorial experiment requires a statistical analysis technique, and
the most common used is the Analysis of Variance (ANOVA) [71]. ANOVA is a

set of statistical methods used to test the general differences among the means of
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two or more factors, and ANOVA tests the null hypothesis that all the factor means
examined are equal. When this null hypothesis is rejected at a chosen significant
level, it signifies that at least one mean is different from at least one other mean, but
ANOVA does not reveal where the differences occur among the levels of one or more
factors. Different experimental designs require different ANOVA approaches; an
experiment designed with one factor requires one-way ANOVA, while an experiment
with two factors requires two-way ANOVA for the analysis. The latter is the type
of ANOVA used in our experiment in Section 6.2.2.

However, ANOVA makes a number of assumptions about the distribution of
the dependent variable for each level of the independent variable, and these should
be checked to ensure the validity of the ANOVA. The main assumptions are: the
normality of the dependent variable distribution, and the homogeneity of variances

(the variances of the dependent variable in each combination are the same) [71].

3.4 Research Tools and Implementation

The proposed clustering ensemble framework is implemented using the high-level
technical computing language, MATLAB (Matrix Laboratory) version R2012b on
Apple Macintosh computer 2.3 GHz Intel Core 5 with 8 GB memory.

We use as many available clustering algorithms and evaluation methods as pos-
sible to build our framework, in order to implement a complete clustering ensemble
system. The input of our system is: X the dataset, £ the number of clusters, the en-
semble generation technique type (which is either heterogeneous or mixed heuristic

in our experiments), m the number of members, P* is the ground-truth partition.

The procedure of our framework is as follow:

1. Select ensemble generation technique type to be used.

2. Generate m members and store them in I' matrix.

3. Apply the consensus functions ONCE, £&-ONCE, DSCE and ACE (more de-
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tails on the implementation of each proposed consensus function are given in

Chapters 4 and 5).
4. Obtain the final clustering results P*.

5. Evaluate P* and compare it with the ground-truth clustering using an external

clustering validation measures. We run NMI* and ARI®.

For the second central part of this research, in Chapter 6 we implement all the
diversity measures, that we use. In Chapter 6.2, the factorial experiment is carried

out using Minitab software.

4We use the code available at http://strehl.com
"We use the code available at http://www.pi-sigma.info

63



Chapter 3. Research Methodology

3.5 Summary

In this chapter, we introduced the clustering ensemble framework, which consists of

three phases:

1. Ensemble member generation phase;
2. Consensus phase;

3. Evaluation phase.

In the first phase, the aim is to generate a number of members, which are combined
in the consensus phase. The latter phase is commonly known as the consensus
function. In the evaluation phase, the aim is to evaluate the quality of the final
clustering result of our method in terms of quality as well as consistency and time
complexity, relative to our proposed consensus functions and other state-of-the-art

clustering ensemble methods.

We described our strategies that are used to test the effectiveness of our pro-
posed consensus functions, including a description about the experimental design
along with the details of the datasets that are used and the evaluation measures.
Furthermore, we described our strategies to investigate the diversity in terms of its
relation with the ensemble performance. Finally, we also explained our research

implementation and tools that are used throughout this thesis.
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Object-Neighbourhood Clustering

Ensemble

As explained in Chapter 2, the consensus function is the main task in the clustering
ensemble framework and its effectiveness determines whether an ensemble is success-
ful or not. In the literature, the most popular method is the Co-association matrix
(CO), because it is easy to understand and simple to implement. However, in the sit-
uation where there are uncertain agreements between the ensemble members, these
could not be resolve by the CO as it only takes into account the object pairwise sim-
ilarity. We are of the view that the ensemble members have other useful information
that can be integrated into calculating the similarity in order to produce improved
clustering ensemble results. One such type of information is the object neighbour-
hood. Thus, in this chapter we investigate how to use the object-neighbourhood
information when designing the consensus function, with the intention of resolving
the uncertain agreements between ensemble members. This chapter is divided into

four main sections.

In Section 4.1, we propose an Object-Neighbourhood Clustering Ensemble (ONCE)
method. In Section 4.2, we develop ONCE further by considering the £-neighbourhood
region between a pair of objects. In Section 4.3, we compare the performance of

ONCE with other consensus functions using a number of real-world datasets. Sec-
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tion 4.4, summarises the whole chapter.

4.1 Object-Neighbourhood Clustering Ensemble

Firstly, before presenting our new algorithm, it is useful to analyse the issue with
the Co-association matrix (CO). CO calculates the probability of a given object pair
being clustered together by all members (as shown in equation 2.3 listed in Section
2.2.3.2), or in other words, it measures the degree of agreement between ensemble
members when clustering a given pair of objects together. CO € [0, 1] as shown in
Figure 4.1. Because of this it is inevitable that some uncertain situation will occur
when the values of the CO are around the middle. In the case of CO(x;, x;) ~ 1, this
means that objects x; and x; are placed in the same cluster in most of the ensemble
members, and therefore the degree of probability is high, which means that the pair
is certain, or almost certain, to be clustered together; we call this a certain similar
pair. In the case of CO(x;, z;) =~ 0, this means that x; and x; are placed in different
clusters by most of the ensemble members, so the degree of probability is low, which
means that the pair is almost certain to be clustered in different clusters; we call
this a certain dissimilar pair. However, in the case of CO(z;,z;) ~ 0.5, it means
that roughly half of the members placed x; and x; in the same cluster, whereas the
other half placed them in different clusters, creating the most uncertain agreement
between the members; thus, the degree of probability on how to cluster this pair is

uncertain, and we call this an uncertain pair.

Generally speaking, in a dataset, these uncertain object pairs are usually objects
that are hard to cluster. These hard objects might be located on or around the
boundary of clusters, or be overlapping between the clusters in the problem space. In
that case, when we calculate the CO matrix, it is highly likely to produce uncertain
pairs. These uncertain pairs cause problems with generating reliable consensus
clustering results. Therefore, the CO needs to be modified in order to produce

consistent and reliable clustering results, and we assume that taking the relationships
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between the pairs of objects (as well as their neighbourhood relationships) into

consideration could, to some extent, overcome the problem of uncertainty.

0 0.5 1
| 1 ]
I T 1
Certain Uncertain Certain
dissimilar similar pair similar pair
pair

Figure 4.1: The different types of objects pairs and their similarity value.

4.1.1 Definition of Object-Neighbourhood Similarity

In cluster analysis the concept of the neighbourhood space of an object is not new; it
has been successfully applied to a number of clustering algorithms such as DBSCAN
[24] and the ROCK clustering algorithm [38]. The neighbourhood is the region in
the data space covering an object in question. Therefore, objects in the same cluster
are all considered to be in the same neighbourhood region, and objects in different

clusters are not considered to be in the same neighbourhood region.

The key idea of our similarity definition is derived from Jarvis and Patrick [56],
who defined the similarity between object pairs as the number of nearest neighbours
that the pair shares, as long as the objects themselves belong to their common

neighbourhood. They call it Shared Nearest Neighbour (SNN).

Definition 1. The common neighbours to a pair of objects are the other objects in

the same cluster as the pair itself.

Thus, the more common neighbours that two objects have, the more similar
they are. The difference between our similarity measure and Jarvis and Patrick’s
[56] measure is that the latter is based on the number of shared nearest neighbours,
determined by any similarity /distance measure, whereas we take the similarity score
of all the shared “common” neighbours into consideration when we calculate the

similarity between pairs of objects.

Assume that z, is a common neighbour to z; and z;, and that Z is the set of

all common neighbours between z; and x;. For each pair of objects, the average
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similarity, B(z;,z;), of their common neighbours is defined as follows:

S s (CO(%, ) + CO(x,, xj))
2| Z(xi, ) |

B(z,z;) = (4.1)

Where CO(z,, x;) and CO(x,, z;) are the neighbourhood association of x; and z; to
their common neighbour z, respectively and can be calculated from the CO matrix

(equation 2.3).

B(x;, x;) € [0,1]; when B(z;,x;) = 0 it means that there are no common neigh-
bours between x; and z;, and when B(x;,z;) = 1 it means that z;, x; and their
common neighbours are placed in the same cluster by all the ensemble members.
When 0 < B(z;,z;) < 1, it means that z; and z; have some common neighbours

placed in the same cluster by some members in the ensemble.

Then, by adding the average neighbourhood similarity B to C'O, which is the
similarity between the pair of objects themselves, we obtain the overall similarity

W within the range [0,2]. It is defined in the following equation:

W(JZZ‘,ZL‘]‘) = B(ZEZ, (L’j) + CO(I’Z,I']) (42)

After computing W for all pairs of objects in X and obtaining the full matrix, we
scale W by dividing each cell by the maximum value in W, which is W,,,4,. This is
done in order to scale W to the [0, 1] range. W,,,, takes a value up to 2. However,
our similarity definition W has the following properties:

e [t is non-negative, and takes a value in the interval [0, 1].

e When W (x;,z;) = 0 the two objects z; and x; are completely different, while

when the two objects are identical it takes the value of 1.
o It is symmetric, W (x;, ;) = W(x;, x;).
W takes the neighbourhood similarity into consideration as well as the object

pairwise similarity to enhance and solve to some extent the problem of uncertain
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object pairs. So, we add the neighbourhood similarity B to C'O to obtain the
overall similarity W, which always increases compared to C'O, or is equal to CO
when there are no shared neighbours between a pair of objects, B = 0. In some
cases, the pairwise relationship does not exist between a pair of objects, and there
is no agreement between the ensemble members about this pair. But, they may
share a number of neighbours and taking their similarity into consideration should
indirectly uncover their similarity, and the W value in this case will be greater than

0.

It is also worth noting, however, that taking the neighbourhood similarity into
consideration may also affect the similarity value of certain object pairs, which may
decrease after we normalise WW. In this case, the certain pair of objects may become
uncertain. We will consider this problem in our future work as improvement to our

definition.

4.1.2 ONCE Algorithm

Having obtained our neighbourhood similarity matrix W, we then convert it to a
distance matrix using the common formula (Distance = 1- Similarity) in order to
apply hierarchical clustering algorithms (Single, Complete and Average Linkage) to
obtain the final clustering result. We call this algorithm Object-Neighbourhood-
based Clustering Ensemble (ONCE); the details of the algorithm are as follows:

4.1.3 Illustrative Example

We generated a simple dataset to illustrate how uncertainty do affect the CO and
not affect ONCE. For this purpose, first we identified three parameters which should
be controlled when generating an artificial dataset; these are the number of objects
in the dataset n, the cluster number k and the degree of separation between clusters.

We used a R package called “clusterGeneration”. This package was written by Qiu
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Algorithm 2: ONCE Algorithm.

Input: I' = {P, P», Ps,..., Py}, m number of clustering members
Output: Partition of Dataset X = {z1,z2,23,..., 2}
for eachi=1:ndo
for each j =i+ 1:n do
| Calculate C'O similarity for pair (z;, ;) using equation 2.3

for each i =1:n do
for each j =1+ 1:n do
Z <+ Find common neighbours for pair (z;,z;)

if # of element in Z > 0 then
Calculate the average similarity of the common neighbours for pair

(xi, ;) using equation 4.1
Calculate W (x;, z;) using equation 4.2
else
L W(l‘i,.’Ej) = CO(ZL‘“.’EJ)

Scale W: W/Wp42

Convert the similarity matrix W into distance matrix W’

Obtain the final clustering results by applying a hierarchical clustering
algorithm to W’

and Joe [79], and the key concept of this package is to generate clusters with a
specified degree of separation, which is based on the separation index proposed by
Qiu and Joe [78]. It measures the separation between the cluster and its nearest
cluster, and it takes values within the interval [—1, 1), where the closer a separation
value is to 1, the more separated the clusters are. Therefore, we used this package
and in particular we used the “genRandomClust” function and we set n = 200
and k = 2 (100 objects each), and the separation index equal to 0.3. Using these

parameters we generated a dataset as shown in Figure 4.2.

Looking closely at the dataset, we can clearly see that there is an overlap around
the boundary of the two clusters, so it is very difficult for the clustering algorithm
to obtain the true labels and it may be impossible to distinguish these two clus-
ters. Then, we generated 7 members using a heterogeneous ensemble (details are
given in Section 3.2.2), and we also ran the experiment using k-means as a baseline
algorithm. For only the objects placed around the boundary of the two clusters,

we modified their clustering results (labels) by making half of the members classify
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Figure 4.2: The generated artificial dataset consists of 2 clusters and 200 objects.

them correctly, while the other half did not (there are in total 14 objects). This
has been done in order to ensure that these objects, which are hard to cluster, will
represent the uncertainty when we calculate the pairwise similarity matrices. By
controlling these objects we aim to illustrate and prove a situation where ONCE is
able to produce a good quality clustering result, while CO is not. After that, we
ran ONCE and CO, and then we applied hierarchical clustering algorithms (Sin-
gle, Complete and Average Linkage) to obtain the final clustering results for each
method. Finally, all the clustering results were evaluated using the NMI and ARI

indices.

Table 4.1 shows the results of NMI and ARI indices for the CO, ONCE and
k-means algorithms all by using Single, Complete and Average linkage, and Figure
4.3 shows the clustering label results of the compared methods. It is observed
that ONCE-Si, ONCE-Cm and ONCE-Av achieved perfect clustering results (their
qualities were equal to the quality of the true label measured by NMI and ARI).
On the other hand, CO-Si, CO-Cm and CO-Av achieved lower results, and among
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them CO-Si achieved the worst performance. It is noteworthy that whatever linkage

methods are used with ONCE they have no effect on the clustering result.

Figure 4.4 shows the heat map of the CO and ONCE matrices which highlight the
clustering structure. The colour scheme ranges from strong pink (CO(z;,z;) = 1) to
light green (CO(z;, ;) = 0), corresponding to the magnitude of similarity between
a pair of objects. We see that ONCE discovered some hidden similarity values
compared to CO, and it reveals the structure of the two clusters (two blocks in
strong pink) with higher similarity values between objects pairs than CO. It is also
noticeable that there is an increase in similarity values for certain dissimilar object
pairs (colour change from green in CO to blue in ONCE), that is a hidden similarity,
and for some uncertain object pairs (colour change from blue in CO to light pink in

ONCE) in the ONCE matrix compared to CO.

In summary, the results on this simple dataset confirm that:

1. CO is affected by uncertain agreement between the members on classifying

hard objects as there are more blue and green pairs.

2. Relying only on pairwise object information is not enough to generate a reliable
clustering result in this situation.
Table 4.1: The quality of the clustering results of CO and ONCE algorithms using

Single, Complete and Average Linkage methods as well as the quality of the k-means
clustering result on the artificial dataset measured by NMI and ARI.

Clustering Ensemble Algorithm NMI ARI

ONCE-Si 1.00  1.00
CO-Si 0.433  0.37
ONCE-Cm 1.00  1.00
CO-Cm 0.856  0.90
ONCE-Av 1.00  1.00
CO-Av 0.902  0.94
k-means 0.786 0.864
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Figure 4.3: The Cluster labels results of CO-Si, CO-Cm, CO-Av, £&-ONCE-Cm
clustering ensemble methods and k-means algorithm.

4.1.4 Experimental Results

As we have mentioned in Section 3.2.1, this experiment was conducted using 3
artificial datasets and 8 real datasets (their details are given in Table 3.1). For
each given dataset, the framework described in Chapter 3 was used to carry out
the experiments in three phases: the generation phase, the consensus phase and
the evaluation phase. In the first phase, as we said, we used the heterogeneous
generation techniques to generate 7 members, and in the consensus function, we
used the ONCE algorithm to generate the neighbourhood similarity matrix. We
also computed the Co-association matrix and the final clustering result was obtained
using three different hierarchical clustering algorithms: Single (Si), Complete (Cm)

and Average (Av) Linkage over the two matrices. (More details of this experimental
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Figure 4.4: The heat map of the CO and ONCE matrices calculated using the
artificial dataset.

design are given in Section 3.2).

Tables 4.2 and 4.4 present the results of the NMI and ARI respectively; each
entry in these tables represents the average quality of ten runs, followed by the
standard deviation. The results of our method were compared with the CO and in

order to make a fair comparison we compared the result of two like-for-like methods.
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In other words, the two methods used the same linkage method, so we compared
the result of the Single linkage method over the ONCE matrix (ONCE-Si) with the
result of the Single linkage method over the Co-association matrix (CO-Si), and
then ONCE-Cm with CO-Cm, where the Complete linkage method was used over
both matrices, and ONCE-Av with CO-Av, where the Average linkage method was

used.

The bold value in each row shows the best result comparing like-for-like methods,
and the underlined value represents the highest quality for each dataset. The last
two rows show the average quality for each algorithm over all the datasets, and
the Wins (W)/Ties (T)/Losses (L) row counts the number of W/T/L (in terms
of quality) comparing the two like-for-like methods. Table 4.3 shows W/T/L (in
quality) comparing ONCE, CO, Ave-mem and k-means with the highest quality
achieved for each dataset. This was done in order to compare ONCE with CO, and
to compare the ensemble method with the baseline algorithm as well as with the
members average. Briefly, in terms of comparison, when we state that algorithm X
is better/worse than algorithm Y, it means that X has a better quality cluster than

Y, under the same experimental set-up.

Results obtained by NMI Index: As we can see, the quality of ONCE-Si
in most of the datasets was improved, relative to CO-Si; in particular, 8 out of
11 datasets in total were improved in terms of quality, whereas for the remaining
datasets, the quality was decreased (these are: R15, Bew, and Thyroid). In the case
of the Aggregation dataset, the quality of ONCE-Si, ONCE-Cm and ONCE-Av were
increased, relative to CO-Si, CO-Cm and CO-Av, respectively. On the other hand,
for the Um dataset, the quality of ONCE-Cm and ONCE-Av were decreased, and
the quality of ONCE-Si was slightly improved. However, in general, this dataset also
achieved low quality using k-means as well as the member average. We noticed that
this is also the case in the Cmc dataset, where we obtained low quality with most
of the ensemble methods, and we noticed that the quality for the member average

is also very low for k-means, which indicates that these datasets are not suitable for
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Table 4.2: The average performance of 10 runs of each method for each dataset
measured by NMI on 11 datasets. The average performance of each method across
11 datasets and the W/T/L for each ensemble method comparing the two like-
for-like methods are included. In each row the bold value represents the highest
quality comparing two like-for-like methods (e.g. ONCE-Si and CO-Si), whereas the
underlined value represents the highest quality comparing all ensemble methods.

Dataset ONCE-Si CO-Si ONCE-Cm CO-Cm ONCE-Av CO-Av Ave-mem k-means
D31 0.912+0.013 0.9114+0.018 0.961+0.004 0.961 4+ 0.005  0.961 £ 0.005 0.965 +0.002 0.774 £0.328 0.916 4+ 0.025
R15 0.989 £0.009 0.991+0.007 0.994+0.000 0.989+£0.018 0.994+0.000 0.994 £0.000 0.850+0.272 0.918 £ 0.037

Aggregation  0.950 +0.002  0.935+0.022 0.974+0.010 0.941+0.038 0.984 + 0.006 0.967+0.029 0.767 +0.341 0.851 £0.011
Bew 0.026 +0.008  0.047 +£0.044  0.457+0.250 0.702+0.154 0.741 +0.003 0.736 = 0.002 0.455+0.341 _0.748 +0.000
Cmec 0.028 £0.005 0.012+0.007 0.032+0.001 0.032+0.001 0.032+0.001 0.032+0.001 0.025+0.013 0.032 £ 0.000
Iris 0.768 +0.027 0.733+0.034  0.766 +0.017 0.774 +£0.021 0.771+0.021 0.763 £ 0.022  0.630 +0.282  0.725 £ 0.070
Glass 0.394 +0.040 0.3744+0.037 _0.395 +0.029 0.382+0.021 0.394+0.008 0.383+0.021  0.366 +£0.133  0.368 + 0.024
Um 0.040 +0.003  0.039 £+ 0.003 0.241+0.080  0.245+0.090  0.290 + 0.133 0.359 £0.102 0.176 +0.150  0.338 £ 0.052
Wine 0.435 +0.000 0.407 £+ 0.109 0.422 +0.009 0.424 +£0.003 0.434 +0.011 0.429 +0.003  0.321 +£0.187  0.426 + 0.031

Mfeatures  0.319 £0.087 0.142+0.094 0.4724+0.034  0.454 £0.031 0.479 £0.001 0.479+0.002 0.374£0.230 0.478 & 0.003
Thyroid 0.127+ 0.074 0.195+0.108 0.446 £0.075 0.368£0.080  0.403 £0.096  0.358 £0.080 0.228 £0.149 0.423+0.071

Ave-P 0.454 0.435 0.560 0.570 0.589 0.588 0.451 0.566
Ave-C 0.024 0.044 0.046 0.042 0.026 0.024 0.221 0.029
W/T/L 8/0/3 3/0/8 5/2/4 1/2/5 6/3/2 2/3/6 0/0/11 1/1/9

Table 4.3: Counts of the W/T/L for each ensemble method as well as average
members and k-means comparing with the highest quality achieved for each dataset.

ONCE | CO | Ave-mem | k-means
W/T/L| 4/3/4 |3/3/5| 0/0/11 1/1/9

clustering analysis (or they may need a special distance/similarity measurement).

In Bew, the cluster qualities of ONCE-Si and ONCE-Cm were reduced, compared
with CO-Si and CO-Cm, respectively, whereas ONCE-Av was improved, compared
with CO-Av, in which they scored 0.741 and 0.736, respectively. This is almost as
good as the highest quality achieved by k-means. We believe that improving the
uncertain pairs of objects makes both Single and Complete linkage inappropriate for
this dataset; in general, Single linkage with the CO and ONCE matrices achieved

very low quality compared to other linkage methods.

However, the greatest improvement resulting from our method was in the Glass
dataset, which gave the highest NMI score using the Single, Complete and Average
linkage methods, comparing them similar methods with Co-association. This indi-
cates that the uncertain pairs of objects affect the Co-association methods. From

the results, it is noted that in the cases of Iris and Mfeatures, the quality of ONCE-Si
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was improved from 0.733 to 0.768 in Iris and from 0.142 to 0.319 in Mfeatures.

As expected, the ensemble method performs better than a single clustering algo-
rithm in this experiment; it performs better than k-means except in the case of the
Bew dataset. In general, this confirms the perception that the performance of the
ensemble method is much better than that of a single algorithm. When comparing
the consistency, we found the ensemble method to be more reliable than the single
algorithm, where the latter achieved higher standard deviation in most of our tested

datasets except in Bew and Cmec.

Furthermore, when comparing the average quality across all the datasets, we ob-
served that ONCE-Si and ONCE-Av outperformed CO-Si and CO-Av respectively.
On the other hand, on average, using the Complete linkage with the CO-matrix is
slightly better than ONCE-Cm, where the averages are equal to 0.57 for CO-Cm
and 0.56 for ONCE-Cm. Comparing the three linkage clustering methods used with
our method, it can be observed that the Average linkage performed better than the
other two linkage methods as it gave a higher average quality using the ONCE and

CO matrices.

Looking to Wins/Ties/Losses, we observe that in total our method wins more
often than the CO method with respect to comparing the like-for-like methods.
Comparing the highest qualities, our method wins four times and ties three times
(two of which were highest qualities), and loses four times across the total of the
eleven datasets. The CO wins three times and loses five times, and k-means wins
once. Finally, we observe that the highest quality is achieved by ONCE in six
datasets; these are R15, Aggregation, Wine, Thyroid, Mfeatures and Glass.

Results obtained by ARI Index: As we can see from Table 4.4, similar results
were obtained using the ARI index to the results described above. It is noticed
that in the Wine dataset the performance of CO-Av was slightly better than the
ONCE-Av using the ARI index, and accordingly the average quality over all the
tested datasets in CO-Av was slightly better than in ONCE-Av.
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In conclusion, the results obtained from the two indices suggested that in most of
the datasets the performances of the ONCE-Av and CO-Av were very close to each
other. We should mention that the differences in performance are so small that they
are only seen in the third decimal place of the results. As we did not test the results

of this experiment statistically, these results may not show statistical differences.

However, it is interesting to note that the effect of the uncertain pairs of objects
varied with the different datasets. This is due to the fact that not every dataset is
affected by uncertain pairs of objects, even though these are in fact hard objects
to cluster. This is where results with two datasets are improved: the Iris dataset,
which has overlapping clusters, and the Aggregation dataset, which has uneven-
sized clusters with difficult boundaries, both were improved. Moreover, the results
suggested that the Average linkage method is the most appropriate method to use
with ONCE and CO.

Table 4.4: The average performance of ten runs of each method for each dataset
measured by ARI on 11 datasets. The average performance of each method across
11 datasets and the W/T/L for each ensemble method comparing the two like-
for-like methods are included. In each row the bold value represents the highest
quality comparing two like-for-like methods (e.g. ONCE-Si and CO-Si), whereas the
underlined value represents the highest quality comparing all ensemble methods.

Dataset ONCE-Si CO-Si ONCE-Cm CO-Cm ONCE-Av CO-Av Ave-mem k-means
D31 0.693 £0.051 0.679+0.078  0.929 £0.017  0.926 +0.021  0.918 £0.023 0.945 +0.012 0.635+0.381 0.788 £ 0.083
R15 0.972+0.034 0.979 +£0.029 0.993+0.000 0.971 +£0.068 0.993 +0.000 0.993 +0.000 0.742 +0.341 0.796 + 0.089

Aggregation 0.911 +0.002 0.884 +0.042  0.978 +£0.010  0.916 £0.074  0.988 +0.006  0.954 £+ 0.066  0.700 £ 0.337  0.737 £ 0.022
Bew 0.005+0.003 0.019+0.026 0.390+0.393  0.772+0.241 0.841 +£0.003 0.836 £0.002 0.471 +0.442 0.846 £+ 0.000
Cmc 0.007 £+ 0.003  0.000 % 0.003 0.025 +0.003  0.026 +0.002 0.027 +0.000 0.027 +0.001 0.020 £0.014 0.027 +0.000
Iris 0.670 £0.091 0.597 +£0.099  0.733+0.006 0.736 +0.008 0.736 +0.010 0.731 +£0.013 0.573+£0.271 0.671 +0.125
Glass 0.236 £0.016 0.235+0.012 0.265 +0.011 0.257 £0.022 0.262 +0.006 0.246 +0.029 0.230 £+ 0.107 0.228 + 0.021
Um 0.001 £0.001  0.001 £ 0.001 0.111 £0.070  0.134 +£0.087 0.157+0.139  0.255 +0.075 0.106 £0.108 0.242 +0.048
Wine 0.301 £0.000 0.277 4+ 0.097 0.343+0.042  0.358 £0.023  0.353+0.031  0.371 +0.004 0.267 £+ 0.189 0.366 + 0.026

Mfeatures  0.100 £0.054  0.014 £0.028  0.299 £0.052 0.278 £0.045 0.313+0.001 0.314 £0.002 0.234 +£0.159 0.313 £ 0.002

Thyroid 0.070 £0.070 0.179 +£0.156 0.540+0.055 0.415+0.151 0.458 £0.145 0.403 +0.147 0.227+0.209 0.517 £+ 0.147

Ave-P 0.361 0.348 0.510 0.526 0.550 0.552 0.382 0.503
Ave-C 0.029 0.052 0.060 0.067 0.033 0.032 0.233 0.073
W/T/L 7/1/3 3/1/7 6/0/5 5/0/6 5/3/3 3/3/5
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4.2 £-Object Neighbourhood Clustering Ensem-
ble

In this section, we modified ONCE further by considering only the most similar com-
mon neighbours to a pair of objects; this can be done by implementing the concept
of £-neighbourhood. Section 4.2.1 gives a definition of the £-Object-Neighbourhood
Similarity. Section 4.2.2 includes details of the experiment conducted, along with

the analysis of the results.

4.2.1 Definition of £-Object Neighbourhood Similarity (&-
ONCE)

The key idea of the £-neighbourhood is to construct just the common neighbours of
a pair of objects that have a similarity greater than or equal to a certain threshold
&, which takes the value € [0, 1]. Thus, objects that have a similarity with the given
object pair greater than or equal to £ are considered to be common neighbours to
that pair of objects. The difference between ONCE and £-ONCE is that in ONCE
we consider all the objects that are placed in the same cluster as the pair itself to
be common neighbours to that pair, while in £&-ONCE, we do not consider all of
the objects placed in the same cluster as the pair itself — we only consider the ones
that have similarities greater than or equal to £ to be common neighbours to that

pair.

The details implementation of the £-neighbourhood with the ONCE algorithm

are as follows:
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Algorithm 3: £-ONCE Algorithm.

Input: I' = {P, P», Ps,..., Py}, m number of clustering members
Output: Partition of Dataset X = {z1,z2,23,..., 2}
for eachi=1:ndo
for each j =i+ 1:n do
| Calculate the CO similarity for pair (z;,2;) using equation 2.3

for eachi=1:ndo

for each j =i+ 1:n do

Find the common neighbours list Z, »; = {z1,%2, -+, 2.}, that satisfy the
following;:

Vay € Zyyay, 3CO(z,m1) 2 E N CO(x5,71) > &

Calculate the average similarity of the common neighbours for pair (z;, z;)
using equation 4.1

Calculate W (x;, x;) using equation 4.2

Scale W: W/Wya4

Convert the similarity matrix W into distance matrix W’

Obtain the final clustering results by applying a hierarchical clustering
algorithm to W’

To simplify the calculation time, we adapted our algorithm to work with a sparse
CO matrix, in order to calculate the £&-ONCE matrix. Then we converted the
resulting matrix to a full distance matrix, in order to apply hierarchical clustering

to obtain the final clustering result.

4.2.2 Experimental Results

In this experiment, we followed the same experimental procedures as in Section 4.1.4,
the only difference being that we replaced datasets Cmc and Um with the Soybean
and Ionosphere datasets as we found from the previous experiment (Section 4.1.4)
that Cmc and Um are not suitable clustering problems. Therefore, we ran ONCE;,
CO and &E-ONCE, all using the Average linkage method on 11 datasets. Tables
4.5 and 4.6 show the average performance (Ave-P) of ten runs using CO, ONCE
and E-ONCE with 4 different values for £ (0.5,0.6,0.7,0.8) on 8 datasets. A value
less than 0.5 is too small to consider and a value larger than 0.8 is too narrow to
consider, we think that a value € [0.5, 0.8] is reasonable. They also show the average

consistency (Ave-C) for each ensemble method across all of the datasets measured
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by NMI and ARI respectively. The bold value in each row represents the highest
quality for each dataset, while the underlined value in each row represents the best

performance in terms of consistency for each dataset.

The results show that £-ONCE did not improve much compared to ONCE in all
of the tested datasets, although on the Iris and Ionosphere datasets using £-ONCE
slightly improved the quality. Comparing the consistency of the three methods, it
is found that the £-ONCE is slightly more consistent than ONCE and CO in 7 and
6 datasets, measured by NMI and ARI respectively. ONCE achieved the highest
average performance compared to CO and £-ONCE measured by NMI, while the
highest average performance was achieved using ONCE and £-ONCE (when £ is
equal to 0.6 and 0.7) measured by ARI. Looking at Wins/Ties/Losses, it is observed
that ONCE wins more than CO and £-ONCE, while CO wins on only one dataset
(D31), measured by NMI and ARI. £&-ONCE (0.5) wins 2 times, while £-ONCE
using the other values does not win at all when NMI is used to measure the quality,
and £-ONCE (0.5) wins 3 times and £&-ONCE (0.7) wins 2 times when the ARI

index is used to measure the quality.

In conclusion, this experiment shows that applying the £ neighbourhood concept
to the ONCE algorithm did not achieve a further improvement in terms of cluster
quality. Considering the additional time required to calculate the £ neighbourhood
of each pair of objects, and the lack of improvement in cluster quality in this ex-
perimental set-up, we can say that £&-ONCE did not achieve its expectations and
that ONCE is better than £-ONCE. However, in the next section, we will compare
the performance of ONCE with other pairwise similarity-based clustering ensemble

methods.
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Table 4.5: The average performance and the standard deviation of ten runs of each
method for each dataset measured by NMI. The average performance (Ave-P) of
each ensemble method across 11 datasets, and the average consistency (Ave-C) are
included.

ONCE-Av CO-Av  £-ONCE-Av (0.5) £-ONCE-Av (0.6) £-ONCE-Av (0.7) &-ONCE-Av (0.8)

D31 0.962 +£0.004 0.965 + 0.001 0.963 + 0.003 0.964 £ 0.002 0.964 £ 0.003 0.963 £ 0.002
R15 0.994 4+ 0.002 0.991 £ 0.009 0.994 + 0.000 0.991 £+ 0.007 0.991 £ 0.007 0.934 £ 0.034
Agg 0.971+0.014 0.961 £+ 0.032 0.960 £ 0.031 0.961 £+ 0.028 0.961 £ 0.029 0.961 £ 0.029
Bew 0.744 £ 0.006  0.740 4+ 0.007 0.742 + 0.003 0.746 + 0.006 0.746 £+ 0.006 0.741 + 0.003
Tris 0.752 £0.025 0.746 +0.028 0.758 +0.019 0.754 +0.019 0.754 £ 0.019 0.758 + 0.006
Glass 0.402 +0.023 0.391 £ 0.018 0.390 £ 0.025 0.400 £+ 0.014 0.401 £ 0.025 0.399 £ 0.022
Wine 0.436 +£0.091 0.425 £+ 0.076 0.426 £ 0.094 0.425 £ 0.074 0.425 £ 0.074 0.329 £ 0.069
Mfeatures  0.489 + 0.006  0.480 4 0.003 0.483 + 0.006 0.480 £ 0.004 0.484 £ 0.006 0.483 £ 0.005
Thyroid  0.377 +£0.091 0.342 +0.076 0.352 + 0.094 0.347 +0.074 0.347 £ 0.074 0.332 £ 0.069
Soybean  0.807 +0.058 0.751 £+ 0.061 0.751 £ 0.064 0.763 £+ 0.061 0.763 £ 0.061 0.763 £ 0.061
Tonosphere  0.1324+0.003  0.133 £ 0.002 0.135 £ 0.000 0.133 £ 0.003 0.133 £ 0.002 0.132 + 0.003
Ave-P 0.642 0.630 0.632 0.633 0.634 0.618
Ave-C 0.117 0.112 0.114 0.110 0.111 0.111
W/T/L 6/1/4 1/0/10 2/1/8 0/1/10 0/1/10 0/1/10

Table 4.6: The average performance and the standard deviation of ten runs for
each dataset measured by ARI. The average performance (Ave-P) of each ensemble
method across 11 datasets, and the average consistency (Ave-C) are included.

ONCE-Av CO-Av  £-ONCE-Av (0.5) £-ONCE-Av (0.6) £-ONCE-Av (0.7) &-ONCE-Av (0.8)

D31 0.937 £0.015 0.948 £+ 0.002 0.944 +0.011 0.945 £ 0.010 0.942 +£0.013 0.942 +0.013
R15 0.992 £0.002  0.983 +0.028 0.993 + 0.000 0.979 £+ 0.029 0.979 £+ 0.029 0.750 £ 0.127
Agg 0.977 +£0.010 0.948 £ 0.067 0.947 £ 0.065 0.950 £ 0.059 0.949 £ 0.059 0.948 £ 0.063
Bew 0.843 £0.005 0.839 4 0.006 0.841 +0.003 0.845 4+ 0.005 0.845 £+ 0.005 0.841 +0.003
Tris 0.729 £0.028  0.717 +0.026 0.736 £+ 0.025 0.733 £+ 0.026 0.733 £ 0.021 0.737 £ 0.025
Glass 0.251 £0.009 0.248 +0.011 0.251 £0.013 0.253 £ 0.011 0.255 + 0.010 0.252 £0.010
Wine 0.332£0.035 0.367 = 0.007 0.367 £ 0.005 0.368 £ 0.006 0.368 £+ 0.006 0.206 £ 0.140
Mfeatures  0.330 +0.008 0.317 4 0.003 0.321 + 0.007 0.318 £ 0.007 0.322 £+ 0.008 0.321 £ 0.007
Thyroid  0.422 £0.140  0.387 +0.152 0.385 £ 0.156 0.410 £+ 0.145 0.410 £ 0.145 0.392 £+ 0.100
Soybean  0.638 +0.049 0.584 £+ 0.054 0.584 £ 0.054 0.595 £+ 0.057 0.596 £ 0.057 0.596 £ 0.057
Tonosphere  0.17540.003  0.176 £ 0.002 0.178 £+ 0.000 0.176 £ 0.003 0.176 £ 0.002 0.175 + 0.003
Ave-P 0.602 0.592 0.595 0.597 0.598 0.560
Ave-C 0.028 0.033 0.031 0.032 0.032 0.050
W/T/L 3/0/8 1/0/10 3/0/8 0/2/9 2/2/7 0/0/11
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4.3 Comparing ONCE with other Consensus Func-

tions

In this section, we compare the performance of ONCE with other pairwise similarity-
based consensus functions, in particular with the Connected-Triple based similarity
(CTS) matrix, the SimRank-based similarity (SRS) matrix [49] and the Approximate
SimRank-based similarity (ASRS) matrix [52].

4.3.1 Experimental Results

We used the same generated members for each dataset in the experiment in Section
4.2.2 to run three link-based methods, which are CTS, SRS and ASRS, and we
used the Average Linkage method over their matrices to obtain the final clustering
results'. Asrecommended by Tam-on et al. [49, 52], we set the decay factor parameter
for CTS, SRS and ASRS to its default value, which is equal to 0.8. We also set the

number of iterations for ASRS method to its default value, which is equal to 5.

Tables 4.7 and 4.8 show the results of NMI and ARI on 11 datasets respectively.
Please note that the results of ONCE and CO qualities are copied from Tables 4.5
and 4.6 for comparison purposes. The entries in these tables represent the average
quality in ten runs along with the standard deviation. In these tables, the best
quality for each dataset is indicated by the bold value, and the most consistent

algorithm for each dataset is indicated by the underlined value.

The results measured by NMI show that in 4 datasets the ONCE-Av outper-
formed the performance of other ensemble methods, and in 4 datasets it achieved a
very close performance to the highest one in these datasets. In the R15 dataset, the
highest quality is achieved using the ONCE-Av, CTS-Av, SRS-Av and ASRS-Av
algorithms, and this is the only dataset where the highest quality was achieved by

a number of ensemble methods.

"We used the LinkCLuE Package available at https://www.jstatsoft.org/article/view/
v036109.
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The results obtained using ARI indexes show that ONCE-Av outperformed the
other ensemble methods in 3 datasets, while in others it achieved a result very
close to the highest quality. The performance of SRS on the Mfeatures dataset was
very poor using the NMI index, while it was equal to 0 measured by ARI. This
result indicates that using SRS as a consensus function can result in an unexpected
ensemble clustering quality that is worse than the single clustering algorithm. So
building a clustering ensemble using SRS in this case is a failure. Moreover, SRS
did not win at all in this experiment measured by NMI, while using ARI it won only
once in the Glass dataset, where CTS and ASRS achieved a very close performance.
ASRS also won once in the Soybean dataset using both indices, where the quality
of ONCE was very close to this winning quality.

However, comparing the three link-based ensemble methods, it is found that CTS
performs better than the other two methods. Using the same strategy of comparison
used in [49], which is the winning statistic, it is found that CTS wins 3 times, while
ONCE wins 4 times and CO wins only 3 times when the results are measured by
NMI. Along with the CO algorithm, they both win 3 times when the results are
measured by ARI.

On average, CTS improved by 0.006 (measured by NMI), and CO and ONCE
improved by the same degree, compared to CTS. Furthermore, it is observed that on
average ONCE outperformed CO, CTS, SRS and ASRS using the Average Linkage
in this experimental set-up using both indices (NMI and ARI).

Comparing the performance of these methods in terms of the consistency, we
found that on average the most consistent algorithms (using the NMI index) in
this experiment were SAR and ASRA, equal to 0.019. However, the consistencies
of other methods (ONCE, CO and CTS) were very close to this performance, and
using the ARI index we found that ONCE is the most consistent algorithm, but that
the other compared methods were very close to this performance. Therefore, this
experiment indicates that the average performances in terms of the consistency of

these pairwise-based clustering ensemble methods are more or less the same, whereas
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in terms of quality, ONCE-Av outperformed the other compared methods.

Table 4.7: The average performance and the standard deviation of ten runs for
each dataset measured by NMI. The average performance (Ave-P) of each ensemble
method across 11 datasets, and the average consistency (Ave-C) are included.

ONCE-Av CO-Av CTS-Av SRS-Av ASRS-Av
D31 0.962+0.004 0.965+0.001 0.95940.005 0.963+0.003 0.960 & 0.007
RI5  0.994+0.002 0.991+0.009 0.994+0.000 0.994+0.002 0.994 =+ 0.002
Agg  0.971+£0.014 0.961+0.032 0.969+0.023 0.966 +0.026 0.956 & 0.027
Bew  0.74440.006 0.740 £ 0.007 0.738£0.003  0.740 +0.005  0.736 = 0.000
Iris 0.752+0.025 0.746 +0.028 0.756 & 0.018 0.755+0.019  0.736 = 0.010
Glass  0.402+0.023 0.391+0.018 0.403+0.011 0.397 +0.008 0.400 % 0.010
Wine  0.436 +0.091 0.425+0.076 0.427+0.009 0.424 +0.006  0.435 =+ 0.010
Mfeatures 0.489 & 0.006 0.480 £ 0.003  0.480 £ 0.003  0.035 £ 0.000  0.480 = 0.004
Thyroid  0.377+£0.091  0.342+0.076 0.453 +£0.105 0.345+0.085  0.248 & 0.099
Soybean  0.807£0.058 0.751+£0.061 0.792+0.051 0.752+0.054 0.818 +0.036
Tonosph ~ 0.13240.003 0.133+0.002 0.026 +0.000 0.13240.003  0.026 % 0.000
Ave-P 0.642 0.630 0.636 0.591 0.617
Ave-C 0.029 0.028 0.021 0.019 0.019
W/T/1 4/1/6 2/0/9 3/1)7 0/1/10 1/1/9

Table 4.8: The average performance and the standard deviation of ten runs for
cach dataset measured by ARI. The average performance (Ave-P) of each ensemble
method across 11 datasets, and the average consistency (Ave-C) are included.

ONCE-Av CO-Av CTS-Av SRS-Av ASRS-Av
D31 0.937+0015 0.948+£0.002 0.918+0.024 0.939+0.014 0.924 & 0.030
RI5  0.992+0.002 0.983+0.028 0.993+0.000 0.99240.002 0.992 % 0.003
Agg  0.977+0.010 0.94840.067 0.965+0.049 0.962+0.051 0.960 + 0.036
Bew  0.8434+0.005 0.839+0.006 0.838=+0.003 0.839+0.004 0.835 %+ 0.000
Iris 0.729 +0.028 0.7174+0.026 0.733 +0.026 0.732+0.027  0.648 + 0.077
Glass  0.251 £0.009 0.248+0.011 0.2534+0.012 0.255+0.016 0.253 = 0.025
Wine  0.33240.035 0.3674+0.007 0.327+0.039 0.366+0.006 0.331 + 0.034
Mfeatures 0.330 £ 0.008 0.317+0.003  0.317 +0.003  0.000 +0.000 0.317 & 0.006
Thyroid ~ 0.422+0.140  0.387 +0.152 0.520+0.112 0.378 £0.151  0.182 + 0.101
Soybean  0.638+£0.049 0.584+0.054 0.629+0.049 0.584+0.053 0.651 =+ 0.037
lonosph  0.17540.003 0.176 +0.002 0.004 +0.000 0.175 4+ 0.003  0.004 + 0.000
Ave-P 0.602 0.592 0.591 0.566 0.554
Ave-C 0.028 0.033 0.029 0.030 0.032
W/T/L 3/0/8 3/0/8 3/0/8 1/0/10 1/0/10
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4.3.2 Comparing ONCE with Individual Members

Tables 4.9 and 4.10 show the quality of individual members of the first run in each
dataset from the same experiment run in this main section. In total we generated
7 individual members for each dataset. Generally, we found that the quality of
the individual members in each dataset varied from high to very low quality. For
example, in D31 the highest quality is equal to 0.952, while the lowest quality is
equal to 0.005, measured by ARI as shown in Table 4.10.

We compared the quality of ONCE-Av in tables 4.7 and 4.8 with the maximum
individual member quality for each dataset (tables 4.9 and 4.10) measured by N M [
and ARI respectively). We found that in most datasets the maximum member
quality is higher than the quality of ONCE. Moreover, it also higher than the highest
ensemble quality in each dataset as seen in Tables 4.7 and 4.8. In the R15 and Iris
datasets, the quality of ONCE is equal to the maximum member quality measured
by ARI. Therefore, from these observations we can conclude that the clustering
ensemble method does not always outperform the best individual members in terms
of quality. On the other hand, in real-word data the best individual member is not
always guaranteed to be generated using a single clustering algorithm.

Table 4.9: The performance of the seventh members in the first run of the experiment
for each datasets measured by NMI. The bold value represents the maximum quality
in each dataset.

Member 1 Member 2 Member 3 Member 4 Member 5 Member 6 Member 7

D31 0.915 0.893 0.066 0.952 0.952 0.938 0.967
R15 0.925 0.889 0.882 0.992 0.271 0.994 0.994
Agg 0.775 0.794 0.007 0.991 0.859 0.826 0.980
Bew 0.748 0.741 0.018 0.677 0.006 0.730 0.191
Iris 0.742 0.631 0.002 0.736 0.722 0.750 0.615
Glass 0.450 0.381 0.444 0.222 0.393 0.359 0.219
Wine 0.429 0.424 0.091 0.416 0.019 0.417 0.453
Mfeatures 0.475 0.476 0.011 0.497 0.471 0.479 0.598
Thyroid 0.277 0.436 0.084 0.201 0.003 0.339 0.217
Soybean 0.793 0.764 0.058 0.830 0.848 0.716 0.370
Tonosph 0.135 0.132 0.010 0.026 0.062 0.130 0.260
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Table 4.10: The performance of the seventh members for each datasets measured
by ARI. The bold value represents the maximum quality in each dataset.

Member 1 Member 2 Member 3 Member 4 Member 5 Member 6 Member 7

D31 0.770 0.724 0.005 0.907 0.924 0.864 0.952
R15 0.819 0.726 0.542 0.989 0.074 0.993 0.993
Agg 0.616 0.660 0.004 0.995 0.766 0.685 0.984
Bew 0.846 0.841 0.003 0.782 0.009 0.830 0.025
Iris 0.716 0.449 0.011 0.564 0.642 0.729 0.575
Glass 0.281 0.264 0.280 0.143 0.231 0.214 0.139
Wine 0.371 0.352 0.005 0.293 0.013 0.354 0.478
Mfeatures 0.314 0.311 0.001 0.333 0.304 0.314 0.359
Thyroid 0.211 0.522 0.031 0.137 0.002 0.431 0.162
Soybean 0.595 0.659 0.020 0.661 0.748 0.545 0.198
Tonosph 0.178 0.173 0.015 0.004 0.099 0.173 0.209

4.3.3 Test of Significance

As discussed in Section 3.2.5, to assess the performance of ONCE in terms of be-
ing significantly better or worse than the compared methods, statistical analysis is
necessary. As recommended by Demsar [18], we applied the Iman-Davenport test in
order to test the null hypothesis that all the compared methods in this experiment
have an equivalent performance. As suggested by Demsar [18], if there are statisti-
cally significant differences, we will proceed with the Nemenyi test as a post-hoc test
for a pairwise comparison between them in order to discover where the differences

lie.

In the Nemenyi test, we first ranked the competing methods for each dataset. It
must be noted that the best performing method receives the rank of 1, the second
best is ranked 2 and so on. We averaged the rank for the methods that had the
same quality score, and for each method we obtained the mean rank by averaging
its ranks across all the datasets. The F-value of the Iman-Davenport test was equal
to 3.0224 which results in a p-value (0.028), less than the critical level of 0.1. Thus,
we rejected the null hypothesis that these methods are equal in performance, and
we conducted the Nemenyi test to find out which methods differed from others.
Figure 4.5 shows the critical difference diagram of the Nemenyi test results. As we

can see, there are two groups of clustering ensemble methods: the performance of
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ONCE-Av is significantly better than that of CO-Av and ASRS-Av, while CTS-Av
and SRS-Av belong to both groups. We also observe that ONCE-Av achieves the

highest rank under this experiment set-up.

CD
P
5 4 3 2 1

1.8636  ONCE-Av
26364 cTS-Av
8.2273 gRg-Av

ASRS-Av

3.5909

CO-Av

Figure 4.5: The Critical difference diagram of the critical level of 0.1 in which it
shows the comparison of five ensemble methods using 11 datasets. The original
quality results of these methods are shown in table 4.7.

4.4 Summary

The Co-association matrix [32] is a common clustering ensemble method. We de-
cided to try to improve it by addressing uncertainties among the members in an
ensemble. The uncertainty occurs when some objects in the dataset are hard to
cluster, which result in them being clustered in different clusters—uncertain agree-
ments between the ensemble members. In this situation, CO could fail to produce
a reliable clustering result. One solution that has been suggested by a number of
researchers is not just to consider the pairwise object information in the generated
members, but rather to enhance the CO matrix by extracting more information from
the members [107, 103, 81]. We think that there is other useful information that
could be extracted from the ensemble members in order to deal with the uncertain

object issue by considering the neighbourhood relationship between pairs of objects.

In this chapter, we presented the Object-Neighbourhood clustering ensemble
method (ONCE). The core of ONCE is a new consensus function that addresses

the uncertain agreements between members by taking the neighbourhood relation-
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ship between object pairs into account in the similarity matrix. We illustrated the
problem of the uncertainty using a simple artificial dataset, which includes some
hard to cluster objects around the cluster boundary. We ran CO and ONCE on this
artificial dataset, and the results showed that CO has been affected by the uncertain

agreement between members, while ONCE shows a better performance.

ONCE was tested on 11 datasets (3 artificial and 9 real ones) and compared with
the CO using Single, Complete and Average linkage methods. The results show that
on average ONCE-Av outperforms the CO-Av method, and the results indicate that
the Average linkage is the most appropriate of the linkage methods. Furthermore,
the results show that our ensemble method is more consistent and reliable than the

single clustering algorithm (k-means).

In general, it is interesting to note that the effect of the uncertain pairs of objects
varied with the different datasets. This is due to the fact that not every dataset is
affected by uncertain pairs of objects, even though these are in fact hard objects to
cluster. This is where results for some of the datasets are improved by our method,
such as Iris, which has overlapping clusters, and Aggregation, which has uneven-

sized clusters with difficult boundaries.

We attempted to extend ONCE further in order to consider only the most sim-
ilar common neighbours, and proposed £-ONCE. The experiment study however,
revealed that there is not much improvement in terms of quality using £-ONCE
compared to ONCE, which is preferred as £-ONCE requires more time to be com-

pute.

Finally, we compared ONCE with other object pairwise similarity based consen-
sus functions CTS, SRS and ASRS. In these algorithms, the ensemble members are
represented as a network and the well-known link similarity measures have been
applied to this network, and have been implemented in the Connected-Triple and
SimRank link approaches. The experiment was carried out using 11 datasets, and

with all the tested consensus functions we applied the Average Linkage. The results

demonstrated that on average ONCE outperforms CO, CTS, SRS and ASRS using
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the NMI and ARI indices. It was proved statistically by the Nemenyi test that there
is a statistical difference between ONCE and ASRS, and between ONCE and CO

under this experimental set-up.
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Adaptive Clustering Ensemble

In the previous chapter, we focused on the clustering ensemble methods based on
object pairwise similarity, but we found that there are a number of drawbacks for
these methods. One of them is that they do not scale very well for a large dataset,
as they work at the object level, and most of them do not capture the relationships
between clusters or consider the cluster information that is available in the generated
members. However, clustering ensemble methods based on cluster similarity, such
as MCLA, are much faster than CO and ONCE. Another point is that most of the
clustering ensemble approaches (including CO, ONCE, CTS and MCLA) transform
the initial clusters produced by the members into a new representation, and then
produce the final clustering result by clustering this new representation with an
ordinary clustering algorithm. When applying the same representation to a different
clustering algorithm, their performance can vary considerably and it can be difficult
to decide in advance which clustering algorithm is the best one to use. Therefore,
considering the simplicity of the similarity-based consensus functions, there is a need
for a new consensus function that is able to construct as much information from the
members as possible to produce a reliable clustering result, without requiring an

ordinary clustering algorithm to be applied over a similarity matrix.

In this chapter, we propose two clustering ensemble methods to address these

drawbacks. First we develop a new consensus function named Dual-Similarity Clus-
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tering Ensemble (DSCE) that measures the similarity between initial clusters in
members and accordingly derives the similarity between the object and candidate
clusters. We use the certainty of agreement between members to reduce the cal-
culation needed in the consensus function. Moreover, we develop DSCE further to
become an Adaptive Clustering Ensemble method (ACE) that takes into account
the neighbourhood similarity for uncertain objects and overcomes some of the limi-

tations of DSCE.

This chapter is organised into two main sections. The first Section 5.1 describes
the proposed clustering ensemble method DSCE. The second Section 5.2 describes
ACE method. Finally, Section 5.3 gives a summary of the chapter.

5.1 Dual-Similarity Clustering Ensemble (DSCE)

The main idea of the proposed consensus function is that, instead of calculating
the similarity between a pair of objects (the object pairwise similarity) as in the
CO method, we calculate the similarity between pairs of clusters generated by the
members and then we derive the similarity between newly formed clusters and ob-
jects. The rationale is that we have already generated clusters in the first phase of
the ensemble process, so it is obviously more efficient and possibly more effective to
consider just the similarity between the initial clusters instead of object similarity.
We can then extend the concept of common neighbour information from the object
level to the cluster level. Therefore, two clusters are considered to be well-associated
if their objects resemble one another to a certain degree. If two clusters have a high
proportion of objects in common as determined by the ensemble members, they
should be merged, whereas if two clusters have a smaller proportion of objects in

common, they should be kept separated.

Nevertheless, instead of following some of the single clustering algorithm proce-
dures in building the consensus function, we use the generated members as initial

clusters of the dataset and the final clustering is generated by performing three
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stages, as shown in Figure 5.1, these are:

e Stage 1: Transformation Stage. The clustering members are transformed

into a binary representation to form our initial clusters.

e Stage 2: Generating Consensus Clusters. Firstly, the similarity between
initial clusters in terms of how many objects they have in common is measured,

and then we merge the most similar ones to form a new consensus clusters.

e Stage 3: Assigning Object to Only One Cluster. We identify the can-
didate clusters, which contain only certain classified objects, and we calculate
their certainties. We produce the final clustering result by an iterative process
assigning the remaining objects to a cluster that has a minimum effect on its

certainty.

These stages help to determine if an object should be placed in a particular cluster or
not as classified by the ensemble members, and to find the most suitable cluster for
it. Section 5.1.1 presents the definitions of the similarity measures and terminologies
that are used with DSCE and ACE, and Section 5.1.2 explain in detail how DSCE
works in three stages. Section 5.1.3 illustrates how the DSCE work using a simple
example. Sections 5.1.4 and 5.1.5 include the experiment design and analysis of the

experiment results respectively.
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Figure 5.1: The DSCE flow chart.

94



Chapter 5. Adaptive Clustering Ensemble

5.1.1 Definitions and Notations

Given an ensemble ® that is built with m clustering partitions I' = { Py, Py, P3, ..., P,,}
for a dataset X = {xy,x,...,z,}, where the gth member, P, = {c{,c,..., czq} is
a clustering result of k, clusters, we defined two similarity measures:. These were
similarity between clusters from different members and membership similarity be-
tween objects and clusters. The latter is measured by the degree of membership
by which an object belongs to a cluster, hence it is called membership similarity.
Before defining these similarity measures, we briefly define the main notations that

we use throughout this chapter as follows:

e S.: The cluster similarity measure between two clusters.
e S,: The membership similarity measure.

e (1: The membership matrix, where the columns of this matrix correspond to

clusters and the rows correspond to objects.
e §: A binary membership value of an object to a particular cluster, 6 € {1,0}.
e «aq: A cluster merging threshold, the value of which is chosen from S..

® as: A certainty threshold of classifying objects in a cluster, the value of which

is chosen from S,.
e \: Number of clusters in 6.

<_
e (' The set of all the newly formed clusters after the merging process has

concluded.

%
e p.,: Cluster certainty, only calculated for each newly formed cluster € C.
Definition 1. Cluster similarity S. s a measure of similarity between two clusters

from different members/partitions regarding how much overlap there is between them.

Any binary-based similarity measurements can be used as a cluster similarity.
Section 5.1.2 gives more details on the cluster similarity measurement that we used

in DSCE and ACE.
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Definition 2. Membership similarity S, is a measure of similarity between an object
and a cluster which estimate the degree of membership of an object to a cluster, hence
it is called membership similarity. The threshold value as of this measure is used to

determine how strong this membership similarity is between an object and a cluster.

In general, membership similarity is similar to the concept of membership degree
in soft clustering (where an object z may be placed in more than one cluster). It
uses a degree for each object in order to express whether it belongs to a cluster. The
membership similarity is formed after the merging process has concluded. Section
5.1.2 includes more details on forming the membership similarity S,. Generally,
the value of S, is bounded between [0, 1], and a higher value means a stronger
membership or a higher degree of certainty that an object belongs to a cluster.
Therefore, objects with different values of this measure can be classified as certain,
uncertain, totally certain or totally uncertain for a given threshold value s, as

defined below:

Definition 3. Certain object: An object, x;, is defined as a certain object if its

maximum membership similarity S, is greater than o, i.e.

max((S;(zi, C')) > as. (5.1)
c

That means more than (s * 100)% of ensemble members agree to assign this

object to the same cluster, so we are certain about classifying this object.

Definition 4. Uncertain object: An object is defined to be an uncertain object if its

mazimum membership similarity S, is less than or equal to as.

max (S (zi, 8)) <= ay. (5.2)
c
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That means less than or equal to (ap*100)% of ensemble members agree to assign

this object to the same cluster, so we are uncertain about classifying this object.

Definition 5. Totally certain object: An object is defined as a totally certain object

if its maximum membership similarity S, for a particular cluster is 1.

That means we are totally certain that all the ensemble members agree to assign

this object to a specific cluster.

Definition 6. Totally uncertain object: An object is defined as a totally uncertain

object if its membership similarity S, for a particular cluster is 0.

That means we are totally uncertain that all the ensemble members agree to

assign this object to a specific cluster. .

Based on the objects that are assigned to each cluster, we can calculate a cluster

e
certainty for each newly formed cluster € C' as follows:

Definition 7. Cluster certainty: The cluster certainty, p.,, is defined as the mean

of membership similarity of all objects belonging to that particular cluster %g.

pey = T > Sular, ). (5.3)

5.1.2 The DSCE Algorithm

Stage 1: Transformation

Having generated m members, which represent unmatched clusters of objects, this
stage transforms them into a new representation. In order to avoid solving the
relabelling problem between clusters, we transform each cluster (¢) to a column
binary characteristic vector where a value of 1 indicates that the corresponding
object belongs to that cluster, and 0 indicates that the object does not belong to

that cluster.
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In general, for cluster ¢; in clustering member g, its corresponding vector is rep-
resented as ¢ = [0(x1,¢}),. .., 0(zn, c])]", where (x4, ¢]) is the binary membership

and takes the following value:

1, ifl‘iECj,Vizl,...,n.

5(1}2', Cj) = (54)
0, if ZT; ¢ Cj
Where i is the index of data objects; j = 1,..., k; is the index of clusters in each
member; ¢ = 1,...,m is the index of members in an ensemble.

There will be k,, vectors that are combined to form the initial value of the
membership matrix 6; = [cl, e, ..., ... ¢, |, where k,, = m.k, and ky = k, Vg =

1., m.

Stage 2: Generating Consensus Clusters

In this stage the following three steps are required:

1. Measuring the cluster similarity S..
2. Performing the merging process.

3. Calculating the membership similarity S, between objects and the newly

formed (consensus) clusters.

1. Measuring the cluster similarity (S.). Starting with k,, initial clusters,
we measure the cluster similarity by employing the ‘set correlation’ as a cluster
similarity measurement, which measures the overlap between two clusters and takes
their size into account. It has been developed in the Relevance-Set Correlation
(RSC) [46] model, as this measure is an equivalent of the Pearson correlation in
clustering analysis. After some simplification and derivation, it can be represented

as follows:
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q ¥4
a ~ 0 lgglle,l
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V=1t D = Il ]

Where ¢ and ¢ are two members, ¢ # ¢, and j,, j, are the cluster index in ¢ and
¢ respectively. C'M is the Cosine similarity measurement [43]:
c§ N,

CM(cL ) =

Jq’ "Je

(5.6)

5115

S. is symmetric, i.e. S.(¢;,¢j) = Sc(cj, ¢;) and its value is bounded in [-1, 1]. A
value of 1 indicates that the two clusters “are identical”, and a value of -1 indicates

that the two clusters are “a complement of each other” [104].

2. Performing the merging process. At the beginning of this process, we

have three inputs (6;, S. and «a;):

1. 0 is the membership matrix resulting from the transformation stage (it con-

tains the initial clusters from the members).

2. S, is the cluster similarity matrix, which is calculated between the initial

clusters in 6 in the previous step.

3. «ap is the merging threshold, which is determined in advance; it can take a
value in the interval [—1,1] (as S.) (we will discuss and analyse the best value

for ay in Section 5.1.7).
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The merged process is based on the following criterion:

if Se(c,, d)y>=a = ci and ¢, are similar, hence merged. (5.7)
~ q ¢ q ¢ i
if Sc(ch, c;,) <ar = ¢j, and ¢ are dissimilar, not merged. (5.8)

From S, any clusters that satisfy a criterion given in equation 5.7 will be merged
to replace them in #; with a new cluster %j. This has the result of summing the

object memberships of the merged clusters. So, 6; is updated as follows:

Or(xi,Cg) =Y O(zicn),  Vi=1,...n.
u=1

where 7 is the set of all merged clusters that formed (?g ={ci+c+--+c}

Then we go back to step 1 in this stage to recalculate the S, for the updated 6,
and then iterate until a termination criterion 5.8 is reached for all the similarities

between clusters in the updated S..

3. Calculate the membership similarity (S,). S, is specifically used to refer
to the measure of similarity between objects z; € X in a newly formed cluster after

the merging process is carried out in the previous step as follows:

Stage 3: Assigning Objects to Only One Cluster.

In this stage, the aim is to ensure that each object is only assigned to one cluster
and to eliminate inappropriate clusters. The inputs of this stage are S, and as. s

is the certainty threshold of classifying objects in a cluster and it is determined in
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advance by the user (Section 5.1.7 will discuss how to specify this threshold).

A number of steps are required in this stage:

1. Identify candidate clusters in S, and assign totally certain and certain
objects.

Based on ay we identify clusters in S, that contain at least one totally certain
object (definition 5) or certain object (definition 3) as a candidate cluster. As
these objects have a higher certainty value than oy, we assign them to the candidate
cluster that has a maximum membership similarity among the other candidates. The
assigning step for the totally certain and certain objects is done by keeping their
maximum membership similarity with the candidate cluster in S, and setting their
membership similarities with other clusters in S, to be equal to 0. They therefore
have only one value of S, larger than 0 with a particular cluster, which means that
the object belongs to that cluster only. In case of a tie between which candidate
clusters are assigned to a given totally certain/certain object, we arbitrarily break
the tie in favour of the ?g with smallest g. If we put the candidate clusters in a

list, this would be the candidate cluster that comes first in the list.

2. Assign uncertain object to only one cluster.
This is for other unassigned objects in S, that we classified as uncertain objects
(definition 4) or totally uncertain objects (definition 6). We should mention that

this step is only required when there are any uncertain objects in .S,.

So, firstly we calculate the cluster certainty for each candidate cluster considering
only their assigned objects using equation 5.3

At the beginning, as the totally certain and certain objects are the only ones

that are assigned to candidate cluster ‘¢, we iterate on uncertain objects and in

each iteration the following steps are performed:

(a) We set C'C as the set of all the candidate clusters in 5, and for each candidate

cluster we calculate the absolute difference between the current object (i.e.z;)
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membership similarity with the identified cluster and its certainty as follows:

lcc|

Dee = Zﬂsx(wm &) — pss)

g=1

(b) Assign the current object to the candidate cluster that has a minimum differ-

ence among other clusters in C'C', that is:

Hlin(Dcc)

(c) Increase the size of the assigned candidate cluster by 1.

(d) Update the certainty of the assigned cluster using equation 5.3 and this time

include the current object.

(e) Repeat the above steps until all uncertain objects are assigned.

By assigning uncertain objects to the cluster that has a minimum difference, we
maintain the original certainty of the candidate clusters as high as possible. At
the beginning of this stage, the only objects that are assigned to candidate clusters
are certain objects (either a totally certain or a certain objects) and by definition
they have membership similarity larger than s, so we expect the certainty of the
candidate clusters to be high. Other clusters that do not contain any certain objects

are not considered to be good candidate clusters and they are eliminated.

However, at the end of this stage all objects are assigned to only one cluster so

the output of the algorithm is the final clustering results P* of the dataset.

5.1.3 An Illustrative Example

We illustrate how DSCA works with a simple example. Suppose we have a dataset
X that contains 10 objects, X = {x1,29,...,210} and that we have generated 3
members (m = 3), each of which has 3 clusters (k = 3). We run the DSCE algorithm

in three stages as follows:
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Transformation Stage:

We transform the members into a binary vector representation as shown in Figure
5.2, in which each cluster in the generated member is represented by a binary vector
with 9 binary vectors in total. For example, vector 3 is the third cluster in the
second member m,. Four objects 1, To, T4, 9 Were assigned to cluster c3, so we set

2

their value equal to 1, whereas for other objects in c5 we set a value of 0. These

vectors are the input of the second stage.

The generated members Binary vectors representation of the initial clusters
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Figure 5.2: An illustrative example of three clustering members for dataset X of 10
objects, and the transformation from members into a binary vectors representation.

Generating Consensus Cluster Stage:
In this stage, we first measure the similarity between the initial clusters, and
generate the similarity matrix S, as shown in Table 5.1. Then we perform the

merging process as follows:

Firstly, we set oy equal to 0.8. Looking at S., we find that ¢} and ¢ are identical
and have a similarity greater than a; with ¢3, so we merge them by replacing them
with E, which contains the summation of their object membership. In addition, ¢}
have a similarity greater than «; with ¢2 and ¢}, so we merge them too as . We

also merge ¢} and ¢} as . Asa result, we gain four clusters, %1, %2, ¢35 and

‘¢4 in the updated #,, as shown in Table 5.2. Then we recalculate the similarity

measures S, for the updated 0, as shown in Table 5.3.
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Table 5.1: The Similarity Matrix S., which is the result of measuring the similarity
between initials cluster vectors in our illustrative example (Figure 5.2) using S.
measure. — — — cells indicates that this similarity is not calculated as they are
placed in the same member.

i ¢ c ot c & ot c e
ok ~ 0535 0.802 -0250 -0.667 1  -0.408
e — 0429 -0429 0.802 0.802 -0.535 -0.327
R 1 0429 -0.535 -0.089 -0.535 0.764
¢ 0535 -0420 1 — — — -0.08) -0.535 0.764
3 0802 -0429 -0429 — 0535 0802 -0.327
2 -0250 0802 -0535 —  —  — 0583 -0.250 -0.408

c; -0.667 0.802 -0.089 -0.089 -0.535 0.583 — — —
s 1 -0.535 -0.535 -0.535 0.802 -0.250 — — —
cs -0.408 -0.327 0.764 0.764 -0.327 -0.408 — — —

Table 5.2: The result of 6; after we merge the most similar clusters, which are
Ci={d+E+d8) C={d+d+3), Ti={cd+ 3} and T, = {3}

ERZIAZIRTIRTY

o
—

1 0 3 0 0
9 0 3 0 0
T3 0 1 2 0
x4 0 0 2 1
x5 0 0 2 1
Tg 2 1 0 0
x7 3 0 0 0
xs 3 0 0 0
T 3 0 0 0
10| O 3 0 0

Based on «q, we find that there are no more similar clusters to be merged in the
updated similarity matrix S.. Thus, we calculate the membership similarity S, as

shown in Table 5.4 and it becomes the input for the next stage.

Assigning Objects to only One Cluster.
In this stage, firstly we set as = 0.5 and we identify the candidate clusters in S,

that had at least one totally certain or certain objects, and we find that based on
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Table 5.3: The updated Similarity Matrix S, after the first step of the merging
process is performed, which is the result of measuring the similarity between four
clusters in #; (in Table 5.2)

1 o s <4
<1 —  -0.408 -0.535 -0.408
Ty -0.408 —  -0.218 -0.500
€3 -0535 -0.218 —  0.764
T4 -0.408 -0.500 0.764  —

Table 5.4: The result of S, after we perform the second stage.

ERAIRZIAZIRTE

T 0 1

9 0 1

T3 0 | 03|06

T4 0 0 | 06|03
5 0 0 | 06|03
z¢ | 0.6 | 0.3 | O 0
T 1 0 0 0
rs 1 0 0 0
Z9 1 0 0 0
10| O 1 0 0

oy we have three candidate clusters: %1, %2 and %3. As %4 does not contain at
least one totally certain or certain object, we eliminated it. After that we assign
totally certain and certain objects to the candidate cluster that have a maximum
membership similarity among the other candidates by keeping this maximum sim-
ilarity and modifying the other values to be equal to 0. The updated membership

similarity matrix S, so far is shown in Table 5.5.

In the last step, we check whether S, (Table 5.5) contains any uncertain objects
and in this example based on the value of ay we do not have any uncertain objects
and the final clustering result for objects in X = {z1, x9, 3, T4, x5, ¢, T7, Ts, Tg, T10}

is produced P* = {2,2,3,3,3,1,1,1,1,2}.

However, if we set as to a higher value equal to 0.9, and re-run the last stage, we

find that based on ay we only identify E and g as candidate clusters and this time
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Table 5.5: The updated membership similarity matrix S, after identifying candidate
clusters, eliminating non-candidate cluster and assigning totally certain and certain
objects.

B
I 0 1 0
€T 0 1 0
T3 0 0 | 0.6
T4 0 0 | 0.6
T5 0 0 | 0.6
ze | 0.6 | O 0
T7 1 0 0
g 1 0 0
I9 1 0 0
10 0 1 0

we eliminate & and &. We also identify x1, zo, 7 and zg as totally certain objects,
while we identify the other objects (x3, x4, x5, Tg, T9 and z19) as uncertain objects.
In this case, we perform step 2 in stage 3, firstly by calculating the certainty for

each candidate cluster using equation 5.3, which is for ¢1and Ty is equal to 1.

Then, we iterate on uncertain objects and each iteration steps (a to d) were
executed as described in Section 5.1.2. For example, the results of these steps of the

first iteration (for object z3) are as follows:

(a) We set C'C as the set of all candidate clusters, and we calculate the absolute
difference as follows:

CC = {&,&}, and Dee = {|0 —1],]0.3 = 1|} = {1,0.7}.

(b) We assign the current objects as follows:

min(Dee) = 0.7, then 23 € &.
(c) We increase the size of the assigned candidate cluster by 1: |&| = [&] + 1.

(d) We update the certainty of the assigned cluster as follows: p., = 0.77

After all uncertain objects are assigned the final clustering results for dataset X are

produced as P* = {2,2,2,2,2,2,1,1,2,2}.
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5.1.4 Experimental Design

To empirically evaluate the performance of DSCE, we used the same datasets and
quality validation indices as in previous chapters. As described in Section 3.2, we
followed the clustering ensemble framework (shown in Figure 3.1), and in the gen-
eration phase, we used a mixed heuristic technique to generate ten members. We
compared the performance of DSCE with a number of clustering ensemble methods
including CO [32] (using the average linkage method), DICLENS [73], MCLA [94],
and with our previously proposed consensus function ONCE, also using the aver-
age linkage method. We set al = 0.8, ap = 0.7. More details of the experiment

procedure are given in Section 3.2 in Chapter 3.

5.1.5 Experimental Results

Tables 5.6 and 5.7 present the results of ARI and NMI respectively; each entry in
each table represents the average quality of ten runs of the experiment, followed by
the standard deviation. The bold value in each row represents the highest quality for
each dataset, while the underlined value in each row represents the best performance
in terms of consistency. The last column represents the average performance of the
generated members, and the last row shows the average quality for each algorithm

over all the datasets, as well as the average consistency.

Results obtained by ARI Index: As shown in Table 5.6, there are several
interesting observations. First, DSCE achieved the best performance on most tested
datasets with respect to average ARI values of ten runs. On the Mfeatures dataset,
all of the compared algorithms achieved a quality very close with the highest quality
achieved by the DSCE and ONCE algorithms. On the Bew dataset, DSCE achieved
0.849, as well as CO and MCLA with an equal standard deviation. On the Wine
dataset, DSCE achieved the highest quality followed by MCLA, while CO, ONCE
and DICLENS performed equally, achieving an average quality of 0.369, and they

also achieved a similar performance in terms of consistency, which was better than

107



Chapter 5. Adaptive Clustering Ensemble

DSCE.

Second, the DICLENS algorithm did not perform very well on some datasets and
the standard deviation indicates that in some datasets it is not consistent, including
Glass and Mfeatures. It achieved the highest quality only in one dataset which was
Soybean. Moreover, it achieved a lower quality compared to the average members

in the Iris, Glass and Mfeatures datasets.

Third, comparing the average quality across all the datasets, we observed that
DSCE outperformed other algorithms, whereas DICLENS achieved the lowest qual-
ity with a high average consistency, indicating that this method is the least consistent
algorithm when compared with the others. In contrast, CO is the most consistent
algorithm, as well as MCLA, followed closely by ONCE and then DSCE. Looking
at the average members, we found that our proposed algorithm outperformed the

average members in all datasets.

Results obtained by NMI Index: Table 5.7 shows similar results to those
obtained by ARI index. We note that DSCE wins on 4 datasets and on 3 datasets
achieved a very close performance to the wining method. On average DSCE out-

performed other compared methods.

We believe that the main reasons for the better performance of DSCE compared
to its competitors are as follows: first DSCE captures the relationships among clus-
ters in the ensemble members, as it deals with them as initial clusters for the final
results in the first stage; second, it identifies the object’s certainty of being classified
in the initial clusters and in the second stage it focuses on the cluster certainty and
classified objects based on the lowest affected cluster’s certainty; third, this strategy
allows for the number of clusters to be converged from the generated members and
the overall procedure requires less memory compared with ensemble methods based

on object similarity. This means that it will scale very well with big datasets.
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Table 5.6: The average performance and the standard deviation of ten runs for
each dataset measured by ARI. The average performance (Ave-P) of each ensemble

method across 8 datasets, and the average consistency (Ave-C) are included.

CO-Av ONEC-Av DSCE DICLENS MCLA Ave-mem
Iris 0.7254+0.012  0.726 £0.009 0.732+£0.021 0.6804+0.077 0.723 £0.012 0.702 £ 0.038
Wine 0.369 +£0.005  0.369 £0.005 0.377 £0.025 0.36940.005 0.372 £ 0.002 0.366 £ 0.004
Thyroid  0.559 £0.024 0.584 +0.044 0.609 +0.032 0.582£0.044 0.563+0.025 0.473 +0.036
Mfeatures  0.31540.006 0.316 +0.005 0.316 +0.004 0.290 £0.069  0.308 £0.021  0.293 4+ 0.029
Glass 0.509 £0.029  0.526 £0.030  0.528 £0.027  0.392 £0.123  0.53440.020  0.501 £ 0.009
Bew 0.849 £0.004 0.847+0.003 0.849+0.004 0.842£0.005 0.849 £0.004 0.830=+0.021
Soybean  0.547+0.006 0.550 £0.015 0.578 £0.052 0.632 £ 0.046 0.548 £0.006 0.566 £ 0.025
Ionosphere  0.163 £0.014  0.166 4 0.008  0.169 4 0.005 0.161 £0.009  0.166 +0.006  0.149 4 0.007
Ave-P 0.505 0.511 0.520 0.493 0.508 0.485
Av-C 0.012 0.015 0.017 0.048 0.012 0.031

Table 5.7: The average performance and the standard deviation of ten runs for each
dataset measured by NMI Index. The average performance (Ave-P) of each ensemble
method across 8 datasets, and the average consistency (Ave-C) are included.

CO-Av ONEC-Av DSCE DICLENS MCLA Ave-mem
Iris 0.751 £0.015 0.752+0.012 0.763 £0.024 0.757+£0.008 0.749 £0.015 0737 £ 0.025
Wine 0.428 £0.003  0.428 £0.003 0.432 £0.014 0.4274+0.004 0.4294+0.001  0.428 £ 0.003
Thyroid  0.434 £0.047 0.473+0.062 0.480 £0.056 0.501 +0.053 0.418 £0.033 0.403 £ 0.026
Mfeatuers 0.479 £0.002 0.479 +0.003 0.479£0.002 0.468 £0.026 0.475 £ 0.009 0.460 £ 0.027
Glass 0.712+£0.027 0.725£0.029 0.725+0.021 0.617+0.107 0.728 £0.017 0.704 £ 0.007
Bew 0.750 £0.005 0.749+0.004 0.750 £0.005 0.742+0.006 0.751+0.005 0.731£0.023
Soybean  0.717+0.002 0.723 £0.024 0.756 £0.064 0.822 £0.056 0.717£0.002 0.736 £ 0.019
Ionosphere 0.122£0.014  0.124+0.009 0.128 £0.005 0.119+0.009 0.124 £0.006 0.108 £ 0.006
Ave-P 0.549 0.557 0.564 0.557 0.549 0.491
Ave-C 0.015 0.018 0.024 0.034 0.011 0.017

Identifying the true number of clusters in DICLENS

In our experiment, DICLENS produces the number of clusters automatically, while
for CO and ONCE the number of clusters is provided in advance as input. Therefore,
we compared the number of clusters produced by DSCE (as shown in figure 5.3)
with the number of clusters produced by DICLENS (as shown in figure 5.4). We
observed that the DSCE algorithm determined the true number of clusters in four
datasets out of eight in all runs: these include Iris, Thyroid, Bcw and Ionosphere.
The DICLENS algorithm also found the true number of clusters in four datasets
including Wine, Bew, Thyroid and Tonosphere, while in the Glass dataset, 3 clusters

were discovered instead of 6 (true clusters) in six runs out of ten by DICLENS. In
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the Iris dataset, 2 clusters were discovered instead of 3 in three runs out of ten. In
the Mfeatures dataset, 11 clusters were discovered in run number 3, while in run
5, 3 clusters were discovered instead of 10 clusters by DICLENS. In percentages, in
88.7% of the total number of runs in all datasets DSCE determined the true number
of clusters, whereas 76.2% were discovered by the DICLENS algorithm. The results
indicate that DSCE is more accurate in determining the number of clusters from

the generated members.

T T
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18- g % Thyroid ]
4} Mfeatures
16 1
¢ Glass
S 14l ; < Bew .
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Figure 5.3: Number of clusters produced by DSCE algorithm for each dataset in ten
runs. The true number of clusters for {Iris, Wine, Thyroid} = 3, Mfeatuers = 10,
Glass = 6, Becw = 2, Soybean = 4, Ionosphere = 2.

5.1.6 Test of Significance

We applied the Iman-Davenport test [53] to assess our method and other compared
methods under the null hypothesis that the mean ranks are equal for all methods. In
the Iman-Davenport test, we can reject the null hypothesis of the mean rank being
equal for all methods (the result of the Iman-Davenport test was equal to 6.9780,
which gives a negligible p-value equal to 4.9845e-04). As suggested by Demsar [18],
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Figure 5.4: Number of clusters produced by DICLENS algorithm for each dataset
in ten runs. The true number of clusters for {Iris, Wine, Thyroid} = 3, Mfeatuers
= 10, Glass = 6, Bcw = 2, Soybean = 4, Ionosphere = 2.

we used the Nemenyi test as a post-hoc test for a pairwise comparison, to discover
where the differences lie. Figure 5.5 shows the result of the post-hoc Nemenyi
test in the critical differences diagram at the critical level of 0.1. This diagram
shows the mean rank order of each method on a linear scale. The solid bars in
these diagrams show a group of algorithms in cliques, indicating that there are no
significant differences in rank from one to another, whereas there are significant

differences in rank between algorithms in different groups.

The critical difference (CD) is equal to 1.9448. We can identify two groups
of algorithms; the first group includes DSCE, MCLA and ONCE, and the second
group includes MCLA, ONCE, CO and DICLENS, which indicate that there is
not a statistically significant difference between methods in one group. The results
suggest that our clustering ensemble algorithm DSCE is significantly better than the
CO and DICLENS, but not better than MCLA and ONCE under this experimental

set-up.
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Figure 5.5: The critical difference diagram at the critical level of 0.1. It shows the
comparison of four ensemble methods using 8 datasets.

5.1.7 Analysis of Parameters and Time Complexity

In DSCE, we have two parameters, a; and «s, that need to be specified. The first
parameter is the minimum allowed similarity between initial clusters to be merged.
The value of a; can be chosen from the interval [-1,1], but as it is the minimum
allowed similarity we limit its value to be one of the following a; = 0.5 ~ 0.9. The

second parameter as, is the certainty threshold of classifying objects in a cluster.

To test how sensitive DSCE is to different values of oy and ag and to what extent
they affect the quality of the final clustering result, we used the Wine, Mfeatures
and Glass datasets. We ran our proposed algorithm with different values of a4, and
each with all possible values of ay, which is ap, = 0.3 ~ 0.9, ten times. In each run,
we generated ten members by using k-means with a random initialisation and we
set k to the number of pre-defined clusters for the dataset, for each dataset in all
the generated members. Figure 5.6 illustrates the relationship between the average
performance of DSCE measured by the ARI index for ten runs and the different

value of «y for all values of a in the three datasets.

The performance of DSCE was more sensitive when oy equals 0.3 and 0.9 com-
pared to other values; this is the case with all values for ay between [0.5,0.9]. The
best performance of DSCE was when a4 was equal to 0.7 in the Mfeatures and Glass
datasets for most values for ay, and in particular the highest performance of DSCE
in the Mfeatures dataset was when ay = {0.5,0.6,0.7} and in the Glass dataset was

when oy = 0.8. Generally, the performance of DSCE was almost the same when
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op = 0.7 and when oy is between 0.5 and 0.7.

In conclusion, the general guideline for choosing «; when all members have a
fixed number of clusters is that «; should be set to a high value between 0.7 and
0.8. Furthermore, we should avoid a too small value for as as well as a too large

value. A value between 0.6 and 0.8 is a reasonable value for as.

The time complexity for the worst-case scenario of DSCE is O(k*m?n,, ), where k
is the number of pre-defined clusters for the dataset, m is the number of ensemble
members and n,, is the number of uncertain objects in #;. In CO the time complexity
is equal to O(n?) and in ONCE is equal to O(n*), plus the time required by the
average linkage method, which is equal to O(n?), where n is the number of objects

in the dataset. While, for MCLA it is equal to O(km?n).

However, in DSCE the most expensive term is (km)?. For a small size dataset,
it may have a number of cluster between £ = 2 to 10 and a minimum number
of ensemble members that can be generated as m = 3, so (km)? becomes more
expensive than CO and ONCE. But as the size of the data nowadays is rapidly
increasing and as in reality, n, < n, k < n and m < n hold, then (km)* < n and

we can say that DSCE is efficient compared to other methods.
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and .
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5.2 The Adaptive Clustering Ensemble (ACE)

The DSCE algorithm has been modified for three reasons. Firstly, to improve the
stability of the DSCE in producing the final clustering result with pre-defined k,
even when the members have a different number of clusters. Secondly, to reduce the
effect of the two thresholds (a; and «ay) on the quality of the final result by applying
an adaptive strategy for the value for these thresholds. Finally, to take into account
the object neighbourhood similarity for the totally uncertain objects in order not to

lose any information when we eliminate an inappropriate cluster.

The adaptive version of the DSCE is composed of the three main stages as we
can see in Figure 5.7: Transformation, Generating Consensus Clusters and Resolv-
ing Uncertainty. The first stage is to transfer the members into a binary vector
representation. The second is to generate the consensus clusters, where the similar-
ity between initial clusters is measured and the pre-defined k clusters are produced.
The third stage is to solve uncertain objects, where a certain object is first assigned
to the cluster that has a higher membership value and then the uncertain objects are
classified to the cluster in a way that has a minimum effect on the cluster quality.

The following subsection explains in detail how the algorithm works.

5.2.1 The ACE Algorithm

Stage 1: Transformation

In this stage, the initial clusters in the generated members are transformed into a
column binary vector as described in Section 5.1.2. The only difference here is that
there is no constraint on the number of clusters that the generated members can

have.
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Stage 2: Generating Consensus Clusters

In this stage, three steps are required as described in Algorithm 4. These are:

1. Measuring the cluster similarity S..
2. Performing the merging process.

3. Producing k consensus clusters.

1. Measuring the cluster similarity S..
In this step, we measure the similarity between initial clusters S, (equation 5.5),

as we did in Stage 2 of the DSCE algorithm (Section 5.1.2).

2. Performing the merging process.

In this step, we perform the merging process as described in Stage 2 in the DSCE
algorithm (Section 5.1.2). We should mention that the parameter oy, which is a
threshold for the merging process as shown in equations 5.7 and 5.8, is determined
in ACE adaptively based on the similarity values in the cluster similarity matrix S..
Its influence and sensitivity on the quality of the final clustering result are studied
and the details are given later in Section 5.2.6. Our empirical study indicates that
it can usually start with a relatively high value, e.g. 0.8, and then adapt its value
in accordance with the similarity values in the current similarity matrix. After the
most similar initial clusters are merged, we have the updated 6, which represents
newly formed clusters and perhaps some remaining non-merged initial clusters with

their corresponding cluster similarity S, matrix; then we move onto the next step.

3. Producing k consensus clusters.
In this step, we check whether the number of clusters in 6, is exactly equal to k

clusters, which will be taken as the final candidate clusters.

For convenience, let A\ be the number of clusters in 6;. There are three possible

scenarios: (a) A =k, (b) A > k, and (c¢) A < k, when checking the number of clusters
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in 91.

(a) When A =k, i.e. the number of clusters in ¢, is equal to the pre-defined k, we

then take the clusters in #; as the candidate clusters and adapt as to a value

based on S, so that it can represent a specific percentage of the membership

certainty. Then we move onto Stage 3.

(b) When A > £k, i.e. the number of clusters in 6 is greater than the pre-defined

k, which is the most likely scenario in practice, there are two options: (A) to

terminate the process or (B) proceed with brutal merging or eliminating.

(Option A) Coming to this point, the clusters in 6; are more dissimilar from

(Option B)

each other than the given threshold ;. If the value of a; has
reached the minimum acceptable similarity (aq.,,), it indicates
that the clusters in #; for the given dataset are too dissimilar
from each other to be merged to obtain the intended k& num-
ber of clusters. We then conclude that the pre-set value for
k is unreasonable and unachievable, and output the generated

clusters.

However, as there is no gold-standard for setting up the mini-
mum acceptable similarity threshold (o), it is then also rea-
sonable to go ahead with the process by adapting the threshold
value a; to reflect the similarity distribution in the current sim-
ilarity matrix S.. Then the clusters are merged as described in
step 1, or when no more merging process is needed we calculate
the membership similarity (S,) as described in equation 5.9. If
the number of clusters in S, (nbys), which is identified based
on «g, is still larger than k, then we perform the elimination

process as follows:

i. The certainty of each cluster in 6, is calculated using equa-

tion 5.3.
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ii. The certainty values of the clusters are ranked in a descend-
ing order.

iii. If each of the top k clusters contains at least one certain
object based on the current value of as, then these clusters
are taken as the final candidate clusters. The non-candidate
clusters (eliminated clusters) will be moved from 6; to a new
membership matrix 6y, and we move onto stage 3.

iv. Otherwise, we adapt as to be the maximum membership
similarity to the kth cluster and consider the first k clusters

as the final candidate clusters and we move onto stage 3.

(¢) When A\ < k, i.e. the number of clusters in 6y, is less than the pre-chosen k,
then we consider whether any clusters in ¢; can be divided by adapting the
value of a;;. In this case, it is possible that a4 is unreasonably low and should
be adapted incrementally to an appropriate value. In that case we should go
back to the beginning of this step (step 3) until the number of the clusters in

61 reaches k and we move onto stage 3.

Stage 3: Assigning Objects to only One Cluster.

The aim here is to ensure that each object is assigned to only one cluster. So, the
inputs of this stage are: Sx, which is the membership similarity matrix; 65, which
contains the membership similarity of the eliminated clusters if we performed the
elimination process in the previous step; and «s, which is the adaptive certainty

threshold. Two main steps are required here:

1. Identify totally certain (definition 5) and certain objects (definition
3) in S,.
As certain objects have a higher similarity value than as, we assign them to

the cluster that has a maximum membership similarity among other clusters

in S,.
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2. Resolving uncertain objects if they exist.
This step is only required when there are any uncertain objects. As defined
earlier, for an object, if its maximum membership value S,(z;,¢;) <= as
(V5 =1,...,k), it is considered to be an Uncertain object (definition 4), and a
Totally uncertain object if its maximum membership value is zero (definition

6.). We resolve each one of them differently as follows:

For totally uncertain objects. There is a possibility that the previous
stage may have resulted in totally uncertain objects in S,. This is of particular
concern during the elimination process, as this may have caused information to
be lost for some objects, so we verify that each object in S, has a membership

value associated with at least one cluster.

If S, contains some totally uncertain objects, we calculate their neighbourhood
similarity with clusters in 6. We are in fact modifying our early definition
of neighbourhood similarity (in Chapter 4) [3], by calculating the average
occurrence of their objects’ neighbours and the other objects placed in the
candidate clusters. In other words, we calculate the similarity between the
totally uncertain object and the candidate clusters in S, as the average of how
many times they are classified in the same cluster in 6, with other objects
that are already placed in the candidate clusters in S,. Then based on their
updated membership similarity S,., we identify each one of them again as either
certain or uncertain objects. For certain objects we go back to step 1 to assign
them, whereas for uncertain objects we move onto the next step to resolve

them.

For uncertain objects. Firstly, we measure the quality of each candidate
cluster in S,. In principle, any cluster quality measure can be used, so in this
study we measure the compactness of the certain objects in a cluster as the

quality metric, and here we call it the original quality of each cluster.

The compactness of a cluster is usually measured by the variance (Var), which
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is the average of the squared differences from the mean, as follows:

K
Var(c) = I_%I Z(sxcci, ) —pe)? (5.10)

It is essentially the absolute value of the difference between the membership

similarity value of object z; in cluster ?, and the mean of the objects similarity

in cluster ¢ (cluster certainty p¢ calculated by equation 5.3).

At the beginning, the size of each candidate cluster equals the total number
of classified objects, and these objects are the only ones that we can assign
to a candidate cluster with certainty, as they have the maximum membership
similarity with the classified candidate clusters. For each uncertain object the

following steps are performed:

(a) For each candidate cluster in S,, we recalculate its quality using the
equation 5.10 by including the current object membership similarity with

the identified cluster.

(b) Compare the original quality and the current quality for each candidate

cluster.

(c) Assign the current object to the cluster that has a minimum effect on its
original quality.

(d) Increase the size of the assigned cluster by 1.

(e) Update the original quality of the assigned cluster to be equal to the

current quality.

(f) Repeat the above steps until all the uncertain objects are assigned.

Generally, we assign uncertain objects to a cluster in such a way that this will
have a minimum effect on its quality. By doing so, we aim to ensure that the
original quality of the cluster has not been affected too much, as it is widely

known that a small value for cluster quality indicates a compact cluster result.

Therefore, by assigning each object to only one cluster we obtain the final clustering
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result P* of the dataset X.
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Algorithm 4: The Pseudocode of the ACE Algorithm.

Input = {Pl,PQ,Pg, ce Pm}, aq, X2, X1min, AO[, and k
Output: P*

0, < Transform m members into binary vectors as initial clusters;
S. <= Compute clusters similarity for clusters in #; with equation 5.5;
while true do
01 < MergeCls (initial clusters, S., ay);
if # clusters in 01, A >= k then
| break;

else
| Adapt a; = a1 + Aa;

A« find # of clusters in 6;
while A > k do
Update S. with equation 5.5;
Adapt a; ¢ maximum similarity value in S,;
if a1 < aqmin, then
| break;
else
L newf, < MergeCls(#,, S., a1);

if # clusters in newf; < k then

‘ break;

else
| 01 + newb

Compute similarity measure .S, with equation 5.9;

nbys < find # of clusters in S, that contain at least one certain object
specified by ao;

if nb,ys == k then

Consider these clusters as candidate clusters in P*;

0y + non-candidate clusters;

else

Compute cluster certainty in S, with equation 5.3;
Sort the cluster certainties in descend order;

Adapt ay <+ Symax{k};

Keep the top k clusters in S, as the candidate clusters;
Remove the remaining clusters in S, to 6y;

P* < AssignObjectToOnlyOneCluster(S,, 6, as);
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5.2.2 An illustrative Example

In this section, we use the same simple example that we used with DSCE in Section
5.1.3 to demonstrate how ACE works. We set a; = 0.8, g = 0.5, and k£ = 3, and
we run stage 1 as described in Section 5.1.3. For stage 2, the first two steps are done

exactly the same way and we obtain #;, as shown in Table 5.2.

For the third step in stage 2, we first check the number of clusters (\) in 6y, and
we find that A\ = 4, which is larger than k. Then we apply Option B by measuring
the cluster similarity S, for clusters in 6; as shown in Table 5.1 and we adapte as
to the maximum similarity in S., which is equal to 0.764. We merge 5 and ‘o4
and we updated 6; as shown in Table 5.8. As a result we obtain A = k = 3. Then
we calculate the membership similarity S, as shown in Table 5.9.

Table 5.8: The result of updating 6; after we merge ‘¢ 3 and ¢4 by summing their
objects membership similarity and result in s

o
—
o
[\
o
w

Ty 0 3 0
To 0 3 0
T3 0 1 2
Ty 0 0 3
T5 0 0 3
T 2 1 0
7 3 0 0
s 3 0 0
Tg 3 0 0
r10 | O 3 0

Then we move to stage 3, by first identifying totally certain and certain objects.
So, based on «i, we identify x1, xo, x4, 5, 7, T3, T9 and x1g as totally certain objects,
while we identify x3 and x4 as certain objects. Then we assign them to the candidate
cluster that has a maximum membership similarity among other candidates, and S,

is updated as follows:

Then we check whether S, contains any uncertain objects and it does not, so we
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Table 5.9: The results of S, after no more merging step is needed.

RAIRZIRTE

T 0 1

T2 0 1

T3 0 | 03|06
T4 0 0 1
5 0 0 1
¢ | 0.6 | 03] O
T7 1 0 0
s 1 0 0
Tg 1 0 0
z19 | O 1 0

Table 5.10: The results of assigning totally certain and certain objects to the can-
didate cluster.

T

x2

I3 0.6

Zq

[e=)) Nevll Hen )l Heoll N en

x5
Te 0.6

X7

T8

T9

[anll esll en )l el el Revll Hen )l BB
S| Oo|IOo|O|O|(H |+

Ol |

10

produce the final clustering result P* ={2,2,3,3,3,1,1,1,1,2}.

Assume that we set as = 0.9, which is a high value. The number of clusters
(nbys) in S, that contain at least one certain object is equal to 2. As there is no
further merging process to be done, we calculate S, which is shown in Table 5.10.
Then we implement the elimination process that is described in Option B (steps
i to ). So, for each cluster in S,, we calculate their certainties (using equation
5.3), and we obtain pg = 0.9, pg = 0.85, pg = 0.6, pg = 0.3. We rank these
certainties in descending order and we obtain {0.9,0.72,0.6,0.3}. Then we adapt
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Table 5.11: The result of S, after we perform the second stage.

| &% %]

T 0 1

T2 0 1

T3 0 | 03|06
Ty 0 0 | 0.6
s 0 0 | 06
¢ | 0.6 | 03] O
T7 1 0 0
s 1 0 0
Tg 1 0 0
T10 0 1 0

a5 to the maximum certainties of the kth clusters in this ranked list, which is equal
0.6. As result, we identify ?1, g and ?3 as candidate clusters and we eliminate a.

We update S, accordingly as shown in Table 5.11 :

Then we move onto stage 3, and based on a; we identify x1, 9, 27, x5, 9 and x1q
as totally certain objects, and we identify other objects as uncertain objects. We
measure the quality of the candidate clusters using equation 5.10 as follows:
Var(8) = 1((1 - 0.9)? + (1 — 0.9)% + (1 — 0.9)?) = 0.01
Var(8) = 1((1 - 0.72)2 + (1 — 0.72)% + (1 — 0.72)%) = 0.0784
Var(%) =0

Then, we iterate on uncertain objects, and we proceed with steps (a) to (e). The

detailed results of these steps for object x3 are as follows:

(a) For each candidate cluster we recalculate its quality by including this time z3:
Var(e) = 1((1 - 0.9)2 + (1 = 0.9) + (1 — 0.9)> + (0 — 0.9)%) = 0.21
Var(%) = 1((1-0.72)2 + (1 = 0.72)? + (1 — 0.72)% + (0.3 — 0.72)?) = 0.1029
Var(%) = 1((0.6 - 0.6)2) =0

(b) We compare for each cluster the original quality and the current quality:

Var(t) = 0.21 —0.01 = 0.2, Var(&) = 0.1029 — 0.0784 = 0.0245,

126



Chapter 5. Adaptive Clustering Ensemble

Var(&)=0—-0=0

(c) We assign z3 to the cluster that has a minimum effect on its quality, that is
done as follows: min{0.2,0.0245,0} =0

So, we assign x3 to cluster &.
(d) We increase the size of & by 1.

(e) We update the original quality of &5 to be equal to the current quality.

After all the uncertain objects are assigned, we produce the final clustering result,

which is : P* = {2,2,3,3,3,1,1,1,1,2}.

5.2.3 Experimental Design

Two experiments were conducted to test ACE. In the first experiment, we ran the

same the experiment as we did to test DSCE (Section 5.1.4).

In the second experiment, we tested ACE under the situation where each member
has a different number of clusters k chosen randomly from the interval [k — 2, k + 2].
We chose this interval because we already know the number of clusters in the tested
datasets so the minimum of this interval is set to less than k by 2 and the maximum

set to a value larger than k by 2.

The main aim of these experiments is to test the performance of ACE, and also to
see how effective it is compared to other competitive clustering ensemble methods.
Therefore, we ran the algorithm ten times, and each time the performance was
measured by ARI and NMI, and at the end of these run we calculated the average

performance and the standard deviation for each ensemble clustering method.

In both experiments, we set al = 0.8, ag = 0.7, @11min = 0.6, and Aa = 0.1. The

following section includes the results and analysis of the two experiments.
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5.2.4 Experimental Results
5.2.4.1 Results of Ensembles Built with Fixed k

Tables 5.12 and 5.13 show the average value of ten runs of the compared algorithms
measured by ARI and NMI respectively, along with their corresponding standard
deviations. The bold value in each row shows the best performance in each dataset
in terms of the quality of the clustering result and the underlined number shows the
best value in terms of consistency. The last column of Table 5.12 and 5.13 represents
the average performance of the generated members, and the last two rows show the
average quality for each ensemble method over all datasets, as well as the average

consistency of each method.

Results obtained by ARI Index: There are a number of interesting observa-
tions. Firstly, the performance of ACE is better than CO-Av and ONCE-Av in five
datasets, whereas it performed very closely to them on other datasets. In particular,
in the Iris, Thyroid and Glass datasets, ACE produced the highest results: 0.734,
0.611 and 0.534 respectively. Secondly, ACE achieved the same performance as CO,
DSCE and MCLA algorithms in the Bew dataset, and that is the most accurate
result for this dataset. Thirdly, ACE outperformed DICLENS in all datasets except
in the Soybeans dataset, and we will explain later this particular situation for DI-
CLENS. On average the DSCE algorithm achieved the best performance compared
with other algorithms, followed closely by the ACE algorithm.

In terms of consistency measured by the standard deviation, ACE was the most
consistent algorithm in the thyroid dataset compared with the others, and it achieved
a very close value to the most consistent algorithm in the most examined datasets
such as the Bew, Mfeatures and Wine datasets. The worst performance for the
ACE algorithm was on the Soybean dataset, where it achieved a value equal to

0.081 compared with other algorithms, but this is still a small value.

Looking at the average performance of the generated members, we found that
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all the ensemble methods outperformed the average of members in all the datasets,
except DICLENS which performed lower than the average members in the Glass
and Mfeatures datasets as well as ACE in the Soybeans dataset.

However, the ACE algorithm performed second best on average compared with
the others, and it is close to the best performing algorithm measured by the ARI

index, which is DSCE under these experimental settings.

Results obtained by NMI Index: In summary, these results are very similar
to the results represented by ARI explained in the previous paragraph. The only
difference is that on average the ACE achieved the best performance, along with the

DSCE algorithm, measured by NMI.

Under this experimental set-up, i.e. with a fixed value for k for each dataset, ACE
does not show a superiority to its predecessor DSCE, although it does in comparison
to the other methods. However, it is worth noting that its predecessor DSCE has an
obvious weakness, which is that it can only work with fixed k values, which limits
its application on real-world problems when the true number of clusters, k, is not
known in advance. That is why we extended DSCE to ACE to cope with variable
numbers of clusters generated by the members. The next experiment is designed to
demonstrate and compare their capability.

Table 5.12: Results of the first experiment listed in Table 5.6 updated by adding
the average performance of ACE and the standard deviation of ten runs for each
dataset measured by ARI Index.

CO-Av ONCE-Av DSCE ACE DICLENS MCLA Ave-mem

Iris 0.7254+0.012  0.726 £0.009 0.732+0.021 0.7344+0.023 0.680 £0.077  0.723£0.012  0.702 £ 0.038
Wine 0.369 +0.005  0.369 £0.005 0.377 £0.025 0.371£0.008 0.369 £0.005 0.372£0.002 0.366 £ 0.004
Thyroid ~ 0.559 £0.024 0.584 +0.044 0.609 £0.032 0.613 £0.023 0.582£0.044 0.563 £0.025 0.473 £ 0.036
Mfeatures  0.315+0.006 0.316 £0.005 0.316 +0.004 0.314+0.008 0.290 £0.069  0.308 £0.021  0.293 £ 0.029
Glass 0.509 +£0.029  0.526 £0.030  0.528 £0.027 0.5354+0.029 0.392£0.123  0.534£0.020  0.501 £ 0.009
Bew 0.849 £0.004 0.847+0.003 0.8494+0.004 0.849 +£0.004 0.84240.005 0.849 +0.004 0.830 £ 0.021
Soybean  0.54740.006 0.550 £0.015 0.578 +0.052 0.532£0.081 0.63240.046 0.548+0.006 0.566 = 0.025
Ionosphere  0.163 £0.014  0.166 = 0.008  0.169 +0.005 0.165 £ 0.008 0.161 +=0.009  0.166 = 0.006  0.149 £ 0.007
Ave-P 0.505 0.511 0.520 0.514 0.493 0.508 0.443
Ave-C 0.012 0.015 0.017 0.023 0.048 0.012 0.031
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Table 5.13: Results of the first experiment listed in Table 5.7 updated by adding
the average performance of ACE and the standard deviation of ten runs for each
dataset measured by NMI Index.

CO-Av ONCE-Av DSCE ACE DICLENS MCLA Ave-mem

Iris 0.751+£0.015 0.752+£0.012 0.763 £0.024 0.766 £0.028 0.757 £ 0.008  0.749 +0.015 0.737 £0.025
Wine 0.428 £0.003 0.428 £0.003 0.432+0.014 0.429 £0.006 0.427 £ 0.004 0.429 +0.001 0.428 £ 0.003
Thyroid  0.434 £0.047 0.473 £0.062 0.480 4+ 0.056 0.531 £0.042 0.501 +£0.053 0.418 £0.033 0.403 £ 0.026
Mfeatures  0.479 4+ 0.002 0.479 £0.003 0.479 4+ 0.002 0.478 +0.007 0.468 £0.026  0.475 4 0.009  0.460 £ 0.027
Glass 0.712+£0.027  0.725£0.029 0.725£0.021  0.726 £0.022  0.617 £ 0.107 0.728 £0.017 0.704 £ 0.007
Bew 0.750 £0.005  0.749 £0.004 0.750 £0.005 0.751£0.005 0.74240.006 0.751 £0.005 0.731 £0.023
Soybean  0.717£0.002 0.723+£0.024 0.756 £0.064 0.712£0.076 0.822 £0.056 0.717+£0.002 0.736 £+ 0.019
Ionosphere  0.122 £0.014  0.124 £0.009 0.128 £0.005 0.1234+0.008 0.119+0.009  0.124 £0.006 0.108 £ 0.006
Ave-P 0.549 0.557 0.564 0.564 0.557 0.549 0.491
Ave-C 0.015 0.018 0.024 0.024 0.034 0.011 0.017

5.2.4.2 Results of Ensembles Built with Random Variable k&

We did not run the DSCE algorithm in this experimental set-up as it is not capable of
dealing with variable numbers of clusters generated by the members in an ensemble.

All the other methods were run for comparison.

Results obtained by ARI Index: Table 5.14 shows the average performance
measured by the ARI index along with the standard deviation in each dataset,
and the average performance of the generated members. The results indicate that
the ACE algorithm usually performs better than the other clustering ensemble al-
gorithms. This is particularly true for five datasets, which are Wine, Glass, Bew,
Soybean and Ionosphere, whereas in Iris, Thyroid and Mfeatures it achieved a result
close to the highest performance in these datasets, which was achieved by ONCE
in Mfeatures and MCLA in the other two datasets. However, the result on the

Mfeatures dataset indicates that ACE is applicable to a large dataset.

ACE also enhances the performance of the generated members in all investigated
datasets except the Ionosphere dataset, which is slightly better than the clustering

ensemble algorithms; this may be due to random k in these members.

In terms of consistency, ACE was more consistent in two datasets, which are Glass
and Bcew, while in the Iris, Wine and Ionosphere datasets it was the second most

consistent algorithm compared with other algorithms. On average, three algorithms
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achieved very close results in terms of consistency; these are MCLA, ONCE and

ACE, which are equal to 0.035, 0.037 and 0.038 respectively.

Results obtained by NMI Index:  Similar experimental results are also ob-
served using NMI index shown in Table 5.15, where ACE achieved the highest
performance on three datasets Iris, Bew, and Ionosphere. However, with Wine,
Mfeatures and Glass it achieved results very close to the highest performance. In
the Soybean dataset the highest performance was achieved by the DICLENS algo-
rithm, which also performed very well with the Wine and Mfeatures datasets. These
results were only achieved by the NMI index and not the ARI index, which leads us
to investigate further the number of clusters discovered by DICLENS, as it has the
ability to discover k automatically. This is in contrast to other clustering ensemble

algorithms examined, in which £ is provided by the user in advance.

Identifying the true number of clusters in DICLENS

Figure 5.8 shows the number of clusters discovered by the DICLENS algorithm in
all tested datasets over ten runs for the results of the second experiment (in Section
5.2.4.2). It is observed that the number of clusters in most datasets is unstable
and changeable over the ten runs. This has an effect on the NMI index, which is
an information theory based index that measures the shared information between
two clustering results. Most of the DICLENS results in the majority of datasets
had fewer number of clusters than the actual number of clusters (the ground-truth
labels) in the data. It is clear that one cluster produced by DICLENS can share
a number of objects with more than two true clusters and that can lead the NMI

result to be increased.

For example, it was highlighted for the Wine dataset over the ten runs that the
discovered k was equal to 2 which is less than the number of the true labels, 3.
Therefore, the NMI measure, as it is based on how much information the compared

clustering results share, unfairly indicates that this result is more accurate than
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ACE. Moreover, in the Soybean dataset the discovered k was equal to 2 in three
runs, 3 in four runs and 4 in the remaining three runs, whereas the number of the
true labels is equal to 4. It is obvious that fewer clusters shared more objects with
more true clusters in this case, and the NMI scored higher than ARI compared with
other clustering results obtained by other algorithms. It is observed that when the
number of clusters in the compared results is less than the number of true labels
of the data, the NMI measure inappropriately indicates that this result is more
accurate than others that have produced exactly the number of the true clusters.

Table 5.14: Second experiment results: the average performance and the standard
deviation of ten runs for each dataset measured by ARI. Includes the average per-

formance of each ensemble method across 8 datasets.

CO-Av ONCE-Av ACE DICLENS MCLA Ave-mem
Iris 0.669 £ 0.065 0.674 £ 0.057 0.696 £0.038 0.565 +0.009 0.722 +0.043 0.605 %+ 0.029
Wine 0.324 £0.045 0.344 £0.060 0.403 £0.014 0.367 £0.024 0.393 £0.008 0.326 = 0.011
Thyroid  0.252+0.175 0.189+0.121  0.303 £0.032 0.308 £0.118 0.448 £0.119 0.285 % 0.053
Mfeatures 0.325£0.002 0.326 +£0.001 0.325£0.005 0.324 £0.006 0.277£0.013 0.321 = 0.005
Glass 0.265 £ 0.006  0.259 £0.008 0.269 £0.004 0.200 +£0.048 0.152£0.022  0.258 &+ 0.005
Bew 0.866 £ 0.018 0.860 £0.016 0.869 £0.014 0.853 £0.031 0.864 £0.014 0.773 £ 0.037
Soybean  0.534 £ 0.000 0.534 £0.000 0.578 £0.160 0.575+0.070 0.547 £0.039  0.547 £ 0.036
Ionosphere 0.076 +0.047 0.037+£0.035 0.084 £0.034 0.076 £0.039 0.061 £0.019 0.117+0.014
Ave-P 0.414 0.403 0.441 0.409 0.433 0.404
Ave-C 0.045 0.037 0.038 0.043 0.035 0.024

Table 5.15: Second experiment results: the average performance and the standard
deviation of ten runs for each dataset measured by NMI. Including the average
performance of each ensemble method across 8 datasets.

CO-Av ONCE-Av ACE DICLENS MCLA Ave-mem
Tris 0.753 £0.017 0.749 £0.027 0.766 +0.032 0.753 +0.026  0.755 + 0.037 0.706 & 0.012
Wine 0.406 +0.010 0.4154+0.022 0.421 +£0.014 0.435+0.018 0.415+0.005 0.410 +0.010
Thyroid  0.293 £0.077 0.250 £0.066 0.308 +=0.050 0.331 +0.040 0.356 +0.048 0.302 & 0.035
Mfeatures 0.486 +0.002 0.487 £0.002 0.490 + 0.008 0.493 +0.005 0.464 4+ 0.007 0.484 + 0.005
Glass 0.441 +0.018 0.449 £0.016 0.4304+0.016 0.389+£0.032 0.307£0.032 0.423 +0.011
Bew 0.773+£0.024 0.765+0.021 0.776 +£0.019 0.7594+0.032 0.770 +£0.019 0.687 £ 0.028
Soybeans  0.710 £0.000 0.7104+£0.000 0.722 £0.127 0.767 +0.070 0.716 +0.018 0.734 +0.020
Tonosphere 0.043 £0.035 0.023 £0.012 0.048 +0.026 0.043+0.029 0.030 +£0.013 0.099 £+ 0.016
Ave-P 0.488 0.481 0.495 0.496 0477 0.480
Ave-C 0.023 0.021 0.036 0.032 0.022 0.017
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Figure 5.8: Number of clusters produced by DICLENS algorithm for each dataset
in ten runs for the result in the second experiment. The true number of clusters
for {Iris, Wine, Thyroid} = 3, Mfeatures= 10, Glass = 6, Bcw = 2, Soybean = 4,
Tonosphere = 2.

5.2.5 Test of Significance

We tested the statistical significance of the results of the two experiments that we

performed in Sections 5.2.4.1 and 5.2.4.2 on the two types of ensemble.

We applied the Iman-Davenport test [53] to the results in Tables 5.12 and 5.14
under the null hypothesis that the mean ranks are equal for all the examined al-
gorithms. The significant level is set to 0.1 by default. For the first experiment,
we can reject the null hypothesis of the mean rank of the performance being equal
for all algorithms (the Iman-Davenport test result is equal to 4.4051 which gives a
small p-value equal to 0.0032, which indicates that there is a significant difference).
For the second experiment in Table 5.14, the Iman-Davenport test result is equal
to 2.5434, which gave a small p-value equal to 0.0617, indicating that there is a

significant difference.

Therefore, we proceeded with the Nemenyi test as a post-hoc test for a pairwise
comparison to discover where the differences lie. Figure 5.9(a) shows the critical

difference diagram at the critical level of 0.1 for the results presented in Table 5.12,
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and the critical difference, CD, is equal to 2.4218. As we can see from the diagram,
we have two solid bars which show two groups of algorithms in cliques, indicating
that there is no statistically significant difference between algorithms in the same
group, whereas there is a significant difference between algorithms in the different
groups. We observed that, based on the average ranks, DSCE was first followed by
ACE and then MCLA. Moreover, DICLENS was last in this average ranking. This
demonstrated that the performance of DSCE is significantly better than CO and
DICLENE based on this experimental set-up.

Figure 5.9(b) shows the critical difference diagram of the results presented in
Table 5.14. As we can see, there are two groups of algorithms in two cliques. The
first group includes ACE, MCLA, CO and DICLENS, whereas the second group
includes MCLA, CO, DICLENS and ONCE. The results indicate that there is a
significant difference between algorithms placed in different groups, and in this case
between the ACE and ONCE algorithms, in this experimental set-up, although ACE

is ranked the first with a considerable distance from the second algorithm, MCLA.

cD cD
P P
6 5 4 3 2 1 5 4 3 2 1
I 1 I 1 I 1 I 1 I 1 I I 1 I 1 I 1 I
DICLENS 5.125 1.75 DSCE ONCE 3.6875 1.625 ACE
co 45625 2875 ACE DICLENS 25 S MCLA
ONCE 3.4375 3.25 MCLA 3.1875 co

(a) The critical difference diagram of the first ex- (b) The critical difference diagram of the second
periment. experiment.

Figure 5.9: The Critical difference diagram of the critical level of 0.1 in which it
shows the comparison of six ensemble methods using eight datasets.
5.2.6 Analysis of Parameters and Time Complexity

There are two parameters in ACE, which are a; and as. a1, as stated previously, is
the minimum similarity allowed between initial clusters, whereas ay is the certainty

threshold of classifying objects in a cluster.
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To find out how these parameters can affect the quality of the final clustering
result of ACE, we analyse them with the two types of ensembles using Wine, Mfea-
tures and Glass datasets as an illustration. For the second type of ensemble, we
allow for a; to take more values than its values in the first experiment, due to the
fact that when the members have different k& from one another they are more dis-
similar than when they have fixed k. Therefore a; can take a value between 0.5
and 0.9 in the first experiment, whereas in the second experiment it takes a value

between 0.3 and 0.9.

In the first experiment, we ran ACE for ten times with a different initial values
of a1, and each one of them with all the possible values for as. We firstly ran the
k-means algorithm to generate ten members all with the fixed k equal to the true
number of classes for each dataset. Figure 5.10 illustrates the effect of different
values of a; and as on the average ARI performance of the ensembles built by
members with a fixed k, over ten runs. We note that on the Wine dataset the
average performance of ACE is the same for all values of a; and as; this indicates
that the ACE is not sensitive to its parameters. In the Mfeatures dataset, the
average performance of ACE is slightly improved when a; is equal to 0.8 and 0.9.
We note that all the values of ay have the same performance with all the values of
a1. The average performance of ACE in the Glass dataset is the same when «; is
equal to 0.5 and 0.6, which is slightly improved when «; is equal to 0.7 and 0.9;

when it is equal to 0.8 it reaches its highest performance.

We note that all values of as achieved the same performance with all values of
«q in all the examined datasets, this indicates that the different values of ay have
no effect on the performance of the ACE when it is built with members that have a

fixed k.

On the other hand, Figure 5.11 illustrates the effect of the different values of two
parameters on the average performance of the ACE ensemble built with members
having a random variable k. We can see that in the Wine dataset the ACE perfor-

mance is decreased a little when «; is equal to 0.7 in which case the performance
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remains stable with 0.8 and 0.9 in all possible values of aip. In the Mfeatures dataset,
the ACE performance is slightly improved when «; is less than 0.7. However, in the
Glass dataset the ACE performance fluctuates with a slight increase to reach a value
of 0.6 and then a slight drop when «; is equal to 0.7 after a stable performance. We
note that with all the possible values of as that the average performance of ACE

remains the same in almost all cases for «;.

Therefore, the results suggested that as has no effect on the performance of ACE,
and oy has a slight effect on ACE performance. A value between 0.6 and 0.8 is better
for an ensemble built with fixed k, whereas a value between 0.3 and 0.5 is better
for an ensemble built with different & and when as is between 0.5 to 0.9, as these

values have no effect on the ACE performance.

The time complexity for the worst-case scenario of ACE algorithm is estimated
to be O(kZ,(ky, + ny)), where k,, is the total number of clusters in all the generated
members, and n, is the number of uncertain objects which is in the worst case
scenario equal to (n, = n — k), n is the number of objects in the dataset and k
is the number of pre-defined clusters for the dataset. As can be seen, this time
complexity is better than that of DSCE (i.e. O(k*m?®n,)). We observed that the
actual running time for Mfeatures dataset (which is the biggest size dataset we had
in our experiment) to produce the result by DSCE = 0.713, CO = 2.419, ONCE
= 4.961 and ACE = 0.159 measured in seconds !. As we can see ACE is faster than

other methods. Hence, for big real-world datasets ACE holds some promise.

"'We ran our experiment using Apple Macintosh computer 2.3 GHz Intel Core i5 with 8 GB
installed RAM
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Figure 5.10: The Average of ARI index of ten runs for analysing the two parameters
aq and ap using members with fixed k.
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Figure 5.11: The Average of ARI index of ten runs for analysing the two parameters
a1 and ap using members with random k.
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5.3 Summary

In this chapter, the aim was to propose a consensus function that incorporate the
similarity from two different levels, at an object level and cluster level, and it does
not require an ordinary clustering algorithm as a final step to produce the final
clustering label. As a result, two consensus functions were proposed, named the
Dual-Similarity Clustering Ensemble (DSCE) and the Adaptive Clustering Ensemble
(ACE).

There are a number of advantages to these two new clustering ensemble methods:

1. DSCE and ACE avoid cluster relabelling problems when aggregating the en-

semble members.

2. DSCE and ACE utilise the information on the similarity between clusters and

the membership of objects to clusters in order to generate consensus clusters.

3. DSCE does not restrict the produced clustering solution to having a specific
number of clusters k, and it converges k to a stable value from the generated

member.

4. ACE is able to deal with any generated ensemble members, even when they
have different numbers of clusters, as ACE converts them exactly or very

closely to the true number of clusters in the final clustering result.

5. ACE resolves the objects’ uncertainty by considering their object neighbour-
hood similarity in order to not lose any information when an inappropriate

cluster is eliminated.

6. DSCE and ACE are more efficient. Instead of calculating the similarity be-
tween objects like the others do, they calculate the similarity between the ini-
tial clusters of the ensemble members, which is much smaller than the number
of objects, and they do not require a single clustering algorithm to be applied
over the similarity matrix to produce the final clustering results. Hence, DSEC

and ACE have potential to be applied in big data clustering problems.
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7. ACE is more stable due to the different values of the two parameters («; and
a3). The experimental analysis revealed that as has no effect on the ACE

performance, and «; has a slight effect on ACE performance.

DSCE and ACE were tested using 8 real-world datasets. The first experiment
was designed to test DSCE, and the results demonstrated that on average DSCE
outperforms the state-of-the-art cluster ensemble algorithms, which the MCLA, CO,
DICLENS algorithms, and our early method ONCE. It has been proven that DSCE
is statistically different from the CO and DICLENS clustering ensemble methods.

However, the same experiment was conducted to test ACE, and the results showed
that on average ACE outperforms the other clustering ensemble methods, and com-
paring ACE with its predecessor DSCE, it achieved a very close performance. More-
over, we tested ACE in the situation where the generated members had different
numbers of clusters, and the results showed that on average ACE is better than the

other clustering ensemble methods.
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The Diversity of the Clustering

Ensemble.

In this chapter, we focus on the second central part of this thesis by trying to answer
the following question: Does diversity influence the ensemble performance? To do
that, in Section 6.1, we conduct an experimental study to investigate the influence
of diversity on the ensemble quality using a number of consensus functions. The
results of this experimental study raised two issues. Firstly, the results showed
that diversity can have a positive or negative effect on the ensemble performance.
Secondly, the results revealed there may be an interaction between diversity and
the members’ quality. Thus, in Section 6.2 we investigate these two raised issues.
In Section 6.3, we discuss our investigation of ensemble diversity and the results of
our analysis on the two issues raised regarding diversity. Finally, in Section 6.4, we

summarise the main findings of this chapter.
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6.1 Experimental Studies on Clustering Ensem-

ble Diversity

The main aim of this experiment is to investigate whether or not the diversity
has an influence on the ensemble performance using the current diversity measures

described in Section 2.3.1.

6.1.1 Experimental Design and Procedure

In our experiment, we used 8 real datasets, including Wine, Iris, Glass, Bew, Mfea-
tures, Soybean and Ionosphere datasets; Table 3.1 in Chapter 3 shows the details of

these datasets. The experiment was performed as follows:

1. For each dataset, we generated 5 sets of members. The first four sets were
generated with the Homogeneous generation strategy, whereas the last set was
generated using the Heterogeneous generation strategy. For each one of the
four sets, we generated 5 members, and for the final set, 7 members were

generated. Thus, in total, we generated 27 members. These were:

(a) Using k-means with random initialisation for the initial centroids with the
predefined k value (number of clusters) for each dataset for all members
(Homogeneous Ensemble).

(b) Using k-means with random k for each member chosen from the interval
[k — 2,k + 2] (Homogeneous Ensemble).

(c) Using k-means with random k for each member chosen from the interval
2,1/n] (Homogeneous Ensemble).

(d) Using k-means with random features (Homogeneous Ensemble).

(e) For the heterogeneous generation methods, we used different algorithms
with a predefined k value; these are: agglomerative hierarchical clustering
using single, complete and average linkage, k-medoids, c-means, kernel k-

means [91], and the normalised cut algorithm [92].
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2. We combined the generated members using the 4 consensus functions CO-Av
and ONCE-Av, MCLA and ACE. So for each dataset, we constructed 4 final

clustering results, Pho, Poyor, Pirona and Piog.

3. We calculated the Q(®) for each consensus function’s results, and Q(I") both
using the ARI index.

4. We measured the diversity of the generated members using 7 definitions:

D%ARI? DVZDNMI) Entropy, Dvnpla DVana Dvnp3 and Dvnp4'

5. We repeated the above steps (1-4) 100 times.

In each run for one dataset we have 4 ensemble results, and for 8 datasets, we
have 32 ensemble results. Thus, 32 x 100 clustering ensemble results have been

generated in total.

6.1.2 Experimental Results

The results of each dataset are stored in a Table, for a total of 8 tables. These tables
are too large to be presented here, since each table has 100 rows; each row represents
one run of the experiments and includes 24 columns, where 19 columns represent
the values for the diversity measures plus 4 values of the consensus function quality
results measured by ARI plus the average quality of the members also measured by

ARI. Thus, in total, each table has 100 rows and 24 columns.

The statistical summary of the ensemble quality results for each dataset, the
qualities of their generated members measured by the ARI and the diversity measure
results are presented in appendix A. Then we plot the correlation between all
diversity measures and the ensemble method qualities as well as the correlation
between all the diversity measures and the average quality of the members in 100
runs for each dataset and for each ensemble method used. To assess how the diversity
actually correlates with the ensemble quality, we carried out a correlation coefficient

test for the 8 datasets, as presented in Section 6.1.3. However, in this section we
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only highlight and summaries the most remarkable results, whereas the full details

of this experiment results are shown in Appendix A.

In the figures below, we sort the results in ascending order with respect to a
specific diversity measure, and for each of the consensus function results, we plot
its ensemble quality in the y axis against the sorted diversity measure in the x axis
(represented by the symbol x and a red dashed line), and we also plot the average
quality of the members (represented by the symbol o and a blue dashed line) against

the diversity measure.

In the relation between the ensemble quality and the diversity, we found

that there are two types of patterns in the results, these are:

1. The first pattern shows the diversity has no effect on the ensemble quality,
as the ensemble qualities remain slightly stable along all diversity scores and
even when the average member quality decreases. This pattern was discovered
in the Bcw and Tonosp datasets in all the tested ensemble methods and in the

Iris and Soybeans datasets using the CO and MCLA methods.

2. The second pattern shows that the ensemble qualities are fluctuating over the
diversity, where there is no consistent trend that can be visually be identified
from them. In this type, we have Glass, Wine, Mfeatures and Thyroid in all
used ensemble methods and Soybean using only the ONCE and ACE ensemble

methods.

In the first pattern for example, we have Figures 6.1 and 6.2. We think the
reason behind this is that generating more diverse members caused them to be
poor in quality. As the diversity in these datasets was not very high, these poor
quality members were very few, which is why they did not affect the quality of the
ensembles. We checked the first 10 runs in Bew dataset we found that the number
of poor members (their qualities below 0.3) are between 5 to 7 out of 27 members

n one run.

The first pattern is also discovered in the Iris dataset (Figure 6.3), and it is
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Figure 6.1: The DV,numr, DVypr and DV,,,y measures from Bew dataset. (a), (b)
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and (c) using MCLA, while (d), (e) and (f) using ONCE-Av.

noticed that for a few ensemble cases, when the average members is improved the
ensemble quality is also improved, which means that the ensemble improvement may
be contributed by the high average member quality and not by the diversity. On
the other hand, there are some cases where the ensemble improvements are affected

by the diversity, as their average member quality are very low compare to others.

With the Soybeans dataset, most of the ensemble qualities of CO (Figures 6.4(a))
and 6.4(b)) are somewhat stable along the diversity in all the used diversity mea-
sures, where in most cases, the average member quality is slightly better than or

close to the ensemble quality. This indicates that in some datasets, some ensemble
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and (c) using CO-Av., while (d), (e) and (f) using MCLA.

methods can perform as equal as the performance of the individual members or even

worse than them.
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Figure 6.3: The DV,ars, DV,,s and DV, measures from Iris dataset, (a), (b) and
(¢) using CO-Av, while (d), (e) and (f) using MCLA.
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In the second pattern, we noticed that the diversity is slightly higher than the
first pattern, measured by the pairwise diversity measure, and we think the high

diversity might cause the fluctuation in this pattern.

With the Thyroid dataset (Figures 6.5 and 6.6), the pattern fluctuates most
compared to all the other datasets. Most ensemble cases have a high quality over
the diversity measured by DVy,arr, DVynmr and Entropy, while in other ensemble
cases, the quality of the CO and ACE ensembles is lower than the average quality of
the members compared to a few cases in the MCLA and ONCE ensemble methods.
But generally, there are no members which have a diversity lower than 0.5 measured
by DVyarr, DVynar, Entropy and DV,,,. Thus, we think that the fluctuation in
ensemble diversity is caused roughly by a high level of diversity compared to other
datasets. The highest quality in this dataset was achieved by MCLA, accompanied
by a high diversity measured by DV, arr, DV,nar and Entropy.
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Figure 6.5: The DV,ap; and DV,,,3 measures from Thyroid dataset, (a) and (b)
using CO-Ave, while (¢) and (d) using ONCE-Av.

With the Wine dataset, the pattern discovered by using the ACE methods (Fig-

ure 6.7) reaches a peak value where the quality of the ensembles is equal to (0.706),
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Figure 6.6: The DV,,,; and DV,,,; measures from Thyroid dataset, (a) and (b) using
MCLA, while (c¢) and (d) using ACE.

accompanied by a low level of diversity measured by DV,,,2, DV,,,3 and DV,,,4 while
accompanied by a moderate level of diversity measured by the rest of the measure-
ments. Looking to the highest maximum member quality that occurs in the Wine
dataset, it reaches a value only equal to 0.601, indicating that this peak case is not
caused by the high quality members, and in fact, is affected by their diversity. This
phenomenon might have happened because each member had made a different error
from one another in terms of the cluster structure in the dataset and with moderate
diversity. This makes integrating them using ACE more accurate. The other en-
semble cases using the ACE method show a fluctuating pattern along the diversity

scores.

With the Glass dataset, the ensemble qualities are also distributed evenly along
the diversity measured by DVyarr, DV,nmr, and Entropy in all ensemble methods,
and the pattern has a slight fluctuation in all ensemble methods except MCLA.
Figure 6.8 shows the ensemble qualities of CO-Ave and MCLA, and the diversity
measured by Entropy, DV,, and DV,,s; in Glass dataset. It is noticed that the
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Figure 6.7: The DVyarr, DVpp1, DVyps and DV,,,4 measures from Wine dataset
using ACE.

MCLA ensemble (Figures 6.8(d), 6.8(e) and 6.8(f)) performs badly in most cases
compared to the average quality of the members. Also, it shows a negative cor-
relation with the diversity measured by DV, (Figure 6.8(e)), whereas it shows
positive correlation with the diversity measured by DV,,,3 Figure 6.8(f). The posi-
tive correlation is shown with diversity measured by DV}, and DV, (Figure A.14

in Appendix A).

With the Mfeatures dataset, it is noticed in Figure 6.9 that as the diversity
reaches a high level, the quality of the ensemble using the MCLA method drops to a
low value compared to the average member quality measured by DV,,;, in contrast
to DV,,p3, in which a poor ensemble quality results when the diversity is low. This
shows that the poor quality of the MCLA ensemble is affected by a lower diversity

even when the average quality slightly decreases compared to other ensemble cases.

With Soybeans dataset, we noticed that in Figures 6.4(d) and 6.4(e) there is a

perfect solution for the problem discovered by using ACE. Looking closely to this
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Figure 6.8: The Entropy, DV,,1 and DV,,; measures from Glass dataset,(a), (b)
and (c) using CO-Ave, while (d), (e) and (f) using MCLA.

particular case, we found that there were three members that had also the same so-
lution (perfect) and none of the other ensemble methods had that result, where the
performance of CO, ONCE and MCLA were equal to 0.661, 0.661 and 0.545 respec-
tively. That is because ACE is based on computing the similarity between clusters
and membership similarity between objects and clusters and it does not implement
any ordinary clustering algorithm such as a graph based clustering algorithm that

applies in MCLA or the Hierarchical algorithm that applies in the CO and ONCE.
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In the relation between the diversity and the average quality of the
members, we discovered in the Iris dataset a negative linear correlation between
them measured by DV, arr (Figure 6.3) as well as DV,ny (Figure A.4(b)) and
Entropy (Figures A.4(c)). This shows that as the diversity increases, the average
quality of the members decreases accordingly, while all four ensemble qualities re-
main stable in most cases, even when the average member quality decreases. The
reason behind this phenomenon is that generating more diverse members would re-
sult in many incorrect clustering structures with less accurate members. This is
especially the case with a dataset that has k& < n (n the number of objects and k

the number of clusters), such as Bew or Tonosphere.

However, with Iris dataset for the DV,,,3 (Figure 6.3(¢)) and DV,,,4 (Figure 6.3(f))
measurements, the pattern changes to a positive correlation between the ensemble
quality and the diversity. These linear correlations are also found with Bew (Figure

6.1) and Ionosphere (Figure 6.2), measured by DV,,,3 and DV,,.

With the Glass (Figure 6.8), Mfeatures (Figure 6.9) and Wine datasets (Figure
6.7), we discovered that the average quality of the members has a slightly negative
relationship with the diversity measured by DV,arr, DV,nar and Entropy. While
the average quality of the members fluctuates slightly over the diversity scores mea-
sured by DV, 1, DV,po, DV,p3 and DV, where in most cases DV, and DV,,,3

have moderate diversity.

With the Thyroid dataset, the average quality of the members fluctuates over the
diversity scores measured by all examined diversity measures, and most of the cases
have a high level of diversity measured by DV,arr, DVynur, Entropy and DV,
whereas most cases have a moderate diversity level measured by DV,,,» and DV}, 3.
Finally, with the Soybean dataset (Figure 6.4), the average quality of the members

shows a slight linear correlation with the diversity in all the tested measurements.
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6.1.3 Studying the Correlation between the Ensemble Per-

formance and the Diversity.

We carried out the correlation coefficient (cc) test to measure the strength and direc-
tion of a linear relationship between ensemble quality and the values of a diversity
measure. We also carried out the significance test of whether, based upon these
samples, there is any evidence to suggest that the linear correlation is present in the
population. The value of cc € [—1, 1] and of the p-value € [0,1]. When cc = 1, it
indicates a perfect positive linear relationship between the diversity and the ensem-
ble quality, and when cc = —1, it indicates that there is a perfect negative linear
relationship between them. When cc = 0, this indicates that there is no linear rela-
tionship between them. The p-value indicates that the degree of that relationship is
statistically significant at a 95% confidence interval. In other words, we tested the
null hypothesis that there is no correlation in the population against the alternative

hypothesis that there is linear correlation present.

Table 6.1 shows the correlation coefficient between each diversity measurement
and the performance of each ensemble method, and bold value of correlation coeffi-

cient indicates that we reject the null hypotheses.

Generally, the correlation coefficient results indicate that the relationship be-
tween the ensemble quality and the diversity varies from one dataset to another
and from one ensemble method to another. The results suggest that the pairwise
diversity measures have similar cc values, which indicates that for some cases, the
ensemble quality has a weak positive relationship (14 cases in DV, 4z and 17 cases
in DV,,narr), while for other cases, there is a weak negative linear relationship with
the diversity (17 cases in DVjpar; and 15 cases in DV,npr). In addition, there is
only one case of no linear relationship between them discovered by DV, agr in Bew

dataset.

However, for the non-pairwise measures, we noticed that DV,,,; always has the

opposite linear relationship to that discovered by DV,,,3. For example, in the Glass
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dataset, using the MCLA ensemble method, the cc value of —0.813 for DV, indi-
cates a strong negative relationship, whereas the cc of 0.806 for DV},,3 indicates a
strong positive linear relationship. The range of cc values in each of the non-pairwise
diversity measures varies from a strong positive linear relationship to a strong nega-
tive relationship. Thus, obviously there is no agreement between them across the 8
datasets and in the use of the different ensemble methods. But in most cases, what
are discovered for DV,,,; and DV, are negative weak linear relationships (14 and
15 cases respectively), while DV,,,3 and DV,,,,4, in most cases, fall between a positive
weak relationship and a positive moderate relationship (in DV},,3, 14 weak cases and
6 moderate cases out of 32, and in DV, 12 weak cases and 7 moderate cases out

of 32).

For the statistical significance test, we found that for most of the correlation cases
using the pairwise diversity measure and Entropy, we cannot reject the null hypothe-
ses for most of the ensemble methods used. But for Iris using ONCE, Wine using
CO, Glass using ACE and Ionosphere using MCLA, we reject the null hypotheses
for these diversity measurements. In contrast, for the non-pairwise diversity mea-
sure, in most cases for the ensemble methods used, we reject the null hypotheses.
The only exception to this rule is the Bcw dataset, where we cannot reject the null

hypotheses for all the diversity measures tested and all ensemble methods used.

6.2 Investigation of Issues Raised

The results in Section 6.1 showed that diversity can have a positive or negative
effect on the ensemble performance. Thus, in Section 6.2.1 we are motivated to
find out under which conditions diversity can have a positive or a negative effect
on the ensemble performance. Furthermore, the results revealed there may be an
interaction existing between diversity and the members’ quality, and in Section 6.2.2
we are motivated to find out if this interaction exists and if so what is the effect of

the interaction on the ensemble performance.
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Table 6.1: Correlation coefficient between each diversity measure and ensemble re-
sult for each tested dataset. A bold values represent a rejection of the null hypothe-
ses which is there is no correlation between the ensemble quality and the diversity
measure.

Datasets CF DVyARI DVyNMI Entropy DVippi1 DVipp2 DViyps DViypa
CcoO -0.124 -0.154 -0.144 -0.139 -0.080 0.130 0.123

Iris ONCE -0.335 -0.389 -0.354 -0.546 0.488 0.688 0.541
ACE 0.151 0.153 0.142 0.251 -0.318 -0.305 -0.339

MCLA -0.064 -0.062 -0.058 -0.053 -0.038 0.046 0.048
CcoO 0.288 0.232 0.278 0.456 -0.923 -0.848 -0.860
Wine ONCE 0.130 0.061 0.110 0.345 -0.920 -0.793 -0.807
ACE 0.211 0.192 0.197 0.594 -0.729 -0.705 -0.710

MCLA 0.009 0.019 0.043 0.181 -0.606 -0.426 -0.491

CcoO -0.082 0.056 -0.083 -0.049 -0.154 -0.048 -0.077

Thyroid ONCE -0.012 0.077 -0.011 -0.085 -0.048 0.030 -0.037
ACE -0.092 -0.033 -0.065 -0.374 0.320 0.360 0.327

MCLA 0.190 0.272 0.182 0.139 0.247 0.028 0.119

CcoO 0.153 0.185 0.138 0.222 -0.461 -0.425 -0.483

Mfeatures ONCE 0.035 0.050 0.053 0.110 -0.395 -0.291 -0.366
ACE -0.070 -0.079 -0.146 -0.583 0.636 0.650 0.600

MCLA -0.117 -0.188 -0.278 -0.605 0.282 0.594 0.456

CcoO -0.000 -0.046 0.001 -0.189 0.058 0.173 0.151

Glass ONCE 0.136 0.053 0.137 -0.129 0.199 0.161 0.138
ACE -0.359 -0.299 -0.371 -0.548 0.236 0.487 0.423

MCLA 0.073 0.016 0.077 -0.813 0.758 0.806 0.745

CcoO 0.000 -0.000 -0.000 -0.000 -0.000 0.000 0.000

Bew ONCE -0.120 -0.033 -0.097 -0.169 -0.031 0.171 0.169
ACE -0.140 -0.081 -0.122 -0.167 -0.013 0.179 0.166

MCLA -0.167 -0.103 -0.160 -0.189 -0.113 0.141 0.160

CcoO 0.012 0.014 -0.072 -0.234 -0.092 0.120 0.090

Soybean ONCE -0.106 0.007 -0.099 -0.550 0.320 0.530 0.521
ACE 0.048 0.113 0.144 -0.703 0.544 0.701 0.614

MCLA 0.032 0.079 -0.021 0.220 -0.221 -0.284 -0.265

Cco -0.080 -0.070 -0.079 -0.103 0.025 0.148 0.127

ONCE -0.054 -0.047 -0.033 -0.077 0.038 0.123 0.098

Ionosphere

ACE 0.062 0.056 0.089 0.107 -0.068 -0.179 -0.161

MCLA -0.494 -0.486 -0.484 -0.530 -0.201 0.560 0.510

6.2.1 Analysis of the Positive and Negative Effects of Di-

versity on the Ensemble Performance

The formal definitions of these two different effects of diversity on clustering ensem-

ble are as follows:

Definition 8. Positive effect: For a given consensus function, if the diversity has
a positive effect on the ensemble performance, then the ensemble quality Q(P) is
higher than the average member quality Q(L'), and we say that the ensemble has a

good combination of the indiwvidual members.

DVT = Q(®) > Q(T)

In other words, the diversity brings an improvement to the clustering ensemble
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performance, and in this case the diversity is constructive to the clustering ensemble.

Definition 9. Negative effect: For a given consensus function, if the diversity has
a negative effect on the ensemble performance, then the ensemble quality Q(P) is
less than the average member quality Q(T'), and we say that the ensemble has a bad

combination of the individual members.

DV~ = Q(P) < Q(I)

In this case, the diversity harms the performance of the clustering ensemble, and

it is destructive to the clustering ensemble.

In the next section, we will look to the relationship between diversity and the
ensemble performance from a different angle. We will make a comparison between a
pair of ensembles consisting of one positive case and one negative case, where both
pairs are built under same or similar conditions in terms of the average member
quality and the level of diversity. The difference between them therefore is that the
first ensemble represents a combination pattern when the ensemble succeeds (best
ensemble performance due to best combination pattern), whereas the second one
represents a combination pattern when it fails (worst ensemble performance due to

worst combination pattern).

6.2.1.1 Experimental Design

In Section 6.1, we run the experiment on 8 datasets using 4 consensus functions,
and for each consensus function we run the experiment 100 times. According to the
above definition of the negative effect, we found that the negative effect occurred on
the Thyroid, Soybean, Wine and Glass datasets. Among these the Thyroid dataset
clearly had the highest number of negative cases on all the consensus functions used
(CO, ONCE, ACE and MCLA) compared to other datasets (as shown in Figures
6.5, 6.6 and in Appendix A). Thus, here we focus our study on the results obtained

from the Thyroid dataset using all 4 consensus functions. In this dataset, for each
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consensus function the number of negative cases in the 100 runs was equal to 40,

21, 42 and 4 in CO, ONCE, ACE and MCLA results respectively.

In this analysis, the idea is to find a pair of ensemble cases (®,, ®;), where ®, has
a negative effect (Q(®,) < Q(I',)), and P, has a positive effect (Q(P,) > Q(I')),

and they share the following conditions:

e DV (®,) =~ DV (®y) for most of the DV measures (DVj,arr, DVynar, Entropy,
DVnpl, Dvnpg, Dvnpg, and DVnp4).

e Q(I'y) =~ Q')

o Std(Q(P, € T,)) ~ Std(Q(P, € T))

We are interested in investigating the negative effect associated with most of the
used consensus functions. As we used 4 consensus functions, we found that there is
not a case that is negative in all the 4 consensus functions. So, we identified a case
in two situations: first it is negative in only two consensus functions and second
it is negative in at least three of them. In total, we identified 22 pairs of cases as
shown in Table 6.2, which lists the ensemble qualities of these pairs and the average

member quality (all measured by ARI) for the first and second situations.

In each pair of ensembles, the first ensemble is an odd number, representing the
negative ensemble case, and the second is the next even number, representing the
positive ensemble case. For example, pair number one consists of case 1 (positive)

and case 2 (negative), and pair number two consists of case 3 and case 4 and so on.

For each of these ensemble pairs, we analysed the quality of their individual
members. We used a simple counting approach of the poor-, good- and medium-
quality members to compare between a pair of ensemble cases, one representing the

negative case, the other representing the positive case.
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Table 6.2: The quality of ensembles using CO, ONCE, ACE, MCLA consensus
functions and the average member quality (Ave-mem) in 22 cases. Cases with bold
font indicate that these are negative cases, which are case 1, 3, 5, 7, 9 |11, 13, 15,
17, 18 .19 , and 21. These cases are all taken from the results in section 6.1.2 for
Thyroid dataset.

Pair # Case # Q(CO) | Q(ONCE) | Q(ACE) | Q(MCLA) | Ave-mem
1 Case 1 0.579 0.579 0.211 0.231 0.275
Case 2 0.513 0.414 0.303 0.508 0.285
9 Case 3 0.231 0.297 0.324 0.192 0.274
Case 4 0.513 0.336 0.192 0.548 0.310
3 Case 5 0.164 0.296 0.221 0.417 0.264
Case 6 0.440 0.485 0.394 0.497 0.287
4 Case 7 0.155 0.155 0.164 0.579 0.245
Case 8 0.579 0.579 0.530 0.579 0.289
5 Case 9 0.211 0.211 0.165 0.347 0.220
Case 10 0.579 0.414 0.511 0.579 0.307
6 Case 11 0.164 0.164 0.119 0.441 0.253
Case 12 0.502 0.414 0.265 0.535 0.304
7 Case 13 0.173 0.164 0.164 0.579 0.276
Case 14 0.513 0.414 0.526 0.579 0.297
8 Case 15 0.273 0.221 0.222 0.579 0.285
Case 16 0.579 0.579 0.446 0.579 0.280
9 Case 17 | 0.221 0.383 0.273 0.240 0.279
Case 18 0.546 0.316 0.374 0.570 0.301
10 Case 19 0.164 0.164 0.262 0.582 0.286
Case 20 0.515 0.414 0.486 0.535 0.308
11 Case 21 0.155 0.155 0.252 0.560 0.260
Case 22 0.579 0.579 0.446 0.579 0.280

6.2.1.2 Summary of Results

The full results of this experiment are given in Appendix B. In summary, we ob-

served the following:

1. In most negative cases for some consensus functions such as CO and ONCE,
the high number of poor-quality members had indeed affected the ensemble
performance, while others such as MCLA had not been affected by the same
members. An example is Pair # 1 and 5 as shown in Figures 6.10(a) and

6.10(b) respectively.

2. For other negative cases the pattern of the number of poor-, medium-, and
good-quality members show an inverted V shaped pattern, where the number
of members with a medium-quality was higher than the other two categories

and with a high level of diversity measured by independent measures. This
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contributes to limit the ensemble quality to being lower than the average qual-
ity of its members. An example is Pair # 6 and 10 as shown in Figure 6.10(c)
and 6.10(d) respectively.

3. In most positive cases, the distribution of the individual members qualities

was higher than the comparative negative cases.

4. Tt was also observed that two cases had an equal number of poor-quality and
good-quality members, but one case represented a pattern of success for the
ensemble, while the other represented a pattern of failure (see Pair # 4 in
Figure 6.10(e)). But generally, the distributions of the individual members
quality in these cases indicate that in the pattern of success the members had
a higher quality than in the pattern of failure, and these high-quality members
with a high diversity level (measured by independent measures) contribute to

the production of a high-quality ensemble.
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compared to ensembles qualities in each case.

Therefore, we concluded that this approach did not give us a clear indication
of the reason behind the negative performance of the ensemble. But an extended

experiment was designed in the next section to investigate the effect of removing
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the poor-quality member on the performance of different consensus functions in the

negative and the positive cases.

6.2.1.3 The Experiment of Eliminating Poor Members

In this section, we analyse and study how the ensembles perform using the different
consensus functions when we gradually remove one member at a time, based on
its quality in the negative combined pattern, as well as in the positive combined

pattern.

Therefore, for each of the identified cases in table 6.2, we saved its members in

pool O, of which there are 27 members, and the following steps were implemented:

1. The quality of the individual members in pool O is measured using ARI.

2. Then the members in O are sorted in an ascending order based on their quality

(from the lowest to the highest quality member).

3. The first member in the current O is removed, which represents the poorest

quality member in the current O.

4. The remaining members in O are combined using the CO, ONCE, ACE and

MCLA consensus functions.

5. The following values are calculated: ensemble quality for each of the consensus
functions Q(CO), Q(ONCE), Q(ACE) and Q(MCLA), the average quality
of members (avg-mem), and the diversity of the ensemble using DV, 4p; and

DV,,3, where the latter is measured for each of the consensus functions.

6. Steps 3 to 5 are repeated until only 3 members are combined, which represents

the last run.

Thus, in each run the size of the ensemble decreased by 1 until run 25, where the

size was equal to 3.
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Experimental Results

The results of each identified case in our experiment are analysed in more detail in

Appendix B, and here we analysis the typical ones.

Clearly, the results show that as a consequence of removing the poorest quality
member in each run, the average members quality increased and accordingly the
diversity decreased (measured by DVjagr). This indicates that in this experiment
there is an inverse relationship between the average member quality and the DV, 4rs

measure.

It is also noticed that in 6 out of 22 cases (Figures B.27, B.30, B.33, B.34 and
B.33), the three highest quality members had the same quality clustering results,
and their ensemble diversity value of DV,4r; was equal to 0. This also confirms
the idea that diversity as a factor is highly associated with member quality, because
when we fix the members’ qualities to a constant value their diversity is most likely
to be zero. In these cases (cases 1, 7, 8, 13, 15 and 17) , combining these members
using CO, ONCE and ACE achieved ensemble results of the same quality as the
members. But, using MCLA we achieved a very poor performance, which indicates
that MCLA is not a good choice when diversity does not exist among the members.
Looking at the diversity measured by DV,,3, it is noticed that it is sensitive to the
ensemble performance because when the performance is low in value, the DV,,,3 is
also low in value. These results confirm those of Section 6.1, that the dependent

diversity measures are sensitive to the ensemble performance.

The lowest average member quality (equal to 0.220) was in case 9 (Figure B.31)
with a high DV,4rs (equal to 0.667) and all the consensus functions produced low
quality performance, with three of them being below the average member quality
(CO=0.211, ONCE= 0.211, ACE= 0.164 and MCLA = 0.347). It is therefore clear
that sometimes the individual members are not good enough to be combined in
terms of their quality and the diversity among them. In summary, the results show
that removing the poor-quality members did to some extent improve the perfor-

mance of all the identified consensus functions in all the negative cases, in addition
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Figure 6.11: 25 ensemble runs for case 1 & 2, in each run one member is removed.
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Figure 6.12: 25 ensemble runs for case 7 & 8, in each run one member is removed.

to improving the performance of some consensus functions in the positive cases,
which are ONCE and ACE. However, each consensus function had different reac-

tions to removing poor-quality members, due to the difference in their implemented

164



Chapter 6. The Diversity of the Clustering Ensemble.

Case 13
—(m) ~®—ave-mem ~—#—Q(Co) =—Q(ONCE)] =*—Q(ACE) ~®—Q(MCLA)

‘The Number of Run
12 3 4 56 7 8 9 10111213 14151617 18 19 20 21 22 23 24 25

Case 14

mmmQ(m) —@-avemem —#—Q(Co) —H—QIONCE] —*—QIACE) —#—QMCLA)

The Number of Run
12 3 456 7 8 910111213 14151617 18 19 20 21 22 23 24 25

1011 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
The Individual Member

-IIIIIl
2345678

ey

10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 1
The Individual Member

(a) Negative Case. (b) Positive Case.

Case 13
Case 14

~#—DVpARI ~#=DVnp3(CO) ~—*—DVnp3 (ONCE) =>=DVnp3(ACE) ==DVnp3 (MCLA)
s —#—DVpARI ~—=DVnp3(CO) ~—#—DVnp3 (ONCE) =H=DVnp3 (ACE) =—DVnp3 (MCLA}

07 08
o 0.7
g 0t
g os 5
® 05
20, $
E > 04
H g
su.a ED,}
3 g
02 B,
01 01
o
123456 7891011134151 1819202022585 123456 78 910111213161516 17 1818 20 2 2 23 2 25

The Number of Run The Number of Run

(d) Diversity Measures of the Positive
Case.

(c¢) Diversity Measures of the Negative
Case.

Figure 6.13: 25 ensemble runs for case 13 & 14, in each run one member is removed.
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Figure 6.14: 25 ensemble runs for case 15 &16, in each run one member is removed.

techniques. Furthermore, the results in this investigation showed that diversity is

highly associated with the members qualities, therefore there is a great need to study
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Figure 6.15: 25 ensemble runs for case 17 & 18, in each run one member is removed.
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Figure 6.16: 25 ensemble runs for case 9 & 10, in each run one member is removed.

the effect of the interaction between them on the ensemble performance.

However, the following characteristics have been noticed in our experiment for
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the pattern of success and failure; although they should not be generalised to all

consensus functions as each has its own characteristics.

Pattern of Success

In the pattern of success, based on our studies the following conclusion are drawn:

1. It is preferable to have a medium level of average member quality accompa-
nied by a medium level of DV, 4gr. The results support the argument that the
quality of the individual members alone is not enough to improve the ensem-
ble performance compared to the individual members’ quality, but it is also

necessary for them to be diverse.

2. CO and ONCE preferred the members to have between medium and high
quality with a medium diversity among them. If the members quality is poor,
they must have the “right” diversity among them, meaning that the certainty
of the correctly classified pairs of objects is maintained higher than that of the
wrongly classified ones. If among the members there is one with a very high-
quality (unexpected clustering results), then the other members must support
this one. The results showed that the performances of CO and ONCE are
equal to the quality of identical members, when there is no diversity among

them.

3. ACE also preferred a medium-level average member quality accompanied with

a medium DVpap;.

4. Using MCLA as a consensus function, the members must have some sort of
diversity, otherwise MCLA will perform poorly compared to the ensemble

members’ quality.

Pattern of Failure
In this pattern, the lower average member quality, accompanied with a high level
of DVyagr and low level of DV,,3, is responsible for the failure of the ensemble.

However, this pattern can be changed to a successful one by increasing the average
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member quality, decreasing DV,arr, and increasing DV,,,3. The reaction to this
gradual changing in the pattern differs from one consensus functions to another, but
CO is the last one to be improved — it improved by removing most poor-quality

members.

6.2.2 The Experimental Study of the Interaction between

Members’ Qualities and Diversity

In this section, we investigate whether or not there is an interaction effect between
the diversity and the members’ qualities on the ensemble performance. A factorial
design experiment is implemented to investigate this interaction, where the inde-
pendent variables (factors that we are interested in studying) are diversity (DV)
and members’ qualities (Mem-Quality) and the dependent variable is the ensemble
performance. Our hypothesis is that there is an interaction between the ensemble
diversity and the members’ qualities, and that this may affect the performance of

the ensemble.

For the diversity we used the DV, 4rr measurements, while for the quality of the
members we used the ARI index. We can subdivide the range of diversity values
and member quality into three different levels: High, Medium and Low, as shown in
Figure 6.17. However, we considered the high level in member quality as an extreme
case, which is rarely achieved by a single clustering algorithm for the real datasets

used in Section 6.1.

Therefore, we implemented a 3 x 2 factorial experimental design with 6 conditions
(combinations of the two factors) to investigate the simultaneous interaction between
the diversity and member qualities on ensemble quality. Because, our interest is in
the interaction we had to also include their individual main effects. We considered
the diversity and the members’ qualities as between-subject factors, as we generated

a new set of members for each condition.

For each of the datasets used in the previous experiment in Section 6.1 we col-
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Figure 6.17: The range values of the member quality and the ensemble diversity,
including the interaction area between them.

lected all the members generated by 100 runs in pool O (2700 members in total) and
we classified them based on the 6 conditions. In 8 datasets examined, we had only
two datasets where a number of runs could be built on all of the 6 identified con-
ditions; these were the Thyroid and Wine datasets. With the other datasets, there
were one or more conditions that could not be built and therefore we could not use
them. In addition, we could not design the experiment as incomplete, as the main
aim of this experiment was to study the interaction effect, and this cannot be done
with an incomplete factorial design. Thus, we carried out our experiment on only
these two datasets as a pilot study. For each condition, we built the ensemble 30
times, but it was noticed that under two conditions we could not generate 30 sets of
members, and that was when the conditions were at low levels in both factors (3 sets
in the Thyroid datasets and 2 sets in the Wine dataset), and with a medium level
in the member quality and a high level in diversity (2 sets in the Thyroid dataset
and 7 sets in the Wine dataset). This is due to the fact that controlling/limiting
the quality of the members to a certain range makes restricted room for diversity
among them. So, the experiment is designed as unbalanced, where the number of

runs for each condition are not equal.
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However, we run the experiment by building the ensemble under the identified
conditions using four consensus functions (CO, ONCE, ACE and MCLA), and the
quality of the ensembles clustering results were measured (using an ARI index) and
recorded for each condition. For each dataset, we had four factorial experiments

(one for each consensus function).

We first investigated the main effects of each factor independently, and then we
investigated the interaction effect between them. Generally, the main effect of one
factor represents the overall means of the ensemble performance on the different
levels of that factor over the levels of the other factor. It is, in fact, the overall effect
of one factor while ignoring the effect of the other factor [90]. On the other hand,
the interaction effect is represented by the mean of ensemble performance in each

combination between two factors.

Both of these two effects can be visualised in a line chart plot. In the main effect
plot, the non horizontal line between the levels of one factor indicates that there is
a significant effect of that factor on the response, and the steeper the slope of the
line the greater the size of the main factor effect. Whereas, the non parallel lines in
the interaction plot indicate a sign of interaction between two factors. The greater
the difference in slope between lines, the high the degree of interaction between two
factors [16]. We should mention that as our design experiment was unbalanced so
the ensemble performance means for a factor in these plots were calculated as the
unweighted mean, which controls for the effect of other factors, so the confounding

caused by unequal sample size is eliminated.

6.2.2.1 Experimental Results

The Main Effects Results:

Figures 6.18 and 6.19 show the plots of the main effect of the diversity and mem-
bers’ qualities for the Thyroid and Wine datasets, respectively. The dashed hor-
izontal lines in these plots show the overall mean of ensemble performance (the

performance mean in the whole sample data). In both of the datasets in all the

170



Chapter 6. The Diversity of the Clustering Ensemble.

used consensus functions, the main effect of diversity and the members’ qualities
was shown by non-horizontal lines between the factors’ levels (as shown in figures
6.18 and 6.19), which indicate that the different levels of these factors affect the

ensemble performance differently.

In the Thyroid dataset, the ensemble performance mean with high and medium
diversity levels was lower than the overall mean of the ensemble, whereas with a low
diversity level it was higher than the overall means for all consensus functions. In
the Wine dataset, the main effect of diversity is different from that in the Thyroid
dataset. The ensemble performance mean in the low diversity level was lower than
the overall mean of the ensemble for all consensus functions. However, it was higher
than the overall ensemble mean in the high and medium diversity levels for all
consensus functions except ACE, where its performance mean was lower in the high

level and higher in the medium level compared with the overall mean.

However, in both datasets it is clear that the slope of the line between the two
levels of member quality is steeper than that of the lines between the levels of
diversity. This indicates that the effect size of the members’ qualities on the ensemble
performance is greater than the one related to diversity. Intuitively, as the quality
of the individual member increases, the ensemble quality naturally increases too.
Moreover, it was observed that when the members’ qualities were at a medium level,
then the ensemble performance always had a higher mean. In addition, ensembles
generated using a low value for member quality always had a lower performance
mean, and that is true for all the consensus functions used on the two datasets

under this experimental set-up.

The Interaction Effect Results:

Figures 6.20 and 6.21 illustrate the ensemble performance mean of combinations
of levels from the two factors in order to show the trend of the interaction between
them for the Thyroid and Wine dataset, respectively. In the right upper corner of

these figures, we can see clearly that the lines are not parallel and they are crossing
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Figure 6.18: The main effects of the diversity and member quality on the response
variables, which are CO, ONCE, ACE and MCLA, for Thyroid dataset.
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Figure 6.19: The main effects of the diversity and member quality on the response
variables, which are CO, ONCE, ACE and MCLA, for Wine dataset.

at some point. This indicates that there is an interaction between the diversity and
the members’ qualities, and the degree of interaction differs between the different

consensus functions.

With the Thyroid dataset, it was observed that when the members had a low

quality, whatever the diversity among them, the ensemble performance mean was
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low, using CO and ONCE. It was observed that the ensemble achieved a higher
performance mean when the combining members had a medium quality and a low
diversity among them, with all used consensus functions. With ACE and MCLA, it
was noticed that the lines of medium and low diversity levels were close to parallel
with a very slight tendency towards the low-quality members, indicating that there
was very little interaction between these diversity levels and members’ qualities using

these consensus functions.

With the Wine dataset, it was noticed that the high and medium levels of diversity
crossed in the middle, meaning that diversity (at high and medium levels) had the
opposite effect on the ensemble performance mean for low-quality members to that
of medium-quality members.The lines of the high and low diversity levels were close
to parallel with a very slight tendency towards the low-quality members’ level. This
was observed with CO, ONCE and MCLA. However, in ACE, there was more or
less the same performance mean in these two levels of diversity for the low-quality

members.

However, the results at this stage suggested that there are main effects of diver-
sity and members’ qualities on the ensemble performance, as well as an interaction
between them; the degree of interaction is different between the consensus functions.
Thus, a statistical test is needed to determine whether it is justifiable to conclude
that these effects exist in the population. The following section presents the results

of ANOVA tests of these factorial experiments.

6.2.2.2 Result of ANOVA

Before we ran the ANOVA test we checked its assumptions, which is the normality
and the homogeneity of variances. Appendix C shows the full details of check-
ing these assumptions, which show that the data meets the ANOVA assumptions.

Therefore,

we applied the two-way ANOVA using type III sums of squares for F-statistics

on the transformed data sample. On the other hand, we also applied the same
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Figure 6.20: The interaction effects of the diversity and member quality on the
response variables, which are CO, ONCE, ACE and MCLA, for Thyroid dataset.
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Figure 6.21: The interaction effects of the diversity and member quality on the
response variables, which are CO, ONCE, ACE and MCLA, for Wine dataset.

test to the rest of the samples, for which Box-Cox suggested no transformations
are needed, because ANOVA is still robust for small and even moderate departures

from normality and homogeneity of variance. A rule of thumb is that the ratio of
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the largest to the smallest group variances should be 3 to 1 or less [10], and in our

sample this ratio is too small.

Table 6.3 shows the results of the ANOVA, which include the type III sum of
squares (SS), the degrees of freedom (DF), the mean squares (MS), and the F test
statistics (F). Interactions between diversity (DV) and members’ qualities are rep-
resented by DV * Mem-Q. P-values less than 0.05 represent rejection of the null
hypothesis that the mean of the ensemble performance is statistically equal at all

levels of the corresponding factors.

We observed that on both datasets and on all four consensus functions the mem-
ber quality is statistically significant, whereas the diversity is not statistically sig-
nificant in most cases except for the Wine dataset, where using the ACE consensus
function it is significant (p-value< 0.05). The interaction between members’ quali-
ties and diversity is not statistically significant in most cases, where we cannot reject
the null hypotheses, but a small p-value on the Wine dataset using ACE and MCLA
justifies rejection of the null hypothesis. So, in these particular cases the interaction

is statistically significant.

However, the factor with most influence on the ensemble performance is the
member quality (more so than the diversity among them). This observation is true
for all the consensus functions used based on this experimental set-up. There is an
interaction between the members’ qualities and the diversity, but in most cases it is

not statistically significant.

As the only significant interaction we had was in the Wine dataset using ACE
and MCLA, we tested all their pairwise mean comparisons using a Tukey test [99] to
find out where the significance was coming from. Table 6.4 shows the results of the
Tukey test on the Wine dataset for ACE and MCLA. We can see that ten pairwise
groups are significant out of 15 (in total). It is clear that most of the significant
differences in these pairwise comparisons groups are coming from changes in levels
of the members’ qualities from low to medium. The only significant case (in both

consensus functions) that the difference come from changes in the diversity levels
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Table 6.3: The results of ANOVA Tests on two datasets using four consensus func-
tions (CO, ONCE, ACE and MCLA), the bold value in the P-value column repre-
sents a statistical significant, which less than 0.05

Dataset | Consensus Function | Factor/Interaction | DF SS MS F P-value
co DV 2 0.016 | 0.008 2.10 0.128
Mem-Quality 1 0.244 | 0.244 | 62.39 0.000
Thyroid DV * Mem-Quality 2 0.015 | 0.007 | 1.89 0.156
ONCE DV ' 2 0.014 | 0.007 | 2.48 0.089
Mem-Quality 1 0.240 | 0.240 | 82.08 0.000
DV * Mem-Quality 2 0.010 | 0.005 | 1.87 0.160
ACE DV 2 0.044 | 0.022 | 1.60 0.207
Mem-Quality 1 0.672 | 0.672 | 48.72 0.000
DV * Mem-Quality 2 0.006 | 0.003 | 0.22 0.802
MCLA DV 2 0.034 | 0.017 | 2.00 0.140
Mem-Quality 1 0.539 | 0.539 | 62.76 0.000
DV * Mem-Quality 2 0.031 | 0.015 | 1.85 0.162
co DV 2 0.029 | 0.014 | 1.86 0.160
Mem-Quality 1 0.424 | 0.424 | 54.34 | 0.000
Wine DV * Mem-Quality 2 0.027 | 0.013 | 1.74 0.181
ONCE DV . 2 0.025 | 0.012 1.68 0.191
Mem-Quality 1 0.454 | 0.454 | 61.00 | 0.000
DV * Mem-Quality 2 0.023 | 0.011 | 1.56 0.215
ACE DV 2 0.040 | 0.020 2.61 0.078
Mem-Quality 1 0.520 | 0.520 | 67.43 0.000
DV * Mem-Quality 2 0.055 | 0.027 | 3.59 0.031
MCLA DV ' 2 0.034 | 0.017 | 2.22 0.113
Mem-Quality 1 0.517 | 0.517 | 66.57 0.000
DV * Mem-Quality 2 0.098 | 0.049 | 6.33 0.003
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and not from the members’ qualities is (Medium Low) and (High Low).

However, these interaction effects tell us that the effect of diversity is conditioned
by the members’ qualities, and this is for all the three levels of diversity, on the
other hand the effect of only the low level members’ qualities is conditioned by the
diversity, but not for the medium level of members’ qualities. These results only
occurred when using ACE and MCLA; and not with other consensus functions.

Table 6.4: The results of the Tukey test with Wine dataset using ACE and MCLA
consensus functions, the bold value in the P-value column represents a statistically
significant difference between the two groups compared, which is less than 0.05

Difference of DV*Mem-Quality Levels | the P-value of the ACE sample | the P-value of the MCLA sample
(High Medium) - (High Low) 0.000 0.000
(Low Low) - (High Low) 1.000 0.944
(Low Medium) - (High Low) 0.000 0.000
(Medium Low) - (High Low) 0.001 0.015
(Medium Medium) - (High Low) 0.000 0.000
(Low Low) - (High Medium) 0.003 0.000
(Low Medium) - (High Medium) 0.975 0.314
(Medium Low) - (High Medium) 0.000 0.000
(Medium Medium) - (High Medium) 0.998 0.403
(Low Medium) - (Low Low) 0.007 0.004
(Medium Low) - (Low Low) 0.608 0.306
(Medium Medium) - (Low Low) 0.002 0.001
(Medium Low) - (Low Medium) 0.000 0.002
(Medium Medium) - (Low Medium) 0.995 0.997
(Medium Medium) - (Medium Low) 0.000 0.000

6.2.2.3 Summary of Results

The experiment was motivated by the results in Sections 6.1 and 6.2.1, which sug-
gested that there may be an interaction between the members’ qualities and diver-

sity. The main findings are as follow:

1. The results of the ANOVA showed that the main effect of the members’ qual-
ities is statistically significant, while the main effect of the diversity is not

statistically significant measured by DVjags.

2. The result confirms that the quality of the members has more influence on the

ensemble performance than diversity (measured by DV,arr).
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Figure 6.22: The Tukey results with Wine dataset using the ACE and MCLA. The
Tukey test used to determine specifically which means are statistically significant
different of the interaction effects using these consensus functions.

3. It is observed that graphically there was a small degree of interaction effect
between the members’ qualities and the diversity on the ensemble performance,

but it was not statistically significant for Thyroid dataset

However, we cannot generalise these findings, due to two reasons:

1. The experiment was conducted using only two datasets.

2. The experiment was conducted using only DV, 4r; diversity measure.

A further study might be undertaken, to design a suitable experiment, using

artificial data for example, to study the interaction effect and to redesign it as a
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balanced design because it is easier in terms of the analysis and the interpretation
of the results. In addition, further studies could use a large number of datasets and

a large sample size so that the result could be generalised.

6.3 Discussion

The second central point of this research is to investigate diversity in the context of
clustering ensembles, which was done in this chapter. Our primary investigation was
carried out in order to discover the relationship between diversity and the ensemble

quality.

To do that, firstly we reviewed the literature on the definition of diversity in
the context of the clustering ensemble in Chapter 2. We found that there are two

different types of definitions for diversity, and we named and defined them as follows:

1. Ensemble Output Dependent (EOD): the ensemble diversity is defined
as the level of variation between its members and its final clustering result in
terms of their matching labels. This kind of definition, includes DV,,,1, DV},2,
DV,,,3 and DV, [39].

2. Ensemble Output Independent (EOI): the ensemble diversity is defined
as the level of variation among the members themselves in terms of their
matching labels. This kind of definition includes DV,agr, DV,numr [25], and
Entropy [37].

Secondly, the experimental study was carried out in order to investigate the
current existing diversity measures, for the EOI definition we have DV, arr, DV,nur
[25], Entropy, and for the EOD definition we have [37], DV,,1, DV,p0, DV,,s and
DV,,,4 [39]. To the best of our knowledge, these are the only diversity measures that
exist in the clustering ensemble literature. Although there have been some attempts

to modify these measurements to be used with other external clustering validation
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indices, we did not consider them in this experiment, because they did not show

superior results compared to the original ones [83].

The main finding of these experimental results was that these diversity measures
are not capable of discovering a clear relationship between the ensemble quality and
its diversity. This is in spite of the fact that a number of researchers have established
a statement about this relationship, as we saw in Chapter 2 (Table 2.1 summarises
them). Here we discussed our findings with the most recent of these statements,

and as quoted from their authors, these are as follows:

1. In 2006, Hadjitodorov et al. [39] compared the existing diversity measures
and said that: “The results favoured DV,,,3 as the one most related to the
ensemble accuracy. Two typical patterns of diversity-accuracy relationship
were found”. “One is almost monotonic-the larger the measure value, the
higher the accuracy, while the other is shaded as a parabola with a maximum

at about the middle of the diversity range”.

2. In 2009, Domeniconi and Al-Razgan [20] said that: “Our results reveal that a
diversity measure based on ARI is more robust and consistent, and that high

diversity signifies large accuracy”.

3. In 2010, Rozmus [83] said that: “From the experiments carried out it is rather
difficult to find a strict and clear relationship between ensemble accuracy and
the used measures of diversity, but in some cases it can be observed that for
the pairwise and first non-pairwise measure lower diversity went together with
higher accuracy whereas for the rest of non-pairwise measures higher diversity

went together with higher accuracy”.

4. In 2011, Tam-On et al. [51] said that: “This result suggests that a high level

of ensemble diversity is recommended for an accurate outcome”.

We argue that these statements are not really convincing and cannot be generalised,
due to weaknesses identified in them. We noticed that in [39], the identified patterns

are only related to their proposed measures DV,,,3, in their experimental study they
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only used one consensus function which is the CO, and they have not tested that
using different consensus functions, or at least using a commonly used consensus
function such as MCLA. Moreover, a number of weaknesses are noticed with their

proposed measures, which will be listed later in the section.

A similar weakness was noticed in [83], where they only used one consensus func-
tion which is based on an optimisation process, and again their result is only applied
to this consensus function. In their statement, “the first non-pairwise measure” is
the DV,,1, clearly what they found is that DV, revealed an opposite relationship
between diversity and ensemble quality compared to the one discovered by other
non-pairwise measures. This is exactly what we discovered about DV, that al-
though it is by definition a diversity measure, its behaviour shows that it is in fact
a measure of similarity between the ensemble and the members. This result was
also noticed by Hadjitodorov et al. [39]. However, the main aim in [83] is to test
the modified diversity measures in discovering a clear relationship, where they apply
different clustering validating indices instead of ARI in the original diversity mea-
sure, including the Rand Index, the Jaccard and the Fowlkes and Mallows index;
but they did not find a clear relationship between diversity and quality using these

measurements.

The experiment in [51] only used one diversity measure, which is DV, and
it had a number of weaknesses. Firstly, it was conducted using only their proposed
link-based methods and on 5 datasets. Secondly, looking closely to the results,
we found that clearly the results from 3 out of 5 datasets do not support their
statement. Thirdly, in the other 2 datasets, in particular in Glass dataset, the
improvement in ensemble accuracy was not very high when the diversity was high
compared with when it is in median level, while in Diabetes dataset the accuracy of
the ensemble was around 0.1 measured by NMI, which is too low to be meaningful.
Finally, we also noticed that they used a mixed heuristic generating technique to
generate 60 members in each run, among them 20 generated using random k values

chosen from the interval [2,+/n], and they used NMI as a measure of a member’s
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accuracy and diversity measure, although previous work by Domeniconi and Al-
Razgan [20] suggests that “a measure of accuracy /diversity based on ARI might be
more robust and consistent than a measure based on NMI”. In this research, we
found (in Chapter 4) that the NMI is sensitive when the two compared partitions
have different numbers of clusters. Therefore, based on these arguments we do not

think their results are valid.

However, in [20], we noticed that they investigated the diversity also using their
proposed consensus functions and they used only two diversity measures (DV,yumr
and DV,,3). They concluded that DV,,,3 is highly related to the ensemble quality.
They also made the following statement: “We finally note that ‘universal’ rules
for choosing the preferred level of diversity should be used with caution, as the
‘optimal’ level clearly depends on the consensus function and on the dataset”. This

corroborates our conclusions.

Furthermore, the experimental study in Section 6.1 also revealed other remarkable
findings. It was observed that there is difference in behaviour between the EOI and
EOD diversity measures. This difference is explained by the fact that the latter

involved the ensemble results in their equations, whereas the other does not.

We also highlighted that the EOD diversity measures have a number of disad-

vantages:

1. To use them we have to combine the members and get the output of the

ensemble, so they are useless without the ensemble results.

2. For this reason, they are sensitive to the type of the consensus function that

is used to produce the ensemble output.

Therefore, until a new suitable diversity measure is defined, we recommend the
EOI diversity measures. In particular, we recommended DV, g for the following

reasons:

1. It is not dependent on the ensemble output; one can use it without running

the full ensemble framework.
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2. It is based on the matching labels between members, and it follows the com-
mon diversity definition, which is the level of variability among the ensemble

members.

3. It is the most common diversity measure that has been used in the literature
so far, some other researchers recommend to use it as well, due to its reliability

and consistency.

4. It is very easy to compute and interpret.

Nevertheless, the results in Section 6.1 highlighted two issues that are related to
the diversity and its relation to the quality of the clustering ensemble, the following

subsections will discuss these issues in more detail.

6.3.1 Discussion on the Issues Raised in our Diversity Stud-
ies

In this Section, we discuss the work done in Section 6.2, which consider two issues
raised in our studies of clustering ensemble diversity. To the best of out knowledge
these two issues have not been studied in the literature, so we are unable to compare
our results with others, and we hope our research will highlight them. The following

sections discuss them separately.

Analysis of the Positive and Negative Effects of Diversity on the Ensemble

Performance

Two different effects of diversity on the clustering ensemble appeared in the results
in Section 6.1, which we defined as positive and negative effects because the diversity
makes an ensemble better or worse than the average quality of the members. These
two effects were observed also in Hadjitodorov et al. study’s [39] and Rozmus study’s
[83], although they did not explain why these effects had occurred, so to the best

of our knowledge these different effects of diversity on the clustering ensemble have
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not been looked at previously. There could be a number of reasons for this. Firstly,
studying these effects is not an easy task at all in the context of cluster analysis, as
it is unsupervised learning. Secondly, the absence of useful diversity measures for
detecting a clear relationship makes the task more difficult as we saw in Section 6.1 in
that none of the existing diversity measures are able to discover a clear relationship
between the ensemble performance and diversity. Thirdly, the diversity and the
other factors (Q(I'), C'F, m) have a chain of interactions among themselves and these

interactions make analysis of them extremely difficult.

Wang [106] suggested that a common and simple methodology in the classification
ensemble is to study these factors one at a time, where only one factor is changed
at any one time, while the impact of other factors are reduced to a minimum or
kept fixed. In a clustering ensemble, factors such as the consensus function C'F' and
the number of members m can be easily fixed to a known constant, but as we saw
from the experiment in Section 6.1, diversity is very difficult to separate from the
individual member quality. As a result of exploring the diversity of the members,
their individual qualities are affected. In fact, we empirically tested this by selecting
a number of members generated in the experiment (Section 6.1) that have same
quality in the Thyroid dataset, and we found that their diversity (measured by
DV, arr) is equal to zero. This means that based on the generation techniques used
in this experiment, whenever we have members with a fixed quality they are most

likely to be identical or highly similar to each other in terms of the cluster structure.

However, in order to analyse these two different diversity effects, firstly we for-
mally defined them and then we designed an experiment guided by the results in
Section 6.1, which involved comparing a pair of two ensemble cases, where the first
case represented the negative, while the second case represented the positive case.
The average members qualities and ensemble diversities of these two ensemble cases
told us that there was no difference between them, but the performance of the first
case was lower than the average member quality (negative), while the performance

of the second one was higher than the average member quality (positive). So, we
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looked at the individual members’ qualities to compare them. In other words, we
used a simple method that counts how many members have a poor-, good- and

medium-quality compared to a particular pair.

The results of this experiment did not give us a solid conclusion on how to avoid
the negative impact of diversity, and in fact it supports what we actually found in
the previous chapters, that the consensus function is a very important factor for the

ensemble performance.

A further analysis was carried out to gradually eliminate poor-quality members in
these cases until we had only three high quality members, and we used CO, ONCE,
ACE, and MCLA as the consensus function in turn. The results of this analysis
showed that this elimination improved the average quality of members and decrease
the diversity, and as a result improved the performance of the consensus functions

in negative cases.

The Interaction between Members’ Qualities and Diversity

We define the interaction between the members’ qualities and diversity as how the
diversity effect on the ensemble performance varies with the members’ qualities and
vice versa. We designed an experimental study in order to explore this interaction
effect, and we implemented a 3 x 2 factorial experimental design study on two
real-world datasets, which was Thyroid and Wine for the purpose of demonstrating
the concept. Due to the time limit, we only used the DV,sp; measures in this
experiment, and the members’ qualities were measured by using an ARI index.
For the diversity, the high, medium and low levels were considered, while for the
members’ qualities, only the medium and low levels were considered, the reason why
we did not consider the high members’ qualities level is that it is very difficult to
generate this high level with the datasets tested using a single clustering algorithm.
We ran the experiments on 4 consensus functions under 6 combinations of the two

factor levels.

The results of the two-way ANOVA revealed that the main effect of the members’
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qualities is statistically significant, but it is unsurprisingly not statistically significant
for the diversity factor (measured by DVj4gr). Conceptually, both of the factors
are very important to the ensemble performance, and diversity is widely accepted
as a crucial factor for building a successful ensemble; there is no need to build
an ensemble with identical members [94, 39, 25]. Thus, we can say that the non-
significant difference of diversity’s main effect is down to the choice of the DV apr;

measure.

On the other hand, for the interaction effect, the result shows that graphically
there is a small degree of interaction effect on the ensemble performance on the two
datasets. The only interaction cases that were statistically significant were in the
Wine dataset using ACE and MCLA. Then we used a Tukey test [99] to ascertain
where the difference came from. The results provided evidence for the fact that
the effect of the diversity varies depending on the level of the members’ qualities,
whereas the effect of only the low-quality members varies depending on the level of

diversity with this dataset.

In conclusion, it is not clear whether the results of this experiment can be gener-
alised or not, mainly because this experiment was carried out on only two datasets
and the choice of the diversity measures. These results, in fact, only confirm the
results that we obtained in Section 6.1. This specific diversity definition is not
helpful in detecting the main effect of diversity on the ensemble performance. It
also confirms that the quality of the members has more influence on the ensemble

performance than diversity (measured by DV, agr).

Secondly, this experiment was conducted as a result of an issue raised in Section
6.1, and as studying the interaction effect was not the focus of this research or
one of its main objectives and also due to the time limited available, we could
not spend much time on this experiment. The complexity of the nature of these
factors and the non-existence of a useful definition of diversity make this experiment
very hard to design. Moreover, as the interaction effect between diversity and the

members’ qualities has to be studied under their different combinations of levels, and
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as generating different sets of members for these combinations is data-dependent,
so the data used needs to allow us to generate all the kinds of members’ sets under
these combinations. This would be best achieved using artificial data. To investigate
this further would be beyond the scope of this thesis, but would be an interesting
further study.

6.3.2 General Discussion on Diversity

In this section, we discuss our investigation on the diversity as a whole. In general,
the results highlighted that diversity is an important factor to all the consensus
functions used, probably after the quality of individual members, in terms of im-
proving the ensemble quality, but using the existing diversity measures we were not

able to discover a clear relationship between diversity and ensemble quality.

This finding leads us back to the original question of whether diversity is really
important factor to the clustering ensemble performance. We have seen in the review
in Section 2.3.1, that there is a general agreed perception upon the conceptual utility
of diversity and there is no point in building an ensemble of identical members. This
means that the members have to somehow be different from each other in order to

gain the benefit of their combination.

Thus, in principle, diversity should be a useful factor in constructing a clustering
ensemble, although all the existing definitions of diversity do not show clear evidence
to support this principle in reality. One of the possible reasons, we think is that no
diversity measure has been directly associated with the consensus function, which

as we know, determined the output of the ensemble.

To the best of our knowledge there has been no attempt to use any of the current
diversity measures in guiding the consensus functions when combining the members.
We think the reason for this is that until now there has not been a universally
accepted diversity definition, and the effectiveness of diversity in the context of

the clustering ensemble is still questioned. Most previous work on diversity used
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diversity measurements to measure the diversity in the generated members and
then select those with the desired level. Hadjitodorov et al. [39], for example, used
the EOD diversity measures to select the better performance ensembles by varying
the diversity from a lower level to a higher level. They recommended selecting an
ensemble with a moderate level rather than a high level of diversity. To run a
number of ensembles and select the one with the desired level of diversity is a time-
consuming task that leads us to the same problem of the single clustering algorithm,

which the clustering ensemble is meant to overcome.

On one hand, there is agreement on the importance of diversity, but on the other
hand how to measure it and how to use this measure in designing an effective clus-
tering ensemble is still an open question in this field. Therefore, after investigating
the diversity and highlighting its related issues, in this study we suggest that it is
essential to develop a new diversity measure in the context of the clustering ensemble

and a way to use this measure in conjunction with the member combining process.

6.4 Summary

This chapter investigates the diversity of the clustering ensemble and its relation with
the ensemble performance. To do that, we designed an experimental study to test
the validity of the existing diversity measures using 4 consensus functions including
CO, ONCE, ACE and MCLA. The main finding of this experimental study is that
although all the current diversity measures are designed to measure diversity among
members, they are not doing their job properly in terms of measuring the actual
members’ diversity, and helping in discovering a clear relationship between diversity
and ensemble performance. Furthermore, the results raised two issues, these are:
(1) Diversity can have a positive or negative effect on the ensemble performance. (2)

There may be an interaction existing between diversity and the members’ quality.

In regard to the first issue, we had two sets of ensemble members that all DV

measures, their average member qualities and the standard deviations of their mem-
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ber qualities tell us that there are no significant differences between the two sets of
ensemble members. However, they produced two significant clustering results: one
with a good ensemble performance (a successful combination pattern as the diver-
sity has a positive effect on the ensemble), while the other one had a poor ensemble
performance (a failure combination pattern as the diversity had a negative effect).
We used a simple method of looking at the quality of the combined individual mem-
bers and count how many of them are as poor as the negative ensemble case, as
good as the positive ensemble case and had a medium quality, which is between
good and poor quality. The results showed that this simple method clearly did not
explained how to avoid the negative effect of the diversity, but some characteristics
of the pattern of success and failure for each of the four consensus functions have

been reported.

In regard to the second issue, we investigated if there is an interaction effect
between diversity and members’ qualities on the ensemble performance. We imple-
mented a 3 x 2 factorial experimental design study using two real-world datasets
(the Thyroid and Wine datasets). The results revealed that there was small degree
of interaction between the diversity and members’ quality, and in one case this inter-
action proved to be statistically significant on the ensemble performance when only
ACE or MCLA was used as a consensus function. Moreover, this experiment demon-
strated that there was a statistical significance for the main effect of the members’

qualities on the ensemble performance, but not for diversity’s main effect.

However, the answer to the question being asked in this Chapter (Does the di-
versity influence the ensemble performance?) is that: conceptually, yes, as there
is a wide agreement in the literature on the importance of diversity with regard
to ensemble performance. Practically, the correlation between the ensemble qual-
ity and diversity, as measured by most of the current definitions, indicates that
there is a weak relationship between them, although there are a few cases where a
strong relationship is observed. This was only discovered by dependent measures,

and we noticed that these measures are inconsistent in their results. For the same
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dataset, with the same generated members and using different consensus functions,
the discovered relationship can be changed from a strong to a weak relationship
from one consensus function to another. However, at the moment, as a result of the
absence of a useful diversity measure, we are unable to fully answer this question.
A useful measure is viewed as one it would allow us to measure the true diversity in
the ensemble members, that can be used by the consensus function to combine the

members to produce high-quality clustering results.
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Chapter 7

Conclusions and Further Work

7.1 Conclusions

Upon completing this research on two main issues: consensus function and diversity,

the following conclusion can be drawn.

7.1.1 On the Consensus Function

The first focus of this thesis is the consensus function. Firstly, we proposed the
Object-Neighbourhood Clustering Ensemble (ONCE) to address the problem of un-
certain agreements between members. We studied the effectiveness of ONCE and we
compared it with CO using Single, Average and Complete linkage, and with three
link-based method named CTS, SRS and ASRS. Also, we compared ONCE with
the well-known clustering algorithm k-means and the experimental results showed

that:

1. The most appropriate linkage method is the average linkage method.
2. On average, ONCE outperforms CO, CTS, SRS and ASRS.

3. There is a statistical difference between ONCE and ASRS, and between ONCE

and CO under our experimental set-up.
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4. We tried to develop ONCE further by considering only the most common
neighbours to objects pair results in a new algorithm called £&-ONCE. The
experimental results show that using £-ONCE does not improve the quality
of the ensemble much further compared to ONCE, which is preferred.

Secondly, we proposed two new consensus functions named the Dual-Similarity Clus-
tering Ensemble (DSCE) and the Adaptive Clustering Ensemble (ACE). The nov-
elties of DSCE and ACE are as follows:

1. They are based on two similarity definitions; the similarity between the initial

clusters themselves, and the membership of objects to clusters.

2. They produce the final clustering result without requiring the application of an

ordinary clustering algorithm, unlike most of the existing clustering ensemble

methods including CO, CTS, SRS , ASRS and ONCE.

3. They are efficient, because they only calculate the pairwise similarity between
initial clusters and not objects, and the number of these clusters is much

smaller than the number of objects in the dataset.

ACE is an improved version of the DSCE algorithm in three main aspects. Firstly,
the stability of the DSCE has been improved by producing the final clustering result
with the pre-defined k. Secondly, the effect of its two parameters (a; and as) on
the quality of the final result has been reduced by applying an adaptive strategy for
the value for these parameters. Finally, the object neighbourhood similarity for the
uncertain objects has been taken into account, in order not to lose any information

when we eliminate inappropriate clusters. ACE works in three stages, which are:

1. Transformation stage: the initial clusters are transformed into binary vector

representations.

2. Generating Consensus Clusters: this calculates the similarity between initial
clusters and captures the relationship between clusters. It merges the most

similar clusters to produce the intended k consensus clusters.
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3. Resolving Uncertainty: identifies the object’s certainty of being assigned in
the initial clusters. It focuses on the cluster quality and resolves the uncertain
objects by assigning them to a cluster in a way that has a minimum effect on

its quality.

We tested DSCE and ACE methods on 8 real-world benchmark datasets. The

experimental results showed that:

1. On average DSCE outperforms the other clustering ensemble methods includ-

ing MCLA, CO, ONCE and DICLENS.

2. DSCE is statistically significantly better than the CO and DICLENS methods,
but not the ACE, ONCE and MCLA methods.

3. ACE does not outperform its predecessor DSCE under our experimental set-
up, although it outperforms the other methods. But, ACE has the ability to
combine members without any conditions about the number of clusters they

have.

7.1.2 On Diversity

Diversity in the context of the clustering ensemble has two different types of def-
inition: the Ensemble Output Dependent (EOD), where the ensemble diversity is
defined as the level of variation between its members and its final clustering result
in terms of their matching labels, and the Ensemble Output Independent (EOI),
where the ensemble diversity is defined as the level of variation among the members

themselves in terms of their matching labels.

The second focus of this thesis was to investigate ensemble diversity. Our inves-

tigation in Chapter 6 revealed the following:

1. The existing measures (EOI and EOD) are unable to determine a clear rela-

tionship between diversity and the ensemble performance.
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2. Most diversity measures only revealed a weak correlation between diversity
and ensemble performance using most consensus functions (CO, ONCE, ACE

and MCLA).

3. The EOD diversity measures require the final clustering results to be available,
otherwise the measures cannot be used. To use them in selecting ensemble

members with the desired level of diversity is time-consuming.

4. The EOD diversity measures are sensitive to the type of consensus function
used, and the discovered relationship can vary from a strong to a weak rela-

tionship, from one consensus function to another.

5. We observed that the EOI diversity measures behave in similar way to each

other, but different from the EOD diversity measures.

6. Among the EOD diversity measures, the DV, is not a valid diversity measure

as it always gives an opposite pattern compared to other measurements.

7. The experimental study on the diversity measurements raised two issues that

required investigation:

(a) Diversity can have a positive and negative effects on the ensemble perfor-
mance. The issue was that all the existing DV measures and the average
member qualities told us that there was no difference between two en-
semble patterns, but the ensemble performance of the first pattern was
lower than the average member quality (negative), while the ensemble
performance of the second pattern was higher than the average member
quality (positive).

(b) There may be an interaction existing between the diversity and the mem-
bers’ qualities, then the effect on the ensemble performance might be

determined jointly by them.

The two issues noted in point 7 above, were investigated and the following was

achieved:
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1. We established the formal definitions of the positive effect and the negative

effect of diversity on the ensemble performance.

2. In the negative cases, we found that removing the poor-quality members con-
tributed to improving the performance of CO, ONCE, ACE, and MCLA. In
addition, the performance of ONCE and ACE improved further by removing

the poor-quality members in the positive cases.

3. The effect of diversity differs from one consensus function to another, but the
main characteristics of the pattern of success and the pattern of failure are as

follows:

e In the pattern of success, the ensemble members appeared to have a
medium level of average quality accompanied by a medium level of diver-
sity among them (measured by DVjgs). Precisely, in order to use CO
and ONCE as the consensus function, the members should have between
medium and high average quality (measured by ARI) with a medium di-
versity among them. In order to use ACE, the combined members should
have a medium level of average quality, accompanied by a medium level
of diversity DV,arr. MCLA prefers the combined members to have some
sort of diversity, otherwise it will perform poorly, even when the members

have high-quality clusters.

e In the pattern of failure, an ensemble with a low average member quality,
accompanied with a high level of DV, 4rr and a low level of DV,,,3, would
result in a poor ensemble performance. A gradual increasing of the aver-
age member quality, along with decreasing DV, ag; and increasing DV,,3

by removing the poor-quality members, improves the ensemble quality.

4. We ran a pilot study by implementing a factorial design experiment to inves-

tigate the interaction effect between the diversity and members’ quality.

e We found that the main effect of diversity on the ensemble performance

was not statistically significant (diversity measured by DV, ARI), whereas
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the members’ quality effect was statistically significant.

e We showed that graphically there was a small degree of interaction effect
on the two datasets used, but only on the Wine dataset, using ACE and
MCLA, was this interaction effect statistically significant.

For diversity research, it is widely accepted that diversity is an important factor
when building a clustering ensemble, as there is no need to build an ensemble with
identical members. However, we conclude that how to measure diversity in the

context of a clustering ensemble, and how to use it, is still an open question.

7.1.3 Contributions

The contributions made in this thesis are as follows:

e A new consensus function has proposed based on Object Neighbourhood Sim-

ilarity, named an Object Neighbourhood-based Clustering Ensemble (ONCE).

e Two new consensus functions based on Dual-Similarity Measurements have
been proposed (DSCE and ACE), where the similarity between initial clusters
is measured, followed by membership similarity between candidate clusters

and objects.

e A better understanding has been gained of the existing clustering ensemble
diversity definitions in terms of their ability to discover the relationship be-
tween diversity and ensemble quality. Also, two diversity issues have been

highlighted, which are:

— The positive and the negative effects of diversity on the ensemble quality.

— The possibility that an interaction exists between diversity and member

quality.
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7.2 Suggestions for Further Work

This research has highlighted a number of areas that could be explored further in

the future; these are:

e The definition of W in the ONCE algorithm intends to solve the problem of
uncertain objects by taking into account the similarity of their neighbours.
However, by doing that, we may affect the similarity of some certain objects
to make them become uncertain, so in our future work we will look further

into this issue.
e Testing DSCE and ACE on big datasets.

e In this research we used the ‘set correlation’ as a cluster similarity measurement
to measure the similarity between clusters; a further development of ACE
would be to use other binary similarity measurements instead of S., or a

combination of more than two similarity measures.

e In ACE, the quality of the cluster is measured as compactness; other measure-

ments of cluster quality could also be investigated.

e A further development of ONCE and ACE would be to integrate the elimi-
nation mechanism of poor-quality members, which we introduced in Chapter

6.2, in the process of combining the members.

e A new diversity measure should be developed, and researchers should investi-
gate in depth how ensemble members can be different from each other in terms
of clusters. In the clustering analysis field, one should ask in which aspects
two clustering results can be different/dissimilar from each other. This kind
of comparison has been studied in clustering validation methods, and maybe
using or modifying one of the internal validation indexes, for use as a measure

of diversity, would be useful.

e Researchers should investigate how we can use diversity to guide the consensus

function in combining the members, and to generate more members if needed.
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e An experimental study should be designed using an artificial dataset, to in-
vestigate the interaction effect between diversity and the members’ quality on

the ensemble performance.
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In this appendix, we give the complete results obtained for the experiments conduct-
ing in Chapter 6 in particular in Section 6.1. Firstly, the statistical summary of the
ensemble quality results for each dataset as well as the qualities of their generated
members is presented in Table A.1, Section A.1. Secondly, a statistical summary
of all the diversity measure results is plotted in a boxplot in Section A.2. Finally,

Section A.3 demonstrates the Experiment Results of the Diversity in Line Charts.

A.1 The Statistical Summary of the Results

The statistical summary of the ensemble performance for each of the 8 datasets is
shown in Table A.1, which includes the maximum, minimum and average values
as well as the standard deviation of 100 runs. The Table also includes the highest
maximum value of the members’ performance. For clarity, the bold value in each
column represents the best ensemble performance in terms of the quality for the

specified dataset compared to other ensemble methods.

The ACE method achieved the highest maximum quality in 7 datasets and also
achieved the best average quality in 4 datasets, including Iris, Wine, Glass and Bew,
compared with other ensemble methods. We note that on average, the CO method
achieved the best performance for only one dataset (the Bew dataset). The CO
method achieved a performance very close to the best performance in the Mfeatures

and Glass datasets.
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Table A.1: Statistical summary of the ensemble qualites and the generated members
(Mem) in all tested datasets.

Iris Wine Thyroid Mfeatures Glass Bew Soybean Ionosphere

co Max , Min | 0.730, 0.703 | 0.431,0.333 | 0.605, 0.155 | 0.334,0.309 | 0.287,0.240 | 0.846, 0.846 | 0.748 ,0.545 | 0.178 , 0.173
Ave-Std | 0.721 4 0.007 | 0.381 4 0.039 | 0.376 4 0.163 | 0.321 £ 0.007 | 0.267 £ 0.010 | 0.8464-0.000 | 0.556 £ 0.029 | 0.177 £ 0.001

ONCE Max , Min | 0.730, 0.56 | 0.438,0.333 | 0.637,0.155 | 0.334,0.308 | 0.270,0.219 | 0.846, 0.830 | 0.661 , 0.545 | 0.178 , 0.173
Ave-std | 0.716 £ 0.032 | 0.371 £0.039 | 0.406 £ 0.138 | 0.322:£0.007 | 0.249 £ 0.011 | 0.84640.002 | 0.58540.047 | 0.177 4 0.001

ACE Max , Min | 0.834 , 0.633 | 0.706 , 0.339 | 0.656 , 0.031 | 0.343 ,0.192 | 0.303 , 0.224 | 0.857 ,0.839 | 1.000 , 0.225 | 0.183 , 0.178
Ave-Std 0.7324£0.023 | 0.411£0.045 | 0.343 4 0.153 | 0.315 4 0.027 | 0.26940.016 | 0.846 £0.004 | 0.577 £ 0.129 | 0.178 £ 0.000

MCLA Max , Min | 0.744 , 0.690 | 0.445,0.315 | 0.692, 0.192 | 0.339, 0.114 | 0.268 , 0.010 | 0.852, 0.830 | 0.875,0.545 | 0.178 , 0.168
Ave-Std | 0.719 4 0.007 | 0.377 4 0.025 | 0.53140.097 | 0.319 +0.023 | 0.196 £ 0.038 | 0.845 £ 0.004 | 0.553 £ 0.035 | 0.177 £ 0.002

Mem Max , Min | 0.868 , 0.012 | 0.601 , 0.011 | 0.687 , 0.012 | 0.503 , 0.000 | 0.305 , 0.011 | 0.868 , 0.052 | 1.000 , 0.048 | 0.299 , 0.005
Ave-Std | 0.62540.007 | 0.307 4 0.008 | 0.292 4 0.017 | 0.259 + 0.004 | 0.204 £ 0.004 | 0.627 £ 0.013 | 0.554 £ 0.023 | 0.141 £ 0.006

We found that CO was the most consistent method, as it had a small standard
deviation in 5 datasets; although the diversity varied between 0.2 to 0.65 in these
datasets, which means that the CO method was not affected by it. It is also noticed
that standard deviations of CO in Bew and of ACE in Ionosphere dataset are equal
to 0 which means that their performance in 100 runs are identical, although the
diversity varies between 0.33 to 0.54 in Bew and between 0.43 to 0.66 in Ionosphere
(measured by DV, ags as seen in Figure A.1, A.2 and A.3). Thus, the performance of
CO on Bew and ACE on Tonosphere were unaffected and remained constant by the
generated diversity. We will investigate these findings further in terms of how much

diversity was generated in the next two sections, using boxplot and line charts.

A.2 Demonstrating Results in Boxplots

Figure A.1, A.2 and A.3 show 5 boxplots for the results from measuring the diver-
sity achieved with the different methods on the 8 datasets. These boxplots show
the range of diversity values for 3 pairwise (Figure A.1) and 4 non-pairwise diversity
measures (Figure A.2(a), A.2(b), A.3(a) and A.3(b)). For clarity, these boxplots
present six statistics: the minimum, the lower quartile, the median, the upper quar-
tile, the maximum and the mean (represented by a star) in a visual display. The
larger height of the box means that the diversity values in 100 runs for a particular
dataset and using a particular measure are wider, while a box of small height means

that the diversity values are very close to each other. From these plots, the aim is
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to discover the distribution of the diversity results from 7 different measurements in

the tested datasets.

Generally speaking, all the diversity measures have a value range of [0, 1] except
DV,,,4, which has an open value range of [0, oo]. It is clear that the range of diversity
values varies from one type of measurement to another type. The range of diversity
values measured by pairwise measurements DV,4r; and DV,yar is more or less
the same in most datasets, which indicates that these measurements display similar
behaviour in measuring/estimating the diversity. The maximum level of diversity
with all datasets reached just below 0.8, using the Entropy measurement in the
Thyroid dataset, while the minimum level of diversity was equal to 0.2 with the Iris

dataset.

On the other hand, the range of diversity in non-pairwise measurements is not
too wide, especially using DV,,,1, DV,po and DV,,,3. We noticed that involving
the ensemble result in calculating the diversity in these measurements is highly
associated with the ensemble quality. For example, when using the MCLA method
on the Soybean dataset, the group diversity measures gave different results from
those using the other ensemble methods. This indicates that the MCLA results are

more diverse from the members than the other three methods in this dataset.
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Figure A.1: The boxplot of the diversity results measured by the pairwise diversity
measures: it shows the distribution of the diversity values of generated members in
100 runs in the 8 tested datasets. The line in each box represent the median value
of the diversity and the star represents the mean value of 100 runs.
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(b) The non-pairwise diversity measures using ONCE method

Figure A.2: The boxplot of the diversity results measured by the non-pairwise di-
versity measures using CO and ONCE methods.
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Figure A.3: The boxplot of the diversity results measured by the non-pairwise di-
versity measures using ACE and MCLA methods.
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A.3 Demonstrating Results in Line Charts

For each dataset, we have 4 ensemble results; thus we plot 32 Figures, as shown
from Figure A.4 to A.35. In each Figure, we have 7 subfigures, each one of which

represents a different diversity measure. So in total, we have 224 subfigures.

In Figures A.4 ~ A.35, a high value in DV, arr, DV,nyr and Entropy means that
the members of the ensemble are very different from each other, while a lower value
in these measures means that members are very similar to each other. We should
mention that these interpretations are different from other diversity measurements as
a high value in the non-pairwise individual diversity measures means that members
are different from the ensemble results and a lower value means that they are similar
to the ensemble results. A high value of the quality measure means that the ensemble
quality and the average member quality are more accurate to the truth label of the

dataset, and a lower value means that they are inaccurate.
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Figure A.5: The seven diversity measures from Iris dataset using ONCE-Av.
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Figure A.6: The seven diversity measures from Iris dataset using ACE.
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Figure A.7: The seven diversity measures from Iris dataset using MCLA.
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Figure A.11: The seven diversity measures from Wine dataset using ACE.
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Figure A.12: The seven diversity measures from Glass dataset using CO-Av.
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Figure A.13: The seven diversity measures from Glass dataset using ONCE-Av.
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Figure A.14: The seven diversity measures from Glass dataset using MCLA.
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Figure A.15: The seven diversity measures from Glass dataset using ACE.
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Figure A.16: The seven diversity measures from Thyroid dataset using CO-Av.
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Figure A.17: The seven diversity measures from Thyroid dataset using ONCE-Av.

3 . 04_ 0.5
Diversity Measure

(g) DVnp4

219



Appendix A.

0. T T T T 0. T T T T T T T
0751 0.751
07r 07r
X ¥
065 t |I‘,, 065 ¥ f‘ .
—~ —~ 1 Now Ry x
= osf X I H l’. :‘_»,..' N 1 = 06 - N i IRV TN .
E 0.55 :‘)"" '1": ...,"".‘.”"" ] 4’:.' rn,T Iqi& 1 E 0.55 |' N R\ &"\ ‘:"‘x’?:n\ ﬁ'zﬁrﬁ':ﬂ Y ¥ ]
< Do S SHEE 1 o < RN HERE AN T Y ‘{
© ost o trary % :, bk 1 o osf o S z‘ R R T Lt 1
RN RS R o 1 SR SN H Wt q
Foor Lowubiimy o i Ty f oMby
@ oaf t o oyoutron Fugw R 1 © o 3] I J
2 sl A Aoww oy 5] * R A
ST oSt el Ll o 2 ol 0 Bee b e ges,’
Z ooty e ga p 1 Zoosf R SWdEfpo b 4% 0% 1
= ¥ 4 @8 o = & P ' ©-@ Co- - _
© o25) ? 1 bdo o) él 6’0 -0 1 © gos| & o® & © ® °
g 0.2 °© ) g 02 © 1
2 H 1 2 1
0.15[ 1 0.15[ 1
01 1 01 1
0.05[ 1 0.05[ 1
0.64 0. ‘SG 0.298. . U‘.7 U.‘72 0. ‘74 0.76 0.53 0. ‘54 0.‘55 0. ‘55‘ 0.‘5.7 0. ‘58 D.‘S':) O‘S D.‘Sl 0.62
Diversity Measure Diversity Measure
(a) DVpARI (b) DVpNMI
0. T T T T T T T 0. T T T T T T T
0.75[ 0.75F
071 1 071 1
085 T T\\ 4 0.65[ Z ’)( q
= . x X, x hox Y = ¥ :11 LS S T
= o6 A Yoo s 4 e . N T . ! X N - ,
Soul Tx P LTURA L REape o Soa T RZT N EEETER LT
= il I LR iyt | H L ! = [ARRNEY "|'i’h.";|||'|'f‘u|/’§
o osk o\ b R oy ] o o oty R ke 1
Sost vt F oW W o i Vi 1 5 ousl woor n { T 1
7] AL BRI v @ ! WO
@ PR [ It " ¥ [ KBTI
S oer P il | v v M N g 04 [T o 1
S osst ' ik H * 1 S oast Ong [ S A ]
- °e & Q?& o Qo < 9%96“9—“::3 o !
2ot g BERSy wm " boon- g 2 osf L3 ™ He 2 .
% 025} B P \ \?* R A é ° % 025} II: 3 1 i o) &° 'CEL,G" B
g o2r * 4 O oz 4 4
0.15[ 1 0.15[ 1
01k B 01| B
0.05[ 1 0.05[ 1
0.69 D‘.7 0‘71 0.‘72. 0‘7‘3 0‘74 0‘75 0‘76 U.‘77 0.78 0.48 0‘5 0‘52 D.‘SA . 0‘55 . 0‘58 U‘& 0‘62 0;54 D.‘GS 0.68
Diversity Measure Diversity Measure
(¢) Entropy (d) DVpp1
0. T T T T T T 0.
0.75[ 0.75[
07 A » 1 07h
Ao.ss— x,’ " |“ ,?‘w . 4 Aoss—
=" osf ' RET x B = osf
o L ex hor > o g xoesomne —x o
< oss ' ¥ T ‘I;:ﬁ: :,l‘k ‘ I’\%::g "y x i < oss
o o5t \ \ ‘"!*:' lﬂ \’i: e B o o5t
S ossf ot " F il J S oasf
17} ! [ 't[ wile 17}
@ oaf v [ ke 1 @ o4t
2 035t L*" b | I o, @ 1 2 o035t
= ! :';.,5;; ogls %o 2 o =
Z ot el o ’gsf&?,\ R R WL 1 2 osf
B oot 1 ©; o q T o5t
=] o =1
o 02r 1 O 02r
0.15F 1 0.15[ 1
01k B 01 B
0.05[ 1 0.05[ 1
02 0. ‘22 U.‘Zé 0‘26 . O.‘ZB U‘.3 0.‘32 0. 234 0.36 0.26 0. ‘28 U‘S 0. éZI D.i’i.‘% 0. gS 0.‘38 0‘¢ 0.‘42 0.44
Diversity Measure Diversity Measure
(e) DVppo (f) DVyps
0. T T T T T T
0.75F
071 ¥ 1
065 ! ',( ¥ i
R N S (O Y
- 6wy 1\ daid » Fwn P
< ossf > AT I-.::\Jﬁ.d‘ﬂ‘ N 1
~ iy i X k&
o o7 HERTT A ]
S oss I T A TR T 1
2] N [ I 1T I
S oaf faboh i 1
151 R T S
= ost IS R U PR EEs 1
> o FIRT S R
3t ., 1
2ot o bt g |
= Lt !
g ozr 4 4
0151 4
01r 1
0.05F b
02!5 0‘4 0‘¢5 0‘5 0‘55 U‘G 0‘65 0.7

Figure A.18: The seven diversity measures from Thyroid dataset using MCLA.
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Figure A.20: The seven diversity measures from Mfeatures dataset using CO-Av.
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Figure A.21: The seven diversity measures from Mfeatures dataset using ONCE-Av.
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Figure A.22: The seven diversity measures from Mfeatures dataset using MCLA.
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Figure A.23: The seven diversity measures from Mfeatures dataset using ACE.
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Figure A.24: The seven diversity measures from Bew dataset using CO-Av.
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Figure A.25: The seven diversity measures from Bew dataset using ONCE-Av.
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Figure A.26: The seven diversity measures from Bew dataset using MCLA.
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Figure A.27: The seven diversity measures from Bew dataset using ACE.

229



Appendix A.

T T 1 T T T T T
0.951 0951
09 09
0.851 1 0851 1
08 1 0.8 1
= ozt , = orst ,
E 0.7 ! q E 071 ’ q
~ oest H X q ~ oes Iy ! 1
O ol ° p v o [N D o6} P \L ¥ 4
N ]
Fod ol RN e 5 | gow  2o-- ob-ileld i dooyscs |
S os- < S osf s
% 0451 B g 0451 B
0.4 1 0.4 1
E=pyl ] Pyl 1
% 031 b g 031 b
O 0251 1 O 0251 1
02 1 0.2 1
0.15F B 0.15F B
01 1 01 1
0.051 1 0.051- 1
0.35 ¥ 0.‘45 0‘.5 0.55 0.22 0.‘24 O.‘EG 0.‘28 0.‘3 0. 212 0. 154 0.36
Diversity Measure Diversity Measure
(a) DVpARI (b) DVpNMI
1 T T T 1 T T T T T T
0.951 0951
091 091
0851 1 0851 1
0.8 1 0.8 1
=075 4 =075 ¥ 4
E 0.7 7 1 E 0.7 ||I 1
;o.ss— 7; T ¥ 4 ;oss—‘\ 7“, I 4
= 06[ ¥ q P ] N H
B 055t EZ:EB’;‘%M&#W o N B 055t %::Offﬁzmw i
& 05 imﬂd?\b R & [ E’«E‘s’ﬁ
% 0451 B é’ 0451 B
o4 , o4 ,
.‘2"0.35* B .“i"OGS* 1
% 031 b g 031 b
O 0251 1 O 0251 1
0.2 1 0.2 1
0151 B 0151 B
01 1 01 1
0.051 1 0.05- 1
0.1’!5 0.‘4 0. ‘45 0‘5 0.55 0‘3 O.i’i? 0. gid 0.1’!6 0. 238 D‘,d 0. ‘42 0.‘44 0.46
Diversity Measure Diversity Measure
(¢) Entropy (d) DVppr
1 T T T T
0.951
0.9
0851 1
08 b
ol i ]
snss— n * S
D o6 x x Y ‘S ‘o
‘:,5, 055 QQ—MW%E—,&&’G&Q—--J’ B
© o5 “‘E
2 0w ,
0.4 1
20357 1
g 03[ 1
O 0251 1
0.2 1
0.15F B
01 1
0.051 1
0.16 0. ‘15 012 U,‘22 0. ‘24 0. ‘26 D,‘ZB 03 0.36 0. ‘35 D.‘4 0.152 0.‘44 0,‘48 0.48
Diversity Measure Diversity Measure
() DVyp2 (f) DV,ps3
1 T T T T T T T
095
09
085 1
08 B
~— 0751 ¥ 1
2 ! ]
~ 065 } ¥ 74
g o6 e ﬁ” i $ o o
055 e % - —rte—mm= o
& o % o ¥ J
2 oss- ,
> 04 1
= oa3sf 1
K—; 031 b
O 025 1
0.2 1
0.15F B
01 1
0.05 1
0.35 n‘,A 0. ‘AS 0.‘5 0. ‘55 0‘6 0. ‘65 017 0. ‘75 0.‘8 0.85

Figure A.28: The seven diversity measures from Soybean dataset using CO-Av.
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Figure A.29: The seven diversity measures from Soybean dataset using ONCE-Av.
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Figure A.30: The seven diversity measures from Soybean dataset using MCLA.
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Figure A.31: The seven diversity measures from Soybean dataset using ACE.
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Figure A.32: The seven diversity measures from lonosphere dataset using CO-Av.

1.1 . . 12 1.‘3
Diversity Measure

(g) DVnP4

234



Appendix A.

0. T T T T T 0. T T T
e - R % = - ot s s . s R~ R
= o015 & 1 = o5 —o& 279 0 1
ool “eoqwfl £ ST B
< )2 W < s I A
o r”% o e Soi e e
3 2
© 4 3] L 4
@ 0.1 @ 0.1
= =
= =
® ®
S =
o 0.05 b O 0.051 b
04 045 o5 o5 o6 o6 o7 075 n oS “os o5 o5 065
Diversity Measure Diversity Measure

(a) DVpars (b) DVpnmr

0 T T

T 0. T

R Do R WO K W M X, W X
x

s@-nm&@&&ﬁﬁ%‘ %f{ ﬂ% ]

»aa,

o X300 00K OH KOO JEMINEIENCS: Y00EK XN X BN K WX~ XK KK % X X
~ H x

T L W ’

°
@

Qulaity Measure (ARI)
Qulaity Measure (ARI)

005 0.051

. 06 . 0.65 03 . . 0.35
Diversity Measure Diversity Measure

(¢) Entropy (d) DVop:

°
@
°

o---o M}ﬁ?ﬂ%m ]

me_‘

[ [
< <
g g
p=l >
@ @
S ol ] S ol
= =
z z
s s
> =l
G ¢}

® o
L o 0
nu*? p@%&a‘&ﬁm e 0%
29 2 X %o
ooy AP GRS 7
)

°
]
°

034 0.36 0% 044 0.46 0.48 0.49 05 051 052 053 054 055 056 057

Dlversny Measure Diversity Measure

(e) DVnpg (f) DVnpg

0 T T T

- e e e e e

%ﬂw g%“”‘*w e
oy, emu
.‘9

e
)

Qulaity Measure (ARI)

1.1 . . 12 13
Diversity Measure

(g) DVnp4

Figure A.33: The seven diversity measures from Ionosphere dataset using ONCE-
Av.

235



Appendix A.

0.2 T T T T T 0. T T T
" . P e e o g A S S
Z orst pﬁ%gﬂﬁﬁ%ﬁ f ot Cop- Bq“&éuﬁ@?‘%%ﬂ i
[ g0 [
2 2 ?
S 01F 4 8 0.1F 4
= =
= =
s s
8 0.051 1 8 0.05- 1
04 0. ‘45 0‘5 0.5 ‘ 0‘6 0. 65 D.‘7 0.75 0.4 0.“35 0‘5 0.‘55 O.‘G 0.65
Dlversny Measure Diversity Measure
(a) DV,agr (b) DVynur
0.2 T T T 0. T T T
ICLA
= © = Ave-mem
R i s o L TN e & P RN
= ois) -0 g Z ol oo m MRp)] 5o 99° o ,
T oor Yoo %ﬁ ﬁ?’% @ 9% Ry Ebg Muﬁ 0P
< #é % 'e: @ < ° é‘gg -1 \E\P 025\‘5.;?0\ ?\\ o
° ‘. eﬁﬁP ° ° @ w e %’ ‘Qb
4 4
S 01F 4 8 0.1F 4
= =
= =
s s
8 0.051 1 8 0.05- 1
05 0.‘55 D.‘S 0‘65 0.7 075 0.25 D‘,G 02!5 0‘4 0.45
Diversity Measure Diversity Measure
(¢) Entropy (d) DVpp1
0.2 T T T T 0. T T T T
R £ - SR P PRV Yoat) el T = Sumni
= o1sl ey & 1 = o5l ® of 1
T os 3 Eﬂﬁm 9 T o %ﬂﬁﬂ‘ y lge
< Fﬁ&&w@ s 3 < . X Y ,
B 6590 ®Pg o ® 1) ©
< ® Yy © -0 o v %% 1)
4 4
8 01F 4 8 01F 4
= =
= =
s s
8 0.051 1 8 0.051- 1
0.34 0. giS 0.‘38 0‘4 U.;Z 0. lM 0.46 0.46 0. ;B 0‘5 0. ‘52 0.‘54 U.‘SB 0.58
Diversity Measure Diversity Measure
(e) DVipo (f) DVips
0. .
= o5l ‘?Pe - 000 4
T o ,%?.q mﬁ@ o- o ©
< oy u ° 008, { ‘0 » 3 4
P \
>
@
S ot ,
=
2
T
=
O 0.051 1
08 O.‘S " : ! 1‘3 1“)

Figure A.34: The seven diversity measures from lonosphere dataset using MCLA.
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Figure A.35: The seven diversity mea

sures from lonosphere dataset using ACE.
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Table A.2: The p-value of the Correlation coefficient at the 95% confidence interval,
where the correlation is presented in Table 6.1

Datasets CF DVyARI DV,NMI Entropy DVipp1 DVip2 DVips DViypa
CcoO 0.219 0.125 0.152 0.166 0.429 0.197 0.224
Iris ONCE 0.001 0.000 0.000 0.000 0.000 0.000 0.000
ACE 0.134 0.127 0.158 0.012 0.001 0.002 0.001
MCLA 0.528 0.543 0.569 0.603 0.704 0.646 0.637
CcoO 0.004 0.020 0.005 0.000 0.000 0.000 0.000
Wine ONCE 0.197 0.547 0.277 0.000 0.000 0.000 0.000
ACE 0.035 0.056 0.050 0.000 0.000 0.000 0.000
MCLA 0.927 0.848 0.673 0.072 0.000 0.000 0.000
CcoO 0.420 0.577 0.412 0.631 0.127 0.633 0.448
Thyroid ONCE 0.905 0.446 0.916 0.399 0.639 0.767 0.716
ACE 0.360 0.747 0.519 0.000 0.001 0.000 0.001
MCLA 0.059 0.006 0.069 0.168 0.013 0.786 0.238
CcoO 0.127 0.065 0.170 0.027 0.000 0.000 0.000
Mfeatures ONCE 0.731 0.621 0.598 0.275 0.000 0.003 0.000
ACE 0.488 0.434 0.148 0.000 0.000 0.000 0.000
MCLA 0.246 0.062 0.005 0.000 0.004 0.000 0.000
CcoO 0.998 0.649 0.993 0.060 0.568 0.085 0.134
Glass ONCE 0.176 0.597 0.175 0.201 0.047 0.110 0.172
ACE 0.000 0.002 0.000 0.000 0.018 0.000 0.000
MCLA 0.472 0.875 0.444 0.000 0.000 0.000 0.000
Cco 1.000 1.000 1.000 1.000 1.000 1.000 1.000
Bew ONCE 0.235 0.747 0.338 0.093 0.756 0.088 0.093
ACE 0.165 0.421 0.227 0.096 0.896 0.075 0.099
MCLA 0.097 0.308 0.112 0.060 0.264 0.162 0.112
Cco 0.905 0.891 0.476 0.019 0.364 0.233 0.375
Soybean ONCE 0.292 0.942 0.326 0.000 0.001 0.000 0.000
ACE 0.636 0.261 0.152 0.000 0.000 0.000 0.000
MCLA 0.751 0.433 0.835 0.028 0.027 0.004 0.008
Cco 0.428 0.490 0.437 0.308 0.803 0.141 0.206
ONCE 0.596 0.641 0.748 0.444 0.710 0.223 0.332
Ionosphere
ACE 0.539 0.583 0.377 0.289 0.504 0.074 0.109
MCLA 0.000 0.000 0.000 0.000 0.045 0.000 0.000
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In this appendix, we give a complete results of the experiments in Section 6.2.1.

B.1 The Complete Results of Analysis of the Pos-

itive and Negative Effects of Diversity

Each Figure from B.1 to B.15 is related to a particular pair of ensemble cases (blue
is a negative and red is a positive ensemble case), and in each one of them we
have three subfigures (a, b, and c). Figure (a) represents the diversity measures,
the ensemble quality, the average member quality and the standard deviation of
the member quality (all qualities measured by ARI) of a particular pair; Figure
(b) represents the distributions of the related individual members’ qualities to a
particular pair; and Figure (¢) shows the number of members whose quality is as
poor as the negative ensemble quality in a particular pair (Poor Q-mem), the number
whose quality is as good as the positive ensemble quality (Good Q-mem), and the
number of members that have a medium quality (between the poor and the good
quality levels, Medium Q-mem). In Figure (a), we plot only one of the consensus
functions that has been identified as a negative case, along with its related diversity
measures. Figures from B.16 to B.26 show the similar results that shown in figure
(a) but with the other consensus functions. The following sections explain these two

situations in more detail:
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Results of the First Situation

In this situation, we looked for negative cases that occurred on at least two con-
sensus functions. From case 1 to case 4, the negative cases were discovered in ACE
and MCLA (Figures B.1 and B.5), while case 5 and case 6 were discovered in CO
and ACE (Figure B.6). The results show that whichever diversity measures are used
in cases 1 and 2, the two ensembles have the same level of diversity, and their aver-
age member quality is more or less the same, as is the level of standard deviation,
however case 2 is positive and case 1 is a negative case. Looking at the quality of the
individual members we found that members in case 2 clearly had higher quality than
case 1, and by classifying these members in terms of their quality, it is noticeable
that case 2 had less poor members and more members of a medium quality than
case 1. Due to the implemented techniques in ACE and MCLA, we noticed that the
members in case 1 had a pattern of failure, while the same pattern was successful
when the CO and ONCE were used, as both of them had a very good performance
(0.579) in case 1 as shown in Table 6.2.

Figures B.2 and B.3 show the heat maps of the similarity matrices of CO and
ONCE respectively. When compared with the heat map of the Thyroid true label
in Figure B.4, we find that more object pairs are similar in case 1 than in case 2,
particularly in the cluster placed in the middle of the similarity matrix. Applying
the average linkage over these similarity matrices results in cluster labels with better
quality in case 1 than in case 2. ACE and MCLA apply the pairwise similarity

between clusters and not objects; this is why they do not perform well in case 1.

The other two pairs in this situation are different from pair one in terms of the
quality of the other consensus functions used, which are ONCE and ACE in case 3
and ONCE and MCLA in case 5. They also did not perform well compared to their
second pair (positive case). When considering the quality of each individual member
in case 3 and case 5, we found that their second pair (case 4 and case 6) had more
good quality members. Furthermore, the number of poor-quality members in case 4

was four less than in case 3, while case 6 had three more poor members than in case
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5, but on other hand it had double the number of good members — one of them
had a quality higher than 0.6. It was observed that this very good quality member
(Q(P,) > 0.6) was also one of the members in case 3 (negative case), but as the
quality of the other members was not good enough to support it, the overall quality
of the ensemble was poor. Therefore, it is clear that how the members resemble

each other in terms of quality has an influence on the ensemble quality.

Results of the Second Situation

In this situation, the negative cases occurred on at least three consensus functions,
and we have 8 pairs (from pair number 4 to 11 as shown in Table 6.2). In all of them
the negative cases occurred on CO, ONCE and ACE, except pair number 9, where
the negative case (Cases 17) occurred on CO, ACE and MCLA. The results of the
individual members’ qualities in case 8, case 10, case 12 and case 14 (positive cases),
which are shown in Figures B.7, B.9, B.10 and B.11 respectively, show that the
members have higher quality than the members in the negative cases, and the total
number of good-quality members in the positive cases is larger than in the negative
cases. Obviously, good-quality members with a high level of diversity (measured
by most measurements except DV, DV;,,3, where they had a medium level) had
contributed to improving the quality of the ensemble in the positive cases, while the
poor-quality members with the same level of diversity had a negative effect on the
ensemble performance for these particular consensus functions (CO, ONCE, ACE).
Therefore, the reason behind these negative cases is the number of poor-quality
members with high diversity among them. This indicates that each member made
different errors in terms of cluster structure in the dataset, leading to lower/zero
similarity between the correctly classified objects and to poor performance ensemble

results for these consensus functions.

Figure B.7(b) shows that cases 8 and 7 had more or less the same number of
members in each category, with only one less poor member, which moved to the
medium-quality category in case 8, with the same level of diversity in both cases.

The ensemble performance (CO, ONCE and ACE) in case 8 is much better than in
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case 7. Interestingly, MCLA had not been affected by the change in the category of
this member or the improvement of the members’ quality in case 8. Investigating
the similarity matrix of CO in case 7 and 8 as shown in Figures B.8(a) and B.8(b)
respectively, it is shown that more pairs of objects in case 8 are more similar to each

other than in case 7.

Pair 8 consists of very interesting cases as shown in Figure B.12, in which half of
their members were classified as poor-quality members (their quality was less than
or equal to 0.2) with approximately the same average member quality in both of
them, and a slightly increasing diversity in case 16. It was observed that case 16
had the highest number of poor members among all the positives cases that we had.
This indicates that having a high number of poor-quality members in the members
is not always a sign of poor ensemble performance — if the right diversity among

them is achieved combining them can produce a high performance ensemble.

Cases 18, 20 and 22 (positive cases) as shown in figures B.13, B.14 and B.15
respectively also had a higher number of quality members than their second pairs
(cases 17, 19, and 21 respectively). Case 18 had also fewer poor-quality members
than case 17, and both of them had three good-quality members, one of which had
quality higher than 0.6 (case 18). In case 19, the number of poor-quality members
is lower than in case 20, which is also the lowest among all the negative cases in
this analysis, and as the number of good-quality members in this case is also low,
there was no room for the ensemble to improve upon its members, whereas there
were six good-quality members in case 20, so the ensembles were improved in terms
of quality for all the consensus functions used in this case. In case 22, there were
five good-quality members in the members, while in case 21 there were only three
good-quality members. Among these good members in both cases, one member had
quality higher than 0.6, because in case 22 there were more members to support this
high-quality member than case 21. The ensembles were improved in all the used

consensus functions in case 22.

In summary, in most cases, the poor-quality members with a high level of DV, sr;
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had affected the ensemble quality, and thus in the next section we will design an
experiment to see how the different consensus functions perform as the poor-quality
members are gradually removed. We will also see if the gradual removal of this dete-
rioration in the diversity in the members leads to a successful ensemble performance

or not.
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Figure B.1: Pair # 1 consists of Case 1 and Case 2.
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Figure B.2: The heat map of the CO similarity matrix for Case 1 and Case 2.
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Figure B.3: The heat map of the ONCE similarity matrix for Case 1 and Case 2.
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Figure B.4: The heat map of the true label of the Thyroid dataset.
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Figure B.5: Pair # 2 consists of Case 3 and Case 4.
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Figure B.6: Pair # 3 consists of Case 5 and Case 6.
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Figure B.7: Pair # 4 consists of Case 7 and Case 8.
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Figure B.8: The heat map of the CO similarity matrix for Case 7 and Case 8.
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Figure B.9: Pair # 5 consists of Case 9 and Case 10.
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Figure B.10: Pair # 6 consists of Case 11 and Case 12.
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Figure B.11: Pair # 7 consists of Case 13 and Case 14.
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(a) DV measures, ensemble quality, the average and the standard
deviation of member quality.
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Figure B.12: Pair # 8 consists of Case 15 and Case 16.
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Figure B.24: Pair #9 consists of Case 17 and Case 18.
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Figure B.25: Pair #10 consists of Case 19 and Case 20.
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B.2 The Complete Results of Eliminating Poor

Members

Figures B.27 to B.37 show the results of experiment in Section 6.2.1.3, and each
figure has 4 subfigures: subfigure (a) represents the 25 runs on the negative case,
and subfigure (b) shows the comparative positive case. The first run in these figures
shows the original results of the cases (of combining 27 members), and the bar chart
shows the quality of the individual members Q(m),m = {1,2,...,27} sorted in
ascending order. Subfigures (c) and (d) show the diversity values for the negative

and positive cases respectively.

In the First Situation, we have cases 1 to 6, where the negative case 1 was
associated with ACE and MCLA consensus functions, while case 3 was associated

with the CO and MCLA, and case 5 was associated with CO and ACE.

In case 1 shown in Figure B.27(a), the results show that the performance of
MCLA improved in run 2, as the poorest quality member was removed, while ACE
improved in run 4 in terms of being better than the average member quality, and
ACE gradually improved as the poorest member was removed in each run (up to run
16, after which it remained stable). On the other hand, the performance of MCLA
remained stable from run 2 to run 24, but in the last run its performance dropped
to 0.2. In this run, 3 members were combined; these members had equally high
qualities (0.579) and DVjar; equal to 0. This means that this particular pattern
of the members can cause MCLA to perform poorly, but not the other consensus
functions. In case 2 shown in Figure B.27(b), the performance of CO was stable until
run 10, when it then dropped slightly below the average member quality. We think
the reason for this is that there is a greater occurrence of the wrongly classified
object pairs, compared to the correctly classified object pairs, in the members in

runs 11, 12, 13 and 14.

On the other hand, in the same case, ACE performance improved from the point

of removing the poorest quality member in run 1. MCLA performance remained
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stable until run 18, when it then fluctuated below the average member quality
to almost equal to the average member quality. Looking closely at runs 18 and
19, the MCLA performance dropped from 0.550 (being positive) to 0.235 (being
negative); the diversity measured by DVj,ap; was 0.428 and 0.432 respectively, and
when measured by DV, it was 0.428 and 0.432 respectively. The performances
of CO, ONCE and ACE were the same in these two runs. This indicates that the
performance of MCLA in run 19 is not affected by the quality of the members or
by their diversity, and that it is in fact due to its implementing techniques, which

makes it sensitive to this members’ pattern.

In case 3 shown in Figure B.28(a), from run 2 to 4 the MCLA quality gradually
improved as the poor members were removed, then it was not stable until run 16,
after which it gradually decreased below the average member quality as the latter
increased and the diversity (measured by DV,,,3) slightly decreased. In contrast, CO
performance remained below the average member quality until run 7, by which point
6 poor-quality members with a quality of below 0.2 had been removed. In run 7 it
improved slightly and then dropped slightly lower than the average member, but in
run 19 as the average member quality increased, the performance of CO improved
to a higher level until it reached 0.597 in the last run. The diversity in this run
reached a medium level measured by DV,ag;. In case 4 shown Figure B.28(b), the
performance of CO was stable until run 13 where it slightly improved as the average

quality increased and the diversity measured by DV, g slightly decreased.

In case 5 shown in Figure B.29(a), the performance of ACE improved as the
poorest member was removed in run 2, and it then remained stable until run 13
when it improved to a high level as the average member quality increased and the
diversity slightly decreased. The results show that in run 19 the performance of
MCLA decreased to below the average member quality as the latter increased and

the diversity decreased to reach a value of 0.4 (measured by DV,arr).

In the positive case 6 shown in Figure B.29(b), the quality of CO remained almost

stable as the average quality of the members increased and the diversity decreased,

266



Appendix B.

until run 20, when its quality was slightly below the average member and diversity
reached 0.4. The performance of ACE improved further as a result of removing poor-
quality members, and reached over 0.6. The performance of MCLA in this case was
not stable; it had small fluctuations as the average member quality increased until
run 17, after which it fluctuated greatly from above to below the average member

quality as diversity decreased.

The Second Situation includes cases 7 to 22, and as mentioned previously, the
negative cases occurred in three consensus functions, which are CO, ONCE and
MCLA in case 17, and in the remaining cases they occurred with CO, ONCE and
ACE. However, in these negative cases (7, 9, 11, 13, 15, 17, 19, and 21) there
was a clear cut-off point for CO, ONCE, and ACE improvements from below the
average member quality to higher than the average member quality. It is therefore
clear that removing some poor-quality members, and consequently increasing the
average member quality and decreasing the level of diversity, positively influenced
the performances of CO, ONCE and ACE. The positions of the cut-off point were
different for each consensus function in each case, but the remarkable features about

them are as follows:

1. CO improved in run 9 (in cases 13, 15, 17 and 19), 11 (in cases 7 and 11), 13 (in
case 21), and 17 (in case 9). It is clear that CO improves when most of the poor-
quality members are removed, compared to other consensus functions. This
is explained by the fact that CO measures the degree of agreement between
members when clustering a pair of objects, and in the members of these cases
the poor-quality members increase the certainty of wrongly classified pairs of
objects more than correctly classified pairs of objects. In addition, as CO only
considers the object pairwise information, it produced poor-quality clustering
until we had removed some of the poor-quality members. For example, in
case 15 shown in Figure B.35(a), CO had a very poor performance until run
9. Comparing run 7 to run 10, CO performance improved from 0.221 to

0.579 (as good as its performance in its compared positive case number 16),
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and the average member quality increased slightly from 0.346 to 0.376. The
diversity measured by DV, ar; decreased slightly from 0.539 to 0.525, while
that measured by DV,,,3 was equal to 0.411 in the two runs. This is shown in
Figure B.39, the heat map of the CO similarity matrix, in runs 7 and 10 in
case 15. As we can see, the certainty of the correctly classified object pairs in
the first cluster (from the left) in run 10 is higher than in run 7, as well as some
object pairs in the third cluster. Thus, the clustering results produced by CO
in run 10 are much better than in run 7 in terms of quality; neither diversity
measures nor the average member quality are able to give an explanation for

this difference in performance.

In all the negative cases, the performance of CO at some point of removing
the poor-quality members improved to a level that was as good as or above
its performance in its compared positive case. The exception to this was case
9 shown in Figure B.31(a), where in all the 25 runs CO performance did not
reach the same level as in case 10. The highest quality of CO in case 9 was
0.516, which was in run 25, where it was built by combining 3 members which
each had a quality of 0.373, 0.402, and 0.462, making an average of 0.412 and
DV, ary of 0.536. In case 10 shown in Figure B.31 (b), the highest performance
of CO was 0.579, which occurred in a number of runs, but mostly from run 15
to the last run, the average member quality increased from 0.452 to reach 0.588,
while the diversity decreased from 0.412 to 0.190. This clearly indicates that
this high-quality performance of CO in the positive case is influenced by the
high average member quality and lower diversity, which makes the certainty
between the correctly classified objects pairs higher than between the wrongly

classified ones.

2. ONCE improved at an earlier stage than CO, and specifically in run 9 (in
cases 7, 11 and 19), 15 (in case 9), 5 (in case 13), and run 4 (in cases 15
and 21). In fact, there are no negative cases in this experiment where ONCE

improved after CO improvement, it is always the case that ONCE improves
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before CO improves, after removing poor-quality members. The reason for
this is that ONCE considers the similarity between the common neighbours
of a pair of objects, as well as the similarity between the pair itself, so there
is more information to be constructed from the members in ONCE than in
CO. For example, in case 15 shown in Figure B.34, ONCE started with a low
quality of 0.22; it then improved in run 4 of 0.579 after removing only three
poor-quality members, and then it remained stable at the same quality until
the last run. In the same case, in runs 2 and 5, the ONCE quality was 0.221
and 0.579 respectively, the average member quality increased from 0.296 to
0.329 and the DV, 4 decreased from 0.623 to 0.566. Plotting the similarity
matrix of ONCE in both cases, as shown in Figure B.41, we found that the
certainty between the correctly classified object pairs, in particular in the third
clusters (from the left) in run 5, is higher than in run 2, and there is lower
certainty between wrongly classified object pairs, in particular the one that is
not truly classified in the first and the second clusters (from the left). It is
also noticeable in some of the positive cases, that the performance of ONCE
also improved after removing the poorest members to become as good as CO,

or in some cases better than CO.

3. ACE improved in run 2 in most of the negative cases, except in case 17 as
shown in Figure B.35 (a), where it improved in run 4 and in case 9 in run
10. It is noticeable that the improvement of ACE occurred gradually as we
removed one poor-quality member at a time; this was also noticeable with
some positive cases such as cases 12, 16 and 22. The highest quality in this
experiment was achieved by ACE in case 17 (run 16), which was 0.703 with an
average member quality of 0.418 and diversity measured by DV, 4 of 0.581.
The performances of other consensus functions in this run were of 0.579. It
is therefore obvious that these members had the right diversity among them,
and that this represents a pattern of success for ACE. It is noticeable that in
10 cases there was one run that had the same average member quality and a

value for DV, 4p; between 0.515 to 0.581 (medium level), and that ACE always
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had a high performance of between 0.608 and 0.703 (cases 2, 4, 12, 14, 16, 17,
18, 19 ,20, and 22). In the other cases, we had in 6 cases a run with also the
same level of average member quality and DV,arr between 0.504 and 0.548,

and ACE achieved a quality of 0.579.
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Figure B.27: 25 ensemble runs for case 1 & 2, in each run one member is removed.
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Figure B.28: 25 ensemble runs for case 3 & 4, in each run one member is removed.
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Figure B.29: 25 ensemble runs for case 5 & 6, in each run one member is removed.
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Figure B.30: 25 ensemble runs for case 7 & 8, in each run one member is removed.
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Figure B.31: 25 ensemble runs for case 9 & 10, in each run one member is removed.
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Figure B.32: 25 ensemble runs for case 11 & 12, in each run one member is removed.
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Figure B.33: 25 ensemble runs for case 13 & 14, in each run one member is removed.
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Figure B.34: 25 ensemble runs for case 15 &16, in each run one member is removed.
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Figure B.35: 25 ensemble runs for case 17 & 18, in each run one member is removed.
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Figure B.36: 25 ensemble runs for case 19 & 20, in each run one member is removed
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Figure B.37: 25 ensemble runs for case 21 & 22, in each run one member is removed
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Figure B.38: The heat map of the CO similarity matrix for Run 7 at case 7 and 8.
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Figure B.39: The heat map of the CO similarity matrix for Run 7 and 11 at case 7.

os o
oo os
o7 07
o6 0o
o5 s
s s
s s
o2 02
a1 o1
o o

(a) Run 7 (b) Run 10

Figure B.40: The heat map of the CO similarity matrix for Run 7 and 10 at case
15.
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Figure B.41: The heat map of the ONCE similarity matrix for Run 2 and 7 at case
15.
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Appendix C

Checking the ANOVA

Assumptions

Before we conduct the ANOVA test in our experiment in Section 6.2.2.2, we have

to check its assumptions, which is the normality and the homogeneity of variances.

For normality, we used the Anderson-Darling test [93], which is a statistical test
used to test whether the data follows a specified distribution; in our case it is nor-
mal distribution. The Anderson-Darling test detected a violation of the normality
assumptions (p-values always less than 0.05 ) for all the used consensus functions in

both of the datasets.

For the homogeneity of variances, we used the Levene test [13], because it is
more robust when the sampled data deviate from normality [71]. This tests the null
hypothesis that the variances of all conditions are all equal, and it was found that
we could reject the null hypotheses for all the used consensus functions in both of

the datasets.

For the non-normal samples, Montgomery [75] recommends applying a Box-Cox
transformation method [11] to the sample data to recover the normality and to obtain
a constant variance (after transformation). The Box-Cox method is a parametric

power transformation technique to estimate a value for the transformation parameter
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Figure C.1: The normal probability plot of the response variables (CO, ONCE, ACE
and MCLA) for Thyroid dataset.

A, and it can also suggest the best transformation function to be applied to the

sample data. We applied the Box-Cox method, and it suggested that for most of

the examined sample data there is no need to transform the sampled data. The only

exceptions were the samples data of Wine using CO and ONCE and the estimated A

were 1.477 and 1.534 respectively. Figures C.1 and C.2 show the normal probability

plot of response variables on the original sample data for the Thyroid and Wine

datasets respectively.
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Figure C.2: The normal probability plot of the response variables (CO, ONCE, ACE
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