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Abstract

Clustering is an unsupervised learning paradigm that partitions a given dataset into

clusters so that objects in the same cluster are more similar to each other than to the

objects in the other clusters. However, when clustering algorithms are used individ-

ually, their results are often inconsistent and unreliable. This research applies the

philosophy of Ensemble learning that combines multiple partitions using a consensus

function in order to address these issues to improve a clustering performance.

A clustering ensemble framework is presented consisting of three phases: En-

semble Member Generation, Consensus and Evaluation. This research focuses on

two points: the consensus function and ensemble diversity. For the first, we pro-

posed three new consensus functions: the Object-Neighbourhood Clustering Ensem-

ble (ONCE), the Dual-Similarity Clustering Ensemble (DSCE), and the Adaptive

Clustering Ensemble (ACE). ONCE takes into account the neighbourhood relation-

ship between object pairs in the similarity matrix, while DSCE and ACE are based

on two similarity measures: cluster similarity and membership similarity.

The proposed ensemble methods were tested on benchmark real-world and arti-

ficial datasets. The results demonstrated that ONCE outperforms the other similar

methods, and is more consistent and reliable than k-means. Furthermore, DSCE

and ACE were compared to the ONCE, CO, MCLA and DICLENS clustering en-

semble methods. The results demonstrated that on average ACE outperforms the

state-of-the-art clustering ensemble methods, which are CO, MCLA and DICLENS.

On diversity, we experimentally investigated all the existing measures for deter-

mining their relationship with the ensemble quality. The results indicate that none
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of them are capable of discovering a clear relationship and the reasons for this are:

(1) they all are inappropriately defined to measure the useful difference between the

members, and (2) none of them have been used directly by any consensus function.

Therefore, we point out that these two issues need to be addressed in future research.
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Chapter 1

Introduction

1.1 Background

In the context of machine learning, an ensemble is generally defined as “a machine

learning system that is constructed with a set of individual models working in paral-

lel, whose outputs are combined with a decision fusion strategy to produce a single

answer for a given problem” [106].

The ensemble method was first introduced and well-studied in the supervised

learning field. Due to its successful application in classification tasks over the past

decades, researchers have attempted to apply the same paradigm to the unsupervised

learning field, particularly to clustering problems. However, this may be challenging

for the following two obvious reasons. Firstly, in unsupervised learning, as there is

normally no prior knowledge about the underlying structure or about any particular

properties that we want to find or what we consider as good solutions about the data

[55, 95], different clustering algorithms often produce different clustering results for

the same data. Secondly, according to the “no free lunch” theorem [108], there is

no single clustering algorithm that performs consistently well in finding the correct

underlying structure for different data, and there are no clear guidelines in the

literature for choosing individual clustering algorithms for a given problem.
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Conceptually speaking, a clustering ensemble, which is also referred to as consen-

sus ensemble or clustering aggregation, can be simply defined in the same manner as

for classification. In other words, it is the process of combining multiple clustering

models (partitions) into a single consolidated partition [94]. In principle, an effective

clustering ensemble should be able to produce better results than that of the indi-

vidual clustering algorithms in terms of quality and consistency. From the clustering

point of view, the quality is measured either using external information (class label)

or internal information. If the external information is available the quality is defined

by some degree of similarity between the clustering results and the known labels of

the data (class label). If not, the quality is defined as how well the clustering result

fits the data using only internal information [95]. The consistency is defined as the

ability that the clustering ensemble method has to produce similar performances on

a multiple number of test datasets [32].

However, the transmission from supervised learning to unsupervised learning is

not as straightforward as this conceptual definition because there are some unique

and challenging issues when building an ensemble for clustering. Of these issues, the

key and tricky one is how to combine the clusters that are generated by the indi-

vidual clustering models (members) in an ensemble, as this cannot be done through

simple voting or averaging as in classification. Instead, it requires more complicated

aggregating strategies and mechanisms. Therefore, developing an effective aggre-

gation strategy as well as efficient is essential for building a successful clustering

ensemble.

1.2 Research Motivation

This thesis focuses on two central points, which are the consensus function and the

diversity of the clustering ensemble. This section explains the motivation behind

them.
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1.2.1 Consensus Function

A consensus function is the main component of a clustering ensemble method. It

combines a number of members to produce single improved clustering results, com-

pared to the individual member in the ensemble. In the past decade, a number of

researchers have studied clustering ensemble methods [94, 26, 97, 27, 98].

One simple, popular consensus approach focuses on combining members by map-

ping them onto a new representation, that contains similarity information. This

similarity information can be estimated from members at object level or at cluster

level. Generally, solving the problem of clustering the data through similarity infor-

mation is not a new concept; it is a widely used concept in clustering analysis, and

it is in fact the core of some of the most popular cluster algorithms such as k-means

and the hierarchical clustering algorithm. It is simple and easy to understand and

implement.

In the similarity-based consensus function approach, which calculates the object

pairwise similarity matrix from members, the Co-association matrix (CO) [32] is

the most popular method in this approach. The idea of CO is to avoid the label

correspondence problem in which the clustering result is obtained through a voting

process among the objects. It assumes that similar objects are very likely clustered

together by some clustering algorithm, so any objects that co-occur frequently in

the same cluster should be regarded as being very similar. Each entry in CO matrix

counts the number of times that a given pair of objects is placed in the same cluster

among ensemble members.

However, there is a common and tricky issue that appears when roughly half of

the members place some object pairs in the same cluster but the other half place

them in a different cluster. In this case, we have uncertain agreement between

members on how to cluster these pairs and we call them uncertain pairs of objects,

and they cause problems in generating reliable consensus clustering results [111, 81].

Recently, researchers such as Wang et al. [107] and Vega-Pons et al. [103] enhanced

the CO matrix to extract more information from the members. We believe that
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when we build a clustering ensemble, there may be some other useful information

in the generated members that could be extracted, rather than relying solely on

the pairwise relationship between objects. Consequently, we were motivated to

design a consensus function based on object pairwise similarity that considers more

information than the pair itself to overcome the problem of the uncertain agreement

to some extent.

Moreover, one obvious drawback in most similarity-based consensus functions is

that they require an ordinary clustering algorithm to be applied over the similarity

matrix. This leads to two adverse effects. Firstly, it is difficult to decide which one

is to be used, as most of them require a parameter, so there is the question of which

is the best value. Therefore, this approach unintentionally suffers from the same

difficulties as the single clustering algorithm which the clustering ensemble method

aims to solve. Secondly, it takes time to do a further clustering, and this makes the

whole clustering ensemble inefficient.

1.2.2 Clustering Ensemble Diversity

Furthermore, it is widely believed that having diverse members in an ensemble is

essential for its success. Although many researchers have investigated the effect

of diversity on the quality of clustering ensembles, they have not yet arrived at

any agreement on the relationship between diversity and ensemble quality. Some

researchers have concluded that, through high levels of diversity among members,

high levels of ensemble quality can be achieved [25, 20, 51]. By contrast, other

researchers suggest that median diversity among members is better in terms of

improving the ensemble’s quality [39].

Nevertheless, most of these diversity studies either investigated the effect of di-

versity on one specific consensus function or their own proposed consensus function.

Therefore, more studies need to be conducted in order to investigate diversity defi-

nitions in their relation with multiple consensus functions.

6



Chapter 1. Introduction

1.3 Research Questions

The main research question that we would like to answer in this thesis is:

How can we develop an effective clustering ensemble that can improve the quality and

consistency of the clustering result ? In order to answer this question, we believe

this research has to consider two essential issues: consensus function and diversity

by addressing the following associated questions.

1. How can we design a consensus function that addresses the problem of uncer-

tain pairs of objects?

2. Is there any other information in the ensemble members that we can use to

design a new effective consensus function? If so, what is it and how can we

design consensus functions?

3. How can we design a similarity-based consensus approach that does not require

an additional step of using an ordinary clustering algorithm to produce the

final clustering result, which can be implemented in the clustering ensemble

framework to generate a reliable and accurate clustering result?

4. How are the existing diversity measures defined in the context of the clustering

ensemble?

5. Does the diversity influence ensemble performance?

Questions 1 to 3 are our key questions regarding to the consensus function issue,

while, questions 4 and 5 are our key questions regarding to the diversity issue.

1.4 Thesis Organisation

The reminder of this thesis is organised as follows:

Chapter 2: Literature Review This chapter provides a review of clustering

analysis, which includes the different clustering techniques and clustering validation
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index. The clustering ensemble is then introduced in more detail. Work relating to

the consensus function is discussed. Finally, this chapter details some of the current

clustering ensemble applications.

Chapter 3: Research Methodology In this chapter, our research design is

explained, including the adapted clustering ensemble framework, and the strategy

used to test the proposed consensus functions. We also describe the implementation

and tools used in our research.

Chapter 4: Object-Neighbourhood Clustering Ensemble (ONCE) In this

chapter, we present two new consensus functions ONCE and E-ONCE, and discuss

the results of testing the effectiveness of ONCE and E-ONCE. We also compare

the performance of the proposed methods with a number of clustering ensemble

methods. This chapter presents an answer to research question 1.

Chapter 5: Adaptive Clustering Ensemble (ACE) In this chapter, we de-

scribe two new consensus functions based on two novel similarity measurements,

which are Dual-Similarity Clustering Ensemble (DSCE) and Adaptive Clustering

Ensemble (ACE). We conduct some experimental studies to test the effectiveness of

DSCE and ACE and compare them to other clustering ensemble methods. We also

discuss and analyse the results obtained. This chapter presents answers to research

questions 2 and 3 of this thesis.

Chapter 6: The Diversity of the Clustering Ensemble In this chapter,

we investigate diversity measurements by looking at their influence on ensemble

performance. We analyse and discuss the experimental results obtained. Moreover,

we design two experiments to investigate two issues raised from our experimental

study, and discuss and analyse the results obtained. This chapter presents answers

to research questions 4 and 5.
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Chapter 7: Conclusions and Further Work In this chapter, we draw our

overall conclusions on the two central points of this research, and we also suggest

further work to be done in the future.
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Chapter 2

Literature Review

This chapter reviews the literature related to this research, including the background

of clustering analysis in Section 2.1, and clustering ensembles in Section 2.2, along

with details on their process. In Section 2.4, clustering ensemble applications are

reviewed, and finally Section 2.5 includes a summary of this chapter.

2.1 Clustering Methods

Clustering is a task of assigning each object (sometimes called a pattern, observation

or data point) in a dataset to a group or cluster in order to identify natural groups

within that dataset. Thus, objects in the same cluster are more similar to each other

than to the objects in the other clusters [54].

In machine learning, clustering is used to search for groups that reflect hidden

structured patterns. This is widely known as unsupervised learning, in contrast to

supervised learning, which requires the dataset to be labelled in advance for training

purposes. The supervised learning problem is related to predicting categorical and

numerical data (i.e., the data classification problem corresponds to categorical data,

and the regression problem corresponds to numerical data). However, all of the

available data in data clustering problems are unlabelled, so the task is to group
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the objects based only on the natural relationships among them and the underlying

population model [55].

The main problem in clustering is how to define any similarity/dissimilarity be-

tween the objects. Generally, similarity between two objects measures the degree

to which they are alike on a numerical scale, while the dissimilarity measures the

degree to which they are different

A common and important measure is the distance (Dis) between two objects.

Several similarity and distance measures exist in the literature; each of them is

defined based on the type of measured feature, and more details of these measures

can be found in [109]. However, the best-known distance measure is the Euclidean

distance. Suppose we have the datasetX = {x1, x2, · · · , xn} ∈ ℜd, where each object

xi is a set of d features (sometimes called attributes, dimensions or variables). The

Euclidean distance (E) can be calculated between two objects xi and xj as follows:

E(xi, xj) =

(

d
∑

l=1

|xil − xj l|2
)1/2

(2.1)

In fact, the Euclidean distance is a special case, p = 2, of the Minkowski distance

(M), which is defined as follows:

M(xi, xj) =

(

d
∑

l=1

|xil − xj l|p
)1/p

(2.2)

Many techniques have been proposed for cluster analysis due to the fact that clus-

tering analysis has been used in a wide variety of applications. However, we may

distinguish three main types of clustering techniques: hierarchical, partitional and

fuzzy. The main difference between them is that hierarchical and partitional clus-

tering are classified as hard clustering, where each object in the dataset belongs to

only one cluster, whereas in fuzzy clustering, which is sometimes called soft clus-

tering, some objects in the dataset can belong to more than one cluster (this kind

of clustering is also called overlap clustering). The following sections explain these
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clustering techniques in more detail.

2.1.1 Hierarchical Clustering

Hierarchical clustering builds clusters in a hierarchy that represents the similarity

levels at which the clusters are formed [57]. Compared with partitional clustering,

hierarchical clustering is a nested sequence of partitions that are represented as a

dendrogram (tree). Hierarchical clustering builds clusters gradually, while parti-

tional clustering is a single partition that learns clusters directly [95].

Hierarchical clustering can be categorised into two different procedures: agglom-

erative (bottom-up technique) and divisive (top-down technique). The agglomera-

tive technique starts by assigning each object to its own cluster and then gradually

merges similar clusters to form larger clusters. This continues until a stopping cri-

terion is achieved. On the other hand, the divisive procedure starts by assigning all

objects into one cluster and then splitting this into smaller clusters. This continues

until a stopping criterion is achieved [95].

The merge or split procedure is based on the similarity between objects in a

cluster and on the dissimilarity between objects in different clusters. An important

example of measuring (dis)similarity between two objects is the measure of the

distance between them; such measuring is called a linkage metric. There are different

linkage methods, such as Single linkage, Complete linkage, Average linkage and

Centroid linkage. In the Single linkage method, the distance between two clusters

is defined as the minimum distance between a pair of objects drawn from the two

clusters (i.e., one object from one cluster, the other from another). This is also

called the nearest neighbour method. In contrast, the distance between two clusters

in the Complete linkage algorithm is the maximum of all pairwise distances. In

the Centroid linkage method, the distances between clusters are determined by the

Euclidean distance between centroid objects. The Average linkage method considers

the average pairwise distance between all objects in two clusters [95].
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Although hierarchical clustering does not require information about the number

of clusters, it has many disadvantages. The main disadvantage is high computational

complexity, which in most algorithms is O(n3), where n is the number of objects in

the dataset. Thus, they have limited application in large datasets because a distance

matrix must be calculated at each step. Moreover, it is sensitive to noise and outliers

[109].

2.1.2 Partition Clustering

Partition clustering is “simply a division of the data objects into non-overlapping

subsets (clusters)” [95]. It does not have a hierarchical structure, and the partition-

ing is based on a specific criterion, called the criterion function, such as minimising

the sum of the squared distances. It is divided into two main sub-categories: centroid

algorithms and medoid algorithms:

Centroid Algorithms These represent each cluster by centre of gravity of

the objects. The best-known centroid algorithm is k-means [44], which requires

the number of clusters k for the dataset to be specified, and then it partitions the

data into k clusters. Cluster similarity is measured based on the mean value of the

objects in the cluster, which is viewed as the cluster’s centre. Thus, all objects in

the dataset are assigned to their closest centre [95]. The k-means algorithm is the

best-known squared error-based clustering algorithm, which is presented below:

1. Set the value of k.

2. Select k random objects as initial centroids, Cj, j = {1, . . . , k}

3. For each object xi in dataset X.

(a) Compute the distance between xi and each centroid Cj (for example using

the Euclidean distance as in equation 2.1)

(b) Assign xi to its nearest centroid.
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4. Update the centroid for each cluster by taking the mean of all the objects in

that cluster.

5. Repeat steps 3 and 4 until a stable clustering result is reached and/or no

change is made to the centroids.

Generally, the main property of the k-means algorithm is that it is efficient for large

datasets, and it often terminates at a local optimum; the resultant clusters have

spherical shapes [109]. However, it is sensitive to noise, as well as outliers in data

and initial centroids, and also needs a pre-selected value for k. Each run of k-means

may generate a different clustering result [95].

Medoid Algorithms In this method, each cluster is represented by one of

its elements. The best-known is the k-medoids algorithm, also called Partitioning

Around Medoids (PAM) [59]. One of its advantages is that it deals with noisy data

by setting the mean of a cluster to be the object that is nearest to the ‘centre’ of

the cluster. Moreover, it is efficient for categorical data [109]. The key steps of

k-medoids are as follows [59]:

1. Randomly select k objects as medoids from dataset X.

2. Assign each object to its closest medoid based on the distance metric.

3. Calculate the sum of distances from all objects to their medoids.

4. Calculate a swapping cost for each pair of non-medoids and medoids. Swapping

means using a non-medoid to replace a medoid. If the replacement can decrease

the value of the objective function, the swap will be confirmed; otherwise, the

medoid will not be replaced by the non-medoid.

5. Repeat steps 2, 3 and 4 until there is no change in the medoids.

One of the disadvantages of this method is that it assumes that each cluster can

be well-represented by its medoid, which might not be the case in some datasets

where this assumption cannot be applied. Moreover, because the time complexity

is O(k(n− k)2), it is not efficient in dealing with large datasets [59].
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2.1.3 Fuzzy Clustering

This allows for an overlap between clusters; it is thus sometimes called soft clustering

[109]. The best-known fuzzy clustering algorithm is c-means, which was developed

by Dunn [22] and improved by Bezdek [8]. c-means assigns a degree for each object

to express, if it belongs to a cluster. It is similar to k-means in that it minimises

the objective function. The key steps in c-means are as follows [8]:

1. Choose a value for k clusters.

2. Randomly assign fuzzy coefficients to each object in the clusters.

3. Based on the fuzzy coefficients, compute the centroid for each cluster.

4. Based on the new cluster centres, re-calculate the coefficients of each object.

5. Compare the variance with a predefined sensitivity threshold.

6. Repeat steps 3, 4 and 5 until the variance of the fuzzy coefficients is less than

the sensitivity threshold.

c-means is also sensitive to noise and outliers, and like most clustering algorithms,

it requires prior knowledge of the number of clusters [109].

2.1.4 Issues with Clustering Algorithms

There are a number of issues related to clustering algorithms. Firstly, several optimal

solutions are possible. Different structures for the same dataset can be achieved by a

single algorithm (but with different parameters) or by several algorithms. The use of

different distance metrics produces different clustering results. This makes the selec-

tion of the most appropriate clusters more difficult because the data are unlabelled

and the parameters cannot be tuned by using cross-validation [2]. Furthermore,

exploring all possible solutions is an expensive computation and, in practice, it is

infeasible for large datasets.

Secondly, the correct number of clusters for any given data is often unknown.

Current applications involve increasingly complex and large datasets, which may
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have complex clustering shapes, highly unbalanced clustering sizes, differing densi-

ties, and possible overlap clustering; all these issues create several challenges in the

selection of a suitable single clustering algorithm for extracting meaningful cluster

structures [4]. Therefore, it is logical to combine multiple clustering models to build

a clustering ensemble.

2.2 Clustering Ensemble Methods

Ensemble clustering is the process of combining the multiple clustering results of a

set of objects into a single improved clustering. It is sometimes referred to as the

Consensus solution or Clustering Aggregation. In recent years, various studies have

been conducted to develop clustering ensemble methods inspired by the success of

the ensemble method in the supervised learning field [94, 26, 97, 27, 98]. However,

compared to the research on classification ensemble methods, building a clustering

ensemble is not straightforward, and further work is required in this field.

There are several reasons that make the task of building a clustering ensemble

more challenging than that of classification. One is that clustering is unsupervised

learning in which the data are unlabelled, so there is no prior knowledge with which

the algorithm can discover the true cluster structure, and there is no “ground truth”

to validate the clustering result. Moreover, no cross-validation technique can be car-

ried out to tune the clustering algorithm’s parameters, thus there are no guidelines

with which the user can select the most appropriate clustering algorithm for a given

dataset. Another challenge is that the number of clusters produced may differ among

the generated solutions by different clustering algorithms. In addition, the number

of clusters in the final solution is unknown in advance. The final solution is ob-

tained by accessing a set of base solutions, which in fact are cluster labels, and not

the original data used.

Ghosh and Acharya [34] pointed out that there are several motivations for us-

ing clustering ensembles, and that these are much broader than those for using a
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classification ensemble, where the main motivation of the latter is to improve the

classification accuracy. These reasons include:

• To improve the quality of the clustering results compared to those produced

by single clustering algorithms.

• To reuse existing clustering (knowledge reuse): in some applications a variety

of partitions may exist, so they can be combined to obtain a final clustering

result. This delivers a more consolidated clustering result; several examples

are provided in [94].

• To generate robust clustering results across different types of datasets. It is

widely known that the popular clustering algorithms often fail to produce a

good clustering result when the data do not match with their assumptions.

Among these objectives, the first point is the most widely accepted one. The

cluster quality is usually measured with a numerical measurement to assess different

aspects of cluster validation [95]. Section 2.2.4 reviews some of these in more detail.

2.2.1 The Process of the Clustering Ensemble Method

Recently, Vega-Pons and Ruiz-Shulcloper [102] summarised the process of clustering

ensemble into two main steps: generation and consensus. Figure 2.1 illustrates this

process, in which the input is the original dataset and the output is the consensus

clustering.

Generation Step This is the first step in the clustering ensemble process, where

a number of ensemble members are generated by using particular generation tech-

niques. Vega-Pons and Ruiz-Shulcloper [102] pointed out that greater variance in

the set of ensemble members means that more information is available to the consen-

sus function. Moreover, there are no constraints on how the ensemble members must

be obtained [102]. Therefore, different strategies could be applied. In the literature,
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Figure 2.1: The Clustering Ensemble Process [102]

several generation techniques have been used to generate members for building an

ensemble; more details on these techniques can be found in section 2.2.2.

Consensus Step The second step is where the generated members are combined

using a consensus function to obtain the final clustering result. The success of a

clustering ensemble relies on choosing a consensus function that can improve the

quality of the final clustering solution [36]. As a result, a number of consensus func-

tions have been proposed in the literature; section 2.2.3 will review some common

consensus functions.

2.2.2 Ensemble Generation Techniques

Some researchers have applied techniques based on the types of data or applications

that have been used. For high dimensional data, Strehl and Ghosh [94] applied ran-

dom feature subspaces; members are generated for each of the data subspaces. They

also generated members by selecting different subsets of objects for each member.

They called this technique object distribution and they applied it to big data. Fern

and Brodley [25] generated members based on random projections of objects onto

different subspaces, and the Expectation Maximization algorithm (EM) is applied

to these subspaces. The resampling method was used by [74, 76, 5], in particular

bootstrap, which is a sampling with replacement. Minaei-Bidgoli et al. [74] used

the bootstrap technique with a random restart of k-means [74], while Monti et al.
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[76] used the bootstrap technique with different clustering algorithms, including k-

means, model-based Bayesian clustering and self-organising map. Moreover, Ayad

and Kamel [5] used bootstrap resampling in conjunction with k-means to generate

the ensemble members.

Others used the most popular clustering algorithm k-means to generate the mem-

bers (with a random initialisation of cluster centres). k-means has been widely used

due to its simplicity and its low computational complexity [31, 97, 32, 35, 6, 51].

For instance, Fred and Jain [32] used it with random initialisations of cluster cen-

tres and a randomly chosen k (number of clusters) from a pre-specified interval for

each member. They used a large k value in order to obtain a complex structure

within the ensemble members. They also ran k-means with a fixed k to compare

the two generation techniques and they found that members with a random k are

more robust than other members. Dimitriadou et al. [19] and Sevillano et al. [89]

applied fuzzy clustering algorithms in particular c-means in order to generate soft

clustering members, while in Hore et al. [45] they applied fuzzy k-means.

Strehl and Ghosh [94] used a graph-clustering algorithm with different distance

functions for each member. Topchy et al. [98] used a weak clustering algorithm,

which produces a clustering result that is slightly better than a random result in

terms of quality by using two different techniques. In the first technique, they used

a random projection on one dimension from the original features, whereas in the

second technique they split the data into a random number of hyperplanes. The

weak algorithm is simple, fast at generating members, and it has been shown that

it is able to produce high-quality ensemble results.

Iam-on et al. [50] examined different techniques, including a multiple run of k-

means with a fixed k for each member and a randomly chosen k from an interval,

where the maximum k is equal to
√
n. However, setting k equal to this value appears

to be unrealistic for a big dataset. Furthermore, Iam-on et al. [48] applied different

generation techniques to categorical data; they ran k-mode algorithm with full space

and random subspaces with also a fixed k and random k. They found that these two
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techniques allowed their ensemble method to achieve high performance compared to

the k-mode clustering algorithm, as well as some other ensemble methods such as

those proposed by Strehl and Ghosh [94].

Another popular technique is to use different clustering algorithms for each mem-

ber [111, 35], where all of the algorithms may complement each other. Yi et al. [111]

used the best-known clustering algorithms, such as Hierarchical clustering and k-

means. Gionis et al. [35] used the Single, Average, Ward and Complete linkage

methods and k-means to generate ensemble members. Recently, Yu et al. [113] ap-

plied the Gaussian mixture model in conjunction with bagging techniques. k-means

and EM were used to estimate the Gaussian mixture models’ parameters.

Iam-on et al. [48] classify the techniques used in the generation step into five

categories as shown in Figure 2.2, these are:

• Homogeneous ensemble: A single clustering algorithm is used to generate

a number of members.

• Different-k: Each member is generated with different randomly selected k.

• Data subspace/subsample: Each member is generated by a random sub-

sample of the data, or onto different subspaces, or by using a random subset

of features.

• Heterogeneous ensemble: Each member is generated using a different clus-

tering algorithm.

• Mixed heuristics: Any combination of the above techniques can be mixed

to generate a number of members.

2.2.3 Review of Consensus Functions

A number of consensus functions have been proposed in the literature; some of

them are based on how they represent the clustering ensemble problem, others by
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Figure 2.2: Diagram of the five categories of the ensemble generation techniques, as
classified by Iam-on et al. [48].

applying well-known mathematical concepts to the problem. As the clustering en-

semble is motivated by the preceding work on classification ensembles [64], the voting

combination strategy was one of the early developments, where the labelling corre-

spondence problem needs to be solved first. Another representation of the cluster

labels is as categorical data [98], where some researchers represent the members as

categorical features in which a category-based clustering algorithm is applied. Oth-

ers transform the members into a binary membership matrix in which the pairwise

similarity matrix can be calculated [32] (i.e Co-association matrix (CO)). Other re-

searchers used such a matrix to formulate a graph to which a graph-based clustering

method is applied [94].

Recent reviews on clustering ensemble methods can be found in [102, 34], where

the authors have been trying to classify these methods according to their techniques.

Among them we consider the classification scheme originally proposed by Vega-Pons

and Ruiz-Shulcloper [102] due to its simplicity. This facilitates the introduction of

the main ensemble methods presented in the literature. Thus, according to them,

the consensus function can be classified into two main approaches: Object Co-

occurrence-based approaches and Median Partition, which are as follows:

1. The Object Co-occurrence Approach: This first computes the co-occurrence

of objects in the members and then determines their cluster labels to produce a con-

sensus result. Basically, it counts the occurrence of an object in one cluster, or the

occurrence of a pair of objects in the same cluster, and generates the final clustering
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result by a voting process among the objects. Examples of such approach are: the

Relabelling and Voting method [21, 6, 114], the Co-association matrix [32] and the

Graph-based method [94, 26].

2. The Median Partition Approach: This treats the consensus function as

the optimisation problem of finding the median partition with respect to the cluster

ensemble. The median partition is defined as “the partition that maximises the

similarity with all partitions in the clustering ensemble ” [102]. Examples of this

approach include the Non-Negative Matrix Factorisation based method [67], the

Genetic-based method [112, 70] and the Kernel-based method [101]. More details

on these methods can be found in [102].

Vega-Pons and Ruiz-Shulcloper [102] pointed out that consensus functions were

primarily studied on a theoretical basis, and as a result many consensus functions

based on the median partition approach were proposed in the literature, whereas

only a few studies focused on the object co-occurrence approach. The following sub

sections review the most common clustering ensemble methods.

2.2.3.1 Graph-based Methods

One of the early methods was proposed by Strehl and Ghosh [94], where they trans-

formed the clustering ensemble problem into a graph problem, and proposed three

different consensus functions: the cluster-based similarity partitioning algorithm

(CSPA), the hypergraph partitioning algorithm (HGPA) and the meta-clustering

algorithm (MCLA). In CSPA, the similarity matrix is used as the adjusted simi-

larity matrix of a fully connected graph, where nodes correspond to objects and

edge weights to their similarities. The final result is obtained by using the METIS

package1 in particular PMETIS [58]. This method is similar to the evidence accu-

mulation method described by Fred and Jain [32], where the hierarchal clustering

algorithm is applied to obtain the final clustering result.

1A set of multilevel graph partition algorithms.
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On the other hand, a hypergraph is constructed in HGPA and MCLA, in which

each ensemble member is represented as a hyper-edge. In HGPA, the hyper-graph

is directly partitioned by cutting a minimal possible number of hyper-edges, where

all hyper-edges have the same weight, into k connected nodes of approximately the

same size. To do that, the authors used the hypergraph partitioning algorithm

HMETIS [58]. In contrast, MCLA first defines the similarity between two clusters

in terms of the amount of objects grouped in both, using the Jaccard index. Then

a meta-graph is constructed where nodes represent clusters and the edges represent

the similarity relations between pairs of clusters. The final partition, which is called

meta-clustering, is obtained using PMETIS [58], where the meta-graph is then par-

titioned into k balanced meta-clusters. The complexity of CSPA, HGPA and MCLA

is estimated in [94] as O(kn2m), O(knm), and O(k2nm2), respectively.

Furthermore, Fern et al. [26] proposed the hybrid bipartite graph formulation

(HBGF) algorithm by building a bipartite graph. In this type of graph there are

only two different types of nodes, and edges exist between nodes of different types.

In HBGF, one type of node represents an object, whereas the other type represents

clusters, and an edge exists only between the cluster and the object belonging to

that cluster. Then, they applied a spectral clustering algorithm to obtain the final

partition. Its computational and storage complexity is O(knm), as estimated by

Fern et al. [26].

Al-Razgan and Domeniconi [2] proposed two graph-based algorithms: the weighted

bipartite partition algorithm (WBPA) and the weighted subspace bipartite parti-

tion algorithm (WSBPA). They combine members generated by the local adaptive

clustering algorithm (LAC), which designed to work with numerical data and as-

signs weights to the features in the cluster. PMETIS is also used to obtain the final

clustering result. The only difference between these two algorithms is that WSBPA

adds a weight vector to each cluster in the final clustering result.
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2.2.3.2 Object Pairwise Similarity-based Methods

The most popular pairwise similarity-based method is the Co-association method,

which avoids the labelling correspondence problem by mapping the ensemble mem-

bers onto a new representation in which the similarity matrix is calculated between

a pair of objects in terms of how many times a particular pair is clustered together

for all ensemble members [32]. The final partition is obtained by applying any

similarity-based clustering algorithm to this matrix. This method is Evidence Ac-

cumulation (EAC), and each entry in the matrix represents evidence collected from

all ensemble members for a pair of objects. EAC calculates the percentage of mem-

bers in the ensemble in which a given pair of objects is placed in the same cluster

as follows:

CO(xi, xj) =
1

M

M
∑

m=1

δ(Pm(xi), Pm(xj)) (2.3)

Where xi and xj are objects, Pm is a partition, and δ(Pm(xi), Pm(xj)) is defined as:

δ =











1, if xi and xj are in the same cluster in member m.

0, if xi and xj are in different clusters in member m.

(2.4)

In Fred and Jain [32], the final partition is obtained by applying Single and Av-

erage linkage hierarchical clustering algorithms to the Co-association matrix. Build-

ing the hierarchical tree is achieved using the Single linkage edges with a minimum

weight, which are cut based on a specific threshold. This threshold is obtained based

on the decision of the number of clusters, and they defined this criterion as the range

of threshold values needed to obtain k clusters, which they call the k-cluster lifetime.

On the other hand, Fred [30] used a fixed threshold equal to 0.5 to obtain the final

partition, where objects are joined in the same cluster if they have a similarity value

greater than 0.5.

While, the Co-association matrix seems to be an ideal tool for collecting all of the
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information available in the clustering ensemble, it should be noted that the original

Co-association matrix [32] captures only the pairwise relationship between objects

in the ensemble members. Recently (in 2009), researchers have realised that more

information within the generated members can be obtained to create this matrix.

Wang et al. [107] proposed Probability Accumulation (PA) which extends the Co-

association method by considering the cluster size and the dimensions of the objects

within the data when calculating the Co-association matrix.

In PA, a more informative similarity matrix is obtained from the ensemble mem-

bers compared with the Co-association method, which means that the chance of

obtaining several pairs of objects with the same similarity score is less than that of

using Co-association. Vega-Pons et al. [103] proposed a weighted-association matrix

that takes three different factors into consideration. These are: the number of ele-

ments in the cluster to which a pair of objects belongs; the number of clusters in the

ensemble member analysed; and the similarity value between the objects that were

obtained by this member. They follow the same philosophy of Co-association by cal-

culating the similarity matrix and then applying a hierarchical clustering algorithm

and selecting the one with the highest lifetime criterion. They call this method

Weighted Evidence Accumulation (WEA). In their work, they also proposed an-

other algorithm based on the weighted-association matrix, by introducing a new

intermediate step, called Information Unification, after the matrix is obtained. This

aims to unify the different data representations and (dis)similarity measures into a

new data representation, where each object is represented by (dis)similarity values

(as new features).

However, we believe that there is more information in the generated members

that we should consider when we calculate the similarity matrix, rather than just

considering the pairwise relationship between objects.

Recently (in 2012), Yi et al. [111] highlighted an issue that is often overlooked by

other methods: how to handle the uncertain data pairs when calculating the simi-

larity matrix. They defined uncertain pairs of objects as the “pairs that have been
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assigned to the same cluster by approximately half of the partitions in the ensemble,

and assigned to different clusters by the other half” [111]. They assumed that if the

number of uncertain pairs is large, then this could mislead the consensus function

into producing inappropriate final result. They addressed this issue by proposing a

new clustering ensemble, based on the matrix completion theory, where they filtered

out the uncertain pairs in the Co-association matrix, and then they estimated their

value to complete the matrix by applying a matrix completion algorithm, namely

the Augmented Lagrangian as proposed by Lin et al. [68]. However, by using a

matrix completion process, their approach has the disadvantage that it may cause

information loss.

Moreover, a method called weighted-object clustering ensemble (WOEC) was

proposed by Ren et al. [81]. It uses the Co-association matrix to define a one-

shot weight assignment to objects, where a large object’s weight means that it is

hard to cluster, whereas a small weight means that it is easy to cluster. In fact,

they follow the same idea as the Boosting algorithm [85]. Ren et al. [81] proposed

three weighted object versions of the classical clustering ensemble algorithms CSPA,

HGPA and MCLA [94] reviewed earlier.

2.2.3.3 Voting-based Methods

In this kind of method, the labelling correspondence problem is first solved, and

then a voting process ensues, in which each object should vote for the cluster to

which it will belong in the final clustering result. Dudoit and Fridly [21] proposed

a consensus function similar to the (Bagging) plurality voting used in classification

ensembles, in which they solved the labelling correspondence problem using the

Hungarian method [29]. They assumed that all members have the same number

of clusters, and they obtained the final clustering result, which also has the same

number of cluster as the members, by applying the plurality voting process.

Zhou and Tang [114] proposed a new voting method, where the clusters in the

members are aligned by counting their overlapped objects, and the pairs of clusters
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that have the largest overlap are matched. Then simple voting is used to combine

these aligned clusters. They also proposed a weighted voting method where they

employed Normalised Mutual Information (NMI) [94] to weight the aligned clusters.

Moreover, they proposed two selecting methods based on the NMI weight, where

they included in the ensemble just the clusters whose NMI weight was larger than

the specified threshold.

On the other hand, three different cumulative voting methods were proposed by

Ayad and Kamel [6]; these are Un-normalised fixed-Reference Cumulative Voting

(URCV), fixed-Reference Cumulative Voting (RCV) and Adaptive Cumulative Vot-

ing (ACV). In these methods, each ensemble member provides a soft or probabilistic

vote for each object on which clusters they should belong to in the ensemble result.

Then they are thresholded to determine the membership of each object to the en-

semble clusters. This process requires a mapping function between the selected

reference member and the other members. For this purpose, they used a theoretical

information criterion based on the information bottleneck principle [6].

Vega-Pons and Ruiz-Shulcloper [102] argue that the main drawback of these

methods is that they restrict the clustering ensemble problem because they require

all the members to have the same cluster numbers, as well as the final clustering

results produced by the consensus function, and that affects the ensemble quality.

Furthermore, these methods require more time to solve the labelling correspondence

problem than other consensus functions.

2.2.3.4 Probability-based Methods

The probability model has been used to find the median partition, which is a par-

tition that best summarises the ensemble members. Topchy et al. [97] proposed a

method based on a finite mixture model, where each member is modelled as a mix-

ture of multivariate multinomial distributions and the maximum likelihood problem

is solved by using the EM algorithm. They applied their method to deal with in-

complete members, where some of the cluster labels are missing. Another work
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by Topchy et al. [98] represented the clustering ensemble as a categorical clustering

problem, and the combined partitions were produced based on the median partition.

They named their proposed algorithm the Quadratic Mutual Information Algorithm

(QMI) [98].

Wang et al. [105] proposed a Bayesian version of the multinomial mixture model;

they called it the Bayesian Cluster Ensemble (BCE). They used variational ex-

pectation maximisation and Gibbs’ sampling to estimate the parameters and the

inference. They generalised their algorithm to work when the original features of

the data were available. They compared it with BCE and found that the generalised

version achieved higher quality.

Louren et al. [69] proposed a probabilistic consensus clustering based on the Co-

association matrix, where each entry is regarded as a Binomial random variable,

parametrised by the unknown class assignments. They determined the object prob-

ability assignments to a cluster by minimising a Bregman divergence between the

observed Co-association frequencies and the corresponding co-occurrence probabili-

ties expressed as functions of the unknown assignments. Then to solve the problem

under any double-convex Bregman divergence, they proposed an optimisation algo-

rithm. They also adapted their proposed method for large scale datasets.

Recently, Yu et al. [113] proposed a Gaussian Mixture Model Cluster Structure

Ensemble method (GMMCE), where as we said they used the Gaussian mixture

model to generate the members; each one of them captures the underlying structure

from different data sources. The main aim of the ensemble is to identify the most

applicable structure of the data. For estimating the parameters of the Gaussian

mixture models they used k-means and the EM algorithm. Each model is then

represented as a new data sampling in which a matrix is constructed representing

the relationship between components. They measured the similarly between two

components corresponding to their respective Gaussian distributions, measured by

a distance function called Bhattycharya.
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2.2.3.5 Link-based Methods

Iam-on et al. [49, 51] applied link network analysis to clustering ensembles and

they proposed a number of methods. First, they proposed two consensus functions

based on pairwise similarity, named the Connected-Triple based similarity (CTS)

matrix and the SimRank based similarity (SRS) matrix [49]. They then proposed

an improved version of SRS, called approximate SimRank-based similarity (ASRS)

[52]. Basically, they represented the ensemble members as a link network and then

they implemented the well-known link-based similarity measures developed in the

classification of web document areas to this member/cluster network, as their names

indicate.

In CTS, the members are represented as a cluster network. For example, let us

say that we have 3 members, P1 = {a, b}, P2 = {c, d} and P3 = {f, g}, and there

are two objects, x1 and x2, which belong to different clusters a and b respectively in

member P1, whereas they belong to the same cluster c and f in members P2 and P3

respectively. According to members P2 and P3, the pairs x1 and x2 are considered

to be similar, but according to P1 their similarity is equal to zero. Applying the

connected triple concept, it is found that clusters a and b are justified as similar

as they have 2 connected-triples, which are clusters c and f from the two other

members.

The object pairwise similarity matrix for a given pair (xi, xj) in CTS is calculated

as follows:

CTS(xi, xj) =
1

M

M
∑

m=1

S(xi, xj) (2.5)

Where S(xi, xj) is defined as:

S(xi, xj) =











1, if xi and xj belong to same cluster.

Scts(c(xi), c(xj))×DC Otherwise.

(2.6)

Where Scts(c(xi), c(xj)) =
Tij

max{T}
, and Tij =

t
∑

e=1

min(wi,e, wj,e).
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The wi,e is the link weight between two clusters i and e, which is calculated as a

Jaccard index (equation 2.16). The DC is “the confidence level of accepting two

non-identical objects” [49], and it takes value ∈ [0, 1].

The SimRank (SRS) represents ensemble members as a bipartite graph, which

has two types of nodes: clusters and objects, and the link exists only between

clusters and objects. It assumes that if two objects have similar neighbours then

they are similar as well. The similarity between a given pair of objects is calculated

as follows:

SRS(xi, xj) =















1, if xi=xj.

DC
|Nxi

||Nxj
|

∑

a′∈Nxi

∑

b′∈Nxj

SRS(a′, b′) Otherwise.
(2.7)

Where Nxi
is the set of cluster nodes connected to object xi. The similarity SRS

matrix can be calculated between a pair of objects, and is defined as the average

similarity between clusters to which they belong, which in turn is calculated as the

average similarity between their objects. The final SRS similarity matrix is obtained

after a number of iterations (t) in order to refine the similarity values to stable values

that do not change.

lim
t→∞

SRSt+1(a, b) =
DC

|Nxi
||Nxj

|
∑

a′∈Nxi

∑

b′∈Nxj

SRSt(a
′, b′) (2.8)

The iteration process starts at the outset of: SRS0 = 1 if xi = xj and 0 otherwise.

In the ASRS, the SRS is improved by eliminating the iteration process to make it

more efficient. It is calculated between a given pair of objects as follows:

ASRS(xi, xj) =















1, if xi=xj.

1
|Nxi

||Nxj
|

∑

a′∈Nxi

∑

b′∈Nxj

Sc(a′, b′) Otherwise.
(2.9)

Sc is the similarity between two clusters, which is represented as a subgraph, where
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the node represents a cluster, the edge connects two clusters together, and the weight

of edge wa′b′ connecting clusters a′ and b′ is calculated as the Jaccard index.

Sc(a′, b′) =
wSc(a′, b′)

max{wSc} ×DC (2.10)

wSc(a′, b′) =
1

|N ′
a||N ′

b|
∑

y∈Na′

∑

z∈Nb′

(wa′y × wb′z) (2.11)

However, the final clustering result is obtained by applying a hierarchical clus-

tering algorithm over the obtained similarity matrices. Iam-on et al. [51] also pro-

posed three improved versions of the above algorithms named Weighted Connected

Triple (WCT), Weighted Triple-Quality (WTQ), and Combined Similarity Measure

(CSM). In these consensus functions, they considered the relationship between and

within the members (clusters) in the consensus function. In other words, they con-

sidered the similarity within clusters to reflect the similarity between objects in one

cluster and the similarity between clusters in different members. In WCT, they

extended CTS to represent a weighted network, where nodes represent clusters and

edges represent the overlap between them. The concept is very similar to the MCLA

method. The similarly between two nodes is measured with respect to their centre

of triple as the average of the sum of their minimum edge weight multiplied by DC

(decay factor).

The WTQ is inspired by the work in [1], where the quality of the shared triple

is taken into account when calculating the similarity between two nodes (clusters).

The CSM, on the other hand, combines WCT and WTQ algorithms together. The

final clustering result is obtained by applying k-means, k-medoids, and spectral graph

partition to the constructed link similarity matrices. This work shows that mathe-

matical concepts from other disciplines can be applied to the clustering ensemble to

represent the members in a way that makes most of their information available to

the consensus function. One disadvantage with these methods is that they require

a clustering algorithm to be applied to the calculated similarity matrices; which one

to use is a question yet to be answered, and may affect the final clustering results
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just as a common clustering algorithm does in the first place.

2.2.4 Clustering Ensemble Evaluation

Evaluating the quality of the clustering result is called clustering validity assessment.

There are three different cluster validation indices: external, internal and relative

[82]. The following subsections describe them in more detail.

2.2.4.1 External Validation Index

The external index is the most common validation method used in the clustering

ensemble method. It is based on previous knowledge about the data. It measures

the similarity of the clustering results to the external information “ground-truth”.

Hence, any valid similarity measure suitable for partition comparison can be used

as an external index [40]. In the literature, most external indices that have been

used either to validate the final clustering ensemble result or in diversity measures

(Section 2.3.1), are as follows:

Rand Index and Adjusted Rand Index

The Rand index (RI), as well as the Adjusted Rand index (ARI), are classified as

counting pair similarity-based measurements. They are the most relevant similarity

measures in this type of measurement, which is based on four count situations.

Suppose that we have two partitions P1 and P2 of the dataset X of n objects, and

all pairs of objects are xi and xj, where i 6= j. There are four possible situations in

which those pairs could be accommodated:

• n00 - the number of object pairs assigned to different clusters in P1 and P2.

• n11- the number of object pairs assigned to the same clusters in both P1 and

P2.
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• n10- the number of object pairs assigned to the same cluster in P1 and to

different clusters in P2.

• n01 - the number of object pairs assigned to different clusters P1 and to the

same cluster in P2.

The four counts satisfy the following equation:

n00 + n11 + n10 + n01 = U (2.12)

where U is the maximum number of all pairs in the dataset, that is

U = n(n−1)
2

.

The RI was proposed by Rand [80]. Basically, it measures similarity and enables

the evaluation of the final clustering result by comparing two partitions, assuming

one of them to be the ground-truth partition. It is defined as:

RI(P1, P2) =
n11 + n00

U
(2.13)

It measures the level of similarity within the range [0, 1], where 0 indicates that

the two partitions being compared are completely different, and the value 1 indi-

cates that the two partitions being compared are identical. Comparing two random

partitions using the Rand index does not give a constant value, which is a problem

that has been corrected in its new version, the Adjusted Rand index, as proposed

by Hubert and Arabie [47]. It is defined as follows:

ARI(P1, P2) =
RI(P1, P2)− Expected[RI]

1− Expected[RI]
(2.14)

With simple algebra, the ARI can be simplified to:

ARI(P1, P2) =

∑k
i=1

∑k
j=1

(

nij

2

)

− [
∑k

i=1

(

ni

2

)
∑k

j=1

(

nj

2

)

]/
(

n
2

)

1
2
[
∑k

i=1

(

ni

2

)

+
∑k

j=1

(

nj

2

)

]− [
∑k

i=1

(

ni

2

)
∑k

j=1

(

nj

2

)

]/
(

n
2

) (2.15)

where nij is the number of objects in the intersection of clusters ci ∈ P1 and cj ∈ P2,
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ni and nj are the numbers of objects in clusters ci ∈ P2 and cj ∈ P1 respectively,

and
(

n
2

)

is the binomial coefficient n!
2!(n−2)!

.

The maximum value of ARI is equal to 1, which means that P1 is identical to P2,

and it has an expected value 0 for independent clusterings. It is not necessary for

the number of clusters in P1 and P2 to be the same [60].

Jaccard Index

The Jaccard index (J) is also classified as a counting pair similarity-based mea-

surement, and it gives similarity within the range [0, 1] [87]. It is defined as follows:

J(P1, P2) =
n11

n11 + n10 + n01

(2.16)

Mutual Information and Normalised Mutual Information

These two measures are classified as information-theoretic similarity-based mea-

surements. They measure how much information is shared by two partitions. Mutual

Information treats the compared partition as a random partition. It is defined as

follows:

MI(P1, P2) =
∑k

i=1

∑k

j=1
ni,j log

n.ni,j

ni.nj

(2.17)

where ni is the number of objects in cluster ci ∈ P1; nj is the number of objects in

cluster cj ∈ P2; and ni,j is the number of shared objects between clusters ci and cj.

Strehl and Ghosh [94] showed that MI(P1, P2) is a metric and that there is no

upper bound for MI(P1, P2). Thus, they proposed Normalised Mutual Information

(NMI), which normalises mutual information to a [0, 1] range; 1 is attained when P1

is identical to P2, and 0 is attained when P1 is completely different from P2. It is

defined as follows:

NMI(P1, P2) =
MI(P1, P2)

√

∑k
i=1 ni log

ni

n

∑k
j=1 nj log

nj

n

(2.18)
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2.2.4.2 Internal Validation Index

The internal validation index only relies on information in the data, without any

additional information. It is usually employed for the task of class discovery. Most of

the internal validation indices are based on two criteria: compactness and separation

[95]. The compactness is defined as a measure of how close objects are in a cluster. It

is often measured by the variance, and a lower variance indicates better compactness.

The separation is defined as a measure of how well-separated a cluster is from other

clusters. It is usually measured by the distance between cluster centroids. Such

internal validation indices based on these criteria are the Dunn index, the Davies-

Bouldin index, the Silhouette index, the SD index and SDbw index. More details

on these indices are given below:

Dunn index

The Dunn index is the ratio of the smallest distance between two objects from

different clusters to the largest intra-cluster distance [23]. It is calculated as follows:

D(P ) = min
i=1,··· ,k

{

min
j=1,··· ,k

(

minx∈ci,y∈cj Dis(x, y)

maxl=1,··· ,k,cl∈Pdiam(cl)

)}

(2.19)

diam is the diameter, which is the maximum distance between two objects among

all clusters, and the Dis is the standard Euclidean distance. The Dunn index has a

value between 0 and∞. A large value of D indicates that the partition P is compact

and well-separated. So, this index should be maximised.

Davies-Bouldin Index

The Davies-Bouldin Index (DB) is proposed by Davies and Bouldin [17]. It is

calculated as follows:

DB(P ) =
1

k

k
∑

i=1

max
j=1,··· ,k,i 6=j

{

diam(ci) + diam(cj)

Dis(ci, cj)

}

(2.20)
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Where diam is the diameter of a cluster calculated as the average Euclidean distance

of objects in cluster i to the centroid of cluster i.

Silhouette Index

The silhouette index is a well-known measurement for estimating the number of

clusters in a dataset. The silhouette is based on the pairwise difference between the

compactness and the separation. The compactness is measured based on the distance

within the cluster, which is measured as the average distance between all objects

in the same cluster. The separation is measured based on the nearest neighbour

distance. The silhouette is calculated as follows:

Si(P ) =
1

n

∑

ci∈P

∑

x∈ci

b(x, ci)− a(x, ci)

max{a(x, ci), b(x, ci)}
(2.21)

a(x, ci) =
1

|ci|
∑

y∈ci

Dis(x, y)

b(x, ci) = min
cj∈ci

1

|ci|
∑

y∈cj
Dis(x, y)

SD Index

The SD index was proposed by Halkidi et al. [42], and is based on the average

scattering and the total separation of clusters. The compactness Comp is measured

as the variance of cluster objects, and the separation Sep is measured as the total

separation between cluster centres C. The value of this index is the summation of

these two terms, which is as follows:
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SD = Sep(cmax).Comp(c) + Sep(c) (2.22)

Sep(c) =
maxi,j Dis(ci, cj)

mini,j Dis(Ci, Cj)

k
∑

i=1

(

k
∑

j=1

Dis(Ci, Cj)

)−1

Comp(c) =
1

k

k
∑

i=1

‖ σ(ci) ‖ / ‖ σ(X) ‖

Where σ is the variance vector of cluster. The optimal partition can be obtained

by minimising the value of SD.

SDbw Index

Similarly, the SDbw index is the summation of the compactness and the separation

[41]. The compactness is measured in the same way as in the SD index, while the

separation is measured based on the density of the clusters. It is calculated as

follows:

SDbw(P ) = Comp(c) +Dens bw(c) (2.23)

Dens bw =
1

k(k − 1)

k
∑

i=1







k
∑

j=1,j 6=i

∑

x∈ci∪cj

f(x, ui,j)

max(
∑

x∈ci

f(x,Ci),
∑

x∈cj

f(x,Cj))







where uij is an object in the middle of the line segment between the centres of

clusters ci and cj, and f(x, ui,j) is equal to 0 when the Dis(x, ui,j) is larger than the

average standard deviation of clusters, and 1 otherwise. The minimum value of this

index indicates optimal partition [41].
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2.2.4.3 Relative Validation Index

The concept of the relative validation index is based on comparing the partition to

another partitioning resulting from the same algorithm, but under different condi-

tions (e.g. using different parameter values). In other words, it is a measurement of

the consistency of the algorithms. Two popular indices are Figure of Merit (FOM)

[110] and Stability [65], and they are defined as follows:

Figure of Merit (FOM)

The Figure of Merit is an estimator of the clustering algorithm consistency, which

was originally developed for gene expression data, and was proposed by Yeung and

Haynor [110]. A gene expression dataset X contains n genes (objects) measured un-

der u experimental conditions (features). Suppose a clustering algorithm is applied

to all features in dataset X except feature e to obtain k clusters, {ce1, ce2 · · · cek}. The
figure of merit for feature e (FOM(e,k)) is calculated as follows:

FOM(e, k) =

√

√

√

√

1

n

k
∑

j=1

∑

i∈cej

(xi,e − x̄j
e)2 (2.24)

Where xi,e is the object value i in feature e in dataset X, and x̄j
e is the average of

feature e values only for objects belonging to cluster cej .

Therefore, the FOM is defined as an estimate of the total clustering algorithm

consistency over all the features for k clusters as follows:

FOM(k) =
u
∑

e=1

FOM(e, k) (2.25)

A lower value of FOM indicates a more consistent and better clustering result of the

dataset.

Stability

The Stability measure is used to select the number of clusters in the model selec-
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tion application. It is also used to compare between two partitions. The Stability

measure is mainly developed to assess the capability of the clustered dataset to

predicate the clustering of another same size dataset sampled from the same source

[65, 66]. Assume that we have two datasets X and X ′ sampled from the same dis-

tribution. Applying a clustering algorithm to X and X ′, we get P = {c1, c2 · · · ck}
and P ′ = {c′1, c′2 · · · c′k} respectively. For x ∈ X if x ∈ cj then P (x) = j, where

j = {1, · · · , k} and for x′ ∈ X ′ if x′ ∈ c′j then P ′(x′) = j. The dataset X and its

partition P can be used to train a classifier f to predict a new partition P1 on X ′.

Then the consistency between the two sets (X,P ) and (X ′, P ′) is measured as the

dissimilarity between the original labels P ′ and the predicted labels P1 using the

modified Hamming distance as follows:

STBζk(P
′, P1) = min

π∈ζk

1

n

n
∑

i=1

δ(P ′(x′i), π(P1(x
′
i))) (2.26)

Where ζk is the set of all the permutations of the k clusters for partition P ′,

and δ(P ′(x′i), π(P1(x
′
i))) = 0 if P ′(x′i) = π(P1(x

′
i))) and δ(P ′(x′i), π(P1(x

′
i))) = 1

if P ′(x′i) 6= π(P1(x
′
i))).

Then the stability of the clustering algorithm is computed as the average distance

between partitions using the expectation E of the stability for pairs of independent

datasets X,X ′ of size n drawn from the same source as follows:

STB(P ) = EX,X′STBζk(P
′, P1) (2.27)

A smaller value of STB ∈ [1, 0] indicates a more stable clustering result for the

data.

2.3 Clustering Ensemble Diversity

Generally speaking, when somebody wants to form a sports team he/she has to

ensure that each member of the team has a different and better skill in a particular
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aspect, hence each one plays a role and as a whole team they perform better than

the individual members and better than a team with players who have identical

skills.

The clustering ensemble problem can be seen in a similar way to this example.

Intuitively, there is no point in building an ensemble with an infinite set of identical

members as they are not going to produce a final clustering result any better than

they were at the start. Thus, the ensemble members have to be different enough from

each other to provide complementary information and to improve clustering quality

over an individual partition when combined, the difference between the members is

called diversity.

2.3.1 Related Work on Clustering Ensemble Diversity Mea-

sures

In the clustering ensemble, it has been found that diversity is the fundamental and

crucial factor for building a successful clustering ensemble because an ensemble of

identical members will not outperform the individual members [94, 39, 25]. Accord-

ingly, a number of diversity measures have been proposed [60, 39, 37], most of them

based on the matching of labels acquired from the two clustering results.

Two different approaches have been proposed for measuring diversity among

members: the pairwise method (p) and the non-pairwise method (np) as seen in

Figure 2.3.

2.3.1.1 Pairwise Diversity Measure (p)

In the pairwise method, each ensemble member is compared with the others, and

then a common diversity measurement is used to measure the level of disagreement

between any two partitions (which is the complement of a similarity measure S),

such as DV (Pi, Pj) = 1 − S(Pi, Pj); the Adjusted Rand index can be used as the

measure of similarity (S), as defined in 2.15. This pairwise diversity measure (DVp),
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Figure 2.3: The two categories of diversity measures that have been proposed in the
literature and the subdivision of the Non-Pairwise measure.

based on the Adjusted Rand index of m members, is defined as follows:

DVp =
2

m(m− 1)

m−1
∑

i=1

m
∑

j=i+1

(1− S(Pi, Pj)) (2.28)

Where S is the ARI calculated as in 2.15

Fern and Brodley [25] used the same measurement DVp but with NMI index to

measure diversity, as follows:

DVpNMI =
2

m(m− 1)

m−1
∑

i=1

m
∑

j=i+1

(1−NMI(Pi, Pj)) (2.29)

They use it to analyse the influence of the quality and the diversity of the individ-

ual members on the ensemble performance. They found that, based on a number of

experiments, there is a strong relationship between improving the ensemble’s quality

and both the diversity and the quality of its members. They also point out that
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high diversity leads to better ensemble performance [25].

2.3.1.2 Non-Pairwise Diversity Measures (np)

As discussed in Hadjitodorov et al. [39], the ensemble result is first obtained in the

non-pairwise measurement, and then each member is compared with it.

This measurement is divided into: group diversity and individual diversity.

Group Diversity Greene et al. [37] proposed an entropy measurement as a group

diversity measure, defined as:

Entropy =
2

n(n− 1)

n
∑

i=1

n
∑

j=i+1

−(pbij log2 pbij + (1− pbij) log2(1− pbij)) (2.30)

Where pbij represents the probability of clustering the two objects i and j to-

gether; the greater the entropy, the greater the diversity obtained among the mem-

bers. They highlighted that diversity as well as the selection of the consensus func-

tion is important in producing better ensemble results; not diversity alone.

Individual Diversity Another measure, proposed by Hadjitodorov et al. [39], is

the average diversity between the members and the ensemble result P ∗, which is

classified as an individual diversity and it defined as follows:

DVnp1 =
1

m

m
∑

i=1

(1− ARI(Pi, P
∗)) (2.31)

Moreover, they measured the spread of diversity between ensemble members com-

pared to P ∗ by measuring the standard deviation as follows:

DVnp2 =

√

√

√

√

1

m− 1

m
∑

i=1

(1− ARI(Pi, P ∗)−DVnp1)2 (2.32)
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Using DVnp2, they discovered that a larger spread is not strongly related to

ensemble quality, and based on this they proposed another measurement, which is

as follows:

DVnp3 =
1

2
(1−DVnp1 +DVnp2) (2.33)

In these measurements, they assume that the ensemble result P ∗ is close to

the ground truth partition of the data, and therefore the quality of each ensemble

member is estimated based on how close they are to the ensemble result. They also

compared the diverse ensemble members with the non-diverse ones and found that

the diverse ones produced more high-quality ensemble results than the non-diverse

members, even when the non-diverse members were more accurate than the diverse

ones. Furthermore, they constructed another diversity measure as the coefficient of

variation as follows:

DVnp4 =
DVnp2

DVnp1

(2.34)

2.3.2 The Relationship between Diversity and Ensemble

In the clustering ensemble, the above diversity measures have been used to discovered

the relationship between the diversity and the clustering ensemble performance.

Domeniconi and Al-Razgan [20] compared DVpNMI and DVnp3, the latter applied

the Adjusted Rand Index. They found that measuring diversity using the Adjusted

Rand Index gives more robust and consistent results than NMI. This result is based

on using the graph-based consensus function, and is the same as the results found

by Hadjitodorov et al. [39], in which they used Co-association method.

However, Table 2.1 summaries the researches that have been done in the lit-

erature to discover the relationship between diversity and ensemble performance.

Domeniconi and Al-Razgan [20] conclude that high diversity leads to high ensemble

quality by using DVpNMI and DVnp3, whereas Hadjitodorov et al. [39] discovered

that selecting median diverse members leads to better ensemble performance than
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Table 2.1: Summary of diversity research proposed in the literature for discovering
the relationship between the diversity and the performance of the ensemble, along
with the diversity measures proposed/used.

Authors Measure Pro-
posed/Used

Type of Mea-
sure

The Recommended Di-
versity Level

Fern and Brod-
ley [25]

DVp p High level

Greene et.al.
[37]

Entropy np (Group diver-
sity)

–

Hadjitodorov
et.al. [39]

DVpARI ,
Entropy,
DVnp1, DVnp2,
DVnp3 and
DVnp4

p and np (Indi-
vidual diversity)

Median level

Domeniconi and
Al-Razgan [20]

DVp and
DVpNMI

p High diversity

Rozmus [83] DVp, DVnp1,
DVnp2, DVnp3

and DVnp4

p and np (Indi-
vidual Diversity)

DVnp1 discovered low diver-
sity,
while other measures dis-
covered high diversity

Iam-On et.al.
[51]

DVpNMI p High diversity

selecting highly diverse members by using all their proposed measures, including

Entropy.

Rozmus [83] studied the relationship between diversity and the performance of

the ensemble by using five measurements: DVp, DVnp1, DVnp2, DVnp3 and DVnp4, and

he applied this using four different similarity indexes, which are the ARI index, the

Rand index, the Jaccard index and the Fowlkes and Mallows index. He found that,

in detecting a clear relationship between diversity and ensemble quality (using these

measurements, in some cases using DVnp1), it is observed that lower diversity leads

to higher ensemble quality. Whereas in other cases (using the other measurements),

it is observed that higher diversity leads to higher ensemble quality. Furthermore,

he pointed out that it is hard to distinguish between the indices in delivering a

strong correlation between diversity and ensemble quality, but in some cases, using

the Jaccard index delivers a more robust result.
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It is clear that there is no generally accepted agreement in the literature on how

to measure diversity and there is no measurement that is considered particularly

effective and popularly accepted. Thus, we think that this is the main reason why

there is no agreement on the relationship between diversity and ensemble perfor-

mance. In addition, there is no single diversity definition specifically defined for

clustering ensembles, and most of the proposed diversity measures in the literature

are derived from other fields such as clustering validation methods and classification

ensembles and not designed specifically in relation to clustering ensembles. In this

research, we will investigate the clustering ensemble diversity experimentally using

the current measurements to find out whether or not it has an influence on the

ensemble performance.

However, diversity has been intensively studied in supervised learning; it is com-

monly defined as the level of variability between ensemble members. In other words,

it is the level of dissimilarity among ensemble members [62]. It has been shown that

ensemble learning in the context of classification and regression outperforms single

learners both theoretically and empirically [12]. Moreover, there is a wide agreement

that there is a trade-off between the accuracy of members and the diversity between

them. In other words, it is essential that the ensemble members are highly diverse

and sufficiently accurate [14, 62]. Brown et al. [12] reviewed the existing qualita-

tive and quantitative diversity definitions in regression and classification contexts,

in terms of how they are defined and how to create diversity in the ensemble. They

suggested a taxonomy of methods to create diversity for a classification ensemble, by

varying “starting points within the hypothesis space ”, varying the “set of accessible

hypotheses” and “traversal of hypothesis space” for each member differently. They

concluded that there is no agreed-upon theory to explain why and how the diversity

affects the ensemble accuracy, and in classification tasks diversity is still an open

question.

Tang et al. [96] studied the relationship between diversity and classification

ensembles using 6 diversity measures. In fact, they analysed these diversity measures
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by relating them to the concept of classifiers’ margin. Simply, the concept of margin

is defined according to [86] as “the difference between the number of correct votes

and the maximum number of votes received by any incorrect label”. Tang et al.[96]

showed that when they considered the average accuracy of the ensemble members as

a constant, they achieved a maximum diversity, which is equivalent to maximising

the minimum margin of the ensemble on training sets. They concluded that large

diversity may not always correspond to better ensemble performance, so it cannot

be explicitly used for selecting the best ensemble members [96].

2.4 Clustering Ensemble Application

The main aim of clustering ensemble methods is to improve the quality of the

clustering result compared to the single clustering algorithm. Clustering ensemble

methods can be applied to any clustering problems, such as privacy-preserving clus-

tering problems, image segmentation, document clustering, detecting outliers and

heterogeneous data clustering problems [35]. Thus, its huge potential has motivated

researchers to continuously develop new clustering ensemble methods.

For example, Strehl and Ghosh [94] developed clustering ensemble methods in

order to reuse existing clustering results, which they called knowledge reuse. This

is where a variety of partitions may already exist, so they are combined to obtain a

final clustering result in order to produce an improved clustering result. Clustering

ensembles on data from multiple sources, where in some situations, objects in the

dataset have multiple views or sources, so the clustering ensemble can be carried

out on a restricted view of the dataset [94]. Strehl and Ghosh [94] illustrated two

different scenarios for using clustering ensembles: Feature Distributed Clustering,

where each member is built by selecting different subsets of features and using all

the objects in the dataset, and Object Distribution Clustering, where each member

is built by different subsets of objects, using all the features.

Another useful application is to enable clustering over distributed computing,
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where in some situations, the dataset is distributed and it is not possible to collect

it in one place due to privacy issues or data migration costs. Thus, clustering

ensembles can be used in these situations where each member has access to a subset

of features and/or to a subset of objects [94, 72]. Sevillano et al. [88] used a clustering

ensemble and feature diversity in a document clustering application, where they

presented several empirical findings on the robustness of their clustering results.

Some researchers have applied clustering ensembles to gene expression data such

as Iam-On et al. [50] and Monti et al. [76]. Other researchers applied clustering

ensembles to categorical data such as Iam-O et al. [48] and Gionis et al. [35]. Chang

et al. [15] applied a clustering ensemble based on Expectation-Maximisation (EM)

to a colour image quantisation application.

Recently (in 2013), Saeed et al. [84] applied a graph-based clustering ensemble

proposed by Strehl and Ghosh [94] to a chemical structures dataset. Furthermore,

clustering ensembles have been developed that have the ability to identify the “cor-

rect” number of clusters in the data. Mimaroglu and Aksehirli [73] developed a

clustering ensemble method in which the number of clusters can be automatically

determined. However, there are still other issues that need to be investigated, such

as detecting outliers and heterogeneous data clustering problems.

2.5 Summary

In this chapter, the background of this study was reviewed, including the most well-

known clustering techniques; hierarchical, partitional and fuzzy clustering methods.

A number of difficulties with clustering algorithms have been reported in the litera-

ture, including the fact that different clustering structures can be achieved by single

clustering algorithms with different parameters, or by several algorithms. The clus-

tering ensemble method was introduced to overcome the inherent difficulties with

single clustering algorithms. It is the process of combining a set of partitions gen-

erated from the same data in order to produce a single improved partition of the
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data. The main process of the clustering ensemble requires two main steps: gen-

eration and consensus. In the generation step, a number of ensemble members are

generated from the same data, which are then combined using a consensus function

in the consensus step.

This review of the related work has indicated that the consensus function is the

key component in a clustering ensemble as it determines whether an ensemble is suc-

cessful or not. Some common consensus functions in the literature were reviewed in

this chapter. They are based on how the clustering ensemble problem is represented

or on applying well-known mathematical concepts to the problem. A commonly used

one is based on the object pairwise similarity (Co-association matrix). Moreover,

a number of clustering ensemble applications were reviewed in this chapter, which

include the privacy-preserving clustering application, knowledge reuse and multi-

view application. In conclusion, through the review in this chapter, some important

research issues are identified, which will be investigated in this research.
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Research Methodology

This chapter describes our research methodology in five sections. Section 3.1 intro-

duces the general clustering ensemble framework. Section 3.2 explains the strategy

we used throughout the thesis to test the effectiveness of our proposed clustering

ensemble methods, which include the experimental study design, the data used and

evaluation measures used. Section 3.3 explains the strategy we used to investigate

the diversity and its relationship with the ensemble performance. Section 3.4 intro-

duces the implementation of our methods and the tools used in this thesis. Finally,

Section 3.5 summarises this chapter.

3.1 The Clustering Ensemble Framework

For a dataset of n objects: X = {x1, x2, . . . , xn}, let Pq = {cq1, cq2, . . . , cqkq} be a

clustering result of kq clusters produced by a clustering algorithm as the qth partition,

so that cqi ∩ cqj = ∅ and ∪
kq
j=1c

q
j = X. A clustering ensemble Φ can then be built with

m members, Γ = {P1, P2, P3, . . . , Pm} and a consensus function CF is denoted by

Φ(CF,Γ) = CF (P1, P2, P3, . . . , Pm) = CF (Γ).

It should be noted that the members may not necessarily have the same number

of clusters in their partitions, i.e., kq may not be equal to a pre-set value k.
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The problem of a clustering ensemble is to find a partition P ∗ of dataset X by

combining the ensemble members {P1, P2, P3, . . . , Pm} with CF without accessing

the original features, so that P ∗ is better in terms of consistency and quality than

the individual members in the ensemble.

The quality of the ensemble Q(Φ) can be defined as a non-linear function of a

number of factors, which can be denoted by:

Q(Φ) = f(Q(Γ), DV,CF,m) (3.1)

Where Q(Γ) is the quality of the individual members {P1, P2, P3, . . . , Pm} in

ensemble Φ, m is the total number of members, and DV is the diversity of the

ensemble.

Figure 3.1 shows that the generic clustering ensemble framework consists of

three components: ensemble member generation, consensus function and evalua-

tion, which operate in three consecutive phases. As we can see, the input of the

clustering ensemble framework is a given dataset to be clustered, and the output is

the clustering result of this dataset, which we call the final clustering result P ∗.

Figure 3.1: A Clustering Ensemble Framework.

Ensemble Member Generation Phase This phase aims to generatemmem-

bers, using the provided dataset as input. As seen in the previous chapter, there

are several techniques that can be used to produce ensemble members. However,

in the literature, there is no single clustering algorithm that is universally used and
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there are no generally agreed criteria for selecting the most suitable algorithms. In

this case, it is better to apply the principle of Occam’s Razor [9] and choose the one

with the greatest simplicity and efficiency, if there is no prior specific knowledge on

a given problem. This is why we decided to use two simple widely used generation

techniques [98, 32, 94, 111]. Details are given in Section 3.2.2.

Consensus Phase Having obtained the ensemble members, we now need to

combine these members using a consensus function in order to produce an improved

clustering result. It can determine the quality of the final solution directly, thus it

is considered the most important component in an ensemble, and that is why it was

chosen as the first focus of this research.

In Chapter 4 we propose a consensus function based on object-neighbourhood

similarity in order to solve to some extent the problem of uncertain agreement

between members. While, in Chapter 5, we introduce two new consensus functions

based on cluster similarity which will not require an ordinary cluster algorithm as

final step. More details are given in these chapters.

Evaluation Phase In this phase, the aim is to evaluate the final clustering

result in terms of quality and consistency. From the clustering point of view, the

quality of the clustering result and the consistency of the clustering algorithm can be

evaluated either using external information (i.e. a known clustering) if it is available

or internal information. In real world applications, it is common not to have any

external information. In this case, the quality is defined as how well the clustering

result fits the data using internal information such as a measure of cluster cohesion

and cluster separation [95]. Whereas, when the external information is available the

quality is represented by the degree of similarity between the clustering result and

the known clusters of the data (e.g. class labels) [95]. The consistency is defined as

the ability that the clustering ensemble method has to produce similar performances

on a multiple number of test datasets, and is usually represented by the average of

a performance/quality measure and a variance (e.g. standard deviation) [32].
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The quality and the consistency of the proposed method will be evaluated us-

ing datasets that have a class label and through comparing it with other ensemble

methods as well as with single clustering algorithms in order to demonstrate that the

clustering ensemble is more reliable and consistent than a single clustering method.

Moreover, we will evaluate our proposed consensus function in terms of time com-

plexity.

3.2 Strategies to Test the Effectiveness of the Pro-

posed Consensus Functions

Each of the proposed consensus functions will be tested in a separate experimental

study reported in its own chapter. Figure 3.2 summarises the experimental design

along with information pertaining to each chapter.

For each experiment, we implement the aforementioned clustering ensemble frame-

work. Then each experiment is repeated 10 times, with different generated members,

and the average and the standard deviation of the results of 10 runs are calculated

in order to verify the quality and consistency of the ensembles. Moreover, in each

experiment we report the average performance for each method across all datasets

as well as the standard deviation. More details on the different strategies that are

used for each experiment are explained according to each component in the frame-

work as follows: Section 3.2.1, provides detailed information about the datasets that

are used in each experiment. Section 3.2.2 reports the ensemble member generation

techniques that are used to carry out each experiment. Section 3.2.3 explains our

comparison strategy with other clustering ensemble methods. Section 3.2.5 includes

details on the used statistical significance test of multiple runs for each experiment.
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Figure 3.2: Summary of the thesis experimental chapters.

3.2.1 Dataset

Up to thirteen datasets, as listed in table 3.1, are used to test our proposed consensus

functions at different stages of this research. In chapter 4, we use artificial datasets

as well as real-world datasets, whereas for the other experimental chapters, we use

only real-world datasets. For artificial data, it is easy to obtain the class labels; for

real datasets, we use data that already have class labels. We assume that the class

labels correspond to clusters in the dataset, which is called ground-truth clustering.

Using real benchmark datasets with known class labels has been widely used to

evaluate clustering algorithms in the literature. We should mention that these class
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labels are excluded from the data as the clustering is unsupervised learning and they

are used only for the evaluation purpose.

In Chapter 4, the experiments are conducted using 3 artificial datasets, which

are shown in Figure 3.3. The D31 and R15 datasets were generated by Veenman et

al [100]. D31 contains 31 clusters generated from two-dimensional Gaussian distri-

butions, and R15 has 15 clusters from two-dimensional Gaussian distributions. The

aggregation dataset was generated by Gionis et al. [35]; it contains 7 uneven-sized

clusters, unequal but with narrow bridges between some clusters. These datasets

create difficulties for single clustering algorithms to solve. In the same chapter,

the first 8 real datasets are also used to test the proposed consensus functions,

which are from the UCI Machine Leaning Repository [77]; these are: Iris, Wine,

Thyroid, User modelling (Um), Multiple Features (Mfeatures), Breast Cancer Wis-

consin (Bcw), Glass and Contraceptive Method Choice (Cmc). The characteristics

of these datasets are given in Table 3.1. In chapters 5, 6 and 6.2, we use only real

datasets and as the results in Chapter 4 suggested that the Um and Cmc datasets

are not suitable for clustering analysis, we therefore replaced them with the Soybean

and Ionosphere datasets in the experiments of other chapters.

As we can see from Table 3.1, three datasets have been modified: Um, Bcw and

Ionosphere. Um and Bcw have missing attribute values in some objects which we

have removed, and we also removed the second attribute in Ionosphere dataset as

only a single value (0) was present for it.

3.2.2 Ensemble Member Generation Techniques Used

For the Ensemble Member Generation Phase, in the experiment in Chapter 4, we

use heterogeneous generation techniques, by using different clustering algorithms to

generate 7 ensemble members with the pre-defined k value (number of clusters) for

each dataset. These are: k-means, agglomerative hierarchical clustering using Single
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Figure 3.3: Three artificial datasets are used in this study. The number of clusters
is given in parentheses.

and Average linkage, k-medoids and c-means1 as well as kernel k-means [91]2 and

the Normalised cut algorithm [92]3.

However, in Chapter 5, we implement mixed heuristics generation techniques,

precisely the same techniques used by Ren et al. [81] to generate 10 members. Thus,

we use k-means to generate 5 members with a random sampling of 70% of the data,

and we calculate the Euclidean distance between the remaining objects and the

cluster centres and assign them to the closest cluster. For each of the remaining

members, we use k-means on 70% of randomly selected features.

We set k value (number of clusters) equal to the pre-defined cluster (class) value

1We use the MATLAB Statistics Toolbox for these algorithms
2We use the code available at http://www.mathworks.co.uk/matlabcentral/fileexchange/

26182-kernel-k-means/content/knkmeans.m
3We use the code available at http://www.cis.upenn.edu/~jshi/software/
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Table 3.1: Details of datasets.

Dataset # Objects # Features # Cluster Dataset type Modified

D31 3100 2 31 Artificial No

R15 600 2 15 Artificial No

Aggregation 788 2 7 Artificial No

Iris 150 4 3 Real No

Wine 178 13 3 Real No

Thyroid 215 5 3 Real No

Um 399 5 4 Real Yes

Mfeatures 2000 2 10 Real No

Glass 214 9 6 Real No

Bcw 683 9 2 Real Yes

Cmc 1473 9 3 Real No

Soybean 47 35 4 Real No

Ionosphere 351 34 2 Real Yes

for each dataset, in all the experiments, except in one experiment in chapter 5, where

we set a different k for each member chosen randomly from the interval [k−2, k+2].

3.2.3 Comparison Strategy

We compare our proposed consensus functions with other competitive clustering

ensemble methods. In the experiment in Chapter 4, we compare our proposed

consensus function with other consensus functions which are also an object pair-

wise similarity based approach including the Co-assoication (CO) [32] and the re-

cent approaches, which are the connected-Triple based similarity (CTS) matrix, the

SimRank-based similarity (SRS) matrix [49] and the approximate SimRank-based

similarity (ASRS) matrix [52]. As these consensus functions require a clustering

algorithm to be used as a final step, in the first experiment we use three differ-

ent hierarchical clustering methods: Single (Si), Complete (Cm) and Average (Av)

Linkage to compare between them, and for all the following experiments we use the

one that achieve better performance. In Chapter 4, we also compare the proposed

consensus function with k-means, as it is the most well-known clustering algorithm
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in the literature, and the aim is to find out whether a clustering ensemble is more

effective than a single clustering algorithm.

In Chapter 5, we compare the proposed consensus functions with CO [32] (using

the Average linkage method), DICLENS [73] and MCLA [94]. Moreover, we compare

them with the one proposed in Chapter 4. The CO and MCLA are state-of-the-art

clustering ensemble techniques, and they were early successful techniques developed

in the clustering ensemble area. CO [32] has around 774 citations, while MCLA [94]

has around 2717 citations, according to Google Scholar. DICLENS is the most recent

one, and its authors claim that DICLENS outperforms state-of-the-art clustering

methods, including CO and MCLA [73].

3.2.4 Evaluation Measures Used

In the evaluation phase, we evaluate the performance of the final clustering results

in terms of quality and consistency using the external validation method, and in

particular we use the Normalised Mutual Information (NMI) [94] and the Adjust

Rand Index (ARI) [47]. When ARI and NMI are applied to evaluate the clustering

results, one of the clustering partitions should be the ground “true” partition of the

data, which in practice, is normally assumed to be the class labels as there are no

other true answers that can be used to verify the quality (accuracy) of the clustering

result. The other partition is the clustering result of the ensemble that needs to be

evaluated P ∗. In Chapter 2, we described how these indices are calculated.

3.2.5 Tests of Statistical Significance

In order to assess the performance of the proposed method in terms of being signif-

icantly better or worse than other methods, statistical analysis is necessary. Gen-

erally speaking, statistical analysis has been widely used in classification research

to assess the performance of different classifiers, but it has not been widely used in

clustering analysis research. Recently, researchers have realised the importance of
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using statistical analysis in clustering analysis research and clustering ensemble, for

example, Kuncheva et al.[61], Fern and Lin [28] and Azimi and Fern[7].

According to the recommendations of Demšar [18], we consider the non-parametric

testing approach due to the fact that parametric tests, such as t-test, assume that

the data are drawn from the normal distribution or homogeneity of variance. Al-

though these tests have been designed for comparing multiple classifiers and have

been widely used in supervised learning, we consider the non-parametric approach

for comparing the clustering ensemble algorithms as clustering shares a number of

key similarities with supervised learning.

To check whether all the results obtained by a number of clustering ensemble

algorithms present any equality, we use the Iman-Davenport test proposed by Iman

and Davenport [53], who derived a correct measure F of the Friedman test XF [33],

which been shown to be undesirably conservative.

To demonstrate how these tests are implemented, let us run a number of clustering

ensemble methods g using t datasets, and the quality of the result is measured using

the NMI or ARI indices. So, given a t by g matrix D of quality, the first stage is to

rank the competing algorithms for each dataset recorded in the matrix R, where Ri,j

is the rank of the jth algorithms on the ith dataset. For those algorithms that have

equal quality, the average rank is obtained. Then the mean rank for each algorithm

is obtained as Rj =
t
∑

i=1

Ri,j

t
. Under the null hypothesis that the mean ranks are

equal for all the chosen methods, the Friedman test score XF is defined as:

XF =
12t

g(g + 1)

[

∑

j

R2
j −

g(g + 1)2

4

]

(3.2)

And the Iman-Davenport test F is computed by:

F =
(t− 1)XF

t(g − 1)−XF

(3.3)

According to the suggestion of Demšar [18], if there are statistically significant

58



Chapter 3. Research Methodology

differences in the performance of compared clustering ensemble methods, we can

proceed with the Nemenyi test as a post hoc test for a pairwise comparison, to

discover where the differences lie. If the corresponding average ranks differ by at

least the critical difference CD = qα

√

g(g+1)
6t

, where qα is based on the studentised

range statistic, it is said that the performance of two ensembles is significantly

different, as we reject the null hypothesis using the Iman-Davenport test.

In summary, to test the significance between multiple clustering ensembles over

a number of datasets, we use the Iman-Davenport test with post-hoc Nemenyi test

at a significance level of 0.1.

3.3 Strategies Used to Investigate Diversity

As we saw in the first chapter, two questions (4 and 5) are asked on the diversity

issue. In Chapter 2, we answered question 4 by reviewing the literature on all exist-

ing diversity definitions in the context of the clustering ensemble. In Chapter 6, we

answered question 5 by designing an experimental study to investigate the relation-

ship between diversity and ensemble performance, using all of the existing diversity

measures and using a number of different consensus functions — CO, MCLA and

the one proposed in this research. The experiment set-up and the results are given

in Section 6.1.

Furthermore, we investigate two issues raised from our experimental study on

diversity (in Section 6.1) by experimentally studying them. These issues are an

analysis of the positive and negative effects of diversity on ensemble performance,

and studying the interaction between members’ qualities and diversity. In the fol-

lowing sections we briefly review them and the strategy we use to investigate them.
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3.3.1 Analysis of the Positive and Negative Effects of Di-

versity on the Ensemble Performance

In the classification ensemble, it has been shown that diversity is not always a

beneficial factor for the ensemble performance [63]. In relation to the ensemble

accuracy, Kuncheva et al. [63] derived a functional relationship between the ensemble

accuracy (given by the majority voting method) and the diversity (measured by

pairwise dependence Q-statistics), and accordingly two different effects of diversity

were discovered. These were represented by two extreme patterns: the “pattern

of success”and the “pattern of failure”, in terms of the voting combinations that

the ensemble can have. In the success pattern, the ensemble accuracy (majority

voting) is a monotone decreasing function of Q-statistics, while the failure pattern

is a monotone increasing function of Q-statistics. They showed that diversity can

have a positive effect on the ensemble performance, such as the case in the pattern

of success (best pattern), but it can also have a negative effect on the ensemble

performance, such as the case in the pattern of failure (worst pattern).

Different effects of diversity are also found in the clustering ensemble context,

as some results in Section 6.1 showed that for some datasets there are some “Ups”

(positive diversity effects) and “Downs” (negative diversity effects) for the quality

of the ensemble. Moreover, these two effects were also reported in the literature, in

particular in [83] and [39], where they did not investigate them deeply. Therefore,

in Chapter 6, we formally define these two different effects and we conduct an

experiment in order to find out the characteristics of these ensemble combination

patterns to avoid the negative effect of diversity.

3.3.2 Studying the Interaction between Members’ Qualities

and Diversity

The results in Section 6.1, as well as the analysis of the first issue in Section 6.2.1,

show that an interaction may exist between the diversity and the members’ qualities.
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If such an interaction exists, then the effect on the ensemble performance might be

determined jointly by them. This leads us to implement a factorial design experi-

mental study to investigate the interaction between the diversity and the members’

quality, and if such an interaction exists we will study the impact of the interaction

between them on the ensemble performance. The following section gives a brief

introduction to the Factorial Design Experiment, and in Chapter 6 (Section 6.2.2)

the factorial experiment study is conducted, and its results are reported, along with

the interpretation of the results.

Factorial Design Experiment

Generally, a factorial design experiment is used to study the effects of one or more

factors (independent variables) on one or more responses (dependent variables). It

is therefore designed to address more complex problems than an experimental study

of one variable at time. In a factorial experiment, each factor can be subdivided into

different levels, and it is conducted under a set of conditions, where each condition

is a combination of two levels from different factors. It is possible to determine the

effect of each factor alone (main effect), which is a consistent trend among the dif-

ferent levels of a factor, and the effect of both factors in a combination (interaction).

The interaction is defined as how the effect of one of the independent variables differs

according to the level of the second independent variable [75]. There are two fac-

tor categories, within-subject and between-subject, where subject means the thing

that is being experimented on. In our case, the subject is the set of the generated

members in different runs in the experiment. In the within-subject factor, the same

subjects are used in different conditions in the experiment, while in the between-

subject factor, a different set of subjects is used for each condition in the experiment

[16].

Analysing a factorial experiment requires a statistical analysis technique, and

the most common used is the Analysis of Variance (ANOVA) [71]. ANOVA is a

set of statistical methods used to test the general differences among the means of
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two or more factors, and ANOVA tests the null hypothesis that all the factor means

examined are equal. When this null hypothesis is rejected at a chosen significant

level, it signifies that at least one mean is different from at least one other mean, but

ANOVA does not reveal where the differences occur among the levels of one or more

factors. Different experimental designs require different ANOVA approaches; an

experiment designed with one factor requires one-way ANOVA, while an experiment

with two factors requires two-way ANOVA for the analysis. The latter is the type

of ANOVA used in our experiment in Section 6.2.2.

However, ANOVA makes a number of assumptions about the distribution of

the dependent variable for each level of the independent variable, and these should

be checked to ensure the validity of the ANOVA. The main assumptions are: the

normality of the dependent variable distribution, and the homogeneity of variances

(the variances of the dependent variable in each combination are the same) [71].

3.4 Research Tools and Implementation

The proposed clustering ensemble framework is implemented using the high-level

technical computing language, MATLAB (Matrix Laboratory) version R2012b on

Apple Macintosh computer 2.3 GHz Intel Core i5 with 8 GB memory.

We use as many available clustering algorithms and evaluation methods as pos-

sible to build our framework, in order to implement a complete clustering ensemble

system. The input of our system is: X the dataset, k the number of clusters, the en-

semble generation technique type (which is either heterogeneous or mixed heuristic

in our experiments), m the number of members, P t is the ground-truth partition.

The procedure of our framework is as follow:

1. Select ensemble generation technique type to be used.

2. Generate m members and store them in Γ matrix.

3. Apply the consensus functions ONCE, E-ONCE, DSCE and ACE (more de-

62



Chapter 3. Research Methodology

tails on the implementation of each proposed consensus function are given in

Chapters 4 and 5).

4. Obtain the final clustering results P ∗.

5. Evaluate P ∗ and compare it with the ground-truth clustering using an external

clustering validation measures. We run NMI4 and ARI5.

For the second central part of this research, in Chapter 6 we implement all the

diversity measures, that we use. In Chapter 6.2, the factorial experiment is carried

out using Minitab software.

4We use the code available at http://strehl.com
5We use the code available at http://www.pi-sigma.info
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3.5 Summary

In this chapter, we introduced the clustering ensemble framework, which consists of

three phases:

1. Ensemble member generation phase;

2. Consensus phase;

3. Evaluation phase.

In the first phase, the aim is to generate a number of members, which are combined

in the consensus phase. The latter phase is commonly known as the consensus

function. In the evaluation phase, the aim is to evaluate the quality of the final

clustering result of our method in terms of quality as well as consistency and time

complexity, relative to our proposed consensus functions and other state-of-the-art

clustering ensemble methods.

We described our strategies that are used to test the effectiveness of our pro-

posed consensus functions, including a description about the experimental design

along with the details of the datasets that are used and the evaluation measures.

Furthermore, we described our strategies to investigate the diversity in terms of its

relation with the ensemble performance. Finally, we also explained our research

implementation and tools that are used throughout this thesis.
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Object-Neighbourhood Clustering

Ensemble

As explained in Chapter 2, the consensus function is the main task in the clustering

ensemble framework and its effectiveness determines whether an ensemble is success-

ful or not. In the literature, the most popular method is the Co-association matrix

(CO), because it is easy to understand and simple to implement. However, in the sit-

uation where there are uncertain agreements between the ensemble members, these

could not be resolve by the CO as it only takes into account the object pairwise sim-

ilarity. We are of the view that the ensemble members have other useful information

that can be integrated into calculating the similarity in order to produce improved

clustering ensemble results. One such type of information is the object neighbour-

hood. Thus, in this chapter we investigate how to use the object-neighbourhood

information when designing the consensus function, with the intention of resolving

the uncertain agreements between ensemble members. This chapter is divided into

four main sections.

In Section 4.1, we propose an Object-Neighbourhood Clustering Ensemble (ONCE)

method. In Section 4.2, we develop ONCE further by considering the E-neighbourhood
region between a pair of objects. In Section 4.3, we compare the performance of

ONCE with other consensus functions using a number of real-world datasets. Sec-
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tion 4.4, summarises the whole chapter.

4.1 Object-Neighbourhood Clustering Ensemble

Firstly, before presenting our new algorithm, it is useful to analyse the issue with

the Co-association matrix (CO). CO calculates the probability of a given object pair

being clustered together by all members (as shown in equation 2.3 listed in Section

2.2.3.2), or in other words, it measures the degree of agreement between ensemble

members when clustering a given pair of objects together. CO ∈ [0, 1] as shown in

Figure 4.1. Because of this it is inevitable that some uncertain situation will occur

when the values of the CO are around the middle. In the case of CO(xi, xj) ≈ 1, this

means that objects xi and xj are placed in the same cluster in most of the ensemble

members, and therefore the degree of probability is high, which means that the pair

is certain, or almost certain, to be clustered together; we call this a certain similar

pair. In the case of CO(xi, xj) ≈ 0, this means that xi and xj are placed in different

clusters by most of the ensemble members, so the degree of probability is low, which

means that the pair is almost certain to be clustered in different clusters; we call

this a certain dissimilar pair. However, in the case of CO(xi, xj) ≈ 0.5, it means

that roughly half of the members placed xi and xj in the same cluster, whereas the

other half placed them in different clusters, creating the most uncertain agreement

between the members; thus, the degree of probability on how to cluster this pair is

uncertain, and we call this an uncertain pair.

Generally speaking, in a dataset, these uncertain object pairs are usually objects

that are hard to cluster. These hard objects might be located on or around the

boundary of clusters, or be overlapping between the clusters in the problem space. In

that case, when we calculate the CO matrix, it is highly likely to produce uncertain

pairs. These uncertain pairs cause problems with generating reliable consensus

clustering results. Therefore, the CO needs to be modified in order to produce

consistent and reliable clustering results, and we assume that taking the relationships
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between the pairs of objects (as well as their neighbourhood relationships) into

consideration could, to some extent, overcome the problem of uncertainty.

Figure 4.1: The different types of objects pairs and their similarity value.

4.1.1 Definition of Object-Neighbourhood Similarity

In cluster analysis the concept of the neighbourhood space of an object is not new; it

has been successfully applied to a number of clustering algorithms such as DBSCAN

[24] and the ROCK clustering algorithm [38]. The neighbourhood is the region in

the data space covering an object in question. Therefore, objects in the same cluster

are all considered to be in the same neighbourhood region, and objects in different

clusters are not considered to be in the same neighbourhood region.

The key idea of our similarity definition is derived from Jarvis and Patrick [56],

who defined the similarity between object pairs as the number of nearest neighbours

that the pair shares, as long as the objects themselves belong to their common

neighbourhood. They call it Shared Nearest Neighbour (SNN).

Definition 1. The common neighbours to a pair of objects are the other objects in

the same cluster as the pair itself.

Thus, the more common neighbours that two objects have, the more similar

they are. The difference between our similarity measure and Jarvis and Patrick’s

[56] measure is that the latter is based on the number of shared nearest neighbours,

determined by any similarity/distance measure, whereas we take the similarity score

of all the shared “common” neighbours into consideration when we calculate the

similarity between pairs of objects.

Assume that xa is a common neighbour to xi and xj, and that Z is the set of

all common neighbours between xi and xj. For each pair of objects, the average
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similarity, B(xi, xj), of their common neighbours is defined as follows:

B(xi, xj) =

∑

xa∈Z

(

CO(xa, xi) + CO(xa, xj)
)

2 | Z(xi, xj) |
(4.1)

Where CO(xa, xi) and CO(xa, xj) are the neighbourhood association of xi and xj to

their common neighbour xa respectively and can be calculated from the CO matrix

(equation 2.3).

B(xi, xj) ∈ [0, 1]; when B(xi, xj) = 0 it means that there are no common neigh-

bours between xi and xj, and when B(xi, xj) = 1 it means that xi, xj and their

common neighbours are placed in the same cluster by all the ensemble members.

When 0 < B(xi, xj) < 1, it means that xi and xj have some common neighbours

placed in the same cluster by some members in the ensemble.

Then, by adding the average neighbourhood similarity B to CO, which is the

similarity between the pair of objects themselves, we obtain the overall similarity

W within the range [0, 2]. It is defined in the following equation:

W (xi, xj) = B(xi, xj) + CO(xi, xj) (4.2)

After computing W for all pairs of objects in X and obtaining the full matrix, we

scale W by dividing each cell by the maximum value in W , which is Wmax. This is

done in order to scale W to the [0, 1] range. Wmax takes a value up to 2. However,

our similarity definition W has the following properties:

• It is non-negative, and takes a value in the interval [0, 1].

• When W (xi, xj) = 0 the two objects xi and xj are completely different, while

when the two objects are identical it takes the value of 1.

• It is symmetric, W (xi, xj) = W (xj, xi).

W takes the neighbourhood similarity into consideration as well as the object

pairwise similarity to enhance and solve to some extent the problem of uncertain
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object pairs. So, we add the neighbourhood similarity B to CO to obtain the

overall similarity W , which always increases compared to CO, or is equal to CO

when there are no shared neighbours between a pair of objects, B = 0. In some

cases, the pairwise relationship does not exist between a pair of objects, and there

is no agreement between the ensemble members about this pair. But, they may

share a number of neighbours and taking their similarity into consideration should

indirectly uncover their similarity, and the W value in this case will be greater than

0.

It is also worth noting, however, that taking the neighbourhood similarity into

consideration may also affect the similarity value of certain object pairs, which may

decrease after we normalise W . In this case, the certain pair of objects may become

uncertain. We will consider this problem in our future work as improvement to our

definition.

4.1.2 ONCE Algorithm

Having obtained our neighbourhood similarity matrix W , we then convert it to a

distance matrix using the common formula (Distance = 1- Similarity) in order to

apply hierarchical clustering algorithms (Single, Complete and Average Linkage) to

obtain the final clustering result. We call this algorithm Object-Neighbourhood-

based Clustering Ensemble (ONCE); the details of the algorithm are as follows:

4.1.3 Illustrative Example

We generated a simple dataset to illustrate how uncertainty do affect the CO and

not affect ONCE. For this purpose, first we identified three parameters which should

be controlled when generating an artificial dataset; these are the number of objects

in the dataset n, the cluster number k and the degree of separation between clusters.

We used a R package called “clusterGeneration”. This package was written by Qiu

69



Chapter 4. Object-Neighbourhood Clustering Ensemble

Algorithm 2: ONCE Algorithm.

Input: Γ = {P1, P2, P3, . . . , Pm}, m number of clustering members
Output: Partition of Dataset X = {x1, x2, x3, . . . , xn}
for each i = 1 : n do

for each j = i+ 1 : n do
Calculate CO similarity for pair (xi, xj) using equation 2.3

for each i = 1 : n do

for each j = i+ 1 : n do

Z ← Find common neighbours for pair (xi, xj)
if # of element in Z > 0 then

Calculate the average similarity of the common neighbours for pair
(xi, xj) using equation 4.1
Calculate W (xi, xj) using equation 4.2

else

W (xi, xj) = CO(xi, xj)

Scale W : W/Wmax

Convert the similarity matrix W into distance matrix W ′

Obtain the final clustering results by applying a hierarchical clustering

algorithm to W ′

and Joe [79], and the key concept of this package is to generate clusters with a

specified degree of separation, which is based on the separation index proposed by

Qiu and Joe [78]. It measures the separation between the cluster and its nearest

cluster, and it takes values within the interval [−1, 1), where the closer a separation

value is to 1, the more separated the clusters are. Therefore, we used this package

and in particular we used the “genRandomClust” function and we set n = 200

and k = 2 (100 objects each), and the separation index equal to 0.3. Using these

parameters we generated a dataset as shown in Figure 4.2.

Looking closely at the dataset, we can clearly see that there is an overlap around

the boundary of the two clusters, so it is very difficult for the clustering algorithm

to obtain the true labels and it may be impossible to distinguish these two clus-

ters. Then, we generated 7 members using a heterogeneous ensemble (details are

given in Section 3.2.2), and we also ran the experiment using k-means as a baseline

algorithm. For only the objects placed around the boundary of the two clusters,

we modified their clustering results (labels) by making half of the members classify
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Figure 4.2: The generated artificial dataset consists of 2 clusters and 200 objects.

them correctly, while the other half did not (there are in total 14 objects). This

has been done in order to ensure that these objects, which are hard to cluster, will

represent the uncertainty when we calculate the pairwise similarity matrices. By

controlling these objects we aim to illustrate and prove a situation where ONCE is

able to produce a good quality clustering result, while CO is not. After that, we

ran ONCE and CO, and then we applied hierarchical clustering algorithms (Sin-

gle, Complete and Average Linkage) to obtain the final clustering results for each

method. Finally, all the clustering results were evaluated using the NMI and ARI

indices.

Table 4.1 shows the results of NMI and ARI indices for the CO, ONCE and

k-means algorithms all by using Single, Complete and Average linkage, and Figure

4.3 shows the clustering label results of the compared methods. It is observed

that ONCE-Si, ONCE-Cm and ONCE-Av achieved perfect clustering results (their

qualities were equal to the quality of the true label measured by NMI and ARI).

On the other hand, CO-Si, CO-Cm and CO-Av achieved lower results, and among
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them CO-Si achieved the worst performance. It is noteworthy that whatever linkage

methods are used with ONCE they have no effect on the clustering result.

Figure 4.4 shows the heat map of the CO and ONCE matrices which highlight the

clustering structure. The colour scheme ranges from strong pink (CO(xi, xj) = 1) to

light green (CO(xi, xj) = 0), corresponding to the magnitude of similarity between

a pair of objects. We see that ONCE discovered some hidden similarity values

compared to CO, and it reveals the structure of the two clusters (two blocks in

strong pink) with higher similarity values between objects pairs than CO. It is also

noticeable that there is an increase in similarity values for certain dissimilar object

pairs (colour change from green in CO to blue in ONCE), that is a hidden similarity,

and for some uncertain object pairs (colour change from blue in CO to light pink in

ONCE) in the ONCE matrix compared to CO.

In summary, the results on this simple dataset confirm that:

1. CO is affected by uncertain agreement between the members on classifying

hard objects as there are more blue and green pairs.

2. Relying only on pairwise object information is not enough to generate a reliable

clustering result in this situation.

Table 4.1: The quality of the clustering results of CO and ONCE algorithms using
Single, Complete and Average Linkage methods as well as the quality of the k-means
clustering result on the artificial dataset measured by NMI and ARI.

Clustering Ensemble Algorithm NMI ARI

ONCE-Si 1.00 1.00

CO-Si 0.433 0.37

ONCE-Cm 1.00 1.00

CO-Cm 0.856 0.90

ONCE-Av 1.00 1.00

CO-Av 0.902 0.94

k-means 0.786 0.864
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(d) k-means

Figure 4.3: The Cluster labels results of CO-Si, CO-Cm, CO-Av, E-ONCE-Cm
clustering ensemble methods and k-means algorithm.

4.1.4 Experimental Results

As we have mentioned in Section 3.2.1, this experiment was conducted using 3

artificial datasets and 8 real datasets (their details are given in Table 3.1). For

each given dataset, the framework described in Chapter 3 was used to carry out

the experiments in three phases: the generation phase, the consensus phase and

the evaluation phase. In the first phase, as we said, we used the heterogeneous

generation techniques to generate 7 members, and in the consensus function, we

used the ONCE algorithm to generate the neighbourhood similarity matrix. We

also computed the Co-association matrix and the final clustering result was obtained

using three different hierarchical clustering algorithms: Single (Si), Complete (Cm)

and Average (Av) Linkage over the two matrices. (More details of this experimental
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(a) CO Matrix

(b) ONCE Matrix

Figure 4.4: The heat map of the CO and ONCE matrices calculated using the
artificial dataset.

design are given in Section 3.2).

Tables 4.2 and 4.4 present the results of the NMI and ARI respectively; each

entry in these tables represents the average quality of ten runs, followed by the

standard deviation. The results of our method were compared with the CO and in

order to make a fair comparison we compared the result of two like-for-like methods.
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In other words, the two methods used the same linkage method, so we compared

the result of the Single linkage method over the ONCE matrix (ONCE-Si) with the

result of the Single linkage method over the Co-association matrix (CO-Si), and

then ONCE-Cm with CO-Cm, where the Complete linkage method was used over

both matrices, and ONCE-Av with CO-Av, where the Average linkage method was

used.

The bold value in each row shows the best result comparing like-for-like methods,

and the underlined value represents the highest quality for each dataset. The last

two rows show the average quality for each algorithm over all the datasets, and

the Wins (W)/Ties (T)/Losses (L) row counts the number of W/T/L (in terms

of quality) comparing the two like-for-like methods. Table 4.3 shows W/T/L (in

quality) comparing ONCE, CO, Ave-mem and k-means with the highest quality

achieved for each dataset. This was done in order to compare ONCE with CO, and

to compare the ensemble method with the baseline algorithm as well as with the

members average. Briefly, in terms of comparison, when we state that algorithm X

is better/worse than algorithm Y , it means that X has a better quality cluster than

Y , under the same experimental set-up.

Results obtained by NMI Index: As we can see, the quality of ONCE-Si

in most of the datasets was improved, relative to CO-Si; in particular, 8 out of

11 datasets in total were improved in terms of quality, whereas for the remaining

datasets, the quality was decreased (these are: R15, Bcw, and Thyroid). In the case

of the Aggregation dataset, the quality of ONCE-Si, ONCE-Cm and ONCE-Av were

increased, relative to CO-Si, CO-Cm and CO-Av, respectively. On the other hand,

for the Um dataset, the quality of ONCE-Cm and ONCE-Av were decreased, and

the quality of ONCE-Si was slightly improved. However, in general, this dataset also

achieved low quality using k-means as well as the member average. We noticed that

this is also the case in the Cmc dataset, where we obtained low quality with most

of the ensemble methods, and we noticed that the quality for the member average

is also very low for k-means, which indicates that these datasets are not suitable for
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Table 4.2: The average performance of 10 runs of each method for each dataset
measured by NMI on 11 datasets. The average performance of each method across
11 datasets and the W/T/L for each ensemble method comparing the two like-
for-like methods are included. In each row the bold value represents the highest
quality comparing two like-for-like methods (e.g. ONCE-Si and CO-Si), whereas the
underlined value represents the highest quality comparing all ensemble methods.

Dataset ONCE-Si CO-Si ONCE-Cm CO-Cm ONCE-Av CO-Av Ave-mem k-means

D31 0.912± 0.013 0.911± 0.018 0.961± 0.004 0.961± 0.005 0.961± 0.005 0.965± 0.002 0.774± 0.328 0.916± 0.025

R15 0.989± 0.009 0.991± 0.007 0.994± 0.000 0.989± 0.018 0.994± 0.000 0.994± 0.000 0.850± 0.272 0.918± 0.037

Aggregation 0.950± 0.002 0.935± 0.022 0.974± 0.010 0.941± 0.038 0.984± 0.006 0.967± 0.029 0.767± 0.341 0.851± 0.011

Bcw 0.026± 0.008 0.047± 0.044 0.457± 0.250 0.702± 0.154 0.741± 0.003 0.736± 0.002 0.455± 0.341 0.748 ±0.000
Cmc 0.028± 0.005 0.012± 0.007 0.032± 0.001 0.032± 0.001 0.032± 0.001 0.032± 0.001 0.025± 0.013 0.032± 0.000

Iris 0.768± 0.027 0.733± 0.034 0.766± 0.017 0.774 ± 0.021 0.771± 0.021 0.763± 0.022 0.630± 0.282 0.725± 0.070

Glass 0.394± 0.040 0.374± 0.037 0.395 ± 0.029 0.382± 0.021 0.394± 0.008 0.383± 0.021 0.366± 0.133 0.368± 0.024

Um 0.040± 0.003 0.039± 0.003 0.241± 0.080 0.245± 0.090 0.290± 0.133 0.359± 0.102 0.176± 0.150 0.338± 0.052

Wine 0.435± 0.000 0.407± 0.109 0.422± 0.009 0.424± 0.003 0.434± 0.011 0.429± 0.003 0.321± 0.187 0.426± 0.031

Mfeatures 0.319± 0.087 0.142± 0.094 0.472± 0.034 0.454± 0.031 0.479± 0.001 0.479± 0.002 0.374± 0.230 0.478± 0.003

Thyroid 0.127± 0.074 0.195± 0.108 0.446± 0.075 0.368± 0.080 0.403± 0.096 0.358± 0.080 0.228± 0.149 0.423± 0.071

Ave-P 0.454 0.435 0.560 0.570 0.589 0.588 0.451 0.566

Ave-C 0.024 0.044 0.046 0.042 0.026 0.024 0.221 0.029

W/T/L 8/0/3 3/0/8 5/2/4 4/2/5 6/3/2 2/3/6 0/0/11 1/1/9

Table 4.3: Counts of the W/T/L for each ensemble method as well as average
members and k-means comparing with the highest quality achieved for each dataset.

ONCE CO Ave-mem k-means

W/T/L 4/3/4 3/3/5 0/0/11 1/1/9

clustering analysis (or they may need a special distance/similarity measurement).

In Bcw, the cluster qualities of ONCE-Si and ONCE-Cm were reduced, compared

with CO-Si and CO-Cm, respectively, whereas ONCE-Av was improved, compared

with CO-Av, in which they scored 0.741 and 0.736, respectively. This is almost as

good as the highest quality achieved by k-means. We believe that improving the

uncertain pairs of objects makes both Single and Complete linkage inappropriate for

this dataset; in general, Single linkage with the CO and ONCE matrices achieved

very low quality compared to other linkage methods.

However, the greatest improvement resulting from our method was in the Glass

dataset, which gave the highest NMI score using the Single, Complete and Average

linkage methods, comparing them similar methods with Co-association. This indi-

cates that the uncertain pairs of objects affect the Co-association methods. From

the results, it is noted that in the cases of Iris and Mfeatures, the quality of ONCE-Si
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was improved from 0.733 to 0.768 in Iris and from 0.142 to 0.319 in Mfeatures.

As expected, the ensemble method performs better than a single clustering algo-

rithm in this experiment; it performs better than k-means except in the case of the

Bcw dataset. In general, this confirms the perception that the performance of the

ensemble method is much better than that of a single algorithm. When comparing

the consistency, we found the ensemble method to be more reliable than the single

algorithm, where the latter achieved higher standard deviation in most of our tested

datasets except in Bcw and Cmc.

Furthermore, when comparing the average quality across all the datasets, we ob-

served that ONCE-Si and ONCE-Av outperformed CO-Si and CO-Av respectively.

On the other hand, on average, using the Complete linkage with the CO-matrix is

slightly better than ONCE-Cm, where the averages are equal to 0.57 for CO-Cm

and 0.56 for ONCE-Cm. Comparing the three linkage clustering methods used with

our method, it can be observed that the Average linkage performed better than the

other two linkage methods as it gave a higher average quality using the ONCE and

CO matrices.

Looking to Wins/Ties/Losses, we observe that in total our method wins more

often than the CO method with respect to comparing the like-for-like methods.

Comparing the highest qualities, our method wins four times and ties three times

(two of which were highest qualities), and loses four times across the total of the

eleven datasets. The CO wins three times and loses five times, and k-means wins

once. Finally, we observe that the highest quality is achieved by ONCE in six

datasets; these are R15, Aggregation, Wine, Thyroid, Mfeatures and Glass.

Results obtained by ARI Index: As we can see from Table 4.4, similar results

were obtained using the ARI index to the results described above. It is noticed

that in the Wine dataset the performance of CO-Av was slightly better than the

ONCE-Av using the ARI index, and accordingly the average quality over all the

tested datasets in CO-Av was slightly better than in ONCE-Av.
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In conclusion, the results obtained from the two indices suggested that in most of

the datasets the performances of the ONCE-Av and CO-Av were very close to each

other. We should mention that the differences in performance are so small that they

are only seen in the third decimal place of the results. As we did not test the results

of this experiment statistically, these results may not show statistical differences.

However, it is interesting to note that the effect of the uncertain pairs of objects

varied with the different datasets. This is due to the fact that not every dataset is

affected by uncertain pairs of objects, even though these are in fact hard objects

to cluster. This is where results with two datasets are improved: the Iris dataset,

which has overlapping clusters, and the Aggregation dataset, which has uneven-

sized clusters with difficult boundaries, both were improved. Moreover, the results

suggested that the Average linkage method is the most appropriate method to use

with ONCE and CO.

Table 4.4: The average performance of ten runs of each method for each dataset
measured by ARI on 11 datasets. The average performance of each method across
11 datasets and the W/T/L for each ensemble method comparing the two like-
for-like methods are included. In each row the bold value represents the highest
quality comparing two like-for-like methods (e.g. ONCE-Si and CO-Si), whereas the
underlined value represents the highest quality comparing all ensemble methods.

Dataset ONCE-Si CO-Si ONCE-Cm CO-Cm ONCE-Av CO-Av Ave-mem k-means

D31 0.693± 0.051 0.679± 0.078 0.929± 0.017 0.926± 0.021 0.918± 0.023 0.945 ± 0.012 0.635± 0.381 0.788± 0.083

R15 0.972± 0.034 0.979± 0.029 0.993± 0.000 0.971± 0.068 0.993± 0.000 0.993± 0.000 0.742± 0.341 0.796± 0.089

Aggregation 0.911± 0.002 0.884± 0.042 0.978± 0.010 0.916± 0.074 0.988± 0.006 0.954± 0.066 0.700± 0.337 0.737± 0.022

Bcw 0.005± 0.003 0.019± 0.026 0.390± 0.393 0.772± 0.241 0.841± 0.003 0.836± 0.002 0.471± 0.442 0.846± 0.000

Cmc 0.007± 0.003 0.000± 0.003 0.025± 0.003 0.026± 0.002 0.027± 0.000 0.027± 0.001 0.020± 0.014 0.027 ±0.000
Iris 0.670± 0.091 0.597± 0.099 0.733± 0.006 0.736 ± 0.008 0.736± 0.010 0.731± 0.013 0.573± 0.271 0.671± 0.125

Glass 0.236± 0.016 0.235± 0.012 0.265 ± 0.011 0.257± 0.022 0.262± 0.006 0.246± 0.029 0.230± 0.107 0.228± 0.021

Um 0.001± 0.001 0.001± 0.001 0.111± 0.070 0.134± 0.087 0.157± 0.139 0.255± 0.075 0.106± 0.108 0.242± 0.048

Wine 0.301± 0.000 0.277± 0.097 0.343± 0.042 0.358± 0.023 0.353± 0.031 0.371± 0.004 0.267± 0.189 0.366± 0.026

Mfeatures 0.100± 0.054 0.014± 0.028 0.299± 0.052 0.278± 0.045 0.313± 0.001 0.314± 0.002 0.234± 0.159 0.313± 0.002

Thyroid 0.070± 0.070 0.179± 0.156 0.540± 0.055 0.415± 0.151 0.458± 0.145 0.403± 0.147 0.227± 0.209 0.517± 0.147

Ave-P 0.361 0.348 0.510 0.526 0.550 0.552 0.382 0.503

Ave-C 0.029 0.052 0.060 0.067 0.033 0.032 0.233 0.073

W/T/L 7/1/3 3/1/7 6/0/5 5/0/6 5/3/3 3/3/5
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4.2 E-Object Neighbourhood Clustering Ensem-

ble

In this section, we modified ONCE further by considering only the most similar com-

mon neighbours to a pair of objects; this can be done by implementing the concept

of E-neighbourhood. Section 4.2.1 gives a definition of the E-Object-Neighbourhood

Similarity. Section 4.2.2 includes details of the experiment conducted, along with

the analysis of the results.

4.2.1 Definition of E-Object Neighbourhood Similarity (E-
ONCE)

The key idea of the E-neighbourhood is to construct just the common neighbours of

a pair of objects that have a similarity greater than or equal to a certain threshold

E , which takes the value ∈ [0, 1]. Thus, objects that have a similarity with the given

object pair greater than or equal to E are considered to be common neighbours to

that pair of objects. The difference between ONCE and E-ONCE is that in ONCE

we consider all the objects that are placed in the same cluster as the pair itself to

be common neighbours to that pair, while in E-ONCE, we do not consider all of

the objects placed in the same cluster as the pair itself — we only consider the ones

that have similarities greater than or equal to E to be common neighbours to that

pair.

The details implementation of the E-neighbourhood with the ONCE algorithm

are as follows:
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Algorithm 3: E-ONCE Algorithm.

Input: Γ = {P1, P2, P3, . . . , Pm}, m number of clustering members
Output: Partition of Dataset X = {x1, x2, x3, . . . , xn}
for each i = 1 : n do

for each j = i+ 1 : n do
Calculate the CO similarity for pair (xi, xj) using equation 2.3

for each i = 1 : n do

for each j = i+ 1 : n do
Find the common neighbours list Zxi,xj

= {x1, x2, · · · , xz}, that satisfy the
following:
∀xl ∈ Zxi,xj

, ∃CO(xi, xl) ≥ E ∧ CO(xj , xl) ≥ E
Calculate the average similarity of the common neighbours for pair (xi, xj)
using equation 4.1
Calculate W (xi, xj) using equation 4.2

Scale W : W/Wmax

Convert the similarity matrix W into distance matrix W ′

Obtain the final clustering results by applying a hierarchical clustering

algorithm to W ′

To simplify the calculation time, we adapted our algorithm to work with a sparse

CO matrix, in order to calculate the E-ONCE matrix. Then we converted the

resulting matrix to a full distance matrix, in order to apply hierarchical clustering

to obtain the final clustering result.

4.2.2 Experimental Results

In this experiment, we followed the same experimental procedures as in Section 4.1.4,

the only difference being that we replaced datasets Cmc and Um with the Soybean

and Ionosphere datasets as we found from the previous experiment (Section 4.1.4)

that Cmc and Um are not suitable clustering problems. Therefore, we ran ONCE,

CO and E-ONCE, all using the Average linkage method on 11 datasets. Tables

4.5 and 4.6 show the average performance (Ave-P) of ten runs using CO, ONCE

and E-ONCE with 4 different values for E (0.5, 0.6, 0.7, 0.8) on 8 datasets. A value

less than 0.5 is too small to consider and a value larger than 0.8 is too narrow to

consider, we think that a value ∈ [0.5, 0.8] is reasonable. They also show the average

consistency (Ave-C) for each ensemble method across all of the datasets measured
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by NMI and ARI respectively. The bold value in each row represents the highest

quality for each dataset, while the underlined value in each row represents the best

performance in terms of consistency for each dataset.

The results show that E-ONCE did not improve much compared to ONCE in all

of the tested datasets, although on the Iris and Ionosphere datasets using E-ONCE

slightly improved the quality. Comparing the consistency of the three methods, it

is found that the E-ONCE is slightly more consistent than ONCE and CO in 7 and

6 datasets, measured by NMI and ARI respectively. ONCE achieved the highest

average performance compared to CO and E-ONCE measured by NMI, while the

highest average performance was achieved using ONCE and E-ONCE (when E is

equal to 0.6 and 0.7) measured by ARI. Looking at Wins/Ties/Losses, it is observed

that ONCE wins more than CO and E-ONCE, while CO wins on only one dataset

(D31), measured by NMI and ARI. E-ONCE (0.5) wins 2 times, while E-ONCE

using the other values does not win at all when NMI is used to measure the quality,

and E-ONCE (0.5) wins 3 times and E-ONCE (0.7) wins 2 times when the ARI

index is used to measure the quality.

In conclusion, this experiment shows that applying the E neighbourhood concept

to the ONCE algorithm did not achieve a further improvement in terms of cluster

quality. Considering the additional time required to calculate the E neighbourhood

of each pair of objects, and the lack of improvement in cluster quality in this ex-

perimental set-up, we can say that E-ONCE did not achieve its expectations and

that ONCE is better than E-ONCE. However, in the next section, we will compare

the performance of ONCE with other pairwise similarity-based clustering ensemble

methods.
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Table 4.5: The average performance and the standard deviation of ten runs of each
method for each dataset measured by NMI. The average performance (Ave-P) of
each ensemble method across 11 datasets, and the average consistency (Ave-C) are
included.

ONCE-Av CO-Av E-ONCE-Av (0.5) E-ONCE-Av (0.6) E-ONCE-Av (0.7) E-ONCE-Av (0.8)

D31 0.962± 0.004 0.965± 0.001 0.963± 0.003 0.964± 0.002 0.964± 0.003 0.963± 0.002

R15 0.994± 0.002 0.991± 0.009 0.994± 0.000 0.991± 0.007 0.991± 0.007 0.934± 0.034

Agg 0.971± 0.014 0.961± 0.032 0.960± 0.031 0.961± 0.028 0.961± 0.029 0.961± 0.029

Bcw 0.744± 0.006 0.740± 0.007 0.742± 0.003 0.746± 0.006 0.746± 0.006 0.741± 0.003

Iris 0.752± 0.025 0.746± 0.028 0.758± 0.019 0.754± 0.019 0.754± 0.019 0.758± 0.006

Glass 0.402± 0.023 0.391± 0.018 0.390± 0.025 0.400± 0.014 0.401± 0.025 0.399± 0.022

Wine 0.436± 0.091 0.425± 0.076 0.426± 0.094 0.425± 0.074 0.425± 0.074 0.329± 0.069

Mfeatures 0.489± 0.006 0.480± 0.003 0.483± 0.006 0.480± 0.004 0.484± 0.006 0.483± 0.005

Thyroid 0.377± 0.091 0.342± 0.076 0.352± 0.094 0.347± 0.074 0.347± 0.074 0.332± 0.069

Soybean 0.807± 0.058 0.751± 0.061 0.751± 0.064 0.763± 0.061 0.763± 0.061 0.763± 0.061

Ionosphere 0.132± 0.003 0.133± 0.002 0.135± 0.000 0.133± 0.003 0.133± 0.002 0.132± 0.003

Ave-P 0.642 0.630 0.632 0.633 0.634 0.618

Ave-C 0.117 0.112 0.114 0.110 0.111 0.111

W/T/L 6/1/4 1/ 0/10 2/1/8 0/1/10 0/1/10 0/1/10

Table 4.6: The average performance and the standard deviation of ten runs for
each dataset measured by ARI. The average performance (Ave-P) of each ensemble
method across 11 datasets, and the average consistency (Ave-C) are included.

ONCE-Av CO-Av E-ONCE-Av (0.5) E-ONCE-Av (0.6) E-ONCE-Av (0.7) E-ONCE-Av (0.8)

D31 0.937± 0.015 0.948± 0.002 0.944± 0.011 0.945± 0.010 0.942± 0.013 0.942± 0.013

R15 0.992± 0.002 0.983± 0.028 0.993± 0.000 0.979± 0.029 0.979± 0.029 0.750± 0.127

Agg 0.977± 0.010 0.948± 0.067 0.947± 0.065 0.950± 0.059 0.949± 0.059 0.948± 0.063

Bcw 0.843± 0.005 0.839± 0.006 0.841± 0.003 0.845± 0.005 0.845± 0.005 0.841± 0.003

Iris 0.729± 0.028 0.717± 0.026 0.736± 0.025 0.733± 0.026 0.733± 0.021 0.737± 0.025

Glass 0.251± 0.009 0.248± 0.011 0.251± 0.013 0.253± 0.011 0.255± 0.010 0.252± 0.010

Wine 0.332± 0.035 0.367± 0.007 0.367± 0.005 0.368± 0.006 0.368± 0.006 0.206± 0.140

Mfeatures 0.330± 0.008 0.317± 0.003 0.321± 0.007 0.318± 0.007 0.322± 0.008 0.321± 0.007

Thyroid 0.422± 0.140 0.387± 0.152 0.385± 0.156 0.410± 0.145 0.410± 0.145 0.392± 0.100

Soybean 0.638± 0.049 0.584± 0.054 0.584± 0.054 0.595± 0.057 0.596± 0.057 0.596± 0.057

Ionosphere 0.175± 0.003 0.176± 0.002 0.178± 0.000 0.176± 0.003 0.176± 0.002 0.175± 0.003

Ave-P 0.602 0.592 0.595 0.597 0.598 0.560

Ave-C 0.028 0.033 0.031 0.032 0.032 0.050

W/T/L 3/0/8 1/0/10 3/0/8 0/2/9 2/2/7 0/0/11
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4.3 Comparing ONCE with other Consensus Func-

tions

In this section, we compare the performance of ONCE with other pairwise similarity-

based consensus functions, in particular with the Connected-Triple based similarity

(CTS) matrix, the SimRank-based similarity (SRS) matrix [49] and the Approximate

SimRank-based similarity (ASRS) matrix [52].

4.3.1 Experimental Results

We used the same generated members for each dataset in the experiment in Section

4.2.2 to run three link-based methods, which are CTS, SRS and ASRS, and we

used the Average Linkage method over their matrices to obtain the final clustering

results1. As recommended by Iam-on et al. [49, 52], we set the decay factor parameter

for CTS, SRS and ASRS to its default value, which is equal to 0.8. We also set the

number of iterations for ASRS method to its default value, which is equal to 5.

Tables 4.7 and 4.8 show the results of NMI and ARI on 11 datasets respectively.

Please note that the results of ONCE and CO qualities are copied from Tables 4.5

and 4.6 for comparison purposes. The entries in these tables represent the average

quality in ten runs along with the standard deviation. In these tables, the best

quality for each dataset is indicated by the bold value, and the most consistent

algorithm for each dataset is indicated by the underlined value.

The results measured by NMI show that in 4 datasets the ONCE-Av outper-

formed the performance of other ensemble methods, and in 4 datasets it achieved a

very close performance to the highest one in these datasets. In the R15 dataset, the

highest quality is achieved using the ONCE-Av, CTS-Av, SRS-Av and ASRS-Av

algorithms, and this is the only dataset where the highest quality was achieved by

a number of ensemble methods.

1We used the LinkCLuE Package available at https://www.jstatsoft.org/article/view/

v036i09.
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The results obtained using ARI indexes show that ONCE-Av outperformed the

other ensemble methods in 3 datasets, while in others it achieved a result very

close to the highest quality. The performance of SRS on the Mfeatures dataset was

very poor using the NMI index, while it was equal to 0 measured by ARI. This

result indicates that using SRS as a consensus function can result in an unexpected

ensemble clustering quality that is worse than the single clustering algorithm. So

building a clustering ensemble using SRS in this case is a failure. Moreover, SRS

did not win at all in this experiment measured by NMI, while using ARI it won only

once in the Glass dataset, where CTS and ASRS achieved a very close performance.

ASRS also won once in the Soybean dataset using both indices, where the quality

of ONCE was very close to this winning quality.

However, comparing the three link-based ensemble methods, it is found that CTS

performs better than the other two methods. Using the same strategy of comparison

used in [49], which is the winning statistic, it is found that CTS wins 3 times, while

ONCE wins 4 times and CO wins only 3 times when the results are measured by

NMI. Along with the CO algorithm, they both win 3 times when the results are

measured by ARI.

On average, CTS improved by 0.006 (measured by NMI), and CO and ONCE

improved by the same degree, compared to CTS. Furthermore, it is observed that on

average ONCE outperformed CO, CTS, SRS and ASRS using the Average Linkage

in this experimental set-up using both indices (NMI and ARI).

Comparing the performance of these methods in terms of the consistency, we

found that on average the most consistent algorithms (using the NMI index) in

this experiment were SAR and ASRA, equal to 0.019. However, the consistencies

of other methods (ONCE, CO and CTS) were very close to this performance, and

using the ARI index we found that ONCE is the most consistent algorithm, but that

the other compared methods were very close to this performance. Therefore, this

experiment indicates that the average performances in terms of the consistency of

these pairwise-based clustering ensemble methods are more or less the same, whereas
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in terms of quality, ONCE-Av outperformed the other compared methods.

Table 4.7: The average performance and the standard deviation of ten runs for
each dataset measured by NMI. The average performance (Ave-P) of each ensemble
method across 11 datasets, and the average consistency (Ave-C) are included.

ONCE-Av CO-Av CTS-Av SRS-Av ASRS-Av

D31 0.962± 0.004 0.965± 0.001 0.959± 0.005 0.963± 0.003 0.960± 0.007

R15 0.994± 0.002 0.991± 0.009 0.994± 0.000 0.994± 0.002 0.994± 0.002

Agg 0.971± 0.014 0.961± 0.032 0.969± 0.023 0.966± 0.026 0.956± 0.027

Bcw 0.744± 0.006 0.740± 0.007 0.738± 0.003 0.740± 0.005 0.736± 0.000

Iris 0.752± 0.025 0.746± 0.028 0.756± 0.018 0.755± 0.019 0.736± 0.010

Glass 0.402± 0.023 0.391± 0.018 0.403± 0.011 0.397± 0.008 0.400± 0.010

Wine 0.436± 0.091 0.425± 0.076 0.427± 0.009 0.424± 0.006 0.435± 0.010

Mfeatures 0.489± 0.006 0.480± 0.003 0.480± 0.003 0.035± 0.000 0.480± 0.004

Thyroid 0.377± 0.091 0.342± 0.076 0.453± 0.105 0.345± 0.085 0.248± 0.099

Soybean 0.807± 0.058 0.751± 0.061 0.792± 0.051 0.752± 0.054 0.818± 0.036

Ionosph 0.132± 0.003 0.133± 0.002 0.026± 0.000 0.132± 0.003 0.026± 0.000

Ave-P 0.642 0.630 0.636 0.591 0.617

Ave-C 0.029 0.028 0.021 0.019 0.019

W/T/l 4/1/6 2/0/9 3/1/7 0/1/10 1/1/9

Table 4.8: The average performance and the standard deviation of ten runs for
each dataset measured by ARI. The average performance (Ave-P) of each ensemble
method across 11 datasets, and the average consistency (Ave-C) are included.

ONCE-Av CO-Av CTS-Av SRS-Av ASRS-Av

D31 0.937± 0.015 0.948± 0.002 0.918± 0.024 0.939± 0.014 0.924± 0.030

R15 0.992± 0.002 0.983± 0.028 0.993± 0.000 0.992± 0.002 0.992± 0.003

Agg 0.977± 0.010 0.948± 0.067 0.965± 0.049 0.962± 0.051 0.960± 0.036

Bcw 0.843± 0.005 0.839± 0.006 0.838± 0.003 0.839± 0.004 0.835± 0.000

Iris 0.729± 0.028 0.717± 0.026 0.733± 0.026 0.732± 0.027 0.648± 0.077

Glass 0.251± 0.009 0.248± 0.011 0.253± 0.012 0.255± 0.016 0.253± 0.025

Wine 0.332± 0.035 0.367± 0.007 0.327± 0.039 0.366± 0.006 0.331± 0.034

Mfeatures 0.330± 0.008 0.317± 0.003 0.317± 0.003 0.000± 0.000 0.317± 0.006

Thyroid 0.422± 0.140 0.387± 0.152 0.520± 0.112 0.378± 0.151 0.182± 0.101

Soybean 0.638± 0.049 0.584± 0.054 0.629± 0.049 0.584± 0.053 0.651± 0.037

Ionosph 0.175± 0.003 0.176± 0.002 0.004± 0.000 0.175± 0.003 0.004± 0.000

Ave-P 0.602 0.592 0.591 0.566 0.554

Ave-C 0.028 0.033 0.029 0.030 0.032

W/T/L 3/0/8 3/0/8 3/0/8 1/0/10 1/0/10
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4.3.2 Comparing ONCE with Individual Members

Tables 4.9 and 4.10 show the quality of individual members of the first run in each

dataset from the same experiment run in this main section. In total we generated

7 individual members for each dataset. Generally, we found that the quality of

the individual members in each dataset varied from high to very low quality. For

example, in D31 the highest quality is equal to 0.952, while the lowest quality is

equal to 0.005, measured by ARI as shown in Table 4.10.

We compared the quality of ONCE-Av in tables 4.7 and 4.8 with the maximum

individual member quality for each dataset (tables 4.9 and 4.10) measured by NMI

and ARI respectively). We found that in most datasets the maximum member

quality is higher than the quality of ONCE. Moreover, it also higher than the highest

ensemble quality in each dataset as seen in Tables 4.7 and 4.8. In the R15 and Iris

datasets, the quality of ONCE is equal to the maximum member quality measured

by ARI. Therefore, from these observations we can conclude that the clustering

ensemble method does not always outperform the best individual members in terms

of quality. On the other hand, in real-word data the best individual member is not

always guaranteed to be generated using a single clustering algorithm.

Table 4.9: The performance of the seventh members in the first run of the experiment
for each datasets measured by NMI. The bold value represents the maximum quality
in each dataset.

Member 1 Member 2 Member 3 Member 4 Member 5 Member 6 Member 7

D31 0.915 0.893 0.066 0.952 0.952 0.938 0.967

R15 0.925 0.889 0.882 0.992 0.271 0.994 0.994

Agg 0.775 0.794 0.007 0.991 0.859 0.826 0.980

Bcw 0.748 0.741 0.018 0.677 0.006 0.730 0.191

Iris 0.742 0.631 0.002 0.736 0.722 0.750 0.615

Glass 0.450 0.381 0.444 0.222 0.393 0.359 0.219

Wine 0.429 0.424 0.091 0.416 0.019 0.417 0.453

Mfeatures 0.475 0.476 0.011 0.497 0.471 0.479 0.598

Thyroid 0.277 0.436 0.084 0.201 0.003 0.339 0.217

Soybean 0.793 0.764 0.058 0.830 0.848 0.716 0.370

Ionosph 0.135 0.132 0.010 0.026 0.062 0.130 0.260
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Table 4.10: The performance of the seventh members for each datasets measured
by ARI. The bold value represents the maximum quality in each dataset.

Member 1 Member 2 Member 3 Member 4 Member 5 Member 6 Member 7

D31 0.770 0.724 0.005 0.907 0.924 0.864 0.952

R15 0.819 0.726 0.542 0.989 0.074 0.993 0.993

Agg 0.616 0.660 0.004 0.995 0.766 0.685 0.984

Bcw 0.846 0.841 0.003 0.782 0.009 0.830 0.025

Iris 0.716 0.449 0.011 0.564 0.642 0.729 0.575

Glass 0.281 0.264 0.280 0.143 0.231 0.214 0.139

Wine 0.371 0.352 0.005 0.293 0.013 0.354 0.478

Mfeatures 0.314 0.311 0.001 0.333 0.304 0.314 0.359

Thyroid 0.211 0.522 0.031 0.137 0.002 0.431 0.162

Soybean 0.595 0.659 0.020 0.661 0.748 0.545 0.198

Ionosph 0.178 0.173 0.015 0.004 0.099 0.173 0.209

4.3.3 Test of Significance

As discussed in Section 3.2.5, to assess the performance of ONCE in terms of be-

ing significantly better or worse than the compared methods, statistical analysis is

necessary. As recommended by Demšar [18], we applied the Iman-Davenport test in

order to test the null hypothesis that all the compared methods in this experiment

have an equivalent performance. As suggested by Demšar [18], if there are statisti-

cally significant differences, we will proceed with the Nemenyi test as a post-hoc test

for a pairwise comparison between them in order to discover where the differences

lie.

In the Nemenyi test, we first ranked the competing methods for each dataset. It

must be noted that the best performing method receives the rank of 1, the second

best is ranked 2 and so on. We averaged the rank for the methods that had the

same quality score, and for each method we obtained the mean rank by averaging

its ranks across all the datasets. The F-value of the Iman-Davenport test was equal

to 3.0224 which results in a p-value (0.028), less than the critical level of 0.1. Thus,

we rejected the null hypothesis that these methods are equal in performance, and

we conducted the Nemenyi test to find out which methods differed from others.

Figure 4.5 shows the critical difference diagram of the Nemenyi test results. As we

can see, there are two groups of clustering ensemble methods: the performance of
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ONCE-Av is significantly better than that of CO-Av and ASRS-Av, while CTS-Av

and SRS-Av belong to both groups. We also observe that ONCE-Av achieves the

highest rank under this experiment set-up.

CD

5 4 3 2 1

1.8636
ONCE−Av

2.6364
CTS−Av

3.2273
SRS−Av

3.5909
CO−Av

3.6818
ASRS−Av

Figure 4.5: The Critical difference diagram of the critical level of 0.1 in which it
shows the comparison of five ensemble methods using 11 datasets. The original
quality results of these methods are shown in table 4.7.

4.4 Summary

The Co-association matrix [32] is a common clustering ensemble method. We de-

cided to try to improve it by addressing uncertainties among the members in an

ensemble. The uncertainty occurs when some objects in the dataset are hard to

cluster, which result in them being clustered in different clusters—uncertain agree-

ments between the ensemble members. In this situation, CO could fail to produce

a reliable clustering result. One solution that has been suggested by a number of

researchers is not just to consider the pairwise object information in the generated

members, but rather to enhance the CO matrix by extracting more information from

the members [107, 103, 81]. We think that there is other useful information that

could be extracted from the ensemble members in order to deal with the uncertain

object issue by considering the neighbourhood relationship between pairs of objects.

In this chapter, we presented the Object-Neighbourhood clustering ensemble

method (ONCE). The core of ONCE is a new consensus function that addresses

the uncertain agreements between members by taking the neighbourhood relation-
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ship between object pairs into account in the similarity matrix. We illustrated the

problem of the uncertainty using a simple artificial dataset, which includes some

hard to cluster objects around the cluster boundary. We ran CO and ONCE on this

artificial dataset, and the results showed that CO has been affected by the uncertain

agreement between members, while ONCE shows a better performance.

ONCE was tested on 11 datasets (3 artificial and 9 real ones) and compared with

the CO using Single, Complete and Average linkage methods. The results show that

on average ONCE-Av outperforms the CO-Av method, and the results indicate that

the Average linkage is the most appropriate of the linkage methods. Furthermore,

the results show that our ensemble method is more consistent and reliable than the

single clustering algorithm (k-means).

In general, it is interesting to note that the effect of the uncertain pairs of objects

varied with the different datasets. This is due to the fact that not every dataset is

affected by uncertain pairs of objects, even though these are in fact hard objects to

cluster. This is where results for some of the datasets are improved by our method,

such as Iris, which has overlapping clusters, and Aggregation, which has uneven-

sized clusters with difficult boundaries.

We attempted to extend ONCE further in order to consider only the most sim-

ilar common neighbours, and proposed E-ONCE. The experiment study however,

revealed that there is not much improvement in terms of quality using E-ONCE

compared to ONCE, which is preferred as E-ONCE requires more time to be com-

pute.

Finally, we compared ONCE with other object pairwise similarity based consen-

sus functions CTS, SRS and ASRS. In these algorithms, the ensemble members are

represented as a network and the well-known link similarity measures have been

applied to this network, and have been implemented in the Connected-Triple and

SimRank link approaches. The experiment was carried out using 11 datasets, and

with all the tested consensus functions we applied the Average Linkage. The results

demonstrated that on average ONCE outperforms CO, CTS, SRS and ASRS using
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the NMI and ARI indices. It was proved statistically by the Nemenyi test that there

is a statistical difference between ONCE and ASRS, and between ONCE and CO

under this experimental set-up.
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Adaptive Clustering Ensemble

In the previous chapter, we focused on the clustering ensemble methods based on

object pairwise similarity, but we found that there are a number of drawbacks for

these methods. One of them is that they do not scale very well for a large dataset,

as they work at the object level, and most of them do not capture the relationships

between clusters or consider the cluster information that is available in the generated

members. However, clustering ensemble methods based on cluster similarity, such

as MCLA, are much faster than CO and ONCE. Another point is that most of the

clustering ensemble approaches (including CO, ONCE, CTS and MCLA) transform

the initial clusters produced by the members into a new representation, and then

produce the final clustering result by clustering this new representation with an

ordinary clustering algorithm. When applying the same representation to a different

clustering algorithm, their performance can vary considerably and it can be difficult

to decide in advance which clustering algorithm is the best one to use. Therefore,

considering the simplicity of the similarity-based consensus functions, there is a need

for a new consensus function that is able to construct as much information from the

members as possible to produce a reliable clustering result, without requiring an

ordinary clustering algorithm to be applied over a similarity matrix.

In this chapter, we propose two clustering ensemble methods to address these

drawbacks. First we develop a new consensus function named Dual-Similarity Clus-
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tering Ensemble (DSCE) that measures the similarity between initial clusters in

members and accordingly derives the similarity between the object and candidate

clusters. We use the certainty of agreement between members to reduce the cal-

culation needed in the consensus function. Moreover, we develop DSCE further to

become an Adaptive Clustering Ensemble method (ACE) that takes into account

the neighbourhood similarity for uncertain objects and overcomes some of the limi-

tations of DSCE.

This chapter is organised into two main sections. The first Section 5.1 describes

the proposed clustering ensemble method DSCE. The second Section 5.2 describes

ACE method. Finally, Section 5.3 gives a summary of the chapter.

5.1 Dual-Similarity Clustering Ensemble (DSCE)

The main idea of the proposed consensus function is that, instead of calculating

the similarity between a pair of objects (the object pairwise similarity) as in the

CO method, we calculate the similarity between pairs of clusters generated by the

members and then we derive the similarity between newly formed clusters and ob-

jects. The rationale is that we have already generated clusters in the first phase of

the ensemble process, so it is obviously more efficient and possibly more effective to

consider just the similarity between the initial clusters instead of object similarity.

We can then extend the concept of common neighbour information from the object

level to the cluster level. Therefore, two clusters are considered to be well-associated

if their objects resemble one another to a certain degree. If two clusters have a high

proportion of objects in common as determined by the ensemble members, they

should be merged, whereas if two clusters have a smaller proportion of objects in

common, they should be kept separated.

Nevertheless, instead of following some of the single clustering algorithm proce-

dures in building the consensus function, we use the generated members as initial

clusters of the dataset and the final clustering is generated by performing three
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stages, as shown in Figure 5.1, these are:

• Stage 1: Transformation Stage. The clustering members are transformed

into a binary representation to form our initial clusters.

• Stage 2: Generating Consensus Clusters. Firstly, the similarity between

initial clusters in terms of how many objects they have in common is measured,

and then we merge the most similar ones to form a new consensus clusters.

• Stage 3: Assigning Object to Only One Cluster. We identify the can-

didate clusters, which contain only certain classified objects, and we calculate

their certainties. We produce the final clustering result by an iterative process

assigning the remaining objects to a cluster that has a minimum effect on its

certainty.

These stages help to determine if an object should be placed in a particular cluster or

not as classified by the ensemble members, and to find the most suitable cluster for

it. Section 5.1.1 presents the definitions of the similarity measures and terminologies

that are used with DSCE and ACE, and Section 5.1.2 explain in detail how DSCE

works in three stages. Section 5.1.3 illustrates how the DSCE work using a simple

example. Sections 5.1.4 and 5.1.5 include the experiment design and analysis of the

experiment results respectively.
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Figure 5.1: The DSCE flow chart.
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5.1.1 Definitions and Notations

Given an ensemble Φ that is built withm clustering partitions Γ = {P1, P2, P3, . . . , Pm}
for a dataset X = {x1, x2, . . . , xn}, where the qth member, Pq = {cq1, cq2, . . . , cqkq} is

a clustering result of kq clusters, we defined two similarity measures:. These were

similarity between clusters from different members and membership similarity be-

tween objects and clusters. The latter is measured by the degree of membership

by which an object belongs to a cluster, hence it is called membership similarity.

Before defining these similarity measures, we briefly define the main notations that

we use throughout this chapter as follows:

• Sc: The cluster similarity measure between two clusters.

• Sx: The membership similarity measure.

• θ1: The membership matrix, where the columns of this matrix correspond to

clusters and the rows correspond to objects.

• δ: A binary membership value of an object to a particular cluster, δ ∈ {1, 0}.

• α1: A cluster merging threshold, the value of which is chosen from Sc.

• α2: A certainty threshold of classifying objects in a cluster, the value of which

is chosen from Sx.

• λ: Number of clusters in θ1.

• ←−C : The set of all the newly formed clusters after the merging process has

concluded.

• pcg : Cluster certainty, only calculated for each newly formed cluster ∈ ←−C .

Definition 1. Cluster similarity Sc is a measure of similarity between two clusters

from different members/partitions regarding how much overlap there is between them.

Any binary-based similarity measurements can be used as a cluster similarity.

Section 5.1.2 gives more details on the cluster similarity measurement that we used

in DSCE and ACE.
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Definition 2. Membership similarity Sx is a measure of similarity between an object

and a cluster which estimate the degree of membership of an object to a cluster, hence

it is called membership similarity. The threshold value α2 of this measure is used to

determine how strong this membership similarity is between an object and a cluster.

In general, membership similarity is similar to the concept of membership degree

in soft clustering (where an object x may be placed in more than one cluster). It

uses a degree for each object in order to express whether it belongs to a cluster. The

membership similarity is formed after the merging process has concluded. Section

5.1.2 includes more details on forming the membership similarity Sx. Generally,

the value of Sx is bounded between [0, 1], and a higher value means a stronger

membership or a higher degree of certainty that an object belongs to a cluster.

Therefore, objects with different values of this measure can be classified as certain,

uncertain, totally certain or totally uncertain for a given threshold value α2, as

defined below:

Definition 3. Certain object: An object, xi, is defined as a certain object if its

maximum membership similarity Sx is greater than α2, i.e.

max
←−
C

((Sx(xi,
←−
C )) > α2. (5.1)

That means more than (α2 ∗ 100)% of ensemble members agree to assign this

object to the same cluster, so we are certain about classifying this object.

Definition 4. Uncertain object: An object is defined to be an uncertain object if its

maximum membership similarity Sx is less than or equal to α2.

max
←−
C

(Sx(xi,
←−
C )) <= α2. (5.2)
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That means less than or equal to (α2∗100)% of ensemble members agree to assign

this object to the same cluster, so we are uncertain about classifying this object.

Definition 5. Totally certain object: An object is defined as a totally certain object

if its maximum membership similarity Sx for a particular cluster is 1.

That means we are totally certain that all the ensemble members agree to assign

this object to a specific cluster.

Definition 6. Totally uncertain object: An object is defined as a totally uncertain

object if its membership similarity Sx for a particular cluster is 0.

That means we are totally uncertain that all the ensemble members agree to

assign this object to a specific cluster. .

Based on the objects that are assigned to each cluster, we can calculate a cluster

certainty for each newly formed cluster ∈ ←−C as follows:

Definition 7. Cluster certainty: The cluster certainty, ρcg , is defined as the mean

of membership similarity of all objects belonging to that particular cluster ←−c g.

ρcg =
1

|←−c g|

|←−c g |
∑

i=1

Sx(xi,
←−c g). (5.3)

5.1.2 The DSCE Algorithm

Stage 1: Transformation

Having generated m members, which represent unmatched clusters of objects, this

stage transforms them into a new representation. In order to avoid solving the

relabelling problem between clusters, we transform each cluster (c) to a column

binary characteristic vector where a value of 1 indicates that the corresponding

object belongs to that cluster, and 0 indicates that the object does not belong to

that cluster.
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In general, for cluster cj in clustering member q, its corresponding vector is rep-

resented as cqj = [δ(x1, c
q
j), . . . , δ(xn, c

q
j)]

T , where δ(xi, c
q
j) is the binary membership

and takes the following value:

δ(xi, cj) =











1, if xi ∈ cj , ∀ i = 1, . . . , n.

0, if xi /∈ cj

(5.4)

Where i is the index of data objects; j = 1, . . . , kq is the index of clusters in each

member; q = 1, . . . ,m is the index of members in an ensemble.

There will be km vectors that are combined to form the initial value of the

membership matrix θ1 = [c11, c
1
2, . . . , . . . , c

q
km
], where km = m.kq and kq = k, ∀q =

1, · · · ,m.

Stage 2: Generating Consensus Clusters

In this stage the following three steps are required:

1. Measuring the cluster similarity Sc.

2. Performing the merging process.

3. Calculating the membership similarity Sx between objects and the newly

formed (consensus) clusters.

1. Measuring the cluster similarity (Sc). Starting with km initial clusters,

we measure the cluster similarity by employing the ‘set correlation’ as a cluster

similarity measurement, which measures the overlap between two clusters and takes

their size into account. It has been developed in the Relevance-Set Correlation

(RSC) [46] model, as this measure is an equivalent of the Pearson correlation in

clustering analysis. After some simplification and derivation, it can be represented

as follows:
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Sc(c
q
jq
, cℓjℓ) =

|cqjq ∩ cℓjℓ | −
|cqjq ||c

ℓ
jℓ
|

n
√

|cqjq ||cℓjℓ |(1−
|cqjq |

n
)(1− |cℓjℓ

|

n
)

=
n.CM(cqjq , c

ℓ
jℓ
)−

√

|cqjq ||cℓjℓ |
√

(n− |cqjq |)(n− |cℓjℓ |)
(5.5)

Where q and ℓ are two members, q 6= ℓ, and jq, jℓ are the cluster index in q and

ℓ respectively. CM is the Cosine similarity measurement [43]:

CM(cqjq , c
ℓ
jℓ
) =

|cqjq ∩ cℓjℓ |
√

|cqjq ||cℓjℓ |
(5.6)

Sc is symmetric, i.e. Sc(ci, cj) = Sc(cj, ci) and its value is bounded in [-1, 1]. A

value of 1 indicates that the two clusters “are identical”, and a value of -1 indicates

that the two clusters are “a complement of each other” [104].

2. Performing the merging process. At the beginning of this process, we

have three inputs (θ1, Sc and α1):

1. θ1 is the membership matrix resulting from the transformation stage (it con-

tains the initial clusters from the members).

2. Sc is the cluster similarity matrix, which is calculated between the initial

clusters in θ1 in the previous step.

3. α1 is the merging threshold, which is determined in advance; it can take a

value in the interval [−1, 1] (as Sc) (we will discuss and analyse the best value

for α1 in Section 5.1.7).
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The merged process is based on the following criterion:

if Sc(c
q
jq
, cℓjℓ) >= α1 ⇒ cqjq and cℓjℓare similar, hence merged. (5.7)

if Sc(c
q
jq
, cℓjℓ) < α1 ⇒ cqjq and cℓjℓare dissimilar, not merged. (5.8)

From Sc, any clusters that satisfy a criterion given in equation 5.7 will be merged

to replace them in θ1 with a new cluster ←−c j. This has the result of summing the

object memberships of the merged clusters. So, θ1 is updated as follows:

θ1(xi,
←−c g) =

r
∑

u=1

δ(xi, cu), ∀ i = 1, . . . , n.

where r is the set of all merged clusters that formed ←−c g = {ci + cj + · · ·+ cr}

Then we go back to step 1 in this stage to recalculate the Sc for the updated θ1

and then iterate until a termination criterion 5.8 is reached for all the similarities

between clusters in the updated Sc.

3. Calculate the membership similarity (Sx). Sx is specifically used to refer

to the measure of similarity between objects xi ∈ X in a newly formed cluster after

the merging process is carried out in the previous step as follows:

Sx(xi,
←−c g) =

1

max{θ1(xi,
←−
C )}

θ1(xi,
←−c g) ∀ i = 1, . . . , n. (5.9)

where,
←−
C is the set of all the newly formed clusters,

←−
C = {←−c 1, . . . ,

←−c g, ...}.

Stage 3: Assigning Objects to Only One Cluster.

In this stage, the aim is to ensure that each object is only assigned to one cluster

and to eliminate inappropriate clusters. The inputs of this stage are Sx and α2. α2

is the certainty threshold of classifying objects in a cluster and it is determined in
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advance by the user (Section 5.1.7 will discuss how to specify this threshold).

A number of steps are required in this stage:

1. Identify candidate clusters in Sx and assign totally certain and certain

objects.

Based on α2 we identify clusters in Sx that contain at least one totally certain

object (definition 5) or certain object (definition 3) as a candidate cluster. As

these objects have a higher certainty value than α2, we assign them to the candidate

cluster that has a maximum membership similarity among the other candidates. The

assigning step for the totally certain and certain objects is done by keeping their

maximum membership similarity with the candidate cluster in Sx and setting their

membership similarities with other clusters in Sx to be equal to 0. They therefore

have only one value of Sx larger than 0 with a particular cluster, which means that

the object belongs to that cluster only. In case of a tie between which candidate

clusters are assigned to a given totally certain/certain object, we arbitrarily break

the tie in favour of the ←−c g with smallest g. If we put the candidate clusters in a

list, this would be the candidate cluster that comes first in the list.

2. Assign uncertain object to only one cluster.

This is for other unassigned objects in Sx that we classified as uncertain objects

(definition 4) or totally uncertain objects (definition 6). We should mention that

this step is only required when there are any uncertain objects in Sx.

So, firstly we calculate the cluster certainty for each candidate cluster considering

only their assigned objects using equation 5.3

At the beginning, as the totally certain and certain objects are the only ones

that are assigned to candidate cluster ←−c , we iterate on uncertain objects and in

each iteration the following steps are performed:

(a) We set CC as the set of all the candidate clusters in Sx, and for each candidate

cluster we calculate the absolute difference between the current object (i.e.xi)
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membership similarity with the identified cluster and its certainty as follows:

DCC =

|CC|
∑

g=1

(|Sx(xi,
←−cg )− ρ←−cg |)

(b) Assign the current object to the candidate cluster that has a minimum differ-

ence among other clusters in CC, that is:

min(DCC)

(c) Increase the size of the assigned candidate cluster by 1.

(d) Update the certainty of the assigned cluster using equation 5.3 and this time

include the current object.

(e) Repeat the above steps until all uncertain objects are assigned.

By assigning uncertain objects to the cluster that has a minimum difference, we

maintain the original certainty of the candidate clusters as high as possible. At

the beginning of this stage, the only objects that are assigned to candidate clusters

are certain objects (either a totally certain or a certain objects) and by definition

they have membership similarity larger than α2, so we expect the certainty of the

candidate clusters to be high. Other clusters that do not contain any certain objects

are not considered to be good candidate clusters and they are eliminated.

However, at the end of this stage all objects are assigned to only one cluster so

the output of the algorithm is the final clustering results P ∗ of the dataset.

5.1.3 An Illustrative Example

We illustrate how DSCA works with a simple example. Suppose we have a dataset

X that contains 10 objects, X = {x1, x2, . . . , x10} and that we have generated 3

members (m = 3), each of which has 3 clusters (k = 3). We run the DSCE algorithm

in three stages as follows:
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Transformation Stage:

We transform the members into a binary vector representation as shown in Figure

5.2, in which each cluster in the generated member is represented by a binary vector

with 9 binary vectors in total. For example, vector c23 is the third cluster in the

second member m2. Four objects x1, x2, x6, x9 were assigned to cluster c23, so we set

their value equal to 1, whereas for other objects in c23 we set a value of 0. These

vectors are the input of the second stage.

Figure 5.2: An illustrative example of three clustering members for dataset X of 10
objects, and the transformation from members into a binary vectors representation.

Generating Consensus Cluster Stage:

In this stage, we first measure the similarity between the initial clusters, and

generate the similarity matrix Sc as shown in Table 5.1. Then we perform the

merging process as follows:

Firstly, we set α1 equal to 0.8. Looking at Sc, we find that c11 and c32 are identical

and have a similarity greater than α1 with c22, so we merge them by replacing them

with ←−c1 , which contains the summation of their object membership. In addition, c12

have a similarity greater than α1 with c23 and c31, so we merge them too as ←−c2 . We

also merge c13 and c21 as ←−c3 . As a result, we gain four clusters, ←−c 1,
←−c 2,

←−c 3 and

←−c 4 in the updated θ1, as shown in Table 5.2. Then we recalculate the similarity

measures Sc for the updated θ1 as shown in Table 5.3.
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Table 5.1: The Similarity Matrix Sc, which is the result of measuring the similarity
between initials cluster vectors in our illustrative example (Figure 5.2) using Sc

measure. − − − cells indicates that this similarity is not calculated as they are
placed in the same member.

c11 c12 c13 c21 c22 c23 c31 c32 c33

c11 — — — -0.535 0.802 -0.250 -0.667 1 -0.408

c12 — — — -0.429 -0.429 0.802 0.802 -0.535 -0.327

c13 — — — 1 -0.429 -0.535 -0.089 -0.535 0.764

c21 -0.535 -0.429 1 — — — -0.089 -0.535 0.764

c22 0.802 -0.429 -0.429 — — — -0.535 0.802 -0.327

c23 -0.250 0.802 -0.535 — — — 0.583 -0.250 -0.408

c31 -0.667 0.802 -0.089 -0.089 -0.535 0.583 — — —

c32 1 -0.535 -0.535 -0.535 0.802 -0.250 — — —

c33 -0.408 -0.327 0.764 0.764 -0.327 -0.408 — — —

Table 5.2: The result of θ1 after we merge the most similar clusters, which are
←−c 1 = {c11 + c22 + c32}, ←−c 2 = {c12 + c23 + c31}, ←−c 3 = {c13 + c21} and ←−c 4 = {c33}

←−c 1
←−c 2

←−c 3
←−c 4

x1 0 3 0 0

x2 0 3 0 0

x3 0 1 2 0

x4 0 0 2 1

x5 0 0 2 1

x6 2 1 0 0

x7 3 0 0 0

x8 3 0 0 0

x9 3 0 0 0

x10 0 3 0 0

Based on α1, we find that there are no more similar clusters to be merged in the

updated similarity matrix Sc. Thus, we calculate the membership similarity Sx as

shown in Table 5.4 and it becomes the input for the next stage.

Assigning Objects to only One Cluster.

In this stage, firstly we set α2 = 0.5 and we identify the candidate clusters in Sx

that had at least one totally certain or certain objects, and we find that based on
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Table 5.3: The updated Similarity Matrix Sc after the first step of the merging
process is performed, which is the result of measuring the similarity between four
clusters in θ1 (in Table 5.2)

←−c 1
←−c 2

←−c 3
←−c 4

←−c 1 — -0.408 -0.535 -0.408
←−c 2 -0.408 — -0.218 -0.500
←−c 3 -0.535 -0.218 — 0.764
←−c 4 -0.408 -0.500 0.764 —

Table 5.4: The result of Sx after we perform the second stage.

←−c 1
←−c 2

←−c 3
←−c 4

x1 0 1 0 0

x2 0 1 0 0

x3 0 0.3 0.6 0

x4 0 0 0.6 0.3

x5 0 0 0.6 0.3

x6 0.6 0.3 0 0

x7 1 0 0 0

x8 1 0 0 0

x9 1 0 0 0

x10 0 1 0 0

α2 we have three candidate clusters: ←−c 1,
←−c 2 and ←−c 3. As ←−c 4 does not contain at

least one totally certain or certain object, we eliminated it. After that we assign

totally certain and certain objects to the candidate cluster that have a maximum

membership similarity among the other candidates by keeping this maximum sim-

ilarity and modifying the other values to be equal to 0. The updated membership

similarity matrix Sx so far is shown in Table 5.5.

In the last step, we check whether Sx (Table 5.5) contains any uncertain objects

and in this example based on the value of α2 we do not have any uncertain objects

and the final clustering result for objects in X = {x1, x2, x3, x4, x5, x6, x7, x8, x9, x10}
is produced P ∗ = {2, 2, 3, 3, 3, 1, 1, 1, 1, 2}.

However, if we set α2 to a higher value equal to 0.9, and re-run the last stage, we

find that based on α2 we only identify←−c1 and←−c2 as candidate clusters and this time
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Table 5.5: The updated membership similarity matrix Sx after identifying candidate
clusters, eliminating non-candidate cluster and assigning totally certain and certain
objects.

←−c 1
←−c 2

←−c 3

x1 0 1 0

x2 0 1 0

x3 0 0 0.6

x4 0 0 0.6

x5 0 0 0.6

x6 0.6 0 0

x7 1 0 0

x8 1 0 0

x9 1 0 0

x10 0 1 0

we eliminate←−c3 and←−c4 . We also identify x1, x2, x7 and x8 as totally certain objects,

while we identify the other objects (x3, x4, x5, x6, x9 and x10) as uncertain objects.

In this case, we perform step 2 in stage 3, firstly by calculating the certainty for

each candidate cluster using equation 5.3, which is for ←−c 1 and ←−c 2 is equal to 1.

Then, we iterate on uncertain objects and each iteration steps (a to d) were

executed as described in Section 5.1.2. For example, the results of these steps of the

first iteration (for object x3) are as follows:

(a) We set CC as the set of all candidate clusters, and we calculate the absolute

difference as follows:

CC = {←−c1 ,←−c2}, and DCC = {|0− 1|, |0.3− 1|} = {1, 0.7}.

(b) We assign the current objects as follows:

min(DCC) = 0.7, then x3 ∈ ←−c2 .

(c) We increase the size of the assigned candidate cluster by 1: |←−c2 | = |←−c2 |+ 1.

(d) We update the certainty of the assigned cluster as follows: ρc2 = 0.77

After all uncertain objects are assigned the final clustering results for dataset X are

produced as P ∗ = {2, 2, 2, 2, 2, 2, 1, 1, 2, 2}.
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5.1.4 Experimental Design

To empirically evaluate the performance of DSCE, we used the same datasets and

quality validation indices as in previous chapters. As described in Section 3.2, we

followed the clustering ensemble framework (shown in Figure 3.1), and in the gen-

eration phase, we used a mixed heuristic technique to generate ten members. We

compared the performance of DSCE with a number of clustering ensemble methods

including CO [32] (using the average linkage method), DICLENS [73], MCLA [94],

and with our previously proposed consensus function ONCE, also using the aver-

age linkage method. We set α1 = 0.8, α2 = 0.7. More details of the experiment

procedure are given in Section 3.2 in Chapter 3.

5.1.5 Experimental Results

Tables 5.6 and 5.7 present the results of ARI and NMI respectively; each entry in

each table represents the average quality of ten runs of the experiment, followed by

the standard deviation. The bold value in each row represents the highest quality for

each dataset, while the underlined value in each row represents the best performance

in terms of consistency. The last column represents the average performance of the

generated members, and the last row shows the average quality for each algorithm

over all the datasets, as well as the average consistency.

Results obtained by ARI Index: As shown in Table 5.6, there are several

interesting observations. First, DSCE achieved the best performance on most tested

datasets with respect to average ARI values of ten runs. On the Mfeatures dataset,

all of the compared algorithms achieved a quality very close with the highest quality

achieved by the DSCE and ONCE algorithms. On the Bcw dataset, DSCE achieved

0.849, as well as CO and MCLA with an equal standard deviation. On the Wine

dataset, DSCE achieved the highest quality followed by MCLA, while CO, ONCE

and DICLENS performed equally, achieving an average quality of 0.369, and they

also achieved a similar performance in terms of consistency, which was better than
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DSCE.

Second, the DICLENS algorithm did not perform very well on some datasets and

the standard deviation indicates that in some datasets it is not consistent, including

Glass and Mfeatures. It achieved the highest quality only in one dataset which was

Soybean. Moreover, it achieved a lower quality compared to the average members

in the Iris, Glass and Mfeatures datasets.

Third, comparing the average quality across all the datasets, we observed that

DSCE outperformed other algorithms, whereas DICLENS achieved the lowest qual-

ity with a high average consistency, indicating that this method is the least consistent

algorithm when compared with the others. In contrast, CO is the most consistent

algorithm, as well as MCLA, followed closely by ONCE and then DSCE. Looking

at the average members, we found that our proposed algorithm outperformed the

average members in all datasets.

Results obtained by NMI Index: Table 5.7 shows similar results to those

obtained by ARI index. We note that DSCE wins on 4 datasets and on 3 datasets

achieved a very close performance to the wining method. On average DSCE out-

performed other compared methods.

We believe that the main reasons for the better performance of DSCE compared

to its competitors are as follows: first DSCE captures the relationships among clus-

ters in the ensemble members, as it deals with them as initial clusters for the final

results in the first stage; second, it identifies the object’s certainty of being classified

in the initial clusters and in the second stage it focuses on the cluster certainty and

classified objects based on the lowest affected cluster’s certainty; third, this strategy

allows for the number of clusters to be converged from the generated members and

the overall procedure requires less memory compared with ensemble methods based

on object similarity. This means that it will scale very well with big datasets.
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Table 5.6: The average performance and the standard deviation of ten runs for
each dataset measured by ARI. The average performance (Ave-P) of each ensemble
method across 8 datasets, and the average consistency (Ave-C) are included.

CO-Av ONEC-Av DSCE DICLENS MCLA Ave-mem

Iris 0.725± 0.012 0.726± 0.009 0.732± 0.021 0.680± 0.077 0.723± 0.012 0.702± 0.038

Wine 0.369± 0.005 0.369± 0.005 0.377± 0.025 0.369± 0.005 0.372± 0.002 0.366± 0.004

Thyroid 0.559± 0.024 0.584± 0.044 0.609± 0.032 0.582± 0.044 0.563± 0.025 0.473± 0.036

Mfeatures 0.315± 0.006 0.316± 0.005 0.316± 0.004 0.290± 0.069 0.308± 0.021 0.293± 0.029

Glass 0.509± 0.029 0.526± 0.030 0.528± 0.027 0.392± 0.123 0.534±0.020 0.501± 0.009

Bcw 0.849± 0.004 0.847± 0.003 0.849± 0.004 0.842± 0.005 0.849 ±0.004 0.830± 0.021

Soybean 0.547± 0.006 0.550± 0.015 0.578± 0.052 0.632± 0.046 0.548± 0.006 0.566± 0.025

Ionosphere 0.163± 0.014 0.166± 0.008 0.169± 0.005 0.161± 0.009 0.166± 0.006 0.149± 0.007

Ave-P 0.505 0.511 0.520 0.493 0.508 0.485

Av-C 0.012 0.015 0.017 0.048 0.012 0.031

Table 5.7: The average performance and the standard deviation of ten runs for each
dataset measured by NMI Index. The average performance (Ave-P) of each ensemble
method across 8 datasets, and the average consistency (Ave-C) are included.

CO-Av ONEC-Av DSCE DICLENS MCLA Ave-mem

Iris 0.751± 0.015 0.752± 0.012 0.763± 0.024 0.757± 0.008 0.749± 0.015 0737± 0.025

Wine 0.428± 0.003 0.428± 0.003 0.432± 0.014 0.427± 0.004 0.429± 0.001 0.428± 0.003

Thyroid 0.434± 0.047 0.473± 0.062 0.480± 0.056 0.501± 0.053 0.418± 0.033 0.403± 0.026

Mfeatuers 0.479± 0.002 0.479± 0.003 0.479± 0.002 0.468± 0.026 0.475± 0.009 0.460± 0.027

Glass 0.712± 0.027 0.725± 0.029 0.725± 0.021 0.617± 0.107 0.728± 0.017 0.704± 0.007

Bcw 0.750± 0.005 0.749± 0.004 0.750± 0.005 0.742± 0.006 0.751± 0.005 0.731± 0.023

Soybean 0.717± 0.002 0.723± 0.024 0.756± 0.064 0.822± 0.056 0.717± 0.002 0.736± 0.019

Ionosphere 0.122± 0.014 0.124± 0.009 0.128± 0.005 0.119± 0.009 0.124± 0.006 0.108± 0.006

Ave-P 0.549 0.557 0.564 0.557 0.549 0.491

Ave-C 0.015 0.018 0.024 0.034 0.011 0.017

Identifying the true number of clusters in DICLENS

In our experiment, DICLENS produces the number of clusters automatically, while

for CO and ONCE the number of clusters is provided in advance as input. Therefore,

we compared the number of clusters produced by DSCE (as shown in figure 5.3)

with the number of clusters produced by DICLENS (as shown in figure 5.4). We

observed that the DSCE algorithm determined the true number of clusters in four

datasets out of eight in all runs: these include Iris, Thyroid, Bcw and Ionosphere.

The DICLENS algorithm also found the true number of clusters in four datasets

including Wine, Bcw, Thyroid and Ionosphere, while in the Glass dataset, 3 clusters

were discovered instead of 6 (true clusters) in six runs out of ten by DICLENS. In
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the Iris dataset, 2 clusters were discovered instead of 3 in three runs out of ten. In

the Mfeatures dataset, 11 clusters were discovered in run number 3, while in run

5, 3 clusters were discovered instead of 10 clusters by DICLENS. In percentages, in

88.7% of the total number of runs in all datasets DSCE determined the true number

of clusters, whereas 76.2% were discovered by the DICLENS algorithm. The results

indicate that DSCE is more accurate in determining the number of clusters from

the generated members.
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Figure 5.3: Number of clusters produced by DSCE algorithm for each dataset in ten
runs. The true number of clusters for {Iris, Wine, Thyroid} = 3, Mfeatuers = 10,
Glass = 6, Bcw = 2, Soybean = 4, Ionosphere = 2.

5.1.6 Test of Significance

We applied the Iman-Davenport test [53] to assess our method and other compared

methods under the null hypothesis that the mean ranks are equal for all methods. In

the Iman-Davenport test, we can reject the null hypothesis of the mean rank being

equal for all methods (the result of the Iman-Davenport test was equal to 6.9780,

which gives a negligible p-value equal to 4.9845e-04). As suggested by Demšar [18],
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Figure 5.4: Number of clusters produced by DICLENS algorithm for each dataset
in ten runs. The true number of clusters for {Iris, Wine, Thyroid} = 3, Mfeatuers
= 10, Glass = 6, Bcw = 2, Soybean = 4, Ionosphere = 2.

we used the Nemenyi test as a post-hoc test for a pairwise comparison, to discover

where the differences lie. Figure 5.5 shows the result of the post-hoc Nemenyi

test in the critical differences diagram at the critical level of 0.1. This diagram

shows the mean rank order of each method on a linear scale. The solid bars in

these diagrams show a group of algorithms in cliques, indicating that there are no

significant differences in rank from one to another, whereas there are significant

differences in rank between algorithms in different groups.

The critical difference (CD) is equal to 1.9448. We can identify two groups

of algorithms; the first group includes DSCE, MCLA and ONCE, and the second

group includes MCLA, ONCE, CO and DICLENS, which indicate that there is

not a statistically significant difference between methods in one group. The results

suggest that our clustering ensemble algorithm DSCE is significantly better than the

CO and DICLENS, but not better than MCLA and ONCE under this experimental

set-up.
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Figure 5.5: The critical difference diagram at the critical level of 0.1. It shows the
comparison of four ensemble methods using 8 datasets.

5.1.7 Analysis of Parameters and Time Complexity

In DSCE, we have two parameters, α1 and α2, that need to be specified. The first

parameter is the minimum allowed similarity between initial clusters to be merged.

The value of α1 can be chosen from the interval [-1,1], but as it is the minimum

allowed similarity we limit its value to be one of the following α1 = 0.5 ∼ 0.9. The

second parameter α2, is the certainty threshold of classifying objects in a cluster.

To test how sensitive DSCE is to different values of α1 and α2 and to what extent

they affect the quality of the final clustering result, we used the Wine, Mfeatures

and Glass datasets. We ran our proposed algorithm with different values of α1, and

each with all possible values of α2, which is α2 = 0.3 ∼ 0.9, ten times. In each run,

we generated ten members by using k-means with a random initialisation and we

set k to the number of pre-defined clusters for the dataset, for each dataset in all

the generated members. Figure 5.6 illustrates the relationship between the average

performance of DSCE measured by the ARI index for ten runs and the different

value of α1 for all values of α2 in the three datasets.

The performance of DSCE was more sensitive when α2 equals 0.3 and 0.9 com-

pared to other values; this is the case with all values for α1 between [0.5, 0.9]. The

best performance of DSCE was when α1 was equal to 0.7 in the Mfeatures and Glass

datasets for most values for α2, and in particular the highest performance of DSCE

in the Mfeatures dataset was when α2 = {0.5, 0.6, 0.7} and in the Glass dataset was

when α2 = 0.8. Generally, the performance of DSCE was almost the same when
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α1 = 0.7 and when α2 is between 0.5 and 0.7.

In conclusion, the general guideline for choosing α1 when all members have a

fixed number of clusters is that α1 should be set to a high value between 0.7 and

0.8. Furthermore, we should avoid a too small value for α2 as well as a too large

value. A value between 0.6 and 0.8 is a reasonable value for α2.

The time complexity for the worst-case scenario of DSCE is O(k2m2nu), where k

is the number of pre-defined clusters for the dataset, m is the number of ensemble

members and nu is the number of uncertain objects in θ1. In CO the time complexity

is equal to O(n2) and in ONCE is equal to O(n4), plus the time required by the

average linkage method, which is equal to O(n3), where n is the number of objects

in the dataset. While, for MCLA it is equal to O(km2n).

However, in DSCE the most expensive term is (km)2. For a small size dataset,

it may have a number of cluster between k = 2 to 10 and a minimum number

of ensemble members that can be generated as m = 3, so (km)2 becomes more

expensive than CO and ONCE. But as the size of the data nowadays is rapidly

increasing and as in reality, nu < n, k ≪ n and m ≪ n hold, then (km)2 < n and

we can say that DSCE is efficient compared to other methods.
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Figure 5.6: The Average ARI index of ten runs for analysing the two parameters α1

and α2.
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5.2 The Adaptive Clustering Ensemble (ACE)

The DSCE algorithm has been modified for three reasons. Firstly, to improve the

stability of the DSCE in producing the final clustering result with pre-defined k,

even when the members have a different number of clusters. Secondly, to reduce the

effect of the two thresholds (α1 and α2) on the quality of the final result by applying

an adaptive strategy for the value for these thresholds. Finally, to take into account

the object neighbourhood similarity for the totally uncertain objects in order not to

lose any information when we eliminate an inappropriate cluster.

The adaptive version of the DSCE is composed of the three main stages as we

can see in Figure 5.7: Transformation, Generating Consensus Clusters and Resolv-

ing Uncertainty. The first stage is to transfer the members into a binary vector

representation. The second is to generate the consensus clusters, where the similar-

ity between initial clusters is measured and the pre-defined k clusters are produced.

The third stage is to solve uncertain objects, where a certain object is first assigned

to the cluster that has a higher membership value and then the uncertain objects are

classified to the cluster in a way that has a minimum effect on the cluster quality.

The following subsection explains in detail how the algorithm works.

5.2.1 The ACE Algorithm

Stage 1: Transformation

In this stage, the initial clusters in the generated members are transformed into a

column binary vector as described in Section 5.1.2. The only difference here is that

there is no constraint on the number of clusters that the generated members can

have.
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Stage 2: Generating Consensus Clusters

In this stage, three steps are required as described in Algorithm 4. These are:

1. Measuring the cluster similarity Sc.

2. Performing the merging process.

3. Producing k consensus clusters.

1. Measuring the cluster similarity Sc.

In this step, we measure the similarity between initial clusters Sc (equation 5.5),

as we did in Stage 2 of the DSCE algorithm (Section 5.1.2).

2. Performing the merging process.

In this step, we perform the merging process as described in Stage 2 in the DSCE

algorithm (Section 5.1.2). We should mention that the parameter α1, which is a

threshold for the merging process as shown in equations 5.7 and 5.8, is determined

in ACE adaptively based on the similarity values in the cluster similarity matrix Sc.

Its influence and sensitivity on the quality of the final clustering result are studied

and the details are given later in Section 5.2.6. Our empirical study indicates that

it can usually start with a relatively high value, e.g. 0.8, and then adapt its value

in accordance with the similarity values in the current similarity matrix. After the

most similar initial clusters are merged, we have the updated θ1, which represents

newly formed clusters and perhaps some remaining non-merged initial clusters with

their corresponding cluster similarity Sc matrix; then we move onto the next step.

3. Producing k consensus clusters.

In this step, we check whether the number of clusters in θ1 is exactly equal to k

clusters, which will be taken as the final candidate clusters.

For convenience, let λ be the number of clusters in θ1. There are three possible

scenarios: (a) λ = k, (b) λ > k, and (c) λ < k, when checking the number of clusters
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in θ1.

(a) When λ = k, i.e. the number of clusters in θ1 is equal to the pre-defined k, we

then take the clusters in θ1 as the candidate clusters and adapt α2 to a value

based on Sx so that it can represent a specific percentage of the membership

certainty. Then we move onto Stage 3.

(b) When λ > k, i.e. the number of clusters in θ1 is greater than the pre-defined

k, which is the most likely scenario in practice, there are two options: (A) to

terminate the process or (B) proceed with brutal merging or eliminating.

(Option A) Coming to this point, the clusters in θ1 are more dissimilar from

each other than the given threshold α1. If the value of α1 has

reached the minimum acceptable similarity (α1min), it indicates

that the clusters in θ1 for the given dataset are too dissimilar

from each other to be merged to obtain the intended k num-

ber of clusters. We then conclude that the pre-set value for

k is unreasonable and unachievable, and output the generated

clusters.

(Option B) However, as there is no gold-standard for setting up the mini-

mum acceptable similarity threshold (α1min), it is then also rea-

sonable to go ahead with the process by adapting the threshold

value α1 to reflect the similarity distribution in the current sim-

ilarity matrix Sc. Then the clusters are merged as described in

step 1, or when no more merging process is needed we calculate

the membership similarity (Sx) as described in equation 5.9. If

the number of clusters in Sx (nbcls), which is identified based

on α2, is still larger than k, then we perform the elimination

process as follows:

i. The certainty of each cluster in θ1 is calculated using equa-

tion 5.3.
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ii. The certainty values of the clusters are ranked in a descend-

ing order.

iii. If each of the top k clusters contains at least one certain

object based on the current value of α2, then these clusters

are taken as the final candidate clusters. The non-candidate

clusters (eliminated clusters) will be moved from θ1 to a new

membership matrix θ2, and we move onto stage 3.

iv. Otherwise, we adapt α2 to be the maximum membership

similarity to the kth cluster and consider the first k clusters

as the final candidate clusters and we move onto stage 3.

(c) When λ < k, i.e. the number of clusters in θ1, is less than the pre-chosen k,

then we consider whether any clusters in θ1 can be divided by adapting the

value of α1. In this case, it is possible that α1 is unreasonably low and should

be adapted incrementally to an appropriate value. In that case we should go

back to the beginning of this step (step 3) until the number of the clusters in

θ1 reaches k and we move onto stage 3.

Stage 3: Assigning Objects to only One Cluster.

The aim here is to ensure that each object is assigned to only one cluster. So, the

inputs of this stage are: SX , which is the membership similarity matrix; θ2, which

contains the membership similarity of the eliminated clusters if we performed the

elimination process in the previous step; and α2, which is the adaptive certainty

threshold. Two main steps are required here:

1. Identify totally certain (definition 5) and certain objects (definition

3) in Sx.

As certain objects have a higher similarity value than α2, we assign them to

the cluster that has a maximum membership similarity among other clusters

in Sx.
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2. Resolving uncertain objects if they exist.

This step is only required when there are any uncertain objects. As defined

earlier, for an object, if its maximum membership value Sx(xi, cj) <= α2

(∀j = 1, . . . , k), it is considered to be an Uncertain object (definition 4), and a

Totally uncertain object if its maximum membership value is zero (definition

6.). We resolve each one of them differently as follows:

For totally uncertain objects. There is a possibility that the previous

stage may have resulted in totally uncertain objects in Sx. This is of particular

concern during the elimination process, as this may have caused information to

be lost for some objects, so we verify that each object in Sx has a membership

value associated with at least one cluster.

If Sx contains some totally uncertain objects, we calculate their neighbourhood

similarity with clusters in θ2. We are in fact modifying our early definition

of neighbourhood similarity (in Chapter 4) [3], by calculating the average

occurrence of their objects’ neighbours and the other objects placed in the

candidate clusters. In other words, we calculate the similarity between the

totally uncertain object and the candidate clusters in Sx as the average of how

many times they are classified in the same cluster in θ2 with other objects

that are already placed in the candidate clusters in Sx. Then based on their

updated membership similarity Sx, we identify each one of them again as either

certain or uncertain objects. For certain objects we go back to step 1 to assign

them, whereas for uncertain objects we move onto the next step to resolve

them.

For uncertain objects. Firstly, we measure the quality of each candidate

cluster in Sx. In principle, any cluster quality measure can be used, so in this

study we measure the compactness of the certain objects in a cluster as the

quality metric, and here we call it the original quality of each cluster.

The compactness of a cluster is usually measured by the variance (V ar), which
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is the average of the squared differences from the mean, as follows:

V ar(c) =
1

|←−c |

|←−c |
∑

i=1

(Sx(xi,
←−c )− p←−c )

2 (5.10)

It is essentially the absolute value of the difference between the membership

similarity value of object xi in cluster←−c , and the mean of the objects similarity

in cluster ←−c (cluster certainty p←−c calculated by equation 5.3).

At the beginning, the size of each candidate cluster equals the total number

of classified objects, and these objects are the only ones that we can assign

to a candidate cluster with certainty, as they have the maximum membership

similarity with the classified candidate clusters. For each uncertain object the

following steps are performed:

(a) For each candidate cluster in Sx, we recalculate its quality using the

equation 5.10 by including the current object membership similarity with

the identified cluster.

(b) Compare the original quality and the current quality for each candidate

cluster.

(c) Assign the current object to the cluster that has a minimum effect on its

original quality.

(d) Increase the size of the assigned cluster by 1.

(e) Update the original quality of the assigned cluster to be equal to the

current quality.

(f) Repeat the above steps until all the uncertain objects are assigned.

Generally, we assign uncertain objects to a cluster in such a way that this will

have a minimum effect on its quality. By doing so, we aim to ensure that the

original quality of the cluster has not been affected too much, as it is widely

known that a small value for cluster quality indicates a compact cluster result.

Therefore, by assigning each object to only one cluster we obtain the final clustering
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result P ∗ of the dataset X.
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Algorithm 4: The Pseudocode of the ACE Algorithm.

Input : Γ = {P1, P2, P3, . . . , Pm}, α1, α2, α1min, ∆α, and k
Output: P ∗

θ1 ← Transform m members into binary vectors as initial clusters;
Sc ← Compute clusters similarity for clusters in θ1 with equation 5.5;
while true do

θ1 ← MergeCls(initial clusters, Sc, α1);
if # clusters in θ1, λ >= k then

break;
else

Adapt α1 = α1 +∆α;

λ← find # of clusters in θ1;
while λ > k do

Update Sc with equation 5.5;
Adapt α1 ← maximum similarity value in Sc;
if α1 < α1min then

break;
else

newθ1 ← MergeCls(θ1, Sc, α1);

if # clusters in newθ1 < k then
break;

else
θ1 ← newθ1

Compute similarity measure Sx with equation 5.9;
nbcls ← find # of clusters in Sx that contain at least one certain object
specified by α2;
if nbcls == k then

Consider these clusters as candidate clusters in P ∗;
θ2 ← non-candidate clusters;

else
Compute cluster certainty in Sx with equation 5.3;
Sort the cluster certainties in descend order;
Adapt α2 ← Sxmax{k};
Keep the top k clusters in Sx as the candidate clusters;
Remove the remaining clusters in Sx to θ2;

P ∗ ← AssignObjectToOnlyOneCluster(Sx, θ2, α2);
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5.2.2 An illustrative Example

In this section, we use the same simple example that we used with DSCE in Section

5.1.3 to demonstrate how ACE works. We set α1 = 0.8, α2 = 0.5, and k = 3, and

we run stage 1 as described in Section 5.1.3. For stage 2, the first two steps are done

exactly the same way and we obtain θ1, as shown in Table 5.2.

For the third step in stage 2, we first check the number of clusters (λ) in θ1, and

we find that λ = 4, which is larger than k. Then we apply Option B by measuring

the cluster similarity Sc for clusters in θ1 as shown in Table 5.1 and we adapte α2

to the maximum similarity in Sc, which is equal to 0.764. We merge ←−c 3 and ←−c 4

and we updated θ1 as shown in Table 5.8. As a result we obtain λ = k = 3. Then

we calculate the membership similarity Sx as shown in Table 5.9.

Table 5.8: The result of updating θ1 after we merge ←−c 3 and ←−c 4 by summing their
objects membership similarity and result in ←−c 3

←−c 1
←−c 2

←−c 3

x1 0 3 0

x2 0 3 0

x3 0 1 2

x4 0 0 3

x5 0 0 3

x6 2 1 0

x7 3 0 0

x8 3 0 0

x9 3 0 0

x10 0 3 0

Then we move to stage 3, by first identifying totally certain and certain objects.

So, based on α2, we identify x1, x2, x4, x5, x7, x8, x9 and x10 as totally certain objects,

while we identify x3 and x6 as certain objects. Then we assign them to the candidate

cluster that has a maximum membership similarity among other candidates, and Sx

is updated as follows:

Then we check whether Sx contains any uncertain objects and it does not, so we
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Table 5.9: The results of Sx after no more merging step is needed.

←−c 1
←−c 2

←−c 3

x1 0 1 0

x2 0 1 0

x3 0 0.3 0.6

x4 0 0 1

x5 0 0 1

x6 0.6 0.3 0

x7 1 0 0

x8 1 0 0

x9 1 0 0

x10 0 1 0

Table 5.10: The results of assigning totally certain and certain objects to the can-
didate cluster.

←−c 1
←−c 2

←−c 3

x1 0 1 0

x2 0 1 0

x3 0 0 0.6

x4 0 0 1

x5 0 0 1

x6 0.6 0 0

x7 1 0 0

x8 1 0 0

x9 1 0 0

x10 0 1 0

produce the final clustering result P ∗ = {2, 2, 3, 3, 3, 1, 1, 1, 1, 2}.

Assume that we set α2 = 0.9, which is a high value. The number of clusters

(nbcls) in Sx that contain at least one certain object is equal to 2. As there is no

further merging process to be done, we calculate Sx, which is shown in Table 5.10.

Then we implement the elimination process that is described in Option B (steps

i to iv). So, for each cluster in Sx, we calculate their certainties (using equation

5.3), and we obtain ρ←−c1 = 0.9, ρ←−c2 = 0.85, ρ←−c3 = 0.6, ρ←−c4 = 0.3. We rank these

certainties in descending order and we obtain {0.9, 0.72, 0.6, 0.3}. Then we adapt
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Table 5.11: The result of Sx after we perform the second stage.

←−c 1
←−c 2

←−c 3

x1 0 1 0

x2 0 1 0

x3 0 0.3 0.6

x4 0 0 0.6

x5 0 0 0.6

x6 0.6 0.3 0

x7 1 0 0

x8 1 0 0

x9 1 0 0

x10 0 1 0

α2 to the maximum certainties of the kth clusters in this ranked list, which is equal

0.6. As result, we identify ←−c1 ,←−c2 and ←−c3 as candidate clusters and we eliminate ←−c4 .
We update Sx accordingly as shown in Table 5.11 :

Then we move onto stage 3, and based on α1 we identify x1, x2, x7, x8, x9 and x10

as totally certain objects, and we identify other objects as uncertain objects. We

measure the quality of the candidate clusters using equation 5.10 as follows:

V ar(←−c1 ) = 1
3
((1− 0.9)2 + (1− 0.9)2 + (1− 0.9)2) = 0.01

V ar(←−c2 ) = 1
3
((1− 0.72)2 + (1− 0.72)2 + (1− 0.72)2) = 0.0784

V ar(←−c3 ) = 0

Then, we iterate on uncertain objects, and we proceed with steps (a) to (e). The

detailed results of these steps for object x3 are as follows:

(a) For each candidate cluster we recalculate its quality by including this time x3:

V ar(←−c1 ) = 1
4
((1− 0.9)2 + (1− 0.9)2 + (1− 0.9)2 + (0− 0.9)2) = 0.21

V ar(←−c2 ) = 1
4
((1− 0.72)2 + (1− 0.72)2 + (1− 0.72)2 + (0.3− 0.72)2) = 0.1029

V ar(←−c3 ) = 1
1
((0.6− 0.6)2) = 0

(b) We compare for each cluster the original quality and the current quality:

V ar(←−c1 ) = 0.21− 0.01 = 0.2, V ar(←−c2 ) = 0.1029− 0.0784 = 0.0245,
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V ar(←−c3 ) = 0− 0 = 0

(c) We assign x3 to the cluster that has a minimum effect on its quality, that is

done as follows: min{0.2, 0.0245, 0} = 0

So, we assign x3 to cluster ←−c3 .

(d) We increase the size of ←−c3 by 1.

(e) We update the original quality of ←−c3 to be equal to the current quality.

After all the uncertain objects are assigned, we produce the final clustering result,

which is : P ∗ = {2, 2, 3, 3, 3, 1, 1, 1, 1, 2}.

5.2.3 Experimental Design

Two experiments were conducted to test ACE. In the first experiment, we ran the

same the experiment as we did to test DSCE (Section 5.1.4).

In the second experiment, we tested ACE under the situation where each member

has a different number of clusters k chosen randomly from the interval [k− 2, k+2].

We chose this interval because we already know the number of clusters in the tested

datasets so the minimum of this interval is set to less than k by 2 and the maximum

set to a value larger than k by 2.

The main aim of these experiments is to test the performance of ACE, and also to

see how effective it is compared to other competitive clustering ensemble methods.

Therefore, we ran the algorithm ten times, and each time the performance was

measured by ARI and NMI, and at the end of these run we calculated the average

performance and the standard deviation for each ensemble clustering method.

In both experiments, we set α1 = 0.8, α2 = 0.7, α1min = 0.6, and ∆α = 0.1. The

following section includes the results and analysis of the two experiments.
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5.2.4 Experimental Results

5.2.4.1 Results of Ensembles Built with Fixed k

Tables 5.12 and 5.13 show the average value of ten runs of the compared algorithms

measured by ARI and NMI respectively, along with their corresponding standard

deviations. The bold value in each row shows the best performance in each dataset

in terms of the quality of the clustering result and the underlined number shows the

best value in terms of consistency. The last column of Table 5.12 and 5.13 represents

the average performance of the generated members, and the last two rows show the

average quality for each ensemble method over all datasets, as well as the average

consistency of each method.

Results obtained by ARI Index: There are a number of interesting observa-

tions. Firstly, the performance of ACE is better than CO-Av and ONCE-Av in five

datasets, whereas it performed very closely to them on other datasets. In particular,

in the Iris, Thyroid and Glass datasets, ACE produced the highest results: 0.734,

0.611 and 0.534 respectively. Secondly, ACE achieved the same performance as CO,

DSCE and MCLA algorithms in the Bcw dataset, and that is the most accurate

result for this dataset. Thirdly, ACE outperformed DICLENS in all datasets except

in the Soybeans dataset, and we will explain later this particular situation for DI-

CLENS. On average the DSCE algorithm achieved the best performance compared

with other algorithms, followed closely by the ACE algorithm.

In terms of consistency measured by the standard deviation, ACE was the most

consistent algorithm in the thyroid dataset compared with the others, and it achieved

a very close value to the most consistent algorithm in the most examined datasets

such as the Bcw, Mfeatures and Wine datasets. The worst performance for the

ACE algorithm was on the Soybean dataset, where it achieved a value equal to

0.081 compared with other algorithms, but this is still a small value.

Looking at the average performance of the generated members, we found that
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all the ensemble methods outperformed the average of members in all the datasets,

except DICLENS which performed lower than the average members in the Glass

and Mfeatures datasets as well as ACE in the Soybeans dataset.

However, the ACE algorithm performed second best on average compared with

the others, and it is close to the best performing algorithm measured by the ARI

index, which is DSCE under these experimental settings.

Results obtained by NMI Index: In summary, these results are very similar

to the results represented by ARI explained in the previous paragraph. The only

difference is that on average the ACE achieved the best performance, along with the

DSCE algorithm, measured by NMI.

Under this experimental set-up, i.e. with a fixed value for k for each dataset, ACE

does not show a superiority to its predecessor DSCE, although it does in comparison

to the other methods. However, it is worth noting that its predecessor DSCE has an

obvious weakness, which is that it can only work with fixed k values, which limits

its application on real-world problems when the true number of clusters, k, is not

known in advance. That is why we extended DSCE to ACE to cope with variable

numbers of clusters generated by the members. The next experiment is designed to

demonstrate and compare their capability.

Table 5.12: Results of the first experiment listed in Table 5.6 updated by adding
the average performance of ACE and the standard deviation of ten runs for each
dataset measured by ARI Index.

CO-Av ONCE-Av DSCE ACE DICLENS MCLA Ave-mem

Iris 0.725± 0.012 0.726± 0.009 0.732± 0.021 0.734± 0.023 0.680± 0.077 0.723± 0.012 0.702± 0.038

Wine 0.369± 0.005 0.369± 0.005 0.377± 0.025 0.371± 0.008 0.369± 0.005 0.372± 0.002 0.366± 0.004

Thyroid 0.559± 0.024 0.584± 0.044 0.609± 0.032 0.613± 0.023 0.582± 0.044 0.563± 0.025 0.473± 0.036

Mfeatures 0.315± 0.006 0.316± 0.005 0.316± 0.004 0.314± 0.008 0.290± 0.069 0.308± 0.021 0.293± 0.029

Glass 0.509± 0.029 0.526± 0.030 0.528± 0.027 0.535± 0.029 0.392± 0.123 0.534±0.020 0.501± 0.009

Bcw 0.849± 0.004 0.847± 0.003 0.849± 0.004 0.849± 0.004 0.842± 0.005 0.849 ±0.004 0.830± 0.021

Soybean 0.547± 0.006 0.550± 0.015 0.578± 0.052 0.532± 0.081 0.632± 0.046 0.548± 0.006 0.566± 0.025

Ionosphere 0.163± 0.014 0.166± 0.008 0.169± 0.005 0.165± 0.008 0.161± 0.009 0.166± 0.006 0.149± 0.007

Ave-P 0.505 0.511 0.520 0.514 0.493 0.508 0.443

Ave-C 0.012 0.015 0.017 0.023 0.048 0.012 0.031
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Table 5.13: Results of the first experiment listed in Table 5.7 updated by adding
the average performance of ACE and the standard deviation of ten runs for each
dataset measured by NMI Index.

CO-Av ONCE-Av DSCE ACE DICLENS MCLA Ave-mem

Iris 0.751± 0.015 0.752± 0.012 0.763± 0.024 0.766± 0.028 0.757± 0.008 0.749± 0.015 0.737± 0.025

Wine 0.428± 0.003 0.428± 0.003 0.432± 0.014 0.429± 0.006 0.427± 0.004 0.429± 0.001 0.428± 0.003

Thyroid 0.434± 0.047 0.473± 0.062 0.480± 0.056 0.531± 0.042 0.501± 0.053 0.418± 0.033 0.403± 0.026

Mfeatures 0.479± 0.002 0.479± 0.003 0.479± 0.002 0.478± 0.007 0.468± 0.026 0.475± 0.009 0.460± 0.027

Glass 0.712± 0.027 0.725± 0.029 0.725± 0.021 0.726± 0.022 0.617± 0.107 0.728± 0.017 0.704± 0.007

Bcw 0.750± 0.005 0.749± 0.004 0.750± 0.005 0.751± 0.005 0.742± 0.006 0.751± 0.005 0.731± 0.023

Soybean 0.717± 0.002 0.723± 0.024 0.756± 0.064 0.712± 0.076 0.822± 0.056 0.717± 0.002 0.736± 0.019

Ionosphere 0.122± 0.014 0.124± 0.009 0.128± 0.005 0.123± 0.008 0.119± 0.009 0.124± 0.006 0.108± 0.006

Ave-P 0.549 0.557 0.564 0.564 0.557 0.549 0.491

Ave-C 0.015 0.018 0.024 0.024 0.034 0.011 0.017

5.2.4.2 Results of Ensembles Built with Random Variable k

We did not run the DSCE algorithm in this experimental set-up as it is not capable of

dealing with variable numbers of clusters generated by the members in an ensemble.

All the other methods were run for comparison.

Results obtained by ARI Index: Table 5.14 shows the average performance

measured by the ARI index along with the standard deviation in each dataset,

and the average performance of the generated members. The results indicate that

the ACE algorithm usually performs better than the other clustering ensemble al-

gorithms. This is particularly true for five datasets, which are Wine, Glass, Bcw,

Soybean and Ionosphere, whereas in Iris, Thyroid and Mfeatures it achieved a result

close to the highest performance in these datasets, which was achieved by ONCE

in Mfeatures and MCLA in the other two datasets. However, the result on the

Mfeatures dataset indicates that ACE is applicable to a large dataset.

ACE also enhances the performance of the generated members in all investigated

datasets except the Ionosphere dataset, which is slightly better than the clustering

ensemble algorithms; this may be due to random k in these members.

In terms of consistency, ACE was more consistent in two datasets, which are Glass

and Bcw, while in the Iris, Wine and Ionosphere datasets it was the second most

consistent algorithm compared with other algorithms. On average, three algorithms
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achieved very close results in terms of consistency; these are MCLA, ONCE and

ACE, which are equal to 0.035, 0.037 and 0.038 respectively.

Results obtained by NMI Index: Similar experimental results are also ob-

served using NMI index shown in Table 5.15, where ACE achieved the highest

performance on three datasets Iris, Bcw, and Ionosphere. However, with Wine,

Mfeatures and Glass it achieved results very close to the highest performance. In

the Soybean dataset the highest performance was achieved by the DICLENS algo-

rithm, which also performed very well with the Wine and Mfeatures datasets. These

results were only achieved by the NMI index and not the ARI index, which leads us

to investigate further the number of clusters discovered by DICLENS, as it has the

ability to discover k automatically. This is in contrast to other clustering ensemble

algorithms examined, in which k is provided by the user in advance.

Identifying the true number of clusters in DICLENS

Figure 5.8 shows the number of clusters discovered by the DICLENS algorithm in

all tested datasets over ten runs for the results of the second experiment (in Section

5.2.4.2). It is observed that the number of clusters in most datasets is unstable

and changeable over the ten runs. This has an effect on the NMI index, which is

an information theory based index that measures the shared information between

two clustering results. Most of the DICLENS results in the majority of datasets

had fewer number of clusters than the actual number of clusters (the ground-truth

labels) in the data. It is clear that one cluster produced by DICLENS can share

a number of objects with more than two true clusters and that can lead the NMI

result to be increased.

For example, it was highlighted for the Wine dataset over the ten runs that the

discovered k was equal to 2 which is less than the number of the true labels, 3.

Therefore, the NMI measure, as it is based on how much information the compared

clustering results share, unfairly indicates that this result is more accurate than
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ACE. Moreover, in the Soybean dataset the discovered k was equal to 2 in three

runs, 3 in four runs and 4 in the remaining three runs, whereas the number of the

true labels is equal to 4. It is obvious that fewer clusters shared more objects with

more true clusters in this case, and the NMI scored higher than ARI compared with

other clustering results obtained by other algorithms. It is observed that when the

number of clusters in the compared results is less than the number of true labels

of the data, the NMI measure inappropriately indicates that this result is more

accurate than others that have produced exactly the number of the true clusters.

Table 5.14: Second experiment results: the average performance and the standard
deviation of ten runs for each dataset measured by ARI. Includes the average per-
formance of each ensemble method across 8 datasets.

CO-Av ONCE-Av ACE DICLENS MCLA Ave-mem

Iris 0.669± 0.065 0.674± 0.057 0.696± 0.038 0.565± 0.009 0.722± 0.043 0.605± 0.029

Wine 0.324± 0.045 0.344± 0.060 0.403± 0.014 0.367± 0.024 0.393± 0.008 0.326± 0.011

Thyroid 0.252± 0.175 0.189± 0.121 0.303± 0.032 0.308± 0.118 0.448± 0.119 0.285± 0.053

Mfeatures 0.325± 0.002 0.326± 0.001 0.325± 0.005 0.324± 0.006 0.277± 0.013 0.321± 0.005

Glass 0.265± 0.006 0.259± 0.008 0.269± 0.004 0.200± 0.048 0.152± 0.022 0.258± 0.005

Bcw 0.866± 0.018 0.860± 0.016 0.869± 0.014 0.853± 0.031 0.864± 0.014 0.773± 0.037

Soybean 0.534± 0.000 0.534± 0.000 0.578± 0.160 0.575± 0.070 0.547± 0.039 0.547± 0.036

Ionosphere 0.076± 0.047 0.037± 0.035 0.084± 0.034 0.076± 0.039 0.061± 0.019 0.117± 0.014

Ave-P 0.414 0.403 0.441 0.409 0.433 0.404

Ave-C 0.045 0.037 0.038 0.043 0.035 0.024

Table 5.15: Second experiment results: the average performance and the standard
deviation of ten runs for each dataset measured by NMI. Including the average
performance of each ensemble method across 8 datasets.

CO-Av ONCE-Av ACE DICLENS MCLA Ave-mem

Iris 0.753± 0.017 0.749± 0.027 0.766± 0.032 0.753± 0.026 0.755± 0.037 0.706± 0.012

Wine 0.406± 0.010 0.415± 0.022 0.421± 0.014 0.435± 0.018 0.415± 0.005 0.410± 0.010

Thyroid 0.293± 0.077 0.250± 0.066 0.308± 0.050 0.331± 0.040 0.356± 0.048 0.302± 0.035

Mfeatures 0.486± 0.002 0.487± 0.002 0.490± 0.008 0.493± 0.005 0.464± 0.007 0.484± 0.005

Glass 0.441± 0.018 0.449± 0.016 0.430± 0.016 0.389± 0.032 0.307± 0.032 0.423± 0.011

Bcw 0.773± 0.024 0.765± 0.021 0.776± 0.019 0.759± 0.032 0.770± 0.019 0.687± 0.028

Soybeans 0.710± 0.000 0.710± 0.000 0.722± 0.127 0.767± 0.070 0.716± 0.018 0.734± 0.020

Ionosphere 0.043± 0.035 0.023± 0.012 0.048± 0.026 0.043± 0.029 0.030± 0.013 0.099± 0.016

Ave-P 0.488 0.481 0.495 0.496 0.477 0.480

Ave-C 0.023 0.021 0.036 0.032 0.022 0.017

132



Chapter 5. Adaptive Clustering Ensemble

1 2 3 4 5 6 7 8 9 10
1

2

3

4

5

6

7

8

9

10

Number of Runs

N
u

m
b

e
r 

o
f 

C
lu

s
te

rs

 

 

Iris

Wine

Thyroid

Mfeatures
Glass

Bcw

Soybean

Ionoshpere

Figure 5.8: Number of clusters produced by DICLENS algorithm for each dataset
in ten runs for the result in the second experiment. The true number of clusters
for {Iris, Wine, Thyroid} = 3, Mfeatures= 10, Glass = 6, Bcw = 2, Soybean = 4,
Ionosphere = 2.

5.2.5 Test of Significance

We tested the statistical significance of the results of the two experiments that we

performed in Sections 5.2.4.1 and 5.2.4.2 on the two types of ensemble.

We applied the Iman-Davenport test [53] to the results in Tables 5.12 and 5.14

under the null hypothesis that the mean ranks are equal for all the examined al-

gorithms. The significant level is set to 0.1 by default. For the first experiment,

we can reject the null hypothesis of the mean rank of the performance being equal

for all algorithms (the Iman-Davenport test result is equal to 4.4051 which gives a

small p-value equal to 0.0032, which indicates that there is a significant difference).

For the second experiment in Table 5.14, the Iman-Davenport test result is equal

to 2.5434, which gave a small p-value equal to 0.0617, indicating that there is a

significant difference.

Therefore, we proceeded with the Nemenyi test as a post-hoc test for a pairwise

comparison to discover where the differences lie. Figure 5.9(a) shows the critical

difference diagram at the critical level of 0.1 for the results presented in Table 5.12,
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and the critical difference, CD, is equal to 2.4218. As we can see from the diagram,

we have two solid bars which show two groups of algorithms in cliques, indicating

that there is no statistically significant difference between algorithms in the same

group, whereas there is a significant difference between algorithms in the different

groups. We observed that, based on the average ranks, DSCE was first followed by

ACE and then MCLA. Moreover, DICLENS was last in this average ranking. This

demonstrated that the performance of DSCE is significantly better than CO and

DICLENE based on this experimental set-up.

Figure 5.9(b) shows the critical difference diagram of the results presented in

Table 5.14. As we can see, there are two groups of algorithms in two cliques. The

first group includes ACE, MCLA, CO and DICLENS, whereas the second group

includes MCLA, CO, DICLENS and ONCE. The results indicate that there is a

significant difference between algorithms placed in different groups, and in this case

between the ACE and ONCE algorithms, in this experimental set-up, although ACE

is ranked the first with a considerable distance from the second algorithm, MCLA.
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(a) The critical difference diagram of the first ex-
periment.
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(b) The critical difference diagram of the second
experiment.

Figure 5.9: The Critical difference diagram of the critical level of 0.1 in which it
shows the comparison of six ensemble methods using eight datasets.

5.2.6 Analysis of Parameters and Time Complexity

There are two parameters in ACE, which are α1 and α2. α1, as stated previously, is

the minimum similarity allowed between initial clusters, whereas α2 is the certainty

threshold of classifying objects in a cluster.
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To find out how these parameters can affect the quality of the final clustering

result of ACE, we analyse them with the two types of ensembles using Wine, Mfea-

tures and Glass datasets as an illustration. For the second type of ensemble, we

allow for α1 to take more values than its values in the first experiment, due to the

fact that when the members have different k from one another they are more dis-

similar than when they have fixed k. Therefore α1 can take a value between 0.5

and 0.9 in the first experiment, whereas in the second experiment it takes a value

between 0.3 and 0.9.

In the first experiment, we ran ACE for ten times with a different initial values

of α1, and each one of them with all the possible values for α2. We firstly ran the

k-means algorithm to generate ten members all with the fixed k equal to the true

number of classes for each dataset. Figure 5.10 illustrates the effect of different

values of α1 and α2 on the average ARI performance of the ensembles built by

members with a fixed k, over ten runs. We note that on the Wine dataset the

average performance of ACE is the same for all values of α1 and α2; this indicates

that the ACE is not sensitive to its parameters. In the Mfeatures dataset, the

average performance of ACE is slightly improved when α1 is equal to 0.8 and 0.9.

We note that all the values of α2 have the same performance with all the values of

α1. The average performance of ACE in the Glass dataset is the same when α1 is

equal to 0.5 and 0.6, which is slightly improved when α1 is equal to 0.7 and 0.9;

when it is equal to 0.8 it reaches its highest performance.

We note that all values of α2 achieved the same performance with all values of

α1 in all the examined datasets, this indicates that the different values of α2 have

no effect on the performance of the ACE when it is built with members that have a

fixed k.

On the other hand, Figure 5.11 illustrates the effect of the different values of two

parameters on the average performance of the ACE ensemble built with members

having a random variable k. We can see that in the Wine dataset the ACE perfor-

mance is decreased a little when α1 is equal to 0.7 in which case the performance
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remains stable with 0.8 and 0.9 in all possible values of α2. In the Mfeatures dataset,

the ACE performance is slightly improved when α1 is less than 0.7. However, in the

Glass dataset the ACE performance fluctuates with a slight increase to reach a value

of 0.6 and then a slight drop when α1 is equal to 0.7 after a stable performance. We

note that with all the possible values of α2 that the average performance of ACE

remains the same in almost all cases for α1.

Therefore, the results suggested that α2 has no effect on the performance of ACE,

and α1 has a slight effect on ACE performance. A value between 0.6 and 0.8 is better

for an ensemble built with fixed k, whereas a value between 0.3 and 0.5 is better

for an ensemble built with different k and when α2 is between 0.5 to 0.9, as these

values have no effect on the ACE performance.

The time complexity for the worst-case scenario of ACE algorithm is estimated

to be O(k2
m(km + nu)), where km is the total number of clusters in all the generated

members, and nu is the number of uncertain objects which is in the worst case

scenario equal to (nu = n − k), n is the number of objects in the dataset and k

is the number of pre-defined clusters for the dataset. As can be seen, this time

complexity is better than that of DSCE (i.e. O(k2m2nu)). We observed that the

actual running time for Mfeatures dataset (which is the biggest size dataset we had

in our experiment) to produce the result by DSCE = 0.713, CO = 2.419, ONCE

= 4.961 and ACE = 0.159 measured in seconds 1. As we can see ACE is faster than

other methods. Hence, for big real-world datasets ACE holds some promise.

1We ran our experiment using Apple Macintosh computer 2.3 GHz Intel Core i5 with 8 GB
installed RAM
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Figure 5.10: The Average of ARI index of ten runs for analysing the two parameters
α1 and α2 using members with fixed k.
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Figure 5.11: The Average of ARI index of ten runs for analysing the two parameters
α1 and α2 using members with random k.
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5.3 Summary

In this chapter, the aim was to propose a consensus function that incorporate the

similarity from two different levels, at an object level and cluster level, and it does

not require an ordinary clustering algorithm as a final step to produce the final

clustering label. As a result, two consensus functions were proposed, named the

Dual-Similarity Clustering Ensemble (DSCE) and the Adaptive Clustering Ensemble

(ACE).

There are a number of advantages to these two new clustering ensemble methods:

1. DSCE and ACE avoid cluster relabelling problems when aggregating the en-

semble members.

2. DSCE and ACE utilise the information on the similarity between clusters and

the membership of objects to clusters in order to generate consensus clusters.

3. DSCE does not restrict the produced clustering solution to having a specific

number of clusters k, and it converges k to a stable value from the generated

member.

4. ACE is able to deal with any generated ensemble members, even when they

have different numbers of clusters, as ACE converts them exactly or very

closely to the true number of clusters in the final clustering result.

5. ACE resolves the objects’ uncertainty by considering their object neighbour-

hood similarity in order to not lose any information when an inappropriate

cluster is eliminated.

6. DSCE and ACE are more efficient. Instead of calculating the similarity be-

tween objects like the others do, they calculate the similarity between the ini-

tial clusters of the ensemble members, which is much smaller than the number

of objects, and they do not require a single clustering algorithm to be applied

over the similarity matrix to produce the final clustering results. Hence, DSEC

and ACE have potential to be applied in big data clustering problems.
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7. ACE is more stable due to the different values of the two parameters (α1 and

α2). The experimental analysis revealed that α2 has no effect on the ACE

performance, and α1 has a slight effect on ACE performance.

DSCE and ACE were tested using 8 real-world datasets. The first experiment

was designed to test DSCE, and the results demonstrated that on average DSCE

outperforms the state-of-the-art cluster ensemble algorithms, which the MCLA, CO,

DICLENS algorithms, and our early method ONCE. It has been proven that DSCE

is statistically different from the CO and DICLENS clustering ensemble methods.

However, the same experiment was conducted to test ACE, and the results showed

that on average ACE outperforms the other clustering ensemble methods, and com-

paring ACE with its predecessor DSCE, it achieved a very close performance. More-

over, we tested ACE in the situation where the generated members had different

numbers of clusters, and the results showed that on average ACE is better than the

other clustering ensemble methods.
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The Diversity of the Clustering

Ensemble.

In this chapter, we focus on the second central part of this thesis by trying to answer

the following question: Does diversity influence the ensemble performance? To do

that, in Section 6.1, we conduct an experimental study to investigate the influence

of diversity on the ensemble quality using a number of consensus functions. The

results of this experimental study raised two issues. Firstly, the results showed

that diversity can have a positive or negative effect on the ensemble performance.

Secondly, the results revealed there may be an interaction between diversity and

the members’ quality. Thus, in Section 6.2 we investigate these two raised issues.

In Section 6.3, we discuss our investigation of ensemble diversity and the results of

our analysis on the two issues raised regarding diversity. Finally, in Section 6.4, we

summarise the main findings of this chapter.
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6.1 Experimental Studies on Clustering Ensem-

ble Diversity

The main aim of this experiment is to investigate whether or not the diversity

has an influence on the ensemble performance using the current diversity measures

described in Section 2.3.1.

6.1.1 Experimental Design and Procedure

In our experiment, we used 8 real datasets, including Wine, Iris, Glass, Bcw, Mfea-

tures, Soybean and Ionosphere datasets; Table 3.1 in Chapter 3 shows the details of

these datasets. The experiment was performed as follows:

1. For each dataset, we generated 5 sets of members. The first four sets were

generated with the Homogeneous generation strategy, whereas the last set was

generated using the Heterogeneous generation strategy. For each one of the

four sets, we generated 5 members, and for the final set, 7 members were

generated. Thus, in total, we generated 27 members. These were:

(a) Using k-means with random initialisation for the initial centroids with the

predefined k value (number of clusters) for each dataset for all members

(Homogeneous Ensemble).

(b) Using k-means with random k for each member chosen from the interval

[k − 2, k + 2] (Homogeneous Ensemble).

(c) Using k-means with random k for each member chosen from the interval

[2,
√
n] (Homogeneous Ensemble).

(d) Using k-means with random features (Homogeneous Ensemble).

(e) For the heterogeneous generation methods, we used different algorithms

with a predefined k value; these are: agglomerative hierarchical clustering

using single, complete and average linkage, k-medoids, c-means, kernel k-

means [91], and the normalised cut algorithm [92].
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2. We combined the generated members using the 4 consensus functions CO-Av

and ONCE-Av, MCLA and ACE. So for each dataset, we constructed 4 final

clustering results, P ∗CO, P
∗
ONCE, P

∗
MCLA and P ∗ACE.

3. We calculated the Q(Φ) for each consensus function’s results, and Q(Γ) both

using the ARI index.

4. We measured the diversity of the generated members using 7 definitions:

DVpARI , DVpNMI , Entropy, DVnp1, DVnp2, DVnp3 and DVnp4.

5. We repeated the above steps (1-4) 100 times.

In each run for one dataset we have 4 ensemble results, and for 8 datasets, we

have 32 ensemble results. Thus, 32 × 100 clustering ensemble results have been

generated in total.

6.1.2 Experimental Results

The results of each dataset are stored in a Table, for a total of 8 tables. These tables

are too large to be presented here, since each table has 100 rows; each row represents

one run of the experiments and includes 24 columns, where 19 columns represent

the values for the diversity measures plus 4 values of the consensus function quality

results measured by ARI plus the average quality of the members also measured by

ARI. Thus, in total, each table has 100 rows and 24 columns.

The statistical summary of the ensemble quality results for each dataset, the

qualities of their generated members measured by the ARI and the diversity measure

results are presented in appendix A. Then we plot the correlation between all

diversity measures and the ensemble method qualities as well as the correlation

between all the diversity measures and the average quality of the members in 100

runs for each dataset and for each ensemble method used. To assess how the diversity

actually correlates with the ensemble quality, we carried out a correlation coefficient

test for the 8 datasets, as presented in Section 6.1.3. However, in this section we
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only highlight and summaries the most remarkable results, whereas the full details

of this experiment results are shown in Appendix A.

In the figures below, we sort the results in ascending order with respect to a

specific diversity measure, and for each of the consensus function results, we plot

its ensemble quality in the y axis against the sorted diversity measure in the x axis

(represented by the symbol x and a red dashed line), and we also plot the average

quality of the members (represented by the symbol o and a blue dashed line) against

the diversity measure.

In the relation between the ensemble quality and the diversity, we found

that there are two types of patterns in the results, these are:

1. The first pattern shows the diversity has no effect on the ensemble quality,

as the ensemble qualities remain slightly stable along all diversity scores and

even when the average member quality decreases. This pattern was discovered

in the Bcw and Ionosp datasets in all the tested ensemble methods and in the

Iris and Soybeans datasets using the CO and MCLA methods.

2. The second pattern shows that the ensemble qualities are fluctuating over the

diversity, where there is no consistent trend that can be visually be identified

from them. In this type, we have Glass, Wine, Mfeatures and Thyroid in all

used ensemble methods and Soybean using only the ONCE and ACE ensemble

methods.

In the first pattern for example, we have Figures 6.1 and 6.2. We think the

reason behind this is that generating more diverse members caused them to be

poor in quality. As the diversity in these datasets was not very high, these poor

quality members were very few, which is why they did not affect the quality of the

ensembles. We checked the first 10 runs in Bcw dataset we found that the number

of poor members (their qualities below 0.3) are between 5 to 7 out of 27 members

in one run.

The first pattern is also discovered in the Iris dataset (Figure 6.3), and it is
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Figure 6.1: The DVpNMI , DVnp1 and DVnp4 measures from Bcw dataset. (a), (b)
and (c) using MCLA, while (d), (e) and (f) using ONCE-Av.

noticed that for a few ensemble cases, when the average members is improved the

ensemble quality is also improved, which means that the ensemble improvement may

be contributed by the high average member quality and not by the diversity. On

the other hand, there are some cases where the ensemble improvements are affected

by the diversity, as their average member quality are very low compare to others.

With the Soybeans dataset, most of the ensemble qualities of CO (Figures 6.4(a))

and 6.4(b)) are somewhat stable along the diversity in all the used diversity mea-

sures, where in most cases, the average member quality is slightly better than or

close to the ensemble quality. This indicates that in some datasets, some ensemble
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Figure 6.2: The DVpARI , DVnp2 and DVnp4 measures from Ionosphere dataset (a),(b)
and (c) using CO-Av., while (d), (e) and (f) using MCLA.

methods can perform as equal as the performance of the individual members or even

worse than them.
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Figure 6.3: The DVpARI , DVnp3 and DVnp4 measures from Iris dataset, (a), (b) and
(c) using CO-Av, while (d), (e) and (f) using MCLA.
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Figure 6.4: The DVpARI , DVnp1 and DVnp3 measures from Soybean dataset , (a),
(b) and (c) using CO-Av, while (d), (e) and (f) using ACE.
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In the second pattern, we noticed that the diversity is slightly higher than the

first pattern, measured by the pairwise diversity measure, and we think the high

diversity might cause the fluctuation in this pattern.

With the Thyroid dataset (Figures 6.5 and 6.6), the pattern fluctuates most

compared to all the other datasets. Most ensemble cases have a high quality over

the diversity measured by DVpARI , DVpNMI and Entropy, while in other ensemble

cases, the quality of the CO and ACE ensembles is lower than the average quality of

the members compared to a few cases in the MCLA and ONCE ensemble methods.

But generally, there are no members which have a diversity lower than 0.5 measured

by DVpARI , DVpNMI , Entropy and DVnp1. Thus, we think that the fluctuation in

ensemble diversity is caused roughly by a high level of diversity compared to other

datasets. The highest quality in this dataset was achieved by MCLA, accompanied

by a high diversity measured by DVpARI , DVpNMI and Entropy.
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Figure 6.5: The DVpARI and DVnp3 measures from Thyroid dataset, (a) and (b)
using CO-Ave, while (c) and (d) using ONCE-Av.

With the Wine dataset, the pattern discovered by using the ACE methods (Fig-

ure 6.7) reaches a peak value where the quality of the ensembles is equal to (0.706),
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Figure 6.6: The DVnp1 and DVnp3 measures from Thyroid dataset, (a) and (b) using
MCLA, while (c) and (d) using ACE.

accompanied by a low level of diversity measured by DVnp2, DVnp3 and DVnp4 while

accompanied by a moderate level of diversity measured by the rest of the measure-

ments. Looking to the highest maximum member quality that occurs in the Wine

dataset, it reaches a value only equal to 0.601, indicating that this peak case is not

caused by the high quality members, and in fact, is affected by their diversity. This

phenomenon might have happened because each member had made a different error

from one another in terms of the cluster structure in the dataset and with moderate

diversity. This makes integrating them using ACE more accurate. The other en-

semble cases using the ACE method show a fluctuating pattern along the diversity

scores.

With the Glass dataset, the ensemble qualities are also distributed evenly along

the diversity measured by DVpARI , DVpNMI , and Entropy in all ensemble methods,

and the pattern has a slight fluctuation in all ensemble methods except MCLA.

Figure 6.8 shows the ensemble qualities of CO-Ave and MCLA, and the diversity

measured by Entropy, DVnp1 and DVnp3 in Glass dataset. It is noticed that the
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Figure 6.7: The DVpARI , DVnp1, DVnp3 and DVnp4 measures from Wine dataset
using ACE.

MCLA ensemble (Figures 6.8(d), 6.8(e) and 6.8(f)) performs badly in most cases

compared to the average quality of the members. Also, it shows a negative cor-

relation with the diversity measured by DVnp1 (Figure 6.8(e)), whereas it shows

positive correlation with the diversity measured by DVnp3 Figure 6.8(f). The posi-

tive correlation is shown with diversity measured by DVnp2 and DVnp4 (Figure A.14

in Appendix A).

With the Mfeatures dataset, it is noticed in Figure 6.9 that as the diversity

reaches a high level, the quality of the ensemble using the MCLA method drops to a

low value compared to the average member quality measured by DVnp1, in contrast

to DVnp3, in which a poor ensemble quality results when the diversity is low. This

shows that the poor quality of the MCLA ensemble is affected by a lower diversity

even when the average quality slightly decreases compared to other ensemble cases.

With Soybeans dataset, we noticed that in Figures 6.4(d) and 6.4(e) there is a

perfect solution for the problem discovered by using ACE. Looking closely to this
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Figure 6.8: The Entropy, DVnp1 and DVnp3 measures from Glass dataset,(a), (b)
and (c) using CO-Ave, while (d), (e) and (f) using MCLA.

particular case, we found that there were three members that had also the same so-

lution (perfect) and none of the other ensemble methods had that result, where the

performance of CO, ONCE and MCLA were equal to 0.661, 0.661 and 0.545 respec-

tively. That is because ACE is based on computing the similarity between clusters

and membership similarity between objects and clusters and it does not implement

any ordinary clustering algorithm such as a graph based clustering algorithm that

applies in MCLA or the Hierarchical algorithm that applies in the CO and ONCE.
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Figure 6.9: The DVpARI , DVnp1 and DVnp3 measures from Mfeatures dataset (a),
(b) and (c) using CO-Ave, while (d), (e) and (f) using MCLA.
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In the relation between the diversity and the average quality of the

members, we discovered in the Iris dataset a negative linear correlation between

them measured by DVpARI (Figure 6.3) as well as DVpNMI (Figure A.4(b)) and

Entropy (Figures A.4(c)). This shows that as the diversity increases, the average

quality of the members decreases accordingly, while all four ensemble qualities re-

main stable in most cases, even when the average member quality decreases. The

reason behind this phenomenon is that generating more diverse members would re-

sult in many incorrect clustering structures with less accurate members. This is

especially the case with a dataset that has k ≪ n (n the number of objects and k

the number of clusters), such as Bcw or Ionosphere.

However, with Iris dataset for theDVnp3 (Figure 6.3(e)) andDVnp4 (Figure 6.3(f))

measurements, the pattern changes to a positive correlation between the ensemble

quality and the diversity. These linear correlations are also found with Bcw (Figure

6.1) and Ionosphere (Figure 6.2), measured by DVnp3 and DVnp4.

With the Glass (Figure 6.8), Mfeatures (Figure 6.9) and Wine datasets (Figure

6.7), we discovered that the average quality of the members has a slightly negative

relationship with the diversity measured by DVpARI , DVpNMI and Entropy. While

the average quality of the members fluctuates slightly over the diversity scores mea-

sured by DVnp1, DVnp2, DVnp3 and DVnp4, where in most cases DVnp1 and DVnp3

have moderate diversity.

With the Thyroid dataset, the average quality of the members fluctuates over the

diversity scores measured by all examined diversity measures, and most of the cases

have a high level of diversity measured by DVpARI , DVpNMI , Entropy and DVnp1,

whereas most cases have a moderate diversity level measured by DVnp2 and DVnp3.

Finally, with the Soybean dataset (Figure 6.4), the average quality of the members

shows a slight linear correlation with the diversity in all the tested measurements.
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6.1.3 Studying the Correlation between the Ensemble Per-

formance and the Diversity.

We carried out the correlation coefficient (cc) test to measure the strength and direc-

tion of a linear relationship between ensemble quality and the values of a diversity

measure. We also carried out the significance test of whether, based upon these

samples, there is any evidence to suggest that the linear correlation is present in the

population. The value of cc ∈ [−1, 1] and of the p-value ∈ [0, 1]. When cc = 1, it

indicates a perfect positive linear relationship between the diversity and the ensem-

ble quality, and when cc = −1, it indicates that there is a perfect negative linear

relationship between them. When cc = 0, this indicates that there is no linear rela-

tionship between them. The p-value indicates that the degree of that relationship is

statistically significant at a 95% confidence interval. In other words, we tested the

null hypothesis that there is no correlation in the population against the alternative

hypothesis that there is linear correlation present.

Table 6.1 shows the correlation coefficient between each diversity measurement

and the performance of each ensemble method, and bold value of correlation coeffi-

cient indicates that we reject the null hypotheses.

Generally, the correlation coefficient results indicate that the relationship be-

tween the ensemble quality and the diversity varies from one dataset to another

and from one ensemble method to another. The results suggest that the pairwise

diversity measures have similar cc values, which indicates that for some cases, the

ensemble quality has a weak positive relationship (14 cases in DVpARI and 17 cases

in DVpNMI), while for other cases, there is a weak negative linear relationship with

the diversity (17 cases in DVpARI and 15 cases in DVpNMI). In addition, there is

only one case of no linear relationship between them discovered by DVpARI in Bcw

dataset.

However, for the non-pairwise measures, we noticed that DVnp1 always has the

opposite linear relationship to that discovered by DVnp3. For example, in the Glass
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dataset, using the MCLA ensemble method, the cc value of −0.813 for DVnp1 indi-

cates a strong negative relationship, whereas the cc of 0.806 for DVnp3 indicates a

strong positive linear relationship. The range of cc values in each of the non-pairwise

diversity measures varies from a strong positive linear relationship to a strong nega-

tive relationship. Thus, obviously there is no agreement between them across the 8

datasets and in the use of the different ensemble methods. But in most cases, what

are discovered for DVnp1 and DVnp2 are negative weak linear relationships (14 and

15 cases respectively), while DVnp3 and DVnp4, in most cases, fall between a positive

weak relationship and a positive moderate relationship (in DVnp3, 14 weak cases and

6 moderate cases out of 32, and in DVnp4, 12 weak cases and 7 moderate cases out

of 32).

For the statistical significance test, we found that for most of the correlation cases

using the pairwise diversity measure and Entropy, we cannot reject the null hypothe-

ses for most of the ensemble methods used. But for Iris using ONCE, Wine using

CO, Glass using ACE and Ionosphere using MCLA, we reject the null hypotheses

for these diversity measurements. In contrast, for the non-pairwise diversity mea-

sure, in most cases for the ensemble methods used, we reject the null hypotheses.

The only exception to this rule is the Bcw dataset, where we cannot reject the null

hypotheses for all the diversity measures tested and all ensemble methods used.

6.2 Investigation of Issues Raised

The results in Section 6.1 showed that diversity can have a positive or negative

effect on the ensemble performance. Thus, in Section 6.2.1 we are motivated to

find out under which conditions diversity can have a positive or a negative effect

on the ensemble performance. Furthermore, the results revealed there may be an

interaction existing between diversity and the members’ quality, and in Section 6.2.2

we are motivated to find out if this interaction exists and if so what is the effect of

the interaction on the ensemble performance.
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Table 6.1: Correlation coefficient between each diversity measure and ensemble re-
sult for each tested dataset. A bold values represent a rejection of the null hypothe-
ses which is there is no correlation between the ensemble quality and the diversity
measure.

Datasets CF DVpARI DVpNMI Entropy DVnp1 DVnp2 DVnp3 DVnp4

Iris

CO -0.124 -0.154 -0.144 -0.139 -0.080 0.130 0.123

ONCE -0.335 -0.389 -0.354 -0.546 0.488 0.688 0.541

ACE 0.151 0.153 0.142 0.251 -0.318 -0.305 -0.339

MCLA -0.064 -0.062 -0.058 -0.053 -0.038 0.046 0.048

Wine

CO 0.288 0.232 0.278 0.456 -0.923 -0.848 -0.860

ONCE 0.130 0.061 0.110 0.345 -0.920 -0.793 -0.807

ACE 0.211 0.192 0.197 0.594 -0.729 -0.705 -0.710

MCLA 0.009 0.019 0.043 0.181 -0.606 -0.426 -0.491

Thyroid

CO -0.082 0.056 -0.083 -0.049 -0.154 -0.048 -0.077

ONCE -0.012 0.077 -0.011 -0.085 -0.048 0.030 -0.037

ACE -0.092 -0.033 -0.065 -0.374 0.320 0.360 0.327

MCLA 0.190 0.272 0.182 0.139 0.247 0.028 0.119

Mfeatures

CO 0.153 0.185 0.138 0.222 -0.461 -0.425 -0.483

ONCE 0.035 0.050 0.053 0.110 -0.395 -0.291 -0.366

ACE -0.070 -0.079 -0.146 -0.583 0.636 0.650 0.600

MCLA -0.117 -0.188 -0.278 -0.605 0.282 0.594 0.456

Glass

CO -0.000 -0.046 0.001 -0.189 0.058 0.173 0.151

ONCE 0.136 0.053 0.137 -0.129 0.199 0.161 0.138

ACE -0.359 -0.299 -0.371 -0.548 0.236 0.487 0.423

MCLA 0.073 0.016 0.077 -0.813 0.758 0.806 0.745

Bcw

CO 0.000 -0.000 -0.000 -0.000 -0.000 0.000 0.000

ONCE -0.120 -0.033 -0.097 -0.169 -0.031 0.171 0.169

ACE -0.140 -0.081 -0.122 -0.167 -0.013 0.179 0.166

MCLA -0.167 -0.103 -0.160 -0.189 -0.113 0.141 0.160

Soybean

CO 0.012 0.014 -0.072 -0.234 -0.092 0.120 0.090

ONCE -0.106 0.007 -0.099 -0.550 0.320 0.530 0.521

ACE 0.048 0.113 0.144 -0.703 0.544 0.701 0.614

MCLA 0.032 0.079 -0.021 0.220 -0.221 -0.284 -0.265

Ionosphere

CO -0.080 -0.070 -0.079 -0.103 0.025 0.148 0.127

ONCE -0.054 -0.047 -0.033 -0.077 0.038 0.123 0.098

ACE 0.062 0.056 0.089 0.107 -0.068 -0.179 -0.161

MCLA -0.494 -0.486 -0.484 -0.530 -0.201 0.560 0.510

6.2.1 Analysis of the Positive and Negative Effects of Di-

versity on the Ensemble Performance

The formal definitions of these two different effects of diversity on clustering ensem-

ble are as follows:

Definition 8. Positive effect: For a given consensus function, if the diversity has

a positive effect on the ensemble performance, then the ensemble quality Q(Φ) is

higher than the average member quality Q(Γ), and we say that the ensemble has a

good combination of the individual members.

DV + ⇒ Q(Φ) > Q(Γ)

In other words, the diversity brings an improvement to the clustering ensemble
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performance, and in this case the diversity is constructive to the clustering ensemble.

Definition 9. Negative effect: For a given consensus function, if the diversity has

a negative effect on the ensemble performance, then the ensemble quality Q(Φ) is

less than the average member quality Q(Γ), and we say that the ensemble has a bad

combination of the individual members.

DV − ⇒ Q(Φ) < Q(Γ)

In this case, the diversity harms the performance of the clustering ensemble, and

it is destructive to the clustering ensemble.

In the next section, we will look to the relationship between diversity and the

ensemble performance from a different angle. We will make a comparison between a

pair of ensembles consisting of one positive case and one negative case, where both

pairs are built under same or similar conditions in terms of the average member

quality and the level of diversity. The difference between them therefore is that the

first ensemble represents a combination pattern when the ensemble succeeds (best

ensemble performance due to best combination pattern), whereas the second one

represents a combination pattern when it fails (worst ensemble performance due to

worst combination pattern).

6.2.1.1 Experimental Design

In Section 6.1, we run the experiment on 8 datasets using 4 consensus functions,

and for each consensus function we run the experiment 100 times. According to the

above definition of the negative effect, we found that the negative effect occurred on

the Thyroid, Soybean, Wine and Glass datasets. Among these the Thyroid dataset

clearly had the highest number of negative cases on all the consensus functions used

(CO, ONCE, ACE and MCLA) compared to other datasets (as shown in Figures

6.5, 6.6 and in Appendix A). Thus, here we focus our study on the results obtained

from the Thyroid dataset using all 4 consensus functions. In this dataset, for each
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consensus function the number of negative cases in the 100 runs was equal to 40,

21, 42 and 4 in CO, ONCE, ACE and MCLA results respectively.

In this analysis, the idea is to find a pair of ensemble cases (Φa,Φb), where Φa has

a negative effect (Q(Φa) < Q(Γa)), and Φb has a positive effect (Q(Φb) > Q(Γb)),

and they share the following conditions:

• DV (Φa) ≈ DV (Φb) for most of the DV measures (DVpARI , DVpNMI , Entropy,

DVnp1, DVnp2, DVnp3, and DVnp4).

• Q(Γa) ≈ Q(Γb)

• Std(Q(Pq ∈ Γa)) ≈ Std(Q(Pq ∈ Γb))

We are interested in investigating the negative effect associated with most of the

used consensus functions. As we used 4 consensus functions, we found that there is

not a case that is negative in all the 4 consensus functions. So, we identified a case

in two situations: first it is negative in only two consensus functions and second

it is negative in at least three of them. In total, we identified 22 pairs of cases as

shown in Table 6.2, which lists the ensemble qualities of these pairs and the average

member quality (all measured by ARI) for the first and second situations.

In each pair of ensembles, the first ensemble is an odd number, representing the

negative ensemble case, and the second is the next even number, representing the

positive ensemble case. For example, pair number one consists of case 1 (positive)

and case 2 (negative), and pair number two consists of case 3 and case 4 and so on.

For each of these ensemble pairs, we analysed the quality of their individual

members. We used a simple counting approach of the poor-, good- and medium-

quality members to compare between a pair of ensemble cases, one representing the

negative case, the other representing the positive case.
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Table 6.2: The quality of ensembles using CO, ONCE, ACE, MCLA consensus
functions and the average member quality (Ave-mem) in 22 cases. Cases with bold
font indicate that these are negative cases, which are case 1, 3, 5, 7, 9 ,11, 13, 15,
17, 18 ,19 , and 21. These cases are all taken from the results in section 6.1.2 for
Thyroid dataset.

Pair # Case # Q(CO) Q(ONCE) Q(ACE) Q(MCLA) Ave-mem

1
Case 1 0.579 0.579 0.211 0.231 0.275

Case 2 0.513 0.414 0.303 0.508 0.285

2
Case 3 0.231 0.297 0.324 0.192 0.274

Case 4 0.513 0.336 0.192 0.548 0.310

3
Case 5 0.164 0.296 0.221 0.417 0.264

Case 6 0.440 0.485 0.394 0.497 0.287

4
Case 7 0.155 0.155 0.164 0.579 0.245

Case 8 0.579 0.579 0.530 0.579 0.289

5
Case 9 0.211 0.211 0.165 0.347 0.220

Case 10 0.579 0.414 0.511 0.579 0.307

6
Case 11 0.164 0.164 0.119 0.441 0.253

Case 12 0.502 0.414 0.265 0.535 0.304

7
Case 13 0.173 0.164 0.164 0.579 0.276

Case 14 0.513 0.414 0.526 0.579 0.297

8
Case 15 0.273 0.221 0.222 0.579 0.285

Case 16 0.579 0.579 0.446 0.579 0.280

9
Case 17 0.221 0.383 0.273 0.240 0.279

Case 18 0.546 0.316 0.374 0.570 0.301

10
Case 19 0.164 0.164 0.262 0.582 0.286

Case 20 0.515 0.414 0.486 0.535 0.308

11
Case 21 0.155 0.155 0.252 0.560 0.260

Case 22 0.579 0.579 0.446 0.579 0.280

6.2.1.2 Summary of Results

The full results of this experiment are given in Appendix B. In summary, we ob-

served the following:

1. In most negative cases for some consensus functions such as CO and ONCE,

the high number of poor-quality members had indeed affected the ensemble

performance, while others such as MCLA had not been affected by the same

members. An example is Pair # 1 and 5 as shown in Figures 6.10(a) and

6.10(b) respectively.

2. For other negative cases the pattern of the number of poor-, medium-, and

good-quality members show an inverted V shaped pattern, where the number

of members with a medium-quality was higher than the other two categories

and with a high level of diversity measured by independent measures. This
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contributes to limit the ensemble quality to being lower than the average qual-

ity of its members. An example is Pair # 6 and 10 as shown in Figure 6.10(c)

and 6.10(d) respectively.

3. In most positive cases, the distribution of the individual members qualities

was higher than the comparative negative cases.

4. It was also observed that two cases had an equal number of poor-quality and

good-quality members, but one case represented a pattern of success for the

ensemble, while the other represented a pattern of failure (see Pair # 4 in

Figure 6.10(e)). But generally, the distributions of the individual members

quality in these cases indicate that in the pattern of success the members had

a higher quality than in the pattern of failure, and these high-quality members

with a high diversity level (measured by independent measures) contribute to

the production of a high-quality ensemble.

(a) Pair # 1 consists of
Case 1 and Case 2.

(b) Pair # 5 consists of
Case 9 and Case 10.

(c) Pair # 6 consists of
Case 11 and Case 12.

(d) Pair # 10 consists of
Case 19 and Case 20.

(e) Pair # 4 consists of
Case 7 and Case 8.

Figure 6.10: The Number of members whose Poor, Good and Medium Q-mem
compared to ensembles qualities in each case.

Therefore, we concluded that this approach did not give us a clear indication

of the reason behind the negative performance of the ensemble. But an extended

experiment was designed in the next section to investigate the effect of removing
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the poor-quality member on the performance of different consensus functions in the

negative and the positive cases.

6.2.1.3 The Experiment of Eliminating Poor Members

In this section, we analyse and study how the ensembles perform using the different

consensus functions when we gradually remove one member at a time, based on

its quality in the negative combined pattern, as well as in the positive combined

pattern.

Therefore, for each of the identified cases in table 6.2, we saved its members in

pool O, of which there are 27 members, and the following steps were implemented:

1. The quality of the individual members in pool O is measured using ARI.

2. Then the members in O are sorted in an ascending order based on their quality

(from the lowest to the highest quality member).

3. The first member in the current O is removed, which represents the poorest

quality member in the current O.

4. The remaining members in O are combined using the CO, ONCE, ACE and

MCLA consensus functions.

5. The following values are calculated: ensemble quality for each of the consensus

functions Q(CO), Q(ONCE), Q(ACE) and Q(MCLA), the average quality

of members (avg-mem), and the diversity of the ensemble using DVpARI and

DVnp3, where the latter is measured for each of the consensus functions.

6. Steps 3 to 5 are repeated until only 3 members are combined, which represents

the last run.

Thus, in each run the size of the ensemble decreased by 1 until run 25, where the

size was equal to 3.
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Experimental Results

The results of each identified case in our experiment are analysed in more detail in

Appendix B, and here we analysis the typical ones.

Clearly, the results show that as a consequence of removing the poorest quality

member in each run, the average members quality increased and accordingly the

diversity decreased (measured by DVpARI). This indicates that in this experiment

there is an inverse relationship between the average member quality and the DVpARI

measure.

It is also noticed that in 6 out of 22 cases (Figures B.27, B.30, B.33, B.34 and

B.33), the three highest quality members had the same quality clustering results,

and their ensemble diversity value of DVpARI was equal to 0. This also confirms

the idea that diversity as a factor is highly associated with member quality, because

when we fix the members’ qualities to a constant value their diversity is most likely

to be zero. In these cases (cases 1, 7, 8, 13, 15 and 17) , combining these members

using CO, ONCE and ACE achieved ensemble results of the same quality as the

members. But, using MCLA we achieved a very poor performance, which indicates

that MCLA is not a good choice when diversity does not exist among the members.

Looking at the diversity measured by DVnp3, it is noticed that it is sensitive to the

ensemble performance because when the performance is low in value, the DVnp3 is

also low in value. These results confirm those of Section 6.1, that the dependent

diversity measures are sensitive to the ensemble performance.

The lowest average member quality (equal to 0.220) was in case 9 (Figure B.31)

with a high DVpARI (equal to 0.667) and all the consensus functions produced low

quality performance, with three of them being below the average member quality

(CO= 0.211, ONCE= 0.211, ACE= 0.164 and MCLA = 0.347). It is therefore clear

that sometimes the individual members are not good enough to be combined in

terms of their quality and the diversity among them. In summary, the results show

that removing the poor-quality members did to some extent improve the perfor-

mance of all the identified consensus functions in all the negative cases, in addition
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(a) Negative Case. (b) Positive Case.

(c) Diversity Measures of the Negative
Case.

(d) Diversity Measures of the Positive
Case.

Figure 6.11: 25 ensemble runs for case 1 & 2, in each run one member is removed.

(a) Negative Case. (b) Positive Case.

(c) Diversity Measures of the Negative
Case.

(d) Diversity Measures of the Positive
Case.

Figure 6.12: 25 ensemble runs for case 7 & 8, in each run one member is removed.

to improving the performance of some consensus functions in the positive cases,

which are ONCE and ACE. However, each consensus function had different reac-

tions to removing poor-quality members, due to the difference in their implemented
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(a) Negative Case. (b) Positive Case.

(c) Diversity Measures of the Negative
Case.

(d) Diversity Measures of the Positive
Case.

Figure 6.13: 25 ensemble runs for case 13 & 14, in each run one member is removed.

(a) Negative Case. (b) Positive Case.

(c) Diversity Measures of the Negative
Case.

(d) Diversity Measures of the Positive
Case.

Figure 6.14: 25 ensemble runs for case 15 &16, in each run one member is removed.

techniques. Furthermore, the results in this investigation showed that diversity is

highly associated with the members qualities, therefore there is a great need to study
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(a) Negative Case. (b) Positive Case.

(c) Diversity Measures of the Negative
Case.

(d) Diversity Measures of the Positive
Case.

Figure 6.15: 25 ensemble runs for case 17 & 18, in each run one member is removed.

(a) Negative Case. (b) Positive Case.

(c) Diversity Measures of the Negative
Case.

(d) Diversity Measures of the Positive
Case.

Figure 6.16: 25 ensemble runs for case 9 & 10, in each run one member is removed.

the effect of the interaction between them on the ensemble performance.

However, the following characteristics have been noticed in our experiment for
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the pattern of success and failure; although they should not be generalised to all

consensus functions as each has its own characteristics.

Pattern of Success

In the pattern of success, based on our studies the following conclusion are drawn:

1. It is preferable to have a medium level of average member quality accompa-

nied by a medium level of DVpARI . The results support the argument that the

quality of the individual members alone is not enough to improve the ensem-

ble performance compared to the individual members’ quality, but it is also

necessary for them to be diverse.

2. CO and ONCE preferred the members to have between medium and high

quality with a medium diversity among them. If the members quality is poor,

they must have the “right”diversity among them, meaning that the certainty

of the correctly classified pairs of objects is maintained higher than that of the

wrongly classified ones. If among the members there is one with a very high-

quality (unexpected clustering results), then the other members must support

this one. The results showed that the performances of CO and ONCE are

equal to the quality of identical members, when there is no diversity among

them.

3. ACE also preferred a medium-level average member quality accompanied with

a medium DVpARI .

4. Using MCLA as a consensus function, the members must have some sort of

diversity, otherwise MCLA will perform poorly compared to the ensemble

members’ quality.

Pattern of Failure

In this pattern, the lower average member quality, accompanied with a high level

of DVpARI and low level of DVnp3, is responsible for the failure of the ensemble.

However, this pattern can be changed to a successful one by increasing the average
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member quality, decreasing DVpARI , and increasing DVnp3. The reaction to this

gradual changing in the pattern differs from one consensus functions to another, but

CO is the last one to be improved — it improved by removing most poor-quality

members.

6.2.2 The Experimental Study of the Interaction between

Members’ Qualities and Diversity

In this section, we investigate whether or not there is an interaction effect between

the diversity and the members’ qualities on the ensemble performance. A factorial

design experiment is implemented to investigate this interaction, where the inde-

pendent variables (factors that we are interested in studying) are diversity (DV)

and members’ qualities (Mem-Quality) and the dependent variable is the ensemble

performance. Our hypothesis is that there is an interaction between the ensemble

diversity and the members’ qualities, and that this may affect the performance of

the ensemble.

For the diversity we used the DVpARI measurements, while for the quality of the

members we used the ARI index. We can subdivide the range of diversity values

and member quality into three different levels: High, Medium and Low, as shown in

Figure 6.17. However, we considered the high level in member quality as an extreme

case, which is rarely achieved by a single clustering algorithm for the real datasets

used in Section 6.1.

Therefore, we implemented a 3×2 factorial experimental design with 6 conditions

(combinations of the two factors) to investigate the simultaneous interaction between

the diversity and member qualities on ensemble quality. Because, our interest is in

the interaction we had to also include their individual main effects. We considered

the diversity and the members’ qualities as between-subject factors, as we generated

a new set of members for each condition.

For each of the datasets used in the previous experiment in Section 6.1 we col-
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Figure 6.17: The range values of the member quality and the ensemble diversity,
including the interaction area between them.

lected all the members generated by 100 runs in pool O (2700 members in total) and

we classified them based on the 6 conditions. In 8 datasets examined, we had only

two datasets where a number of runs could be built on all of the 6 identified con-

ditions; these were the Thyroid and Wine datasets. With the other datasets, there

were one or more conditions that could not be built and therefore we could not use

them. In addition, we could not design the experiment as incomplete, as the main

aim of this experiment was to study the interaction effect, and this cannot be done

with an incomplete factorial design. Thus, we carried out our experiment on only

these two datasets as a pilot study. For each condition, we built the ensemble 30

times, but it was noticed that under two conditions we could not generate 30 sets of

members, and that was when the conditions were at low levels in both factors (3 sets

in the Thyroid datasets and 2 sets in the Wine dataset), and with a medium level

in the member quality and a high level in diversity (2 sets in the Thyroid dataset

and 7 sets in the Wine dataset). This is due to the fact that controlling/limiting

the quality of the members to a certain range makes restricted room for diversity

among them. So, the experiment is designed as unbalanced, where the number of

runs for each condition are not equal.
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However, we run the experiment by building the ensemble under the identified

conditions using four consensus functions (CO, ONCE, ACE and MCLA), and the

quality of the ensembles clustering results were measured (using an ARI index) and

recorded for each condition. For each dataset, we had four factorial experiments

(one for each consensus function).

We first investigated the main effects of each factor independently, and then we

investigated the interaction effect between them. Generally, the main effect of one

factor represents the overall means of the ensemble performance on the different

levels of that factor over the levels of the other factor. It is, in fact, the overall effect

of one factor while ignoring the effect of the other factor [90]. On the other hand,

the interaction effect is represented by the mean of ensemble performance in each

combination between two factors.

Both of these two effects can be visualised in a line chart plot. In the main effect

plot, the non horizontal line between the levels of one factor indicates that there is

a significant effect of that factor on the response, and the steeper the slope of the

line the greater the size of the main factor effect. Whereas, the non parallel lines in

the interaction plot indicate a sign of interaction between two factors. The greater

the difference in slope between lines, the high the degree of interaction between two

factors [16]. We should mention that as our design experiment was unbalanced so

the ensemble performance means for a factor in these plots were calculated as the

unweighted mean, which controls for the effect of other factors, so the confounding

caused by unequal sample size is eliminated.

6.2.2.1 Experimental Results

The Main Effects Results:

Figures 6.18 and 6.19 show the plots of the main effect of the diversity and mem-

bers’ qualities for the Thyroid and Wine datasets, respectively. The dashed hor-

izontal lines in these plots show the overall mean of ensemble performance (the

performance mean in the whole sample data). In both of the datasets in all the
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used consensus functions, the main effect of diversity and the members’ qualities

was shown by non-horizontal lines between the factors’ levels (as shown in figures

6.18 and 6.19), which indicate that the different levels of these factors affect the

ensemble performance differently.

In the Thyroid dataset, the ensemble performance mean with high and medium

diversity levels was lower than the overall mean of the ensemble, whereas with a low

diversity level it was higher than the overall means for all consensus functions. In

the Wine dataset, the main effect of diversity is different from that in the Thyroid

dataset. The ensemble performance mean in the low diversity level was lower than

the overall mean of the ensemble for all consensus functions. However, it was higher

than the overall ensemble mean in the high and medium diversity levels for all

consensus functions except ACE, where its performance mean was lower in the high

level and higher in the medium level compared with the overall mean.

However, in both datasets it is clear that the slope of the line between the two

levels of member quality is steeper than that of the lines between the levels of

diversity. This indicates that the effect size of the members’ qualities on the ensemble

performance is greater than the one related to diversity. Intuitively, as the quality

of the individual member increases, the ensemble quality naturally increases too.

Moreover, it was observed that when the members’ qualities were at a medium level,

then the ensemble performance always had a higher mean. In addition, ensembles

generated using a low value for member quality always had a lower performance

mean, and that is true for all the consensus functions used on the two datasets

under this experimental set-up.

The Interaction Effect Results:

Figures 6.20 and 6.21 illustrate the ensemble performance mean of combinations

of levels from the two factors in order to show the trend of the interaction between

them for the Thyroid and Wine dataset, respectively. In the right upper corner of

these figures, we can see clearly that the lines are not parallel and they are crossing
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Figure 6.18: The main effects of the diversity and member quality on the response
variables, which are CO, ONCE, ACE and MCLA, for Thyroid dataset.

Figure 6.19: The main effects of the diversity and member quality on the response
variables, which are CO, ONCE, ACE and MCLA, for Wine dataset.

at some point. This indicates that there is an interaction between the diversity and

the members’ qualities, and the degree of interaction differs between the different

consensus functions.

With the Thyroid dataset, it was observed that when the members had a low

quality, whatever the diversity among them, the ensemble performance mean was
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low, using CO and ONCE. It was observed that the ensemble achieved a higher

performance mean when the combining members had a medium quality and a low

diversity among them, with all used consensus functions. With ACE and MCLA, it

was noticed that the lines of medium and low diversity levels were close to parallel

with a very slight tendency towards the low-quality members, indicating that there

was very little interaction between these diversity levels and members’ qualities using

these consensus functions.

With theWine dataset, it was noticed that the high and medium levels of diversity

crossed in the middle, meaning that diversity (at high and medium levels) had the

opposite effect on the ensemble performance mean for low-quality members to that

of medium-quality members.The lines of the high and low diversity levels were close

to parallel with a very slight tendency towards the low-quality members’ level. This

was observed with CO, ONCE and MCLA. However, in ACE, there was more or

less the same performance mean in these two levels of diversity for the low-quality

members.

However, the results at this stage suggested that there are main effects of diver-

sity and members’ qualities on the ensemble performance, as well as an interaction

between them; the degree of interaction is different between the consensus functions.

Thus, a statistical test is needed to determine whether it is justifiable to conclude

that these effects exist in the population. The following section presents the results

of ANOVA tests of these factorial experiments.

6.2.2.2 Result of ANOVA

Before we ran the ANOVA test we checked its assumptions, which is the normality

and the homogeneity of variances. Appendix C shows the full details of check-

ing these assumptions, which show that the data meets the ANOVA assumptions.

Therefore,

we applied the two-way ANOVA using type III sums of squares for F-statistics

on the transformed data sample. On the other hand, we also applied the same
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Figure 6.20: The interaction effects of the diversity and member quality on the
response variables, which are CO, ONCE, ACE and MCLA, for Thyroid dataset.

Figure 6.21: The interaction effects of the diversity and member quality on the
response variables, which are CO, ONCE, ACE and MCLA, for Wine dataset.

test to the rest of the samples, for which Box-Cox suggested no transformations

are needed, because ANOVA is still robust for small and even moderate departures

from normality and homogeneity of variance. A rule of thumb is that the ratio of
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the largest to the smallest group variances should be 3 to 1 or less [10], and in our

sample this ratio is too small.

Table 6.3 shows the results of the ANOVA, which include the type III sum of

squares (SS), the degrees of freedom (DF), the mean squares (MS), and the F test

statistics (F). Interactions between diversity (DV) and members’ qualities are rep-

resented by DV * Mem-Q. P-values less than 0.05 represent rejection of the null

hypothesis that the mean of the ensemble performance is statistically equal at all

levels of the corresponding factors.

We observed that on both datasets and on all four consensus functions the mem-

ber quality is statistically significant, whereas the diversity is not statistically sig-

nificant in most cases except for the Wine dataset, where using the ACE consensus

function it is significant (p-value< 0.05). The interaction between members’ quali-

ties and diversity is not statistically significant in most cases, where we cannot reject

the null hypotheses, but a small p-value on the Wine dataset using ACE and MCLA

justifies rejection of the null hypothesis. So, in these particular cases the interaction

is statistically significant.

However, the factor with most influence on the ensemble performance is the

member quality (more so than the diversity among them). This observation is true

for all the consensus functions used based on this experimental set-up. There is an

interaction between the members’ qualities and the diversity, but in most cases it is

not statistically significant.

As the only significant interaction we had was in the Wine dataset using ACE

and MCLA, we tested all their pairwise mean comparisons using a Tukey test [99] to

find out where the significance was coming from. Table 6.4 shows the results of the

Tukey test on the Wine dataset for ACE and MCLA. We can see that ten pairwise

groups are significant out of 15 (in total). It is clear that most of the significant

differences in these pairwise comparisons groups are coming from changes in levels

of the members’ qualities from low to medium. The only significant case (in both

consensus functions) that the difference come from changes in the diversity levels
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Table 6.3: The results of ANOVA Tests on two datasets using four consensus func-
tions (CO, ONCE, ACE and MCLA), the bold value in the P-value column repre-
sents a statistical significant, which less than 0.05

Dataset Consensus Function Factor/Interaction DF SS MS F P-value

Thyroid

CO
DV 2 0.016 0.008 2.10 0.128

Mem-Quality 1 0.244 0.244 62.39 0.000

DV * Mem-Quality 2 0.015 0.007 1.89 0.156

ONCE
DV 2 0.014 0.007 2.48 0.089

Mem-Quality 1 0.240 0.240 82.08 0.000

DV * Mem-Quality 2 0.010 0.005 1.87 0.160

ACE
DV 2 0.044 0.022 1.60 0.207

Mem-Quality 1 0.672 0.672 48.72 0.000

DV * Mem-Quality 2 0.006 0.003 0.22 0.802

MCLA
DV 2 0.034 0.017 2.00 0.140

Mem-Quality 1 0.539 0.539 62.76 0.000

DV * Mem-Quality 2 0.031 0.015 1.85 0.162

Wine

CO
DV 2 0.029 0.014 1.86 0.160

Mem-Quality 1 0.424 0.424 54.34 0.000

DV * Mem-Quality 2 0.027 0.013 1.74 0.181

ONCE
DV 2 0.025 0.012 1.68 0.191

Mem-Quality 1 0.454 0.454 61.00 0.000

DV * Mem-Quality 2 0.023 0.011 1.56 0.215

ACE
DV 2 0.040 0.020 2.61 0.078

Mem-Quality 1 0.520 0.520 67.43 0.000

DV * Mem-Quality 2 0.055 0.027 3.59 0.031

MCLA
DV 2 0.034 0.017 2.22 0.113

Mem-Quality 1 0.517 0.517 66.57 0.000

DV * Mem-Quality 2 0.098 0.049 6.33 0.003
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and not from the members’ qualities is (Medium Low) and (High Low).

However, these interaction effects tell us that the effect of diversity is conditioned

by the members’ qualities, and this is for all the three levels of diversity, on the

other hand the effect of only the low level members’ qualities is conditioned by the

diversity, but not for the medium level of members’ qualities. These results only

occurred when using ACE and MCLA; and not with other consensus functions.

Table 6.4: The results of the Tukey test with Wine dataset using ACE and MCLA
consensus functions, the bold value in the P-value column represents a statistically
significant difference between the two groups compared, which is less than 0.05

Difference of DV*Mem-Quality Levels the P-value of the ACE sample the P-value of the MCLA sample

(High Medium) - (High Low) 0.000 0.000

(Low Low) - (High Low) 1.000 0.944

(Low Medium) - (High Low) 0.000 0.000

(Medium Low) - (High Low) 0.001 0.015

(Medium Medium) - (High Low) 0.000 0.000

(Low Low) - (High Medium) 0.003 0.000

(Low Medium) - (High Medium) 0.975 0.314

(Medium Low) - (High Medium) 0.000 0.000

(Medium Medium) - (High Medium) 0.998 0.403

(Low Medium) - (Low Low) 0.007 0.004

(Medium Low) - (Low Low) 0.608 0.306

(Medium Medium) - (Low Low) 0.002 0.001

(Medium Low) - (Low Medium) 0.000 0.002

(Medium Medium) - (Low Medium) 0.995 0.997

(Medium Medium) - (Medium Low) 0.000 0.000

6.2.2.3 Summary of Results

The experiment was motivated by the results in Sections 6.1 and 6.2.1, which sug-

gested that there may be an interaction between the members’ qualities and diver-

sity. The main findings are as follow:

1. The results of the ANOVA showed that the main effect of the members’ qual-

ities is statistically significant, while the main effect of the diversity is not

statistically significant measured by DVpARI .

2. The result confirms that the quality of the members has more influence on the

ensemble performance than diversity (measured by DVpARI).
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Figure 6.22: The Tukey results with Wine dataset using the ACE and MCLA. The
Tukey test used to determine specifically which means are statistically significant
different of the interaction effects using these consensus functions.

3. It is observed that graphically there was a small degree of interaction effect

between the members’ qualities and the diversity on the ensemble performance,

but it was not statistically significant for Thyroid dataset

However, we cannot generalise these findings, due to two reasons:

1. The experiment was conducted using only two datasets.

2. The experiment was conducted using only DVpARI diversity measure.

A further study might be undertaken, to design a suitable experiment, using

artificial data for example, to study the interaction effect and to redesign it as a
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balanced design because it is easier in terms of the analysis and the interpretation

of the results. In addition, further studies could use a large number of datasets and

a large sample size so that the result could be generalised.

6.3 Discussion

The second central point of this research is to investigate diversity in the context of

clustering ensembles, which was done in this chapter. Our primary investigation was

carried out in order to discover the relationship between diversity and the ensemble

quality.

To do that, firstly we reviewed the literature on the definition of diversity in

the context of the clustering ensemble in Chapter 2. We found that there are two

different types of definitions for diversity, and we named and defined them as follows:

1. Ensemble Output Dependent (EOD): the ensemble diversity is defined

as the level of variation between its members and its final clustering result in

terms of their matching labels. This kind of definition, includes DVnp1, DVnp2,

DVnp3 and DVnp4 [39].

2. Ensemble Output Independent (EOI): the ensemble diversity is defined

as the level of variation among the members themselves in terms of their

matching labels. This kind of definition includes DVpARI , DVpNMI [25], and

Entropy [37].

Secondly, the experimental study was carried out in order to investigate the

current existing diversity measures, for the EOI definition we have DVpARI , DVpNMI

[25], Entropy, and for the EOD definition we have [37], DVnp1, DVnp2, DVnp3 and

DVnp4 [39]. To the best of our knowledge, these are the only diversity measures that

exist in the clustering ensemble literature. Although there have been some attempts

to modify these measurements to be used with other external clustering validation

179



Chapter 6. The Diversity of the Clustering Ensemble.

indices, we did not consider them in this experiment, because they did not show

superior results compared to the original ones [83].

The main finding of these experimental results was that these diversity measures

are not capable of discovering a clear relationship between the ensemble quality and

its diversity. This is in spite of the fact that a number of researchers have established

a statement about this relationship, as we saw in Chapter 2 (Table 2.1 summarises

them). Here we discussed our findings with the most recent of these statements,

and as quoted from their authors, these are as follows:

1. In 2006, Hadjitodorov et al. [39] compared the existing diversity measures

and said that: “The results favoured DVnp3 as the one most related to the

ensemble accuracy. Two typical patterns of diversity-accuracy relationship

were found”. “One is almost monotonic-the larger the measure value, the

higher the accuracy, while the other is shaded as a parabola with a maximum

at about the middle of the diversity range”.

2. In 2009, Domeniconi and Al-Razgan [20] said that: “Our results reveal that a

diversity measure based on ARI is more robust and consistent, and that high

diversity signifies large accuracy”.

3. In 2010, Rozmus [83] said that: “From the experiments carried out it is rather

difficult to find a strict and clear relationship between ensemble accuracy and

the used measures of diversity, but in some cases it can be observed that for

the pairwise and first non-pairwise measure lower diversity went together with

higher accuracy whereas for the rest of non-pairwise measures higher diversity

went together with higher accuracy”.

4. In 2011, Iam-On et al. [51] said that: “This result suggests that a high level

of ensemble diversity is recommended for an accurate outcome”.

We argue that these statements are not really convincing and cannot be generalised,

due to weaknesses identified in them. We noticed that in [39], the identified patterns

are only related to their proposed measures DVnp3, in their experimental study they
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only used one consensus function which is the CO, and they have not tested that

using different consensus functions, or at least using a commonly used consensus

function such as MCLA. Moreover, a number of weaknesses are noticed with their

proposed measures, which will be listed later in the section.

A similar weakness was noticed in [83], where they only used one consensus func-

tion which is based on an optimisation process, and again their result is only applied

to this consensus function. In their statement, “the first non-pairwise measure” is

the DVnp1, clearly what they found is that DVnp1 revealed an opposite relationship

between diversity and ensemble quality compared to the one discovered by other

non-pairwise measures. This is exactly what we discovered about DVnp1 that al-

though it is by definition a diversity measure, its behaviour shows that it is in fact

a measure of similarity between the ensemble and the members. This result was

also noticed by Hadjitodorov et al. [39]. However, the main aim in [83] is to test

the modified diversity measures in discovering a clear relationship, where they apply

different clustering validating indices instead of ARI in the original diversity mea-

sure, including the Rand Index, the Jaccard and the Fowlkes and Mallows index;

but they did not find a clear relationship between diversity and quality using these

measurements.

The experiment in [51] only used one diversity measure, which is DVpNMI , and

it had a number of weaknesses. Firstly, it was conducted using only their proposed

link-based methods and on 5 datasets. Secondly, looking closely to the results,

we found that clearly the results from 3 out of 5 datasets do not support their

statement. Thirdly, in the other 2 datasets, in particular in Glass dataset, the

improvement in ensemble accuracy was not very high when the diversity was high

compared with when it is in median level, while in Diabetes dataset the accuracy of

the ensemble was around 0.1 measured by NMI, which is too low to be meaningful.

Finally, we also noticed that they used a mixed heuristic generating technique to

generate 60 members in each run, among them 20 generated using random k values

chosen from the interval [2,
√
n], and they used NMI as a measure of a member’s
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accuracy and diversity measure, although previous work by Domeniconi and Al-

Razgan [20] suggests that “a measure of accuracy/diversity based on ARI might be

more robust and consistent than a measure based on NMI”. In this research, we

found (in Chapter 4) that the NMI is sensitive when the two compared partitions

have different numbers of clusters. Therefore, based on these arguments we do not

think their results are valid.

However, in [20], we noticed that they investigated the diversity also using their

proposed consensus functions and they used only two diversity measures (DVpNMI

and DVnp3). They concluded that DVnp3 is highly related to the ensemble quality.

They also made the following statement: “We finally note that ‘universal’ rules

for choosing the preferred level of diversity should be used with caution, as the

‘optimal’ level clearly depends on the consensus function and on the dataset”. This

corroborates our conclusions.

Furthermore, the experimental study in Section 6.1 also revealed other remarkable

findings. It was observed that there is difference in behaviour between the EOI and

EOD diversity measures. This difference is explained by the fact that the latter

involved the ensemble results in their equations, whereas the other does not.

We also highlighted that the EOD diversity measures have a number of disad-

vantages:

1. To use them we have to combine the members and get the output of the

ensemble, so they are useless without the ensemble results.

2. For this reason, they are sensitive to the type of the consensus function that

is used to produce the ensemble output.

Therefore, until a new suitable diversity measure is defined, we recommend the

EOI diversity measures. In particular, we recommended DVpARI for the following

reasons:

1. It is not dependent on the ensemble output; one can use it without running

the full ensemble framework.
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2. It is based on the matching labels between members, and it follows the com-

mon diversity definition, which is the level of variability among the ensemble

members.

3. It is the most common diversity measure that has been used in the literature

so far, some other researchers recommend to use it as well, due to its reliability

and consistency.

4. It is very easy to compute and interpret.

Nevertheless, the results in Section 6.1 highlighted two issues that are related to

the diversity and its relation to the quality of the clustering ensemble, the following

subsections will discuss these issues in more detail.

6.3.1 Discussion on the Issues Raised in our Diversity Stud-

ies

In this Section, we discuss the work done in Section 6.2, which consider two issues

raised in our studies of clustering ensemble diversity. To the best of out knowledge

these two issues have not been studied in the literature, so we are unable to compare

our results with others, and we hope our research will highlight them. The following

sections discuss them separately.

Analysis of the Positive and Negative Effects of Diversity on the Ensemble

Performance

Two different effects of diversity on the clustering ensemble appeared in the results

in Section 6.1, which we defined as positive and negative effects because the diversity

makes an ensemble better or worse than the average quality of the members. These

two effects were observed also in Hadjitodorov et al. study’s [39] and Rozmus study’s

[83], although they did not explain why these effects had occurred, so to the best

of our knowledge these different effects of diversity on the clustering ensemble have
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not been looked at previously. There could be a number of reasons for this. Firstly,

studying these effects is not an easy task at all in the context of cluster analysis, as

it is unsupervised learning. Secondly, the absence of useful diversity measures for

detecting a clear relationship makes the task more difficult as we saw in Section 6.1 in

that none of the existing diversity measures are able to discover a clear relationship

between the ensemble performance and diversity. Thirdly, the diversity and the

other factors (Q(Γ), CF,m) have a chain of interactions among themselves and these

interactions make analysis of them extremely difficult.

Wang [106] suggested that a common and simple methodology in the classification

ensemble is to study these factors one at a time, where only one factor is changed

at any one time, while the impact of other factors are reduced to a minimum or

kept fixed. In a clustering ensemble, factors such as the consensus function CF and

the number of members m can be easily fixed to a known constant, but as we saw

from the experiment in Section 6.1, diversity is very difficult to separate from the

individual member quality. As a result of exploring the diversity of the members,

their individual qualities are affected. In fact, we empirically tested this by selecting

a number of members generated in the experiment (Section 6.1) that have same

quality in the Thyroid dataset, and we found that their diversity (measured by

DVpARI) is equal to zero. This means that based on the generation techniques used

in this experiment, whenever we have members with a fixed quality they are most

likely to be identical or highly similar to each other in terms of the cluster structure.

However, in order to analyse these two different diversity effects, firstly we for-

mally defined them and then we designed an experiment guided by the results in

Section 6.1, which involved comparing a pair of two ensemble cases, where the first

case represented the negative, while the second case represented the positive case.

The average members qualities and ensemble diversities of these two ensemble cases

told us that there was no difference between them, but the performance of the first

case was lower than the average member quality (negative), while the performance

of the second one was higher than the average member quality (positive). So, we

184



Chapter 6. The Diversity of the Clustering Ensemble.

looked at the individual members’ qualities to compare them. In other words, we

used a simple method that counts how many members have a poor-, good- and

medium-quality compared to a particular pair.

The results of this experiment did not give us a solid conclusion on how to avoid

the negative impact of diversity, and in fact it supports what we actually found in

the previous chapters, that the consensus function is a very important factor for the

ensemble performance.

A further analysis was carried out to gradually eliminate poor-quality members in

these cases until we had only three high quality members, and we used CO, ONCE,

ACE, and MCLA as the consensus function in turn. The results of this analysis

showed that this elimination improved the average quality of members and decrease

the diversity, and as a result improved the performance of the consensus functions

in negative cases.

The Interaction between Members’ Qualities and Diversity

We define the interaction between the members’ qualities and diversity as how the

diversity effect on the ensemble performance varies with the members’ qualities and

vice versa. We designed an experimental study in order to explore this interaction

effect, and we implemented a 3 × 2 factorial experimental design study on two

real-world datasets, which was Thyroid and Wine for the purpose of demonstrating

the concept. Due to the time limit, we only used the DVpARI measures in this

experiment, and the members’ qualities were measured by using an ARI index.

For the diversity, the high, medium and low levels were considered, while for the

members’ qualities, only the medium and low levels were considered, the reason why

we did not consider the high members’ qualities level is that it is very difficult to

generate this high level with the datasets tested using a single clustering algorithm.

We ran the experiments on 4 consensus functions under 6 combinations of the two

factor levels.

The results of the two-way ANOVA revealed that the main effect of the members’

185



Chapter 6. The Diversity of the Clustering Ensemble.

qualities is statistically significant, but it is unsurprisingly not statistically significant

for the diversity factor (measured by DVpARI). Conceptually, both of the factors

are very important to the ensemble performance, and diversity is widely accepted

as a crucial factor for building a successful ensemble; there is no need to build

an ensemble with identical members [94, 39, 25]. Thus, we can say that the non-

significant difference of diversity’s main effect is down to the choice of the DVpARI

measure.

On the other hand, for the interaction effect, the result shows that graphically

there is a small degree of interaction effect on the ensemble performance on the two

datasets. The only interaction cases that were statistically significant were in the

Wine dataset using ACE and MCLA. Then we used a Tukey test [99] to ascertain

where the difference came from. The results provided evidence for the fact that

the effect of the diversity varies depending on the level of the members’ qualities,

whereas the effect of only the low-quality members varies depending on the level of

diversity with this dataset.

In conclusion, it is not clear whether the results of this experiment can be gener-

alised or not, mainly because this experiment was carried out on only two datasets

and the choice of the diversity measures. These results, in fact, only confirm the

results that we obtained in Section 6.1. This specific diversity definition is not

helpful in detecting the main effect of diversity on the ensemble performance. It

also confirms that the quality of the members has more influence on the ensemble

performance than diversity (measured by DVpARI).

Secondly, this experiment was conducted as a result of an issue raised in Section

6.1, and as studying the interaction effect was not the focus of this research or

one of its main objectives and also due to the time limited available, we could

not spend much time on this experiment. The complexity of the nature of these

factors and the non-existence of a useful definition of diversity make this experiment

very hard to design. Moreover, as the interaction effect between diversity and the

members’ qualities has to be studied under their different combinations of levels, and
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as generating different sets of members for these combinations is data-dependent,

so the data used needs to allow us to generate all the kinds of members’ sets under

these combinations. This would be best achieved using artificial data. To investigate

this further would be beyond the scope of this thesis, but would be an interesting

further study.

6.3.2 General Discussion on Diversity

In this section, we discuss our investigation on the diversity as a whole. In general,

the results highlighted that diversity is an important factor to all the consensus

functions used, probably after the quality of individual members, in terms of im-

proving the ensemble quality, but using the existing diversity measures we were not

able to discover a clear relationship between diversity and ensemble quality.

This finding leads us back to the original question of whether diversity is really

important factor to the clustering ensemble performance. We have seen in the review

in Section 2.3.1, that there is a general agreed perception upon the conceptual utility

of diversity and there is no point in building an ensemble of identical members. This

means that the members have to somehow be different from each other in order to

gain the benefit of their combination.

Thus, in principle, diversity should be a useful factor in constructing a clustering

ensemble, although all the existing definitions of diversity do not show clear evidence

to support this principle in reality. One of the possible reasons, we think is that no

diversity measure has been directly associated with the consensus function, which

as we know, determined the output of the ensemble.

To the best of our knowledge there has been no attempt to use any of the current

diversity measures in guiding the consensus functions when combining the members.

We think the reason for this is that until now there has not been a universally

accepted diversity definition, and the effectiveness of diversity in the context of

the clustering ensemble is still questioned. Most previous work on diversity used
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diversity measurements to measure the diversity in the generated members and

then select those with the desired level. Hadjitodorov et al. [39], for example, used

the EOD diversity measures to select the better performance ensembles by varying

the diversity from a lower level to a higher level. They recommended selecting an

ensemble with a moderate level rather than a high level of diversity. To run a

number of ensembles and select the one with the desired level of diversity is a time-

consuming task that leads us to the same problem of the single clustering algorithm,

which the clustering ensemble is meant to overcome.

On one hand, there is agreement on the importance of diversity, but on the other

hand how to measure it and how to use this measure in designing an effective clus-

tering ensemble is still an open question in this field. Therefore, after investigating

the diversity and highlighting its related issues, in this study we suggest that it is

essential to develop a new diversity measure in the context of the clustering ensemble

and a way to use this measure in conjunction with the member combining process.

6.4 Summary

This chapter investigates the diversity of the clustering ensemble and its relation with

the ensemble performance. To do that, we designed an experimental study to test

the validity of the existing diversity measures using 4 consensus functions including

CO, ONCE, ACE and MCLA. The main finding of this experimental study is that

although all the current diversity measures are designed to measure diversity among

members, they are not doing their job properly in terms of measuring the actual

members’ diversity, and helping in discovering a clear relationship between diversity

and ensemble performance. Furthermore, the results raised two issues, these are:

(1) Diversity can have a positive or negative effect on the ensemble performance. (2)

There may be an interaction existing between diversity and the members’ quality.

In regard to the first issue, we had two sets of ensemble members that all DV

measures, their average member qualities and the standard deviations of their mem-
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ber qualities tell us that there are no significant differences between the two sets of

ensemble members. However, they produced two significant clustering results: one

with a good ensemble performance (a successful combination pattern as the diver-

sity has a positive effect on the ensemble), while the other one had a poor ensemble

performance (a failure combination pattern as the diversity had a negative effect).

We used a simple method of looking at the quality of the combined individual mem-

bers and count how many of them are as poor as the negative ensemble case, as

good as the positive ensemble case and had a medium quality, which is between

good and poor quality. The results showed that this simple method clearly did not

explained how to avoid the negative effect of the diversity, but some characteristics

of the pattern of success and failure for each of the four consensus functions have

been reported.

In regard to the second issue, we investigated if there is an interaction effect

between diversity and members’ qualities on the ensemble performance. We imple-

mented a 3 × 2 factorial experimental design study using two real-world datasets

(the Thyroid and Wine datasets). The results revealed that there was small degree

of interaction between the diversity and members’ quality, and in one case this inter-

action proved to be statistically significant on the ensemble performance when only

ACE or MCLA was used as a consensus function. Moreover, this experiment demon-

strated that there was a statistical significance for the main effect of the members’

qualities on the ensemble performance, but not for diversity’s main effect.

However, the answer to the question being asked in this Chapter (Does the di-

versity influence the ensemble performance?) is that: conceptually, yes, as there

is a wide agreement in the literature on the importance of diversity with regard

to ensemble performance. Practically, the correlation between the ensemble qual-

ity and diversity, as measured by most of the current definitions, indicates that

there is a weak relationship between them, although there are a few cases where a

strong relationship is observed. This was only discovered by dependent measures,

and we noticed that these measures are inconsistent in their results. For the same
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dataset, with the same generated members and using different consensus functions,

the discovered relationship can be changed from a strong to a weak relationship

from one consensus function to another. However, at the moment, as a result of the

absence of a useful diversity measure, we are unable to fully answer this question.

A useful measure is viewed as one it would allow us to measure the true diversity in

the ensemble members, that can be used by the consensus function to combine the

members to produce high-quality clustering results.
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Chapter 7

Conclusions and Further Work

7.1 Conclusions

Upon completing this research on two main issues: consensus function and diversity,

the following conclusion can be drawn.

7.1.1 On the Consensus Function

The first focus of this thesis is the consensus function. Firstly, we proposed the

Object-Neighbourhood Clustering Ensemble (ONCE) to address the problem of un-

certain agreements between members. We studied the effectiveness of ONCE and we

compared it with CO using Single, Average and Complete linkage, and with three

link-based method named CTS, SRS and ASRS. Also, we compared ONCE with

the well-known clustering algorithm k-means and the experimental results showed

that:

1. The most appropriate linkage method is the average linkage method.

2. On average, ONCE outperforms CO, CTS, SRS and ASRS.

3. There is a statistical difference between ONCE and ASRS, and between ONCE

and CO under our experimental set-up.
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4. We tried to develop ONCE further by considering only the most common

neighbours to objects pair results in a new algorithm called E-ONCE. The

experimental results show that using E-ONCE does not improve the quality

of the ensemble much further compared to ONCE, which is preferred.

Secondly, we proposed two new consensus functions named the Dual-Similarity Clus-

tering Ensemble (DSCE) and the Adaptive Clustering Ensemble (ACE). The nov-

elties of DSCE and ACE are as follows:

1. They are based on two similarity definitions; the similarity between the initial

clusters themselves, and the membership of objects to clusters.

2. They produce the final clustering result without requiring the application of an

ordinary clustering algorithm, unlike most of the existing clustering ensemble

methods including CO, CTS, SRS , ASRS and ONCE.

3. They are efficient, because they only calculate the pairwise similarity between

initial clusters and not objects, and the number of these clusters is much

smaller than the number of objects in the dataset.

ACE is an improved version of the DSCE algorithm in three main aspects. Firstly,

the stability of the DSCE has been improved by producing the final clustering result

with the pre-defined k. Secondly, the effect of its two parameters (α1 and α2) on

the quality of the final result has been reduced by applying an adaptive strategy for

the value for these parameters. Finally, the object neighbourhood similarity for the

uncertain objects has been taken into account, in order not to lose any information

when we eliminate inappropriate clusters. ACE works in three stages, which are:

1. Transformation stage: the initial clusters are transformed into binary vector

representations.

2. Generating Consensus Clusters: this calculates the similarity between initial

clusters and captures the relationship between clusters. It merges the most

similar clusters to produce the intended k consensus clusters.
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3. Resolving Uncertainty: identifies the object’s certainty of being assigned in

the initial clusters. It focuses on the cluster quality and resolves the uncertain

objects by assigning them to a cluster in a way that has a minimum effect on

its quality.

We tested DSCE and ACE methods on 8 real-world benchmark datasets. The

experimental results showed that:

1. On average DSCE outperforms the other clustering ensemble methods includ-

ing MCLA, CO, ONCE and DICLENS.

2. DSCE is statistically significantly better than the CO and DICLENS methods,

but not the ACE, ONCE and MCLA methods.

3. ACE does not outperform its predecessor DSCE under our experimental set-

up, although it outperforms the other methods. But, ACE has the ability to

combine members without any conditions about the number of clusters they

have.

7.1.2 On Diversity

Diversity in the context of the clustering ensemble has two different types of def-

inition: the Ensemble Output Dependent (EOD), where the ensemble diversity is

defined as the level of variation between its members and its final clustering result

in terms of their matching labels, and the Ensemble Output Independent (EOI),

where the ensemble diversity is defined as the level of variation among the members

themselves in terms of their matching labels.

The second focus of this thesis was to investigate ensemble diversity. Our inves-

tigation in Chapter 6 revealed the following:

1. The existing measures (EOI and EOD) are unable to determine a clear rela-

tionship between diversity and the ensemble performance.

193



Chapter 7. Conclusions and Further Work

2. Most diversity measures only revealed a weak correlation between diversity

and ensemble performance using most consensus functions (CO, ONCE, ACE

and MCLA).

3. The EOD diversity measures require the final clustering results to be available,

otherwise the measures cannot be used. To use them in selecting ensemble

members with the desired level of diversity is time-consuming.

4. The EOD diversity measures are sensitive to the type of consensus function

used, and the discovered relationship can vary from a strong to a weak rela-

tionship, from one consensus function to another.

5. We observed that the EOI diversity measures behave in similar way to each

other, but different from the EOD diversity measures.

6. Among the EOD diversity measures, the DVnp1 is not a valid diversity measure

as it always gives an opposite pattern compared to other measurements.

7. The experimental study on the diversity measurements raised two issues that

required investigation:

(a) Diversity can have a positive and negative effects on the ensemble perfor-

mance. The issue was that all the existing DV measures and the average

member qualities told us that there was no difference between two en-

semble patterns, but the ensemble performance of the first pattern was

lower than the average member quality (negative), while the ensemble

performance of the second pattern was higher than the average member

quality (positive).

(b) There may be an interaction existing between the diversity and the mem-

bers’ qualities, then the effect on the ensemble performance might be

determined jointly by them.

The two issues noted in point 7 above, were investigated and the following was

achieved:
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1. We established the formal definitions of the positive effect and the negative

effect of diversity on the ensemble performance.

2. In the negative cases, we found that removing the poor-quality members con-

tributed to improving the performance of CO, ONCE, ACE, and MCLA. In

addition, the performance of ONCE and ACE improved further by removing

the poor-quality members in the positive cases.

3. The effect of diversity differs from one consensus function to another, but the

main characteristics of the pattern of success and the pattern of failure are as

follows:

• In the pattern of success, the ensemble members appeared to have a

medium level of average quality accompanied by a medium level of diver-

sity among them (measured by DVpARI). Precisely, in order to use CO

and ONCE as the consensus function, the members should have between

medium and high average quality (measured by ARI) with a medium di-

versity among them. In order to use ACE, the combined members should

have a medium level of average quality, accompanied by a medium level

of diversity DVpARI . MCLA prefers the combined members to have some

sort of diversity, otherwise it will perform poorly, even when the members

have high-quality clusters.

• In the pattern of failure, an ensemble with a low average member quality,

accompanied with a high level of DVpARI and a low level of DVnp3, would

result in a poor ensemble performance. A gradual increasing of the aver-

age member quality, along with decreasing DVpARI and increasing DVnp3

by removing the poor-quality members, improves the ensemble quality.

4. We ran a pilot study by implementing a factorial design experiment to inves-

tigate the interaction effect between the diversity and members’ quality.

• We found that the main effect of diversity on the ensemble performance

was not statistically significant (diversity measured byDVpARI), whereas
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the members’ quality effect was statistically significant.

• We showed that graphically there was a small degree of interaction effect

on the two datasets used, but only on the Wine dataset, using ACE and

MCLA, was this interaction effect statistically significant.

For diversity research, it is widely accepted that diversity is an important factor

when building a clustering ensemble, as there is no need to build an ensemble with

identical members. However, we conclude that how to measure diversity in the

context of a clustering ensemble, and how to use it, is still an open question.

7.1.3 Contributions

The contributions made in this thesis are as follows:

• A new consensus function has proposed based on Object Neighbourhood Sim-

ilarity, named an Object Neighbourhood-based Clustering Ensemble (ONCE).

• Two new consensus functions based on Dual-Similarity Measurements have

been proposed (DSCE and ACE), where the similarity between initial clusters

is measured, followed by membership similarity between candidate clusters

and objects.

• A better understanding has been gained of the existing clustering ensemble

diversity definitions in terms of their ability to discover the relationship be-

tween diversity and ensemble quality. Also, two diversity issues have been

highlighted, which are:

– The positive and the negative effects of diversity on the ensemble quality.

– The possibility that an interaction exists between diversity and member

quality.
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7.2 Suggestions for Further Work

This research has highlighted a number of areas that could be explored further in

the future; these are:

• The definition of W in the ONCE algorithm intends to solve the problem of

uncertain objects by taking into account the similarity of their neighbours.

However, by doing that, we may affect the similarity of some certain objects

to make them become uncertain, so in our future work we will look further

into this issue.

• Testing DSCE and ACE on big datasets.

• In this research we used the ‘set correlation’ as a cluster similarity measurement

to measure the similarity between clusters; a further development of ACE

would be to use other binary similarity measurements instead of Sc, or a

combination of more than two similarity measures.

• In ACE, the quality of the cluster is measured as compactness; other measure-

ments of cluster quality could also be investigated.

• A further development of ONCE and ACE would be to integrate the elimi-

nation mechanism of poor-quality members, which we introduced in Chapter

6.2, in the process of combining the members.

• A new diversity measure should be developed, and researchers should investi-

gate in depth how ensemble members can be different from each other in terms

of clusters. In the clustering analysis field, one should ask in which aspects

two clustering results can be different/dissimilar from each other. This kind

of comparison has been studied in clustering validation methods, and maybe

using or modifying one of the internal validation indexes, for use as a measure

of diversity, would be useful.

• Researchers should investigate how we can use diversity to guide the consensus

function in combining the members, and to generate more members if needed.
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• An experimental study should be designed using an artificial dataset, to in-

vestigate the interaction effect between diversity and the members’ quality on

the ensemble performance.
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Appendix A

In this appendix, we give the complete results obtained for the experiments conduct-

ing in Chapter 6 in particular in Section 6.1. Firstly, the statistical summary of the

ensemble quality results for each dataset as well as the qualities of their generated

members is presented in Table A.1, Section A.1. Secondly, a statistical summary

of all the diversity measure results is plotted in a boxplot in Section A.2. Finally,

Section A.3 demonstrates the Experiment Results of the Diversity in Line Charts.

A.1 The Statistical Summary of the Results

The statistical summary of the ensemble performance for each of the 8 datasets is

shown in Table A.1, which includes the maximum, minimum and average values

as well as the standard deviation of 100 runs. The Table also includes the highest

maximum value of the members’ performance. For clarity, the bold value in each

column represents the best ensemble performance in terms of the quality for the

specified dataset compared to other ensemble methods.

The ACE method achieved the highest maximum quality in 7 datasets and also

achieved the best average quality in 4 datasets, including Iris, Wine, Glass and Bcw,

compared with other ensemble methods. We note that on average, the CO method

achieved the best performance for only one dataset (the Bcw dataset). The CO

method achieved a performance very close to the best performance in the Mfeatures

and Glass datasets.
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Table A.1: Statistical summary of the ensemble qualites and the generated members
(Mem) in all tested datasets.

Iris Wine Thyroid Mfeatures Glass Bcw Soybean Ionosphere

CO
Max , Min 0.730 , 0.703 0.431 , 0.333 0.605 , 0.155 0.334 , 0.309 0.287, 0.240 0.846 , 0.846 0.748 , 0.545 0.178 , 0.173

Ave-Std 0.721± 0.007 0.381± 0.039 0.376± 0.163 0.321± 0.007 0.267± 0.010 0.846±0.000 0.556± 0.029 0.177± 0.001

ONCE
Max , Min 0.730 , 0.56 0.438 , 0.333 0.637, 0.155 0.334 , 0.308 0.270 , 0.219 0.846 , 0.830 0.661 , 0.545 0.178 , 0.173

Ave-std 0.716± 0.032 0.371± 0.039 0.406± 0.138 0.322±0.007 0.249± 0.011 0.846±0.002 0.585±0.047 0.177± 0.001

ACE
Max , Min 0.834 , 0.633 0.706 , 0.339 0.656 , 0.031 0.343 , 0.192 0.303 , 0.224 0.857 ,0.839 1.000 , 0.225 0.183 , 0.178

Ave-Std 0.732±0.023 0.411±0.045 0.343± 0.153 0.315± 0.027 0.269±0.016 0.846 ±0.004 0.577± 0.129 0.178± 0.000

MCLA
Max , Min 0.744 , 0.690 0.445 , 0.315 0.692 , 0.192 0.339 , 0.114 0.268 , 0.010 0.852 , 0.830 0.875 , 0.545 0.178 , 0.168

Ave-Std 0.719± 0.007 0.377± 0.025 0.531±0.097 0.319± 0.023 0.196± 0.038 0.845± 0.004 0.553± 0.035 0.177± 0.002

Mem
Max , Min 0.868 , 0.012 0.601 , 0.011 0.687 , 0.012 0.503 , 0.000 0.305 , 0.011 0.868 , 0.052 1.000 , 0.048 0.299 , 0.005

Ave-Std 0.625± 0.007 0.307± 0.008 0.292± 0.017 0.259± 0.004 0.204± 0.004 0.627± 0.013 0.554± 0.023 0.141± 0.006

We found that CO was the most consistent method, as it had a small standard

deviation in 5 datasets; although the diversity varied between 0.2 to 0.65 in these

datasets, which means that the CO method was not affected by it. It is also noticed

that standard deviations of CO in Bcw and of ACE in Ionosphere dataset are equal

to 0 which means that their performance in 100 runs are identical, although the

diversity varies between 0.33 to 0.54 in Bcw and between 0.43 to 0.66 in Ionosphere

(measured by DVpARI as seen in Figure A.1, A.2 and A.3). Thus, the performance of

CO on Bcw and ACE on Ionosphere were unaffected and remained constant by the

generated diversity. We will investigate these findings further in terms of how much

diversity was generated in the next two sections, using boxplot and line charts.

A.2 Demonstrating Results in Boxplots

Figure A.1, A.2 and A.3 show 5 boxplots for the results from measuring the diver-

sity achieved with the different methods on the 8 datasets. These boxplots show

the range of diversity values for 3 pairwise (Figure A.1) and 4 non-pairwise diversity

measures (Figure A.2(a), A.2(b), A.3(a) and A.3(b)). For clarity, these boxplots

present six statistics: the minimum, the lower quartile, the median, the upper quar-

tile, the maximum and the mean (represented by a star) in a visual display. The

larger height of the box means that the diversity values in 100 runs for a particular

dataset and using a particular measure are wider, while a box of small height means

that the diversity values are very close to each other. From these plots, the aim is
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to discover the distribution of the diversity results from 7 different measurements in

the tested datasets.

Generally speaking, all the diversity measures have a value range of [0, 1] except

DVnp4, which has an open value range of [0,∞]. It is clear that the range of diversity

values varies from one type of measurement to another type. The range of diversity

values measured by pairwise measurements DVpARI and DVpNMI is more or less

the same in most datasets, which indicates that these measurements display similar

behaviour in measuring/estimating the diversity. The maximum level of diversity

with all datasets reached just below 0.8, using the Entropy measurement in the

Thyroid dataset, while the minimum level of diversity was equal to 0.2 with the Iris

dataset.

On the other hand, the range of diversity in non-pairwise measurements is not

too wide, especially using DVnp1, DVnp2 and DVnp3. We noticed that involving

the ensemble result in calculating the diversity in these measurements is highly

associated with the ensemble quality. For example, when using the MCLA method

on the Soybean dataset, the group diversity measures gave different results from

those using the other ensemble methods. This indicates that the MCLA results are

more diverse from the members than the other three methods in this dataset.
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Figure A.1: The boxplot of the diversity results measured by the pairwise diversity
measures: it shows the distribution of the diversity values of generated members in
100 runs in the 8 tested datasets. The line in each box represent the median value
of the diversity and the star represents the mean value of 100 runs.
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(a) The non-pairwise diversity measures using CO method
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(b) The non-pairwise diversity measures using ONCE method

Figure A.2: The boxplot of the diversity results measured by the non-pairwise di-
versity measures using CO and ONCE methods.
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Figure A.3: The boxplot of the diversity results measured by the non-pairwise di-
versity measures using ACE and MCLA methods.
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A.3 Demonstrating Results in Line Charts

For each dataset, we have 4 ensemble results; thus we plot 32 Figures, as shown

from Figure A.4 to A.35. In each Figure, we have 7 subfigures, each one of which

represents a different diversity measure. So in total, we have 224 subfigures.

In Figures A.4 ∼ A.35, a high value in DVpARI , DVpNMI and Entropy means that

the members of the ensemble are very different from each other, while a lower value

in these measures means that members are very similar to each other. We should

mention that these interpretations are different from other diversity measurements as

a high value in the non-pairwise individual diversity measures means that members

are different from the ensemble results and a lower value means that they are similar

to the ensemble results. A high value of the quality measure means that the ensemble

quality and the average member quality are more accurate to the truth label of the

dataset, and a lower value means that they are inaccurate.
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Figure A.4: The seven diversity measures from Iris dataset using CO-Av.
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Figure A.5: The seven diversity measures from Iris dataset using ONCE-Av.
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Figure A.6: The seven diversity measures from Iris dataset using ACE.
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Figure A.7: The seven diversity measures from Iris dataset using MCLA.
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Figure A.8: The seven diversity measures from Wine dataset using CO-Av.
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Figure A.9: The seven diversity measures from Wine dataset using ONCE-Av.
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Figure A.10: The seven diversity measures from Wine dataset using MCLA.
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Figure A.11: The seven diversity measures from Wine dataset using ACE.
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Figure A.12: The seven diversity measures from Glass dataset using CO-Av.
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Figure A.13: The seven diversity measures from Glass dataset using ONCE-Av.
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Figure A.14: The seven diversity measures from Glass dataset using MCLA.
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Figure A.15: The seven diversity measures from Glass dataset using ACE.
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Figure A.16: The seven diversity measures from Thyroid dataset using CO-Av.
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Figure A.17: The seven diversity measures from Thyroid dataset using ONCE-Av.
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Figure A.18: The seven diversity measures from Thyroid dataset using MCLA.
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Figure A.19: The seven diversity measures from Thyroid dataset using ACE.
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Figure A.20: The seven diversity measures from Mfeatures dataset using CO-Av.
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Figure A.21: The seven diversity measures from Mfeatures dataset using ONCE-Av.
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Figure A.22: The seven diversity measures from Mfeatures dataset using MCLA.
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Figure A.23: The seven diversity measures from Mfeatures dataset using ACE.
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Figure A.24: The seven diversity measures from Bcw dataset using CO-Av.
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Figure A.25: The seven diversity measures from Bcw dataset using ONCE-Av.
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Figure A.26: The seven diversity measures from Bcw dataset using MCLA.
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Figure A.27: The seven diversity measures from Bcw dataset using ACE.
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Figure A.28: The seven diversity measures from Soybean dataset using CO-Av.
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Figure A.29: The seven diversity measures from Soybean dataset using ONCE-Av.
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Figure A.30: The seven diversity measures from Soybean dataset using MCLA.
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Figure A.31: The seven diversity measures from Soybean dataset using ACE.
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Figure A.32: The seven diversity measures from Ionosphere dataset using CO-Av.
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Figure A.33: The seven diversity measures from Ionosphere dataset using ONCE-
Av.
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Figure A.34: The seven diversity measures from Ionosphere dataset using MCLA.
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Figure A.35: The seven diversity measures from Ionosphere dataset using ACE.
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Table A.2: The p-value of the Correlation coefficient at the 95% confidence interval,
where the correlation is presented in Table 6.1

Datasets CF DVpARI DVpNMI Entropy DVnp1 DVnp2 DVnp3 DVnp4

Iris

CO 0.219 0.125 0.152 0.166 0.429 0.197 0.224

ONCE 0.001 0.000 0.000 0.000 0.000 0.000 0.000

ACE 0.134 0.127 0.158 0.012 0.001 0.002 0.001

MCLA 0.528 0.543 0.569 0.603 0.704 0.646 0.637

Wine

CO 0.004 0.020 0.005 0.000 0.000 0.000 0.000

ONCE 0.197 0.547 0.277 0.000 0.000 0.000 0.000

ACE 0.035 0.056 0.050 0.000 0.000 0.000 0.000

MCLA 0.927 0.848 0.673 0.072 0.000 0.000 0.000

Thyroid

CO 0.420 0.577 0.412 0.631 0.127 0.633 0.448

ONCE 0.905 0.446 0.916 0.399 0.639 0.767 0.716

ACE 0.360 0.747 0.519 0.000 0.001 0.000 0.001

MCLA 0.059 0.006 0.069 0.168 0.013 0.786 0.238

Mfeatures

CO 0.127 0.065 0.170 0.027 0.000 0.000 0.000

ONCE 0.731 0.621 0.598 0.275 0.000 0.003 0.000

ACE 0.488 0.434 0.148 0.000 0.000 0.000 0.000

MCLA 0.246 0.062 0.005 0.000 0.004 0.000 0.000

Glass

CO 0.998 0.649 0.993 0.060 0.568 0.085 0.134

ONCE 0.176 0.597 0.175 0.201 0.047 0.110 0.172

ACE 0.000 0.002 0.000 0.000 0.018 0.000 0.000

MCLA 0.472 0.875 0.444 0.000 0.000 0.000 0.000

Bcw

CO 1.000 1.000 1.000 1.000 1.000 1.000 1.000

ONCE 0.235 0.747 0.338 0.093 0.756 0.088 0.093

ACE 0.165 0.421 0.227 0.096 0.896 0.075 0.099

MCLA 0.097 0.308 0.112 0.060 0.264 0.162 0.112

Soybean

CO 0.905 0.891 0.476 0.019 0.364 0.233 0.375

ONCE 0.292 0.942 0.326 0.000 0.001 0.000 0.000

ACE 0.636 0.261 0.152 0.000 0.000 0.000 0.000

MCLA 0.751 0.433 0.835 0.028 0.027 0.004 0.008

Ionosphere

CO 0.428 0.490 0.437 0.308 0.803 0.141 0.206

ONCE 0.596 0.641 0.748 0.444 0.710 0.223 0.332

ACE 0.539 0.583 0.377 0.289 0.504 0.074 0.109

MCLA 0.000 0.000 0.000 0.000 0.045 0.000 0.000
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In this appendix, we give a complete results of the experiments in Section 6.2.1.

B.1 The Complete Results of Analysis of the Pos-

itive and Negative Effects of Diversity

Each Figure from B.1 to B.15 is related to a particular pair of ensemble cases (blue

is a negative and red is a positive ensemble case), and in each one of them we

have three subfigures (a, b, and c). Figure (a) represents the diversity measures,

the ensemble quality, the average member quality and the standard deviation of

the member quality (all qualities measured by ARI) of a particular pair; Figure

(b) represents the distributions of the related individual members’ qualities to a

particular pair; and Figure (c) shows the number of members whose quality is as

poor as the negative ensemble quality in a particular pair (Poor Q-mem), the number

whose quality is as good as the positive ensemble quality (Good Q-mem), and the

number of members that have a medium quality (between the poor and the good

quality levels, Medium Q-mem). In Figure (a), we plot only one of the consensus

functions that has been identified as a negative case, along with its related diversity

measures. Figures from B.16 to B.26 show the similar results that shown in figure

(a) but with the other consensus functions. The following sections explain these two

situations in more detail:
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Results of the First Situation

In this situation, we looked for negative cases that occurred on at least two con-

sensus functions. From case 1 to case 4, the negative cases were discovered in ACE

and MCLA (Figures B.1 and B.5), while case 5 and case 6 were discovered in CO

and ACE (Figure B.6). The results show that whichever diversity measures are used

in cases 1 and 2, the two ensembles have the same level of diversity, and their aver-

age member quality is more or less the same, as is the level of standard deviation,

however case 2 is positive and case 1 is a negative case. Looking at the quality of the

individual members we found that members in case 2 clearly had higher quality than

case 1, and by classifying these members in terms of their quality, it is noticeable

that case 2 had less poor members and more members of a medium quality than

case 1. Due to the implemented techniques in ACE and MCLA, we noticed that the

members in case 1 had a pattern of failure, while the same pattern was successful

when the CO and ONCE were used, as both of them had a very good performance

(0.579) in case 1 as shown in Table 6.2.

Figures B.2 and B.3 show the heat maps of the similarity matrices of CO and

ONCE respectively. When compared with the heat map of the Thyroid true label

in Figure B.4, we find that more object pairs are similar in case 1 than in case 2,

particularly in the cluster placed in the middle of the similarity matrix. Applying

the average linkage over these similarity matrices results in cluster labels with better

quality in case 1 than in case 2. ACE and MCLA apply the pairwise similarity

between clusters and not objects; this is why they do not perform well in case 1.

The other two pairs in this situation are different from pair one in terms of the

quality of the other consensus functions used, which are ONCE and ACE in case 3

and ONCE and MCLA in case 5. They also did not perform well compared to their

second pair (positive case). When considering the quality of each individual member

in case 3 and case 5, we found that their second pair (case 4 and case 6) had more

good quality members. Furthermore, the number of poor-quality members in case 4

was four less than in case 3, while case 6 had three more poor members than in case

240



Appendix B.

5, but on other hand it had double the number of good members — one of them

had a quality higher than 0.6. It was observed that this very good quality member

(Q(Pq) > 0.6) was also one of the members in case 3 (negative case), but as the

quality of the other members was not good enough to support it, the overall quality

of the ensemble was poor. Therefore, it is clear that how the members resemble

each other in terms of quality has an influence on the ensemble quality.

Results of the Second Situation

In this situation, the negative cases occurred on at least three consensus functions,

and we have 8 pairs (from pair number 4 to 11 as shown in Table 6.2). In all of them

the negative cases occurred on CO, ONCE and ACE, except pair number 9, where

the negative case (Cases 17) occurred on CO, ACE and MCLA. The results of the

individual members’ qualities in case 8, case 10, case 12 and case 14 (positive cases),

which are shown in Figures B.7, B.9, B.10 and B.11 respectively, show that the

members have higher quality than the members in the negative cases, and the total

number of good-quality members in the positive cases is larger than in the negative

cases. Obviously, good-quality members with a high level of diversity (measured

by most measurements except DVnp2, DVnp3, where they had a medium level) had

contributed to improving the quality of the ensemble in the positive cases, while the

poor-quality members with the same level of diversity had a negative effect on the

ensemble performance for these particular consensus functions (CO, ONCE, ACE).

Therefore, the reason behind these negative cases is the number of poor-quality

members with high diversity among them. This indicates that each member made

different errors in terms of cluster structure in the dataset, leading to lower/zero

similarity between the correctly classified objects and to poor performance ensemble

results for these consensus functions.

Figure B.7(b) shows that cases 8 and 7 had more or less the same number of

members in each category, with only one less poor member, which moved to the

medium-quality category in case 8, with the same level of diversity in both cases.

The ensemble performance (CO, ONCE and ACE) in case 8 is much better than in
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case 7. Interestingly, MCLA had not been affected by the change in the category of

this member or the improvement of the members’ quality in case 8. Investigating

the similarity matrix of CO in case 7 and 8 as shown in Figures B.8(a) and B.8(b)

respectively, it is shown that more pairs of objects in case 8 are more similar to each

other than in case 7.

Pair 8 consists of very interesting cases as shown in Figure B.12, in which half of

their members were classified as poor-quality members (their quality was less than

or equal to 0.2) with approximately the same average member quality in both of

them, and a slightly increasing diversity in case 16. It was observed that case 16

had the highest number of poor members among all the positives cases that we had.

This indicates that having a high number of poor-quality members in the members

is not always a sign of poor ensemble performance — if the right diversity among

them is achieved combining them can produce a high performance ensemble.

Cases 18, 20 and 22 (positive cases) as shown in figures B.13, B.14 and B.15

respectively also had a higher number of quality members than their second pairs

(cases 17, 19, and 21 respectively). Case 18 had also fewer poor-quality members

than case 17, and both of them had three good-quality members, one of which had

quality higher than 0.6 (case 18). In case 19, the number of poor-quality members

is lower than in case 20, which is also the lowest among all the negative cases in

this analysis, and as the number of good-quality members in this case is also low,

there was no room for the ensemble to improve upon its members, whereas there

were six good-quality members in case 20, so the ensembles were improved in terms

of quality for all the consensus functions used in this case. In case 22, there were

five good-quality members in the members, while in case 21 there were only three

good-quality members. Among these good members in both cases, one member had

quality higher than 0.6, because in case 22 there were more members to support this

high-quality member than case 21. The ensembles were improved in all the used

consensus functions in case 22.

In summary, in most cases, the poor-quality members with a high level of DVpARI
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had affected the ensemble quality, and thus in the next section we will design an

experiment to see how the different consensus functions perform as the poor-quality

members are gradually removed. We will also see if the gradual removal of this dete-

rioration in the diversity in the members leads to a successful ensemble performance

or not.
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(a) DV measures, ensemble quality, the average and the standard
deviation of member quality.

(b) The distribution of the individual members’ qualities.

(c) The Number of members whose Poor, Good and Medium Q-
mem compared to ensembles qualities in the two cases.

Figure B.1: Pair # 1 consists of Case 1 and Case 2.
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(a) Case 1.

(b) Case 2.

Figure B.2: The heat map of the CO similarity matrix for Case 1 and Case 2.

245



Appendix B.

(a) Case 1.

(b) Case 2.

Figure B.3: The heat map of the ONCE similarity matrix for Case 1 and Case 2.
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Figure B.4: The heat map of the true label of the Thyroid dataset.
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(a) DV measures, ensemble quality, the average and the standard
deviation of member quality.

(b) The distribution of the individual members’ qualities.

(c) The Number of members whose Poor, Good and Medium Q-
mem compared to ensembles qualities in the two cases.

Figure B.5: Pair # 2 consists of Case 3 and Case 4.
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(a) DV measures, ensemble quality, the average and the standard
deviation of member quality.

(b) The distribution of the individual members’ qualities.

(c) The Number of members whose Poor, Good and Medium Q-
mem compared to ensembles qualities in the two cases.

Figure B.6: Pair # 3 consists of Case 5 and Case 6.
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(a) DV measures, ensemble quality, the average and the standard
deviation of member quality.

(b) The distribution of the individual members’ qualities.

(c) The Number of members whose Poor, Good and Medium Q-
mem compared to ensembles qualities in the two cases.

Figure B.7: Pair # 4 consists of Case 7 and Case 8.
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(a) Case 7.

(b) Case 8.

Figure B.8: The heat map of the CO similarity matrix for Case 7 and Case 8.
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(a) DV measures, ensemble quality, the average and the standard
deviation of member quality.

(b) The distribution of the individual members’ qualities.

(c) The Number of members whose Poor, Good and Medium Q-
mem compared to ensembles qualities in the two cases.

Figure B.9: Pair # 5 consists of Case 9 and Case 10.
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(a) DV measures, ensemble quality, the average and the standard
deviation of member quality.

(b) The distribution of the individual members’ qualities.

(c) The Number of members whose Poor, Good and Medium Q-
mem compared to ensembles qualities in the two cases.

Figure B.10: Pair # 6 consists of Case 11 and Case 12.
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(a) DV measures, ensemble quality, the average and the standard
deviation of member quality.

(b) The distribution of the individual members’ qualities.

(c) The Number of members whose Poor, Good and Medium Q-
mem compared to ensembles qualities in the two cases.

Figure B.11: Pair # 7 consists of Case 13 and Case 14.
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(a) DV measures, ensemble quality, the average and the standard
deviation of member quality.

(b) The distribution of the individual members’ qualities.

(c) The Number of members whose Poor, Good and Medium Q-
mem compared to ensembles qualities in the two cases.

Figure B.12: Pair # 8 consists of Case 15 and Case 16.
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(a) DV measures, ensemble quality, the average and the standard
deviation of member quality.

(b) The distribution of the individual members’ qualities.

(c) The Number of members whose Poor, Good and Medium Q-
mem compared to ensembles qualities in the two cases.

Figure B.13: Pair # 9 consists of Case 17 and Case 18.
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(a) DV measures, ensemble quality, the average and the standard
deviation of member quality.

(b) The distribution of the individual members’ qualities.

(c) The Number of members whose Poor, Good and Medium Q-
mem compared to ensembles qualities in the two cases.

Figure B.14: Pair # 10 consists of Case 19 and Case 20.
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(a) DV measures, ensemble quality, the average and the standard
deviation of member quality.

(b) The distribution of the individual members’ qualities.

(c) The Number of members whose Poor, Good and Medium Q-
mem compared to ensembles qualities in the two cases.

Figure B.15: Pair # 11 consists of Case 21 and Case 22.
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(a) EOD diversity measures and CO
quality

(b) EOD diversity measures and ONCE
quality

(c) EOD diversity measures and ACE
quality

Figure B.16: Pair #1 consists of Case 1 and Case 2.

(a) EOD diversity measures and CO
quality

(b) EOD diversity measures and ONCE
quality

(c) EOD diversity measures and ACE
quality

Figure B.17: Pair #2 consists of Case 3 and Case 4.
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(a) EOD diversity measures and ONCE
quality

(b) EOD diversity measures and ACE
quality

(c) EOD diversity measures and MCLA
quality

Figure B.18: Pair #3 consists of Case 5 and Case 6.

(a) EOD diversity measures and ONCE
quality

(b) EOD diversity measures and ACE
quality

(c) EOD diversity measures and MCLA
quality

Figure B.19: Pair #4 consists of Case 7 and Case 8.
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(a) EOD diversity measures and ONCE
quality

(b) EOD diversity measures and ACE
quality

(c) EOD diversity measures and MCLA
quality

Figure B.20: Pair #5 consists of Case 9 and Case 10.

(a) EOD diversity measures and ONCE
quality

(b) EOD diversity measures and ACE
quality

(c) EOD diversity measures and MCLA
quality

Figure B.21: Pair #6 consists of Case 11 and Case 12.
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(a) EOD diversity measures and ONCE
quality

(b) EOD diversity measures and ACE
quality

(c) EOD diversity measures and MCLA
quality

Figure B.22: Pair #7 consists of Case 13 and Case 14.

(a) EOD diversity measures and ONCE
quality

(b) EOD diversity measures and ACE
quality

(c) EOD diversity measures and MCLA
quality

Figure B.23: Pair #8 consists of Case 15 and Case 16.
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(a) EOD diversity measures and CO
quality

(b) EOD diversity measures and ONCE
quality

(c) EOD diversity measures and ACE
quality

Figure B.24: Pair #9 consists of Case 17 and Case 18.

(a) EOD diversity measures and ONCE
quality

(b) EOD diversity measures and ACE
quality

(c) EOD diversity measures and MCLA
quality

Figure B.25: Pair #10 consists of Case 19 and Case 20.
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(a) EOD diversity measures and ONCE
quality

(b) EOD diversity measures and ACE
quality

(c) EOD diversity measures and MCLA
quality

Figure B.26: Pair #11 consists of Case 21 and Case 22.
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B.2 The Complete Results of Eliminating Poor

Members

Figures B.27 to B.37 show the results of experiment in Section 6.2.1.3, and each

figure has 4 subfigures: subfigure (a) represents the 25 runs on the negative case,

and subfigure (b) shows the comparative positive case. The first run in these figures

shows the original results of the cases (of combining 27 members), and the bar chart

shows the quality of the individual members Q(m),m = {1, 2, . . . , 27} sorted in

ascending order. Subfigures (c) and (d) show the diversity values for the negative

and positive cases respectively.

In the First Situation, we have cases 1 to 6, where the negative case 1 was

associated with ACE and MCLA consensus functions, while case 3 was associated

with the CO and MCLA, and case 5 was associated with CO and ACE.

In case 1 shown in Figure B.27(a), the results show that the performance of

MCLA improved in run 2, as the poorest quality member was removed, while ACE

improved in run 4 in terms of being better than the average member quality, and

ACE gradually improved as the poorest member was removed in each run (up to run

16, after which it remained stable). On the other hand, the performance of MCLA

remained stable from run 2 to run 24, but in the last run its performance dropped

to 0.2. In this run, 3 members were combined; these members had equally high

qualities (0.579) and DVpARI equal to 0. This means that this particular pattern

of the members can cause MCLA to perform poorly, but not the other consensus

functions. In case 2 shown in Figure B.27(b), the performance of CO was stable until

run 10, when it then dropped slightly below the average member quality. We think

the reason for this is that there is a greater occurrence of the wrongly classified

object pairs, compared to the correctly classified object pairs, in the members in

runs 11, 12, 13 and 14.

On the other hand, in the same case, ACE performance improved from the point

of removing the poorest quality member in run 1. MCLA performance remained
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stable until run 18, when it then fluctuated below the average member quality

to almost equal to the average member quality. Looking closely at runs 18 and

19, the MCLA performance dropped from 0.550 (being positive) to 0.235 (being

negative); the diversity measured by DVpARI was 0.428 and 0.432 respectively, and

when measured by DVnp3 it was 0.428 and 0.432 respectively. The performances

of CO, ONCE and ACE were the same in these two runs. This indicates that the

performance of MCLA in run 19 is not affected by the quality of the members or

by their diversity, and that it is in fact due to its implementing techniques, which

makes it sensitive to this members’ pattern.

In case 3 shown in Figure B.28(a), from run 2 to 4 the MCLA quality gradually

improved as the poor members were removed, then it was not stable until run 16,

after which it gradually decreased below the average member quality as the latter

increased and the diversity (measured by DVnp3) slightly decreased. In contrast, CO

performance remained below the average member quality until run 7, by which point

6 poor-quality members with a quality of below 0.2 had been removed. In run 7 it

improved slightly and then dropped slightly lower than the average member, but in

run 19 as the average member quality increased, the performance of CO improved

to a higher level until it reached 0.597 in the last run. The diversity in this run

reached a medium level measured by DVpARI . In case 4 shown Figure B.28(b), the

performance of CO was stable until run 13 where it slightly improved as the average

quality increased and the diversity measured by DVpARI slightly decreased.

In case 5 shown in Figure B.29(a), the performance of ACE improved as the

poorest member was removed in run 2, and it then remained stable until run 13

when it improved to a high level as the average member quality increased and the

diversity slightly decreased. The results show that in run 19 the performance of

MCLA decreased to below the average member quality as the latter increased and

the diversity decreased to reach a value of 0.4 (measured by DVpARI).

In the positive case 6 shown in Figure B.29(b), the quality of CO remained almost

stable as the average quality of the members increased and the diversity decreased,
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until run 20, when its quality was slightly below the average member and diversity

reached 0.4. The performance of ACE improved further as a result of removing poor-

quality members, and reached over 0.6. The performance of MCLA in this case was

not stable; it had small fluctuations as the average member quality increased until

run 17, after which it fluctuated greatly from above to below the average member

quality as diversity decreased.

The Second Situation includes cases 7 to 22, and as mentioned previously, the

negative cases occurred in three consensus functions, which are CO, ONCE and

MCLA in case 17, and in the remaining cases they occurred with CO, ONCE and

ACE. However, in these negative cases (7, 9, 11, 13, 15, 17, 19, and 21) there

was a clear cut-off point for CO, ONCE, and ACE improvements from below the

average member quality to higher than the average member quality. It is therefore

clear that removing some poor-quality members, and consequently increasing the

average member quality and decreasing the level of diversity, positively influenced

the performances of CO, ONCE and ACE. The positions of the cut-off point were

different for each consensus function in each case, but the remarkable features about

them are as follows:

1. CO improved in run 9 (in cases 13, 15, 17 and 19), 11 (in cases 7 and 11), 13 (in

case 21), and 17 (in case 9). It is clear that CO improves when most of the poor-

quality members are removed, compared to other consensus functions. This

is explained by the fact that CO measures the degree of agreement between

members when clustering a pair of objects, and in the members of these cases

the poor-quality members increase the certainty of wrongly classified pairs of

objects more than correctly classified pairs of objects. In addition, as CO only

considers the object pairwise information, it produced poor-quality clustering

until we had removed some of the poor-quality members. For example, in

case 15 shown in Figure B.35(a), CO had a very poor performance until run

9. Comparing run 7 to run 10, CO performance improved from 0.221 to

0.579 (as good as its performance in its compared positive case number 16),
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and the average member quality increased slightly from 0.346 to 0.376. The

diversity measured by DVpARI decreased slightly from 0.539 to 0.525, while

that measured by DVnp3 was equal to 0.411 in the two runs. This is shown in

Figure B.39, the heat map of the CO similarity matrix, in runs 7 and 10 in

case 15. As we can see, the certainty of the correctly classified object pairs in

the first cluster (from the left) in run 10 is higher than in run 7, as well as some

object pairs in the third cluster. Thus, the clustering results produced by CO

in run 10 are much better than in run 7 in terms of quality; neither diversity

measures nor the average member quality are able to give an explanation for

this difference in performance.

In all the negative cases, the performance of CO at some point of removing

the poor-quality members improved to a level that was as good as or above

its performance in its compared positive case. The exception to this was case

9 shown in Figure B.31(a), where in all the 25 runs CO performance did not

reach the same level as in case 10. The highest quality of CO in case 9 was

0.516, which was in run 25, where it was built by combining 3 members which

each had a quality of 0.373, 0.402, and 0.462, making an average of 0.412 and

DVpARI of 0.536. In case 10 shown in Figure B.31 (b), the highest performance

of CO was 0.579, which occurred in a number of runs, but mostly from run 15

to the last run, the average member quality increased from 0.452 to reach 0.588,

while the diversity decreased from 0.412 to 0.190. This clearly indicates that

this high-quality performance of CO in the positive case is influenced by the

high average member quality and lower diversity, which makes the certainty

between the correctly classified objects pairs higher than between the wrongly

classified ones.

2. ONCE improved at an earlier stage than CO, and specifically in run 9 (in

cases 7, 11 and 19), 15 (in case 9), 5 (in case 13), and run 4 (in cases 15

and 21). In fact, there are no negative cases in this experiment where ONCE

improved after CO improvement, it is always the case that ONCE improves
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before CO improves, after removing poor-quality members. The reason for

this is that ONCE considers the similarity between the common neighbours

of a pair of objects, as well as the similarity between the pair itself, so there

is more information to be constructed from the members in ONCE than in

CO. For example, in case 15 shown in Figure B.34, ONCE started with a low

quality of 0.22; it then improved in run 4 of 0.579 after removing only three

poor-quality members, and then it remained stable at the same quality until

the last run. In the same case, in runs 2 and 5, the ONCE quality was 0.221

and 0.579 respectively, the average member quality increased from 0.296 to

0.329 and the DVpARI decreased from 0.623 to 0.566. Plotting the similarity

matrix of ONCE in both cases, as shown in Figure B.41, we found that the

certainty between the correctly classified object pairs, in particular in the third

clusters (from the left) in run 5, is higher than in run 2, and there is lower

certainty between wrongly classified object pairs, in particular the one that is

not truly classified in the first and the second clusters (from the left). It is

also noticeable in some of the positive cases, that the performance of ONCE

also improved after removing the poorest members to become as good as CO,

or in some cases better than CO.

3. ACE improved in run 2 in most of the negative cases, except in case 17 as

shown in Figure B.35 (a), where it improved in run 4 and in case 9 in run

10. It is noticeable that the improvement of ACE occurred gradually as we

removed one poor-quality member at a time; this was also noticeable with

some positive cases such as cases 12, 16 and 22. The highest quality in this

experiment was achieved by ACE in case 17 (run 16), which was 0.703 with an

average member quality of 0.418 and diversity measured by DVpARI of 0.581.

The performances of other consensus functions in this run were of 0.579. It

is therefore obvious that these members had the right diversity among them,

and that this represents a pattern of success for ACE. It is noticeable that in

10 cases there was one run that had the same average member quality and a

value for DVpARI between 0.515 to 0.581 (medium level), and that ACE always
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had a high performance of between 0.608 and 0.703 (cases 2, 4, 12, 14, 16, 17,

18, 19 ,20, and 22). In the other cases, we had in 6 cases a run with also the

same level of average member quality and DVpARI between 0.504 and 0.548,

and ACE achieved a quality of 0.579.

(a) Negative Case. (b) Positive Case.

(c) Diversity Measures of the Negative Case. (d) Diversity Measures of the Positive Case.

Figure B.27: 25 ensemble runs for case 1 & 2, in each run one member is removed.
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(a) Negative Case. (b) Positive Case.

(c) Diversity Measures of the Negative Case. (d) Diversity Measures of the Positive Case.

Figure B.28: 25 ensemble runs for case 3 & 4, in each run one member is removed.

(a) Negative Case. (b) Positive Case.

(c) Diversity Measures of the Negative Case. (d) Diversity Measures of the Positive Case.

Figure B.29: 25 ensemble runs for case 5 & 6, in each run one member is removed.
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(a) Negative Case. (b) Positive Case.

(c) Diversity Measures of the Negative Case. (d) Diversity Measures of the Positive Case.

Figure B.30: 25 ensemble runs for case 7 & 8, in each run one member is removed.

(a) Negative Case. (b) Positive Case.

(c) Diversity Measures of the Negative Case. (d) Diversity Measures of the Positive Case.

Figure B.31: 25 ensemble runs for case 9 & 10, in each run one member is removed.
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(a) Negative Case. (b) Positive Case.

(c) Diversity Measures of the Negative Case. (d) Diversity Measures of the Positive Case.

Figure B.32: 25 ensemble runs for case 11 & 12, in each run one member is removed.

(a) Negative Case. (b) Positive Case.

(c) Diversity Measures of the Negative Case. (d) Diversity Measures of the Positive Case.

Figure B.33: 25 ensemble runs for case 13 & 14, in each run one member is removed.
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(a) Negative Case. (b) Positive Case.

(c) Diversity Measures of the Negative Case. (d) Diversity Measures of the Positive Case.

Figure B.34: 25 ensemble runs for case 15 &16, in each run one member is removed.

(a) Negative Case. (b) Positive Case.

(c) Diversity Measures of the Negative Case. (d) Diversity Measures of the Positive Case.

Figure B.35: 25 ensemble runs for case 17 & 18, in each run one member is removed.

274



Appendix B.

(a) Negative Case. (b) Positive Case.

(c) Diversity Measures of the Negative Case. (d) Diversity Measures of the Positive Case.

Figure B.36: 25 ensemble runs for case 19 & 20, in each run one member is removed

(a) Negative Case. (b) Positive Case.

(c) Diversity Measures of the Negative Case. (d) Diversity Measures of the Positive Case.

Figure B.37: 25 ensemble runs for case 21 & 22, in each run one member is removed
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(a) Case 7 (b) Case 8

Figure B.38: The heat map of the CO similarity matrix for Run 7 at case 7 and 8.

(a) Run 7 (b) Run 11

Figure B.39: The heat map of the CO similarity matrix for Run 7 and 11 at case 7.

(a) Run 7 (b) Run 10

Figure B.40: The heat map of the CO similarity matrix for Run 7 and 10 at case
15.
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(a) Run 2 (b) Run 5

(c) Run 7

Figure B.41: The heat map of the ONCE similarity matrix for Run 2 and 7 at case
15.
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Checking the ANOVA

Assumptions

Before we conduct the ANOVA test in our experiment in Section 6.2.2.2, we have

to check its assumptions, which is the normality and the homogeneity of variances.

For normality, we used the Anderson-Darling test [93], which is a statistical test

used to test whether the data follows a specified distribution; in our case it is nor-

mal distribution. The Anderson-Darling test detected a violation of the normality

assumptions (p-values always less than 0.05 ) for all the used consensus functions in

both of the datasets.

For the homogeneity of variances, we used the Levene test [13], because it is

more robust when the sampled data deviate from normality [71]. This tests the null

hypothesis that the variances of all conditions are all equal, and it was found that

we could reject the null hypotheses for all the used consensus functions in both of

the datasets.

For the non-normal samples, Montgomery [75] recommends applying a Box-Cox

transformation method [11] to the sample data to recover the normality and to obtain

a constant variance (after transformation). The Box-Cox method is a parametric

power transformation technique to estimate a value for the transformation parameter
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Figure C.1: The normal probability plot of the response variables (CO, ONCE, ACE
and MCLA) for Thyroid dataset.

λ, and it can also suggest the best transformation function to be applied to the

sample data. We applied the Box-Cox method, and it suggested that for most of

the examined sample data there is no need to transform the sampled data. The only

exceptions were the samples data of Wine using CO and ONCE and the estimated λ

were 1.477 and 1.534 respectively. Figures C.1 and C.2 show the normal probability

plot of response variables on the original sample data for the Thyroid and Wine

datasets respectively.
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Figure C.2: The normal probability plot of the response variables (CO, ONCE, ACE
and MCLA) for Wine dataset.
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