5,205 research outputs found

    Soil biological quality of grassland fertilized with adjusted cattle manure slurries in comparison with organic and inorganic fertilizers

    Get PDF
    We studied the effect of five fertilizers (including two adjusted manure slurries) and an untreated control on soil biota and explored the effect on the ecosystem services they provided. Our results suggest that the available N (NO3- and NH4+) in the soil plays a central role in the effect of fertilizers on nematodes and microorganisms. Microorganisms are affected directly through nutrient availability and indirectly through grass root mass. Nematodes are affected indirectly through microbial biomass and grass root mass. A lower amount of available N in the treatment with inorganic fertilizer was linked to a higher root mass and a higher abundance and proportion of herbivorous nematodes. A higher amount of available N in the organic fertilizer treatments resulted in a twofold higher bacterial activity (measured as bacterial growth rate, viz. thymidine incorporation), a higher proportion of bacterivorous nematodes, a 30% higher potential N mineralization (aerobic incubation), and 25–50% more potentially mineralizable N (anaerobic incubation). Compared to inorganic fertilizer, organic fertilization increased the C total, the N total, the activity of decomposers, and the supply of nutrients via the soil food web. Within the group of organic fertilizers, there was no significant difference in C total, abundances of soil biota, and the potential N mineralization rate. There were no indications that farmyard manure or the adjusted manure slurries provided the ecosystem service “supply of nutrients” better than normal manure slurry. Normal manure slurry provided the highest bacterial activity and the highest amount of mineralizable N and it was the only fertilizer resulting in a positive trend in grass yield over the years 2000–2005. The number of earthworm burrows was higher in the treatments with organic fertilizers compared to the one with the inorganic fertilizer, which suggests that organic fertilizers stimulate the ecosystem service of water regulation more than inorganic fertilizer. The trend towards higher epigeic earthworm numbers with application of farmyard manure and one of the adjusted manure slurries, combined with the negative relation between epigeic earthworms and bulk density and a significantly lower penetration resistance in the same fertilizer types, is preliminary evidence that these two organic fertilizer types contribute more to the service of soil structure maintenance than inorganic fertilize

    Benthic Ecology From Space: Optics and Net Primary Production in Seagrass and Benthic Algae Across the Great Bahama Bank

    Get PDF
    Development of repeatable and quantitative tools are necessary for determining the abundance and distribution of different types of benthic habitats, detecting changes to these ecosystems, and determining their role in the global carbon cycle. Here we used ocean color remote sensing techniques to map different major groups of primary producers and estimate net primary productivity (NPP) across Great Bahama Bank (GBB). Field investigations on the northern portion of the GBB in 2004 revealed 3 dominant types of benthic primary producers: seagrass, benthic macroalgae, and microalgae attached to sediment. Laboratory measurements of NPP ranged from barely net autotrophic for grapestone sediment with thin microalgal biofilm to highly productive for dense accumulations of brown macroalgae. A logarithmic relationship between NPP and green seafloor reflectance described the general trend in NPP across various benthic constituents. Using a radiative transfer-based approach, satellite-derived estimates of NPP for the region totaled similar to ~2 x 1013 gC yrˉ¹ across the GBB. The prevailing benthic habitat was mapped as sediment with little to no microalgal biofilm. Moderate to dense seagrass meadows of Thalassia testudinumwere the dominant primary producers and contributed over 80% of NPP in the region. If the vast majority of seagrass leaves decompose in the primarily carbonate sediments, carbonate dissolution processes associated with this decomposition may result in sequestration of seagrass above- and below-ground carbon into the bicarbonate pool (2.4 x 1013 gC yrˉ¹), where it has a residence time on the order of tens of thousands of years

    Nut production in Bertholletia excelsa across a logged forest mosaic: implications for multiple forest use

    Get PDF
    Although many examples of multiple-use forest management may be found in tropical smallholder systems, few studies provide empirical support for the integration of selective timber harvesting with non-timber forest product (NTFP) extraction. Brazil nut (Bertholletia excelsa, Lecythidaceae) is one of the world’s most economically-important NTFP species extracted almost entirely from natural forests across the Amazon Basin. An obligate out-crosser, Brazil nut flowers are pollinated by large-bodied bees, a process resulting in a hard round fruit that takes up to 14 months to mature. As many smallholders turn to the financial security provided by timber, Brazil nut fruits are increasingly being harvested in logged forests. We tested the influence of tree and stand-level covariates (distance to nearest cut stump and local logging intensity) on total nut production at the individual tree level in five recently logged Brazil nut concessions covering about 4000 ha of forest in Madre de Dios, Peru. Our field team accompanied Brazil nut harvesters during the traditional harvest period (January-April 2012 and January-April 2013) in order to collect data on fruit production. Three hundred and ninety-nine (approximately 80%) of the 499 trees included in this study were at least 100 m from the nearest cut stump, suggesting that concessionaires avoid logging near adult Brazil nut trees. Yet even for those trees on the edge of logging gaps, distance to nearest cut stump and local logging intensity did not have a statistically significant influence on Brazil nut production at the applied logging intensities (typically 1–2 timber trees removed per ha). In one concession where at least 4 trees ha-1 were removed, however, the logging intensity covariate resulted in a marginally significant (0.09) P value, highlighting a potential risk for a drop in nut production at higher intensities. While we do not suggest that logging activities should be completely avoided in Brazil nut rich forests, when a buffer zone cannot be observed, low logging intensities should be implemented. The sustainability of this integrated management system will ultimately depend on a complex series of socioeconomic and ecological interactions. Yet we submit that our study provides an important initial step in understanding the compatibility of timber harvesting with a high value NTFP, potentially allowing for diversification of forest use strategies in Amazonian Perù

    Productive and Ecological Aspects of Mixed Cropping System

    Get PDF
    Mixed cropping, also known as inter-cropping or co-cultivation, is a plant production system that involves planting two or more species (or cultivars) in the same field in a variable order—row or rowless—simultaneously. Mixed cropping plays an important role in sustainable agriculture by adding value to crop rotations and agroecosystems. Scientific investigations on environmentally friendly mixed cropping should be supported by studies on the direct costs and long-term benefits that are the most relevant to farmers. Meeting the need to strengthen the scientific basis for mixed crops, the papers in this Special Issue enhance our understanding of the following: The selection of species and cultivars for a mixed crop system as well as the choice of agricultural treatments that will secure a stable yield of mixtures; Inter- and intra- species competition of plants in a canopy; Ecological intensification approaches and opportunities for maximizing crop performance and yield in mixtures; The effects of mixed crops on crop rotations; The short- and long-term ecosystem benefits of mixtures; The effects on pests and the biodiversity of agroecosystems provided by mixtures; The economic aspects of adopting the mixtures in farms; The nutritive value of mixtures for livestock; Other topics related to the mixed cropping

    Predicting Distributions of Estuarine Associated Fish and Invertebrates in Southeast Alaska

    Get PDF
    Thesis (Ph.D.) University of Alaska Fairbanks, 2013Estuaries in Southeast Alaska provide habitat for juveniles and adults of several commercial fish and invertebrate species; however, because of the area's size and challenging environment, very little is known about the spatial structure and distribution of estuarine species in relation to the biotic and abiotic environment. This study uses advanced machine learning algorithms (random forest and multivariate random forest) and landscape and seascape-scale environmental variables to develop predictive models of species occurrence and community composition within Southeast Alaskanestuaries. Species data were obtained from trawl and seine sampling in 49 estuaries throughout the study area. Environmental data were compiled and extracted from existing spatial datasets. Individual models for species occurrence were validated using independent data from seine surveys in 88 estuaries. Prediction accuracy for individual species models ranged from 94% to 63%, with 76% of the fish species models and 72% of the invertebrate models having a predictive accuracy of 70% or better. The models elucidated complex species-habitat relationships that can be used to identify habitat protection priorities and to guide future research. The multivariate models demonstrated that community composition was strongly related to regional patterns of precipitation and tidal energy, as well as to local abundance of intertidal habitat and vegetation. The models provide insight into how changes in species abundance are influenced by both environmental variation and the co-occurrence of other species. Taxonomic diversity in the region was high (74%) and functional diversity was relatively low (23%). Functional diversity was not linearly correlated to species richness, indicating that the number of species in the estuary was not a good predictor of functional diversity or redundancy. Functional redundancy differed across estuary clusters, suggesting that some estuaries have a greater potential for loss of functional diversity with species removal than others
    • …
    corecore