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Abstract 

 

Estuaries in Southeast Alaska provide habitat for juveniles and adults of several 

commercial fish and invertebrate species; however, because of the area’s size and challenging 

environment, very little is known about the spatial structure and distribution of estuarine species 

in relation to the biotic and abiotic environment.  This study uses advanced machine learning 

algorithms (random forest and multivariate random forest) and landscape and seascape-scale 

environmental variables to develop predictive models of species occurrence and community 

composition within Southeast Alaskanestuaries.  Species data were obtained from trawl and seine 

sampling in 49 estuaries throughout the study area.  Environmental data were compiled and 

extracted from existing spatial datasets.  Individual models for species occurrence were validated 

using independent data from seine surveys in 88 estuaries.  Prediction accuracy for individual 

species models ranged from 94% to 63%, with 76% of the fish species models and 72% of the 

invertebrate models having a predictive accuracy of 70% or better.  The models elucidated 

complex species-habitat relationships that can be used to identify habitat protection priorities and 

to guide future research.  The multivariate models demonstrated that community composition was 

strongly related to regional patterns of precipitation and tidal energy, as well as to local 

abundance of intertidal habitat and vegetation.  The models provide insight into how changes in 

species abundance are influenced by both environmental variation and the co-occurrence of other 

species.  Taxonomic diversity in the region was high (74%) and functional diversity was 

relatively low (23%).  Functional diversity was not linearly correlated to species richness, 

indicating that the number of species in the estuary was not a good predictor of functional 

diversity or redundancy.  Functional redundancy differed across estuary clusters, suggesting that 

some estuaries have a greater potential for loss of functional diversity with species removal than 

others.  
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Chapter 1: General Introduction 

 

Understanding the mechanisms that determine species’ distributions and the relationship 

between species composition and ecosystem functions are essential goals of ecology and 

ecosystem management (de Bello et al. 2009, Maxwell et al. 2009, Sundblad et al. 2009).  Habitat 

includes both biotic and abiotic elements of the environment in which a species lives.  Classical 

niche theory describes a species’ habitat as a multidimensional hypervolume with each axis 

represented by an environmental variable (either biotic or abiotic) that is important for the 

species’ survival and reproduction (Hutchinson 1957, Cushman and Huettmann 2010, Drew et al. 

2011).  The niche can be dynamic, defined by the physical environment and physiological 

tolerances of the species and constrained by interspecific competition (Polechová and Storch 

2008).  Co-occurrence of species has been attributed to deterministic processes, such as shared 

environmental tolerances and niche overlap, to stochastic processes like dispersal limitation and 

colonization/extinction dynamics, and combinations of these processes (Chase 2010, Weins 2011, 

Fiser et al. 2012).  

Species distribution models attempt to find a statistical correlation between the biotic and 

abiotic environment and species’ occurrences or abundances and to extrapolate species 

distribution patterns to unsampled areas (Austin 2002, Ferrier and Guisan 2006, Valavanis et al. 

2008).  Species distribution models are also called niche models because they describe the 

realized niche of a species or community (Elith and Leathwick 2009, Williams et al. 2009, Oppel 

and Huettmann 2010, Hardy et al. 2011).  Although correlative models cannot determine the 

mechanisms by which species are distributed along environmental gradients, they can identify 

relationships to be investigated through theoretical analysis or additional research (Austin 2002, 

Elith et al. 2006, Magness et al. 2010).  The more accurately a model can predict a species’ 

spatial distribution, the less likely it is that relationships between species occurrence or abundance 

and habitat variables of importance in the model are spurious (Burnham and Anderson 1998, 

De'ath 2002).  

Traditional approaches to the development of species-habitat models are based on an 

assumption that the data used in the model conform to a known stochastic distribution (Breiman 

2001, Prasad et al. 2006, Magness et al. 2010).  The goal of modeling then becomes one of 

hypothesizing plausible relationships between the predictor variables and the response and 

evaluating how well the data fit these hypothesized relationships (Barry and Welsh 2002).  This 
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approach has several limitations, many of which are widely recognized by ecologists and 

modelers.  Models that assume a linear relationship between predictor variables and the response 

variable very rarely conform to true species-habitat relationships where lags, thresholds and 

feedbacks are common (Barbier et al. 2008).  As a result, models that provide good fits to the data 

used to build the model are often poor predictors when applied to new data.  Spatial data are 

inherently collinear (Wedding et al. 2011, Dormann et al. 2012), but many traditional modeling 

approaches require independence between observations and the variables used in the model 

(Kutner et al. 2004).  To address collinearity, modelers often arbitrarily limit the number of 

predictor variables, choosing those that have the least collinearity with other predictors in the 

data.  This results in data loss and can potentially bias mode results (Strobl et al. 2008, Freckleton 

2010).  Species’ distributions, especially of schooling species, are often skewed and rare, or 

under-sampled, species can cause large numbers of zero occurrences in the data (McArdle and 

Anderson 2001, Cunningham and Lindenmayer 2005, Gray et al. 2005, 2006, McGill et al. 2007). 

These zero-inflated data do not fit standard distributional assumptions and cannot be easily 

modeled with standard methods (Barry and Welsh 2002).  

An even larger issue involves the selection of variables to include in the models.  

Ecosystems are complex with an enormous number of potential factors that may influence species 

occurrence and distribution.  However, traditional models are limited in the number of predictor 

variables they can accommodate and cannot model situations where the number of predictor 

variables is much larger than the number of samples (n<<p).  To satisfy statistical assumptions, 

the modeler is required to preselect the variables that are hypothesized to the be the most likely 

predictors of the response, which potentially biases the ecological results of the analysis (Brosse 

et al. 2001).  Data reduction is often accomplished by using principal components analysis or 

factor analysis, but combining variables into a reduced number of components dilutes the effect 

of individual variables in the analysis (Strobl et al. 2009).  

Ecosystem-based management requires quantitative models capable of predicting the 

composition of communities and identifying relationships between habitat variables and both 

individual species and community structure (Olden et al. 2006, Gutiérrez-Estrada et al. 2008).  

Models that can accurately predict species distributions individually and at the community level 

for several life stages will be extremely valuable as that is when research and management 

approaches move beyond emphasis on single-species and refocus on understanding species within 

an ecosystem context.  Developing species and community models is hampered by the 
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complexity of species-habitat relationships.  It is here that machine learning can help find patterns 

and signals in complex data (Craig et al. 2009).  Species respond to biotic and abiotic 

environmental factors at a variety of spatial scales and these responses can be non-linear or 

discontinuous (Mayor et al. 2009).  Environmental influences do not act in isolation, and 

interactions among environmental factors are known to be complex.  Additionally, development 

of community models requires the ability to fit a number of environmental variables 

simultaneously to more than one response variable, representative of the suite of species in a 

location.  All of these issues make it difficult to develop accurate predictive models using 

standard statistical approaches such as frequency (Zar 2009) and Bayesian (McCarthy 2007). 

Methods that assume that the distribution of the data is unknown and rely on recursive 

algorithms to approximate the response surface are emerging as alternatives to traditional 

hypothesis-driven approaches (Breiman 2001, Stephens et al. 2005, Hobbs and Hilborn 2006).  

These data mining methods have been developed for use in disciplines where there is a need to 

elucidate patterns in high dimensional, complex data such as genetics research, financial 

modeling (hedge funds, investment banking, and computer science (face recognition, spam 

detection, internet usage/marketing).  These methods also have been used extensively in 

terrestrial ecology (Phillips et al. 2004, Ohse et al. 2009, Williams et al. 2009, Cushman and 

Huettmann 2010, Magness et al. 2010, Oppel and Huettmann 2010) but have received less 

attention in the marine and fisheries sciences (Oppel and Huettmann 2010, Wei et al. 2010, Hardy 

et al. 2011, Palialexis et al. 2011).  In addition to removing the constraint of preselecting an 

underlying distribution, data mining methods can also model nonlinear relationships and 

interactions between variables and can incorporate a larger number of predictor variables that are 

more representative of the complexity of natural ecosystems.  The newer machine learning or 

data mining algorithms have increased model predictive accuracy over many standard statistical 

methods (De'ath 2002, Hochaka et al. 2007, Magness et al. 2010, Drew et al. 2011).  

Here, I investigate the feasibility of developing predictive species distribution models 

with high accuracy for estuarine-associated fish and invertebrates at both the individual and 

community level.  In Alaska, more than a third of the commercial fish species managed by the 

National Marine Fisheries Service (NMFS) have been documented in Southeast Alaska estuarine 

surveys, many of them as juveniles (Murphy et al. 2000, Johnson et al. 2003).  However, for most 

species, very little is known about the relationship between habitat and particular life stages, 

especially early life stages (Ecosystem Principles Advisory Panel 1999, NPRB 2005).   
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Estuaries are known to provide important spawning, feeding and rearing habitat for many 

commercial, recreational and subsistence fish and invertebrates (Mueter and Norcross 1999, 

Norcross et al. 1999, Abookire et al. 2001, Johnson et al. 2003).  Estuaries are complex systems 

characterized by widely varying hydrological, morphological, and chemical conditions (Ellis et 

al. 2006).The geology and climatology of Southeast Alaska contribute to a high level of physical 

variability among estuaries by affecting wind mixing, tidal flow, freshwater discharge, and 

nutrient transport (Weingartner et al. 2009).  Several studies have demonstrated that nearshore 

Alaskan fishes exhibit nonrandom patterns of distribution in relation to salinity, depth and other 

physical factors (Mueter and Norcross 1999, Norcross et al. 1999, Abookire et al. 2001), but to 

date there has been no comprehensive analysis of the environmental factors that affect the spatial 

distribution of fish species and composition of fish assemblages with respect to their use of 

estuarine environments.  The few published studies linking biotic and abiotic habitat variables to 

fish and invertebrate presence in Alaskan estuaries have focused on single species (Heifetz et al. 

1989, Stone and O'Clair 2001, Stoner and Abookire 2002) or have been limited to a specific 

estuary or location (Mueter and Norcross 1999, Abookire et al. 2000). 

The goal of this research is to describe for the first time, the multispecies habitats and 

community structure of estuarine fish and invertebrates in Southeast Alaska in relation to biotic 

and abiotic aspects of their environment.  The research objectives are (i) to model the spatial 

distribution of estuarine species in Southeast Alaska estuaries in relation to environmental factors, 

(ii) to predict species occurrence to unsampled areas, (iii) to evaluate change in estuarine 

community composition along spatial and environmental gradients, and (iv) to evaluate how 

biotic and abiotic factors affect the ecological function of estuaries in Southeast Alaska. 

In Chapter 2, I develop models for predicting the occurrence of estuarine-associated fish 

and invertebrates in relation to landscape-scale habitat features.  The objective is to evaluate the 

feasibility of using remotely sensed environmental land and seascape data to accurately predict 

species occurrence from a small but efficient sample dataset.  The hypothesis is that remotely 

sensed data can serve as suitable surrogates for data measured in situ and result in models with 

high predictive accuracy for most species.  I construct a large spatial database in ArcGIS and use 

the random forest algorithm to model species distributions.  Models are validated using an 

independent sample dataset.   

 In Chapter 3, I model species habitat relationships at the community level to evaluate 

how community composition changes in relation to environmental heterogeneity.  This tests the 
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hypothesis that the influence of physical and biological factors results in non-random species 

assemblages with a defined species composition.  This research uses a new multivariate random 

forest modeling technique that simultaneously models multiple species against several 

environmental variables.   

 In Chapter 4, I evaluate differences in taxonomic and functional diversity between 

estuaries to evaluate how change in the composition of species affects ecosystem processes.  

Functional diversity reflects the ecological complexity of the study area and can provide insight 

into the vulnerability of these estuarine ecosystems to change, including alterations in species 

composition as a result of anthropogenic disturbance or exploitation.  I compare taxonomic and 

functional diversity across estuaries and between the estuary clusters defined in Chapter 3, to 

examine spatial patterns in species dominance and the distribution of functional traits, and to test 

the hypothesis that estuaries that have dissimilar species composition are also ecologically 

(functionally) dissimilar.  This analysis uses indices and multivariate methods.   

 Chapter 5 concludes with a summary of the major findings and discusses applications of 

this research for estuarine conservation and management.   
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Chapter 2:  Spatial multispecies models for predicting the occurrence of estuarine-

associated fish and invertebrates1

 

  

ABSTRACT 

We investigated whether multivariate, remotely sensed geomorphic and landscape data 

could be used to develop accurate predictive models of estuarine-associated fish and invertebrate 

occurrence.  Species occurrence data were obtained from trawl and seine sampling conducted in 

49 estuaries in Southeast Alaska from 1998 to 2005.  Using a conceptual model of estuarine 

processes, we identified 107 predictor variables representing hydrodynamics, habitat, and 

estuarine and watershed structure.  We used the Random Forest algorithm (randomForest in R), a 

method that has demonstrated good predictive accuracy with high-dimensional data, to construct 

predictive models for all species that occurred at 5% or more of the sample estuaries.  Receiver 

operating characteristic (ROC) curves were used to evaluate model performance.  Model results 

were validated using independent sample data collected from 1998 to 2004 in 88 additional 

Southeast Alaska estuaries.  Seventy-six percent of the Random Forest models for fish species, 

and 72% of the models for invertebrates, had predictive accuracies of 70% accuracy or better.  

Depth and slope of the estuary, tidal height, substrate type, and watershed vegetation were 

important variables in all of the species models.  The models also identified new species-variable 

relationships, such as varying species occurrence with respect to precipitation, that can be 

explored in future research.  This study demonstrates the utility of using remotely sensed data in 

Random Forest models to predict fish and invertebrate occurrence and sets the stage for 

incorporation of geomorphic and landscape data into future studies of estuarine species.   

 

INTRODUCTION 

Effective management of marine ecosystems and fisheries requires the ability to 

understand and predict species occurrence in relation to environmental and habitat variables and 

to identify the environmental variables important in structuring species distributions (Maxwell et 

al., 2009; Sundblad et al., 2009).  Quantitative species distribution models can assist in the 

identification of habitat for protection and spatial planning (Austin, 2002; Maxwell et al., 2009; 

                                                      

 
1 Submitted to Estuarine, Coastal and Shelf Science.  Miller K, Norcross B, Huettmann F, Lorenz M.  
Spatial multispecies models for predicting the occurrence of estuarine-associated fish and invertebrates. 
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Valavanis et al., 2008), can increase understanding of ecosystem structure and function, can guide 

research on productivity of habitat for specific species, and can help predict changes in species 

occurrence as a result of climate change or invasion (Mueter and Litzow, 2008; Stojlgren et al., 

2010; Williams et al., 2009).  Predictive species distribution models have been widely used in 

terrestrial and freshwater ecological studies (Lawler et al., 2011; Magness et al., 2010; Ohse et 

al., 2009), but only in the last decade have they begun to be applied to marine ecosystems (Elith 

and Leathwick, 2009; Hardy et al., 2011; Oppel and Huettmann, 2010; Palialexis et al., 2011; 

Robinson et al., 2011; Wei et al., 2010).  Species distribution modeling is equivalent to ecological 

niche modeling and describes the range of environmental conditions under which species are 

predicted to occur (Magness et al., 2010; Wiens, 2011). 

A significant challenge to regional marine species distribution modeling is the limited 

availability of sample data at relevant scales.  Data collection in Southeast Alaska is hampered by 

remote sampling locations and hindered by difficult weather and oceanographic conditions that 

restrict sampling.  Yet, this area is essential to the regional fisheries as a nursery ground for many 

economically important species (Johnson et al., 2003; Murphy et al., 2000).  As a result, sample 

data generally need to be commingled from various data collection efforts using different gears 

and methods over multiple years.  Environmental data also can be difficult to obtain.  Remotely 

sensed data can sometimes be used to characterize the shoreline and uplands, but there is a 

paucity of regional-scale data on subtidal and bottom habitat.  The spatial accuracy of these data 

can also be an issue.   

A further difficulty in constructing accurate predictive distribution models comes from 

the complexity of fish-habitat relationships and the processes that affect those relationships on a 

variety of spatial scales (Anderson et al., 2009; Elith and Leathwick, 2009; Hardy et al., 2011; 

Oppel and Huettmann, 2010).  Particularly in estuaries, species tend to have wide environmental 

tolerances, and their response to environmental factors can be inherently multivariate, nonlinear 

or discontinuous (Gutiérrez-Estrada et al., 2008; Mueter and Norcross, 1999).  Furthermore, the 

effects of most environmental factors do not occur in isolation from effects of other factors.  This 

makes it difficult for researchers to attribute simple causality in explaining variation in species 

distributions and assemblage composition (Oppel et al., 2009).  These aspects make it difficult to 

model species-habitat relationships using standard statistical methods (Magness et al., 2010; 

Prasad et al., 2006). 
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Landscape-scale data such as elevation, vegetative cover, and precipitation patterns are 

commonly used to predict species occurrence and abundance in terrestrial ecosystems (Magness 

et al., 2010).  Freshwater fisheries research has demonstrated that landscape and stream 

geomorphic variables (e.g., channel complexity, stream size) can accurately predict the 

occurrence of freshwater fish (Brenden et al., 2007; Cèrèghino et al., 2005; Elmendorf and 

Moore, 2008; Wilkins and Snyder, 2011).  The idea that estuarine geomorphology influences 

patterns in estuarine biota is not new (Roy et al., 2001), but models linking geomorphic variables 

to predicted marine species occurrence or abundance are limited (Dye, 2006; Hicks et al., 2010; 

Valesini et al., 2010).  Most research has focused on predicting the presence or abundance of 

marine fish and invertebrates with respect to local habitat variables, such as habitat complexity 

(Pittman et al., 2007; Wedding and Friedlander, 2008), or in relation to specific habitat features, 

such as subtidal vegetation (Whitlow and Grabowski, 2012), or mangroves (Jelbart et al., 2006).  

In Alaska, a number of studies have identified species-habitat relationships for individual fish and 

invertebrate species in estuaries or the nearshore (Abookire et al., 2001; Norcross et al., 1997; 

Stone and O'Clair, 2001; Stoner et al., 2007); however, these studies have been limited to a 

specific estuary or location and none of them have attempted to predict species occurrence or 

abundance in unsampled areas.  All of these Alaska studies also have used environmental data 

collected in-situ, making it difficult to extend the results to areas where environmental data have 

not been collected. 

In this research, we investigate whether multivariate remotely sensed geomorphic and 

landscape data could be used to develop accurate predictive models of marine fish and 

invertebrate occurrence in southeast Alaskan estuaries.  We used the Random Forest algorithm 

(Breiman, 2001), because it has been shown to develop highly accurate predictive species’ 

distribution models using a large number of predictor variables (Lawler et al., 2011; Magness et 

al., 2010).  Random Forest can effectively model nonlinear and interacting variables and can 

identify the variables with the strongest influence on species’ distributions (Cushman and 

Huettmann, 2010; Drew et al., 2011).  Species’ distributions, especially of schooling species, are 

often skewed and rare, or under-sampled species can cause large numbers of zero occurrences in 

the data (Cunningham and Lindenmayer, 2005; Gray et al., 2005, 2006; McArdle and Anderson, 

2001).  Random Forest models are not sensitive to violations of the normality assumptions 

required of linear models and they do not make any assumptions about the underlying distribution 

of the data.  Monotonic transformation of the response variables does not affect model results, 
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allowing modeling of skewed data.  The Random Forest algorithm fits a large number of simple 

models to predict the relationship between a response variable (species occurrence or abundance) 

and a set of predictor variables and then combines the resulting models to develop robust 

estimates of the response relationship (Oppel et al., 2009).  In this way Random Forest models 

differ from traditional regression-based models, such as Generalized Additive Models (GAMs), 

which attempt to fit a single “best” model to the data (Cutler et al., 2007; Prasad et al., 2006).  We 

used Random Forest to develop predictive models for the occurrence of fish and invertebrates 

from estuaries in Southeast Alaska and evaluated the predictive accuracy of the models against a 

set of independent data. 

 

MATERIALS AND METHODS 

Study area and data 

The study area (Figure 2.1) was the Alexander Archipelago: a collection of 

approximately 1,000 mountainous islands in Southeast Alaska from Dixon Entrance at the 

Canadian border (54º 47’35”, 130º 38’06”W) to Lance Point in Lynn Canal (58º 44’ 141”, 135º 

13’ 996”).  The coastline is generally steep and the islands are separated by deep channels and 

fjords.  The entire archipelago is a temperate rainforest: precipitation varies locally and regionally 

with a general gradient of lower precipitation in the northwest and higher precipitation in the 

southeast.  Precipitation is also strongly influenced by the coastal geology and topography 

(Weingartner et al., 2009).  Average annual precipitation in the region is in excess of 1000 mm/yr 

(Neal et al., 2002) with much of the precipitation being released directly into the marine waters 

via numerous small streams and wetlands.  Stream flow is highly seasonal and influenced both by 

precipitation and by snow and ice melt.  The highest stream flows tend to occur in autumn when 

precipitation rates are high.  Flows decrease in winter as a result of freezing, and increase again in 

the late spring and summer from melting of snow and ice.  The flow of freshwater affects not 

only the nearshore estuarine circulation, but is the driver for larger-scale oceanographic 

circulation within Southeast Alaska’s interior channels and on the continental shelf (Weingartner 

et al., 2009).  Stream and river temperatures are influenced both by air temperatures and by runoff 

from glaciers, snowmelt, and precipitation. 

The estuaries in the study area differ in their hydrological and geomorphological 

characteristics.  In many Southeast Alaska estuaries, tidal energy is often much higher than 

energy from freshwater inflow (Weingartner et al., 2009).  Southeast Alaska has mixed semi-
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diurnal tides with tidal height increasing as the tide moves from the continental shelf into the 

interior of the archipelago (Inazu et al., 2009).  The difference in height between mean higher 

high water and mean lower low water is between 1.18 to 5.13 m in the study area (NOAA, 2012).  

Tidal velocities are strongly influenced by bathymetry and channel morphology, and these, in 

turn, affect estuarine circulation, nutrient fluxes, and sediment dynamics (Weingartner et al., 

2009).  Coastal geology also varies greatly across estuaries in the study area.  Most estuaries have 

a mixture of soft and hard substrate shorelines, but the amount of each type of substrate varies 

depending on both oceanographic and terrestrial processes. 

Previous research identified approximately 12,000 estuaries in Southeast Alaska using 

the intersection of fresh and marine waters as the defining criteria (Albert et al., 2010); however; 

this definition does not take into account the degree to which the estuary is enclosed and 

somewhat isolated from other coastal waters.  This enclosure has important implications for 

estuarine circulation as well as the physical and chemical properties of the estuarine waters.  For 

this research, we defined an estuary as: a coastal indentation with a restricted connection to 

saltwater and an aquatic environment affected by the physical and chemical characteristics of 

both fluvial drainage and marine systems.  Using this definition, we delineated 541 estuaries 

between the high tide line and the 30 m depth contour in ArcGIS 10 ™ for model projection 

(Figure 2.2, blue dots).  Glacier Bay was excluded from the research because circulation within 

the bay is constrained by the shallow sill at the entrance to this fjord system.  As a result, the 

processes structuring fish and invertebrate communities within that bay are different than those in 

open estuaries in Southeast Alaska (Matthews, 1981). 

 

Species Sampling 

Fish and mobile benthic invertebrates were sampled in 49 Southeast Alaska estuaries 

between 1998 and 2005 using both trawl and seine gear (Figure 2.2, red dots).  Sampling was 

conducted during daylight hours between February and September at high and low slack water.  

Fish and mobile benthic invertebrates were captured using an otter trawl (3 m x 1 m, with 6 mm 

square mesh in the cod end) deployed with a bridle scope of approximately 20 m.  The trawl was 

towed at a speed of approximately 3 kn along a depth contour between 5 m and 10 m.  The exact 

depth of individual tows varied within this range depending on benthic structure of the estuary.  

One tow in each direction was made along the same transect at high and low slack water.  The 

latitude and longitude of the beginning and ending points of the trawl were recorded along with 
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the average depth of the tow.  The length of the trawl was calculated by marking the beginning 

and ending coordinates on the GIS and measuring along the appropriate depth contour.  Fish also 

were sampled with a 37-m long variable mesh beach seine that tapered from 5 m wide at the 

center to 1 m at the ends.  Outer panels were each 10 m with 32 mm stretch mesh, intermediate 

panels were each 4 m with 6 mm square mesh, and the bunt was 9 m with 2.3 mm square mesh.  

The net was set as a round haul by fixing one end on the beach, backing the skiff while deploying 

the net, and bringing the other end to shore approximately18 m down shore from the first end.  

The latitude and longitude for each sample were recorded.  Captured fish were identified to 

species and measured in the field to the nearest millimeter for total length.  Mobile benthic 

invertebrates were identified to the lowest taxonomic level in the field and counted. 

The length at 50% maturity for commercially harvested fish and some forage fish was 

obtained from the Alaska Fishery Science Center’s (AFSC) Life History database 

(http://access.afsc.noaa.gov/reem/LHWeb/Index.cfm) and was used to classify fish as adults or 

juveniles.  For fish species not in the AFSC database, a variety of published sources was used to 

obtain length at 50% maturity information.  For species that occurred in the data as a mix of 

juveniles and adults, life stages were pooled and modeled together.  Most sites were sampled only 

once.  The presence or absence of fish and invertebrates at each site was recorded by the month in 

which the sampling occurred. 

To verify the predictive models, we used the Alaska Nearshore Fish Atlas (Johnson et al., 

2005) as an independent dataset.  This dataset is a compilation of seine sampling at 279 sites in 

Southeast Alaska from 1998 to 2004 (Figure 2.2, yellow dots).  To ensure independence of the 

data, we used sites from the Fish Atlas data that were not sampled in the data used to develop the 

predictive models.  Captured fish from the Fish Atlas samples were identified to species in the 

field and were measured to the nearest millimeter for total length.  Very few invertebrates occur 

in the Fish Atlas data, so these data were used only to validate fish species models.  Because of 

differences in gear and sampling method between the Fish Atlas data and the sampled data used 

in this study, only presence/absence data were used to develop predictive models. All fish and 

invertebrates were collected by NOAA/NMFS under their collection permits. 

 

Environmental variables 

For each estuary, we identified 107 predictor variables using a conceptual model of 

estuarine system components (Figure 2.3) and using remotely sensed landscape data as surrogates 

http://access.afsc.noaa.gov/reem/LHWeb/Index.cfm�
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for environmental data measured in situ.  The conceptual model identifies four estuary 

components, and the predictor variable categories linked to those components.  Although they are 

depicted as discreet inputs, the estuary components (watershed structure, estuary structure, habitat 

and hydrodynamics) are strongly interrelated.  For example, tides affect not only hydrodynamics 

and circulation, but also sedimentation and habitat processes.  Variables were selected based both 

on their ability to describe one or more aspects of the four estuary components, and on their 

availability at the spatial scale of this research.   

GIS layers were acquired from the Southeast Alaska GIS library, the National Oceanic 

and Atmospheric Administration (NOAA), and the Alaska ShoreZone database (Table 2.1).  The 

predictors had varying units of measure, so all variables except the ShoreZone variables were 

standardized by subtracting the mean of the variable across all samples from each variable value 

and dividing by the standard deviation.  Random Forest models are invariant to monotonic 

transformation of the predictor variables (Shi and Horvath, 2006), but standardization makes it 

easier to plot variables for comparison purposes.  Variables that described the structure of the 

estuary included estuary length, width at mouth, area, perimeter, intertidal area, depth, 

bathymetric slope, and open water area.  Estuary length was measured as the distance from the 

high tide line to the estuary mouth.  The ArcGIS Spatial Analyst extension was used to calculate 

average, minimum and maximum parameters for bathymetric slope, and average and range 

parameters for depth.  Intertidal area was obtained directly from the Tongass National Forest 

High and Low Tidelines dataset (USDA, 2002), which contains polygons for intertidal areas.  

Open water area is the amount of open water at low tide and is the difference between the estuary 

area and the intertidal area.  Each estuary was assigned a classifier for the type of water body into 

which the estuary drains (bay, inlet, channel, or open ocean).  This was the only categorical 

variable in the predictor variable dataset.  For those estuaries draining into a bay or inlet, we 

measured the distance from the estuary mouth to open water, either a major channel or the open 

ocean. 

We also included variables describing the watershed surrounding the estuaries.  These 

variables included the size and slope of the watershed, the type and amount of land cover (e.g.  

vegetation, bare land, development, glaciers), and the degree of land cover fragmentation.  

Watershed size was derived from 12-digit hydrologic units (USGS, 1995).  We measured 

watershed slope at two distances from the estuary by placing buffers at 1 km and 5 km distance 

around the estuary and using a digital elevation model and the ArcGIS Spatial Statistics to 
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calculate maximum and average slopes within each buffer.  The most recent National Land Cover 

Dataset for Alaska (2001) was used to extract percent area of vegetation, bare land, development, 

and glacial ice in the 1 km buffer.  We used FRAGSTATS (McGarigal et al., 2002) to calculate 

five measures of land cover patchiness: total area, number of patches, patch density, largest patch 

index, and landscape shape index. 

Freshwater inflow into Southeast Alaska estuaries is difficult to calculate.  Much of the 

study area is remote and undeveloped and there is a paucity of stream flow data even for large 

rivers.  To capture the influence of freshwater on estuarine communities, we compiled minimum 

monthly precipitation over the study period from the PRISM climate model for Alaska (SNAP, 

2011).We calculated fluvial flow after the method of Digby et al. (1998) by multiplying the 

catchment area with the average annual rainfall and a runoff coefficient and dividing by the open 

water area of the estuary:  

 

 Fluvial Flow =  (𝑐𝑎𝑡𝑐ℎ𝑚𝑒𝑛𝑡 𝑎𝑟𝑒𝑎 𝑋 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑎𝑛𝑛𝑢𝑎𝑙 𝑝𝑟𝑒𝑐𝑖𝑝𝑖𝑡𝑎𝑡𝑖𝑜𝑛 𝑋 𝑟𝑢𝑛𝑜𝑓𝑓 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡)
𝑜𝑝𝑒𝑛 𝑤𝑎𝑡𝑒𝑟 𝑎𝑟𝑒𝑎

 

 

The runoff coefficient (RV) is based on the impervious fraction of the drainage area (I) (Schueler, 

1987): 

 

RV = 0.05 + 0.9(I) 

 

We calculated the variable “I” as the non-vegetated, non-ice portions of the watershed 

from the land cover analysis.  At the scale of this analysis, the variable “I” was sufficiently small 

that the runoff coefficient was essentially a constant (0.95) across all watersheds.  We measured 

the total length of streams within the 1 km buffer around the estuary and in the intertidal area 

using the USFS streams data layer for the Tongass National Forest (USGS).  The total length of 

streams within the buffer and the length and percent of streams in the intertidal area were 

included as predictor variables.  Surface salinity data for Southeast Alaska are not available at the 

spatial scale of this research.  Precipitation and fluvial flow variables were included in the 

analysis to capture differences in salinity and buoyancy-driven circulation between estuaries.   

The great diurnal tide range and mean tide range for each estuary was compiled from 

NOAA tide data (NOAA, 2012).  Estuaries without measured tidal data were attributed the tidal 

ranges from the nearest estuary with tidal data.  Estuary depth and slope, and the depth and 
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location of bars or sills were included as predictor variables to capture the influence of 

bathymetry in tidal energy and flow.  Bars and sills were defined as constrictions outside of the 

estuary that limited the flow of water into the estuary and where minimum depths were half or 

less of the average depth of the estuary.  Bathymetric contours were evaluated to identify 

bars/sills and we individually measured the distance between the bar/sill and the estuary mouth 

for each estuary in which they occurred. 

Geomorphological and biological characteristics of the intertidal portion of each estuary 

were obtained from the Alaska ShoreZone dataset (http://fakr.noaa.gov/shorezone/default.htm).  

ShoreZone is a mapping and classification system that uses oblique, low altitude aerial video and 

still images to classify segments of the shoreline according to natural breaks in geomorphic, 

sedimentary, and biological features (Harney et al., 2008).  Our analysis used variables in three 

elements of the ShoreZone dataset: coastal class, bioband, and habitat class.  Because shoreline 

segments are divided by natural breaks, they differ in length so the percentage of each variable 

within the estuary was used for analysis.   

Coastal Class: In the ShoreZone system (Harney et al., 2008), coastal class is determined 

by substrate type, sediment type, across-shore width and slope.  Coastal segments are first 

grouped into primary substrate categories: rock, rock and sediment, sediment, anthropogenic, 

channel, and glacier.  The rock and sediment and sediment categories are subdivided into classes 

by the type of sediment: gravel, sand and gravel, sand, and organics.  The rock, rock and 

sediment, and sediment classes are split into either wide (≥30 m) or narrow (<30 m) across-shore 

widths.  Finally, each shore segment is organized according to three slope classes: steep (>20°), 

inclined (5° to 20°) or flat (<5°).  Anthropogenic, channel, and glacier primary coastal categories 

are not divided by sediment type or slope.  The result is a single number for each combination of 

features, for example, coastal class 22 is described as: sediment, gravel, narrow, inclined.  The 

ShoreZone dataset has a total of 35 individual coastal classes; however, we only used classes that 

were represented in 5% or more of the estuaries for a total of 23 classes (Appendix A.3). 

Biobands (Harney et al., 2008) are assemblages of sessile coastal biota observed in the 

supra-, inter-, and sub-tidal zones of the shoreline segments.  Biobands are associated with a 

specific shore unit and are recorded as either “continuous” coverage or “patchy” coverage.  We 

used the subtidal biobands for red algae (e.g.  Neorhodomela sp.), Alaria, soft brown kelps (i.e. 

Saccharina latissima), dark brown kelps (i.e. stalked Laminaria sp.), and eelgrass (Zostera 

http://fakr.noaa.gov/shorezone/default.htm�


 21 

marina).  Predictor variables (Table 2.1) are the percentage of each type of coverage for each 

biota with respect to the total perimeter of the estuary. 

The habitat class is a summary classification that combines the physical and biological 

information for a shoreline unit into a single variable that describes the intertidal biota together 

with the geomorphology (Harney et al., 2008).  Shorelines are initially classified according to the 

dominant structuring process: wave energy, fluvial/estuarine, current energy, glacial, human 

modified, and lagoon.  Wave dominated environments are further refined by substrate mobility 

(immobile, partially mobile, mobile) and coastal geology.  All classes are finally grouped by 

biological wave exposure (very exposed, exposed, semi-exposed, semi-protected, protected, and 

very protected) using the presence and abundance of biota in the sampling unit as a proxy for 

energy conditions (Harney et al., 2008).  Of the 48 potential habitat classes described in 

ShoreZone, this analysis used 13 habitat classes that were present in 5% or more of the sites.  

Predictor variables are the percentage of each class with respect to the total perimeter of the 

estuary (Appendix A.4). 

 

Model development 

The Random Forest algorithm (Breiman, 2001) was used to develop predictive models 

for occurrence of fish and mobile benthic invertebrates.  These models have been shown to be 

highly accurate in their predictive ability (Magness et al., 2010; Prasad et al., 2006; Stojlgren et 

al., 2010) in a wide variety of applications.  Random Forests are collections of classification or 

regression trees constructed by first randomly drawing with replacement from the entire dataset to 

create separate training and testing data, and then randomly drawing with replacement from the 

predictor variables of the training dataset to construct individual decision trees.  Several hundred 

decision trees are grown in this manner using the dual randomization approach.  The best split for 

each predictor variable is determined by averaging the results across all trees.  The testing data 

not used in constructing the model, out-of-bag (OOB) data, were used to calculate an unbiased 

error rate and variable importance ranking (Breiman, 2001; Magness et al., 2010; Prasad et al., 

2006).  For classification, the prediction accuracy was assessed by plotting the number of 

correctly classified samples against those that are incorrectly classified. 

Correlation between individual trees is reduced by randomizing both the samples and the 

predictor variables, which decreases the error estimate of the entire ensemble.  Predictor variables 

are considered individually when constructing the decision trees, and the data are unconstrained 
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by the assumptions of the underlying distribution.  This makes Random Forest models suitable 

for situations where the number of predictors is much larger than the number of samples (p >> n) 

(Oppel and Huettmann, 2010; Strobl et al., 2009) and where the data are skewed or over-

dispersed.  Random Forest models are able to incorporate both nonlinearities and interactions 

between predictor variables (Prasad et al., 2006).   

Random Forest models were built for the occurrence of 25 fish species, and 18 mobile 

benthic invertebrate species and families using the randomForest package for R (Liaw and 

Wiener, 2002).  In the Random Forest algorithm, the number of variables selected for prediction 

(mtry) and, to a lesser extent, the number of trees grown in a Forest (ntree) can be used to tune the 

models to obtain better results.  For each species, we grew forests with 100, 500, 1000 and 1500 

trees using from 1 to 30 variables (mtry) per tree.  The receiver operating characteristic (ROC) 

was used to evaluate model performance for each species.  ROC curves graphically represent 

model performance by plotting the rate of true positive classification (sensitivity) for both 

presences and absences against the false positive rate (specificity) (Figure 2.4).  Each point along 

the curve represents a decision threshold indicating a tradeoff between true positive and false 

positive classification (Fawcett, 2006; Hamel, 2008).  The area under the ROC curve (AUC) can 

be used to select between models for the same species.  The AUC is comparable to a non-

parametric Wilcoxon test of ranks, and as such can be used to select models that, on average, 

have a higher probability of accurately predicting species occurrence in random draws from the 

data (Lobo et al., 2008; Termansen et al., 2006).  ROC curves were created using the pROC 

package in R for each model using the relative index of occurrence predicted by the models.  The 

model with the highest AUC was chosen as the best model for that species.  For all of the mobile 

benthic invertebrates, these predictions were made on the OOB dataset, which tends to result in 

more optimistic predictions than models tested on independent data.  The validation dataset did 

not include invertebrates.  For most of the fish species, predictions were assessed against the 

sampled presence/absence of species from the independent Fish Atlas dataset.  The exceptions 

were six fish species that were captured entirely or mostly by trawl gear, for which the 

independent seine dataset was inappropriate for verification.  These six fish species were 

predicted on the OOB data.   

Although the AUC also is commonly used to assess model predictive accuracy (Cutler et 

al., 2007; Magness et al., 2010; Williams et al., 2009), its use has been questioned in species 

distribution models where uncertainty regarding zeros or absences in the data is high (Lobo et al., 
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2008).  Species may be absent from a recorded sample for reasons unrelated to their true 

occurrence at a site, including: inability or limited ability of the sampling gear to consistently 

sample the species, sampling during a time period or season when the species is absent, or low 

occurrence of the species in the habitat being sampled (rarity).  The AUC gives equal weight to 

misclassification of presences and absences, which may not be appropriate in situations where 

confidence in species’ absences is low.  In both the modeling and verification datasets, the 

methods for collecting fish and mobile benthic invertebrate data were not designed to 

comprehensively sample the entire estuary, and sampling was not conducted in all estuaries in the 

same season.  As a result, there is substantial uncertainty as to whether a species’ absence from 

the data indicates a true absence from the habitat sampled.  The AUC summarizes model 

performance over the entire ROC curve, but the upper right and lower left portions of the curve, 

which correspond to high false-negative rates and high false-positive rates, respectively, should 

not be considered as reasonable models since the objective is to maximize true predictive 

outcomes.   

An alternative to the AUC is to assess model accuracy by comparing the number of 

presences and absences predicted by the model against the true presences and absences of species 

in the data.  Several approaches can be used to calculate the percent of correctly predicted 

presences and absences, or the probability threshold above which a species will be considered to 

be present.  We used the point on the ROC curve where the slope of the curve is equal to 1, or the 

highest sum of specificity and sensitivity (Jimenez-Valverde and Lobo, 2007).  This “best” 

threshold (Figure 2.4) was applied to the relative index of species occurrences from the models to 

obtain the percent of correctly classified presences and absences, and the model results were 

sorted by percentage of presences accurately predicted.  Species distribution maps for each 

species were developed by importing the relative index of occurrence (ROI) output from the 

individual models into the GIS. 

Predictor variable importance in Random Forest is calculated by permuting the variables 

individually in the OOB data and measuring the decrease in prediction accuracy for models 

computed with and without the permuted data.  To explore relationships between species 

occurrence and the predictor variables, partial dependence plots can be constructed for the most 

influential variables.  Partial dependence plots are calculated by fixing the values of an individual 

variable, and averaging the prediction function over the remaining variables in the data (Cutler et 

al., 2007).  For each species, we constructed partial dependence plots for the 30 most important 
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predictor variables.  These plots can be used to explore the relationships between the predictors 

and response in a multivariate setting (Oppel and Huettmann, 2010).   

 

RESULTS 

The modeling dataset contained 57 species of fish from 23 families.  Chum salmon 

(Oncorhynchus keta) was the most numerous fish species in the data, comprising 12% of the total 

catch across all sites and years, followed closely by pink salmon (Oncorhynchus gorbuscha) with 

11% of the catch.  Three species were captured at over 60% of the sites: Pacific staghorn sculpin 

(Leptocottus armatus), rock sole (Lepidopsetta sp.), and crescent gunnels (Pholis laeta).We 

developed predictive models for species captured in 5% or more of the sites with a result that 24 

fish species were modeled (Appendix A.1).  The invertebrate data contained 53 species and 43 

families.  Shell shrimp (Crangon alaskensis), and spot shrimp (Pandalus platyceros) made up the 

largest percentage of the total catch (16% and 12%, respectively), but 90% of the spot shrimp 

catch occurred at a single site.  Two species and one family were captured at over 60% of the 

sites: shell shrimp, helmet crab (Telmessus cheiragonus),and gammarid amphipods 

(Gammaridae).  We developed predictive models for mobile benthic invertebrate species and 

families occurring at 5% or more of the sample sites (18 invertebrates) (Appendix A.2). 

Several fish species occurred more frequently or entirely as juveniles in both the sample 

and independent data.  Species occurring only as juveniles included all species of salmon, Pacific 

herring (Clupea palasii), Pacific cod (Gadus macrocephalus), lingcod (Ophiodon elongatus), 

kelp greenling (Hexagrammos decagrammus), silverspot sculpin (Blepsias cirrhosus), butter sole 

(Iopsetta isolepis), and great sculpin (Myoxocephalus polyacanthocephalus).  Species whose 

abundance was predominantly composed of juveniles were yellowfin sole (Limanda aspera), rock 

sole (Lepidopsetta sp.), and Pacific sand lance (Ammondytes hextaperus).  Species with mixes of 

juveniles and adults were starry flounder (Platichthys stellatus), Pacific staghorn sculpin, and 

shiner perch (Cymatogaster aggregata).  Species for which life stage could not be determined 

from the literature were the snake prickleback (Lumpenus sagitta), tube-snout (Aulorhynchus 

flavidus), and sturgeon poacher (Podothecus accipenserinus). 

The AUCs of the Random Forest models for the individual species ranged from between 

0.94 and 0.63 for the fish species and 0.94 to 0.62 for the invertebrates.  For fish species, 

prediction accuracy ranged from 100% to 42% for species’ presences and 87% to 15% for 

species’ absences.  For invertebrates, prediction accuracies ranged from 88% and 60% for 
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presences and from 89% to 50% for absences (Table 2.2).  We defined strong models as those 

with an AUC of 0.80 or higher, moderate models as those with AUCs between 0.70 and 0.80, and 

weak models as those with AUCs below 0.70.  Seventy-six percent of the fish species and 72% of 

the invertebrates had moderate to strong models.  Model strength was not related to how common 

or rare a species was.  The predictive accuracy of the models was generally equally strong for 

predicting species’ presence and absence.  Sixty-eight percent of the Random Forest models for 

fish species, and 67% percent of the models for the invertebrates, were able to predict both 

species’ presence and absence in the independent data with an accuracy of 60% or better.  The 

models for Pacific herring and sturgeon poacher showed much poorer absence prediction than 

presence prediction.  These models had moderate prediction accuracy overall based on AUC.  

Presence and absence prediction accuracy for the invertebrate models was more even. 

Five of the top strong model species shared month as their most influential variable.  

These species were shiner perch, lingcod, pink salmon, chum salmon and Pacific cod.  Figure 2.5 

shows the top portion of the variable importance plots for each of these species.  The x-axis in 

these plots is the change in model performance when the variable is permuted and is different for 

each model.  The y-axis is the code for the predictor variable.  Each species had a unique set of 

important predictor variables with month as the highest or most influential.  For shiner perch and 

lingcod, month was first among other influential variables, but for pink salmon, chum salmon and 

Pacific cod, month was the most influential variable by a wide margin.  The relationship between 

month and species occurrence for each model can be visualized by examining the partial 

dependence plots for each species (Figure 2.6).  Shiner perch, lingcod and Pacific cod were all 

more prevalent in the estuaries during the latter part of the sampling period, from June to October.  

Pink and chum salmon had higher prevalence prior to June.    

All four of the flatfish species (butter sole, starry flounder, yellowfin sole and rock sole) 

had strong or moderate models (Table 2.2).  Precipitation was among the most important 

variables in models for butter sole and starry flounder, which showed opposite trends for all 

months.  Starry flounder were less likely to occur in areas with high precipitation and butter sole 

were more likely to occur in those locations.  The partial dependence plots in Figure 2.7 shows 

the marginal effect of precipitation on the relative index of occurrence for each species.  The 

scale of the vertical axis is half the logit of probability of occurrence (Cutler et al., 2007) and the 

x-axis is the value range of the variable from the data.  The relationship can be evaluated by 

examining the shape of the curves.  Butter sole predicted occurrence increases above 200 mm 
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minimum precipitation, while starry flounder predicted occurrence decreases at minimum 

precipitation values above 160 mm.  When minimum February precipitation for the study period 

is projected onto the basemap of Southeast Alaska, both species show a fairly strong spatial 

separation in the predicted habitat distribution, which is closely associated to precipitation 

patterns (Figure 2.8).  Variables most important to all flatfishes were those related to sediment 

and beach slope.  Yellowfin sole in addition were associated with a high total length of watershed 

and estuarine streams.  Large intertidal area was an important variable for rock sole.   

All of the salmonids except for coho salmon (Oncorhynchus kisutch) were predicted by 

strong or moderate models (Table 2.2) with important variables reflecting the specific habitat 

requirements of the individual species.  The AUC for the coho salmon model was 0.68, just short 

of the moderate model cutoff.  Coho, pink, chum, and sockeye salmon (Oncorhynchus nerka) in 

both datasets were juveniles, parr, or smolt, while the majority of Dolly Varden (Salvelinus 

malma) were adults.  Sampling month was the single most important variable for pink and chum 

salmon.  Although the other salmonids also exhibited strong seasonal occurrence, other physical 

habitat variables, such as mean tidal height, estuary slope and geomorphology, and precipitation 

were more important in determining species’ presence.  Coho salmon occurrence was higher in 

estuaries with greater stream lengths.   

For the other species with strong and moderate models, kelp greenling occurrence was 

associated with lower than average tidal exchanges and deep estuary slopes.  Silverspot sculpin 

were associated with low January and February precipitation and shallow depths.  Bay pipefish 

(Syngnathus leptorhyncus) occurrence was associated with high percentages of continuous and 

patchy eelgrass, and high minimum precipitation.  Occurrence of three-spine sticklebacks 

(Gasterosteus aculeatus) was positively associated with a large amount of estuarine and total 

watershed stream channel and negatively associated with higher estuarine slopes.  Tubesnout 

occurrence was associated with the ShoreZone habitat class for protected sediment substrates 

with shallow depths.   

Subtidal vegetation and substrate type were important variables for most of the 

invertebrates.  Cancer crabs (Cancridae), sunflower sea stars (Pycnopodia helianthoides), red 

rock crabs (Cancer productus), broken back shrimp (Hippolyte sp.), shell shrimp (Crangon 

alaskensis), dock shrimp (Pandalus danae), and helmet crabs (Telmessus cheiragonus) were all 

positively associated with high percentages of patchy and continuous eelgrass.  The graceful 

decorator crab (Oregonia gracilis) was positively associated with higher percentages of patchy 
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red algae, and the northern kelp crab (Pugettia producta), coonstripe shrimp (Pandalus 

hypsinotus), and broken back shrimp were positively associated with higher percentages of soft 

brown kelp.  Most invertebrates were positively associated with the sediment and rock and 

sediment ShoreZone primary coastal classes, with subclass associations varying by species.  

Several invertebrates showed strong correlation to estuaries with low tidal exchanges, including 

dock shrimp, Dungeness crab (Metacarcinus magister), red rock crab, mottled sea star 

(Evasterias troschelii), and graceful decorator crabs.   

Precipitation was an important variable for most invertebrate species, with many species 

exhibiting non-linear and seasonal relationships with minimum precipitation.  The graceful 

decorator crab was positively associated with low August and June precipitation but also with 

high April and November precipitation.  Other species, including the red rock crab and mottled 

sea star also were related to seasonal precipitation patterns.  Depth and slope were important 

variables for most species.  Figure 2.9 shows partial dependence plots for maximum estuary slope 

for Dungeness crab, red rock crab, and graceful decorator crab.  Dungeness crab occurrence was 

higher in estuaries with steeper slopes and red rock and graceful decorator crabs occurred in 

estuaries with shallower slopes and depths.  Dungeness crab presence was also strongly 

associated with higher amounts of intertidal area.   

 

DISCUSSION 

The majority of the models developed in this study had good ability to predict species’ 

presence as validated by the independent and OOB data.  Seasonality in the data may explain why 

some models were better at predicting presence than absence.  For example, both chum salmon 

and pink salmon occur in the estuaries seasonally as juveniles with highest abundances occurring 

between March and June.  Dungeness crab also have been shown to exhibit seasonal patterns of 

occurrence in shallow estuarine waters.  Female crabs are found in shallow water (<8 m) from 

April to June, and male crabs are found in water less than 25 m from April to July (Stone and 

O'Clair, 2001).  Graceful decorator crabs have seasonal abundance patterns in relation to kelp 

density (Daly and Konar, 2010), and juvenile Pacific herring exhibit seasonal movement between 

shallow and deep water during their estuarine residence (Penttila, 2007).  Because most of the 

estuaries were sampled only once, species many not have been present when the estuary was 

sampled.  For estuaries that contain habitat appropriate for these seasonal species, the models may 
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predict the species to be present even where sample and validation data do not have a record of 

species’ presence.  This would result in a false-positive prediction.   

For the salmonids, an additional factor limiting the accuracy of predicted absences may 

be the restricted amount of stream information in the data.  Each salmon species has different 

stream velocity and morphology preferences (Keeley and Slaney, 1996; Vadas, 2000), but the 

stream variables used in the models do not include information on stream width or flow.  Model 

results are based on variables predominantly associated with the estuary itself.  The model for 

sockeye salmon was considerably weaker than for the other salmonids.  Sockeye spawn primarily 

in lacustrine systems and the presence of lakes was not included as a predictor variable in the 

analysis.  It is likely this is partially responsible for the relatively small percent of correct 

presence occurrence predictions for sockeye salmon.  Estuaries with habitat variables important 

to sockeye salmon, but without lakes, were misclassified as sites where sockeye salmon should be 

present.   

Species distribution models predict the potential distribution of a species, not necessarily 

the realized distribution (Jiménez-Valverde et al., 2008; Lawler et al., 2011; Magness et al., 2010; 

Wei et al., 2010).  Species may not occur in suitable habitats for a variety of reasons, including 

biotic interactions such as competition or predation, or dispersal limitations, and this can result in 

false negatives in models where these factors are not considered.  While it is generally agreed that 

reliable species’ absence data can substantially improve species distribution modeling (Gu and 

Swihart, 2004; Lobo, 2008), determining that a species is absent from a habitat is much more 

difficult than determining that a species is present and requires a substantial sampling effort 

which, over large spatial scales, is often cost prohibitive.  In the absence of comprehensive 

absence data, model results could be improved by incorporating additional information on species 

interactions and co-occurrence, which would provide insight into the importance of biotic 

interactions on species distributions.  Including predator or prey species as predictor variables 

(Leathwick and Austin, 2001) and incorporating dispersal vectors (Boulangeat et al., 2012) are 

two approaches that have been used in species distribution models to account for biotic 

interactions, and could be included in Random Forest models in the future.   

Interpreting the importance of individual predictor variables to species-environment 

relationships is challenging in multi-variable models (Knudby et al., 2010; Magness et al., 2010; 

Oppel and Huettmann, 2010).  Unlike most linear models, Random Forest models take into 

account interactions among variables (Lunetta et al., 2004), and variables that do not have high 
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variable importance rankings may be influencing and increasing the importance rankings of other 

variables.  Random Forest also does not assess the statistical significance of variables to the 

response in the same manner as frequentist statistical approaches (Cutler et al., 2007); its strength 

lies in the ability to identify a suite of variables with strong influence on the predictive power of 

the model from a larger number of potential predictor variables.  As a result, relationships 

between species distribution patterns and individual variables must be evaluated in the context of 

the other variables in the model . 

For all of the fish and invertebrate species, many of the variables that were identified by 

the models as being most important in determining species occurrence have been identified in 

other studies to be important habitat characteristics.  Examples include a positive association 

between a high proportion of intertidal area and species occurrence for Dungeness crab (Holsman 

et al., 2003), and a positive association between depth and sediment type for occurrence of the 

flatfishes (Abookire et al., 2001; Moles and Norcross, 1995; Norcross et al., 1997).   

Other variables linked to occurrence of many of the species in this study may point to 

new relationships that other modeling approaches have not detected, a common feature in 

machine learning models (Huettmann and Diamond, 2001) .  One such variable is minimum 

precipitation, which was among the most important variables for many of the invertebrates and 

fishes, with individual species exhibiting positive or negative associations.  However, the 

mechanism by which precipitation influences species occurrence is not entirely clear and requires 

further investigation.  Precipitation and fluvial flow variables are included in the analysis to 

capture differences in salinity and buoyancy-driven circulation between estuaries, since remotely-

sensed data for these processes are not available at the spatial scale of this analysis.  Precipitation 

also may be a proxy for other oceanographic processes.  High precipitation can freshen the 

surface water layer and result in stratification, which can enhance primary productivity.  High 

freshwater discharge also is associated with the development of tidal fronts, areas of mixing that 

occur at the interface between stratified water and well mixed saline water as a result of tidal 

inflow into the estuary.  Constrictions, such as a narrowing of the estuary mouths, act as hydraulic 

controls that can enhance the formation of these fronts (Wedding et al., 2011).  Nutrients are 

drawn into the stratified surface layer of the front by diapycnal mixing at the frontal boundary, 

and over a period of time can enhance phytoplankton production (Macreadie et al., 2010).  At the 

same time, convergent flows along the frontal boundary advect and concentrate plankton, which 

attracts grazers and higher trophic level predators.  These fronts may also act as barriers to larval 
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transport helping to retain and distribute planktonic larvae within the estuary (Genuer et al., 2010; 

Svetnik et al., 2002).  It is likely that the precipitation variable is influencing individual species 

differently with some responding to increased freshening of the water and lower salinity, while 

others may be more strongly associated with productivity or other oceanographic frontal 

processes.   

Precipitation also may be influencing an aspect of the habitat, such as eelgrass 

abundance, rather than the fish or invertebrates themselves.  Variation in precipitation between 

estuaries is strongly influenced by Southeast Alaska’s complex geography, which also influences 

wind and air temperatures (Weingartner et al., 2009).  As a result, the relationship may not be 

between species and precipitation, but could be between the species and independent variables 

not included in the analysis for which precipitation is acting as a proxy.  This points out that, 

while accurate predictive models can be developed using landscape scale variables, any 

mechanisms underlying species-variable relationships need to be evaluated with additional data 

or research (see Drew et al. 2011). 

Predicted species occurrences from the models can be mapped using GIS to evaluate 

spatial patterns.  Mapping one or more species together can provide insight into habitat 

partitioning, especially for species with overlapping habitat ranges.  For example, Dungeness crab 

and red rock crab both occur in estuaries along the Pacific coast.  Mapping Dungeness crab and 

red rock crab together (Figure 2.8) showed areas of predicted occurrence overlap and areas where 

one species is predicted to occur without the other.  Dungeness crab are widely distributed in 

estuaries along the inner channels of Southeast Alaska, while red rock crab tend to have higher 

predicted occurrence along the coast.  Dungeness crab are common inhabitants of large estuaries 

throughout the Pacific coast of North America (Fisher and Velasquez, 2008).  These crab are 

thought to prefer waters deeper than 15 m but regularly forage in shallower and intertidal waters 

as both adults (Curtis and McGaw, 2012) and juveniles (Holsman et al., 2003).  Our predictive 

models indicated a high occurrence of this species in estuaries with steep slopes, which could 

make it easier for the crabs to move between shallow and deep waters.  Red rock crab also are a 

common estuarine species, but as osmoconformers (Carroll and Winn, 1989) they do not tolerate 

low salinity water.  Surface salinities in the study area tend to decrease with distance from the 

ocean, and this may be a factor affecting red rock crab predicted distributions in our models.  Our 

model results predicted relatively low overlap between the two species.  This is likely the result 

of different habitat preferences discussed above, but may be partially attributed to sampling bias.  
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Red rock crab tend to prefer harder substrates with more complex structure than Dungeness crab 

(Holsman et al., 2006).  In Southeast Alaska, estuaries with steep slopes and sandy-mud 

substrates, the habitat type preferred by Dungeness crab, tend to have rocky, complex habitat 

toward the estuary mouth and outside the sampling area, making it less likely that red rock crab 

would be captured in the same samples as Dungeness crab.   

 

CONCLUSIONS 

Species distribution models that accurately predict species occurrence in relation to 

habitat characteristics provide an important tool for conservation and ecosystem management; 

however, the ability to develop accurate models is often constrained by a lack of in-situ habitat 

data.  Although remotely-sensed environmental data are commonly used to develop distribution 

models for terrestrial species, the application of these data to marine species has been limited.  

This research demonstrated that ecologically useful predictive models can be developed for 

estuarine-associated fishes and invertebrates using regional-scale spatial datasets as a surrogate 

for environmental data collected in the field.  The strongest models in this study were able to 

accurately predict between 100% and 63% of species’ presences with respect to independent data.  

Variable importance measures from the models confirmed some species habitat relationships 

documented in previous research and highlighted new relationships that, with additional 

investigation, could further refine our knowledge of the factors influencing spatial distribution 

patterns.  Model results for individual species can be plotted in a GIS to reveal distribution 

patterns with respect to both biotic and abiotic factors, which can be used to inform management 

decisions.  In our data, where several species occurred more frequently as juveniles than adults, 

these maps can assist in identifying nearshore areas important to fishes and invertebrates at early 

life stages.  By incorporating variables such as precipitation and vegetation cover, the models can 

also be used to evaluate the effects of habitat alteration, including climate change, on species 

distributions.   

In this research, we focused on species occurrence to be able to evaluate the models 

against independent data collected using different gear, but predictive models for species 

abundance also could be developed using similar methods and data.  The influence of local 

landscape variables, such as bottom type and proximity to seagrass beds, on fish abundance has 

been demonstrated (Gratwicke and Speight, 2005; Peltonen et al., 2007), and landscape-scale 

variables have been used to predict total fish abundance and guild abundance on coral reefs 
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(Kendall et al., 2011).  In Alaska, in-situ variables such as temperature and salinity, have been 

evaluated against relative abundance of species in nearshore environments (Abookire et al., 2000; 

Mueter and Norcross, 1999), but there are no studies linking remotely-sensed landscape variables 

to nearshore species abundance.  Application of these methods to species abundance is planned in 

future research.   
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Figure 2.1: Map of the study area with major channels in italics and towns in bold  (adapted from 
Weingartner et al. 2009)  
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Figure 2.2: Estuaries in southeast Alaska.   Red dots are sampling sites used in model 
development, yellow dots are sample sites for independent data, blue dots are the estuaries to 
which model results were predicted  
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Figure 2.3: Conceptual model of a typical estuary showing relationship of model predictor 
variables to estuarine system components: structure, habitat, and hydrodynamics.   
 
 

 
 

Figure 2.4: Example of a receiver operator characteristic (ROC) curve.  The curve is the decision 
threshold between true positive classification (specificity), and false positive classification 
(sensitivity) for both presence and absence.  The area under the curve (AUC) is the average 
predictive ability of the model.  The optimal decision threshold is the point where the slope of the 
curve is equal to 1.  Numbers along the curve identify the “best” threshold: or the highest sum of 
sensitivity and specificity.  
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Figure 2.5: Top portion of the variable importance plots for species from the top five fish species’ 
models  X-axis is the change in model performance when the variable is permuted and the y-axis 
is the variable code. 
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Figure 2.6: Partial dependence plots for the top five fish species models  for the variable “month.” 
X-axis is the numerical month and y-axis is the average trend of the variable in the model.  
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Figure 2.7: Partial dependence plots of the occurrence of butter sole (a) and starry flounder (b) 
against minimum February precipitation in mm.  The x-axis is the range of the variable in the 
data.  The y-axis is the average trend of the variable in the model.  The shapes of the curves can 
be compared to visualize relationships between predicted species occurrence and variable values.  
 

  
  Figure 2.8: Predicted occurrence of starry flounder (red stars) and butter sole (green circles)  
with respect to average annual precipitation during the study period with warmer (reds) colors 
representing higher precipitation.  
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Figure 2.9: Partial dependence plot of Dungeness crab and red rock crab in relation to maximum 
estuary slope, and predicted distribution for Dungeness crab (yellow) and red rock crab (red) in 
the study area.  Yellow circles with red centers indicate estuaries where the species are predicted 
to overlap  
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Table 2.1: Independent variables used in predictive models.  NA= data without a spatial scale.   
 

Type No. Unit Time Scale Spatial Scale of 
data source 

Source 

Estuary Area 1 Sq.  Meters NA 1:63,360 USFS Tongass GIS - derived 
Estuary Perimeter 1 Meters  1:63,360 USFS Tongass GIS  - derived 
Intertidal Area 1 Sq.  Meters  1:63,360 USFS Tongass GIS  
Intertidal Perimeter 1 Meters  1:63,360 USFS Tongass GIS  
Open water 1 Sq.  Meters  1:63,360 USFS Tongass GIS - derived 
Watershed Area 1 Sq.  Meters  1:63,360 USGS Hydrologic Unit Maps  
Streams in watershed 

Estuarine streams 
Total streams 
Percent estuarine 

 
3 

 
Meters 

  
1:63,360 

 
USFS Tongass GIS  

Tidal range 2 Feet  NA NOAA 
Type of waterbody  2 Category  NA Derived 
Distance to waterbody 1 Meters  1:63,360 Derived 
Width 1 Meters  1:63,360 measured  
Length 1 Meters  1:63,360 measured  
Depth of bar/sill 1 Meters  5 m NMFS AKR Bathymetry - 
Width of bar/sill 1 Meters  1:63,360 measured 
Estuary slope 

Mean slope 
Maximum slope 
Range of slope 

 
3 

 
Degrees 

  
5 m 

 
NMFS AKR Bathymetry -
derived 

Depth 
Mean depth 
Maximum depth 
Range of depth 

 
3 

 
Meters 

  
5 m 

 
NMFS AKR Bathymetry -
derived 

Land cover patchiness 
Total area 
Number of patches 
Patch density 
Largest patch index 
Landscape shape 
index 

 
5 

 
Varies 

  
30m 

 
2001 National Land Cover 
Dataset 

Annual precipitation 1 Millimeters 1998-2005 2 km PRISM Climate Model 
Monthly precipitation 12 Millimeters 1998-2005 2 km PRISM Climate Model 
Fluvial flow 1 Flow/sq m 1998-2005 NA Derived 
Land cover 

Ice 
Developed 
Barren 
Deciduous 
Evergreen 
Mixed vegetation 
Dwarf 
Scrub-shrub 
Woody wetlands 
Emergent herbaceous 

 
 
 
 

10 

 
 
 
 
Percent 

  
 
 
 

30 m 

 
 
 
 
2001 National Land Cover 
Dataset 

Slope of watershed 2 Degrees  300 m USGS Digital Elevation Model 
Habitat class 17 Percent  Coastal unit Alaska ShoreZone dataset  
Geology class 25 Percent  Coastal unit Alaska ShoreZone dataset  
Inter/subtidal vegetation 
(continuous/patchy) 

Red algae 
Aleria  
Soft brown kelp 
Dark brown kelp 
Eelgrass 

 
 

8 

 
 
Percent 

  
 

Coastal unit 

 
 
Alaska ShoreZone dataset  
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Table 2.2: Occurrence model results for fishes and invertebrates sorted by area under the curve 
(AUC).  For life stage, capital letters indicate higher occurrence in the data than lower case 
letters.  A = adults, J=juveniles, A/J = equal numbers adults and juveniles, A(j) = more adults 
than juveniles, J(a) = more juveniles than adults, and M=species for which life stage could not be 
determined based on length of fish in samples.  An * indicates that the model for that species was 
validated from OOB rather than independent data.  

 

FISH SPECIES Life AUC INVERTEBRATES AUC
Stage

Shiner perch Dock shrimp*
Cymatogaster aggregata A/J 100 87 0.94 Pandalus danae 88 89 0.94

Lingcod Graceful decorator crab*
Ophiodon elongatus J 100 85 0.93 Oregonia gracilis 83 79 0.84

Pink salmon Gammarid isopods*
Oncorhynchus gorbuscha J 86 77 0.85 Gammaridae 76 75 0.80

Chum salmon Pandalid shrimp*
Oncorhynchus keta J 82 81 0.85 Pandalidae 73 66 0.80

Pacific cod Red rock crab*
Gadus macrocephalus J 78 78 0.84 Cancer productus 80 65 0.79

Butter sole Sunflower starfish*
Isopsetta isolepis J 75 74 0.84 Pycnopodia hellianthoides 84 63 0.77

Kelp greenling Broken back shrimp*
Hexagrammos decagrammus J 81 70 0.82 Hippolytidae 71 64 0.75

Starry flounder Coonstripe shrimp*
Platichthys stellatus A/J 86 63 0.77 Pandalus hypsinotus 70 64 0.75

Rock sole Spot shrimp
Lepidopsetta sp. J(a) 72 63 0.77 Pandalus platyceros 71 64 0.72

Dolly varden Cancer crabs*
Salvelinus malma A(j) 72 63 0.76 Cancer sp. 60 59 0.71

Yellowfin sole Stiletto shrimp*
Limanda aspera J(a) 72 63 0.75 Heptacarpus stylus 68 52 0.70

Silverspot sculpin* Northern kelp crab*
Blepsias cirrhosus J 67 69 0.75 Pugettia producta 75 57 0.70

Sockeye salmon Dungeness crab*
Oncorhynchus nerka J 69 66 0.74 Metacarcinus magister 71 72 0.70

Pacific herring Isopods*
Clupea pallasi J 54 20 0.72 Ispodoa 70 60 0.67

Tubesnout Crangons*
Aulorhynchus flavidus M 76 60 0.71 Crangonidae 81 60 0.66

Bay Pipefish Helmet crab*
Syngnathus leptorhynchus A/(j) 71 62 0.70 Telmessus cheiragonus 63 50 0.65

Sturgeon Poacher Mottled sea star*
Podothecus accipenserinus M 68 15 0.70 Evasterias troschelii 71 60 0.64

Pacific staghorn sculpin Pacific lyre crab*
Leptocottus armatus A/J 50 20 0.70 Hyas lyratus 60 56 0.62

Threespine stickleback
Gasterosteus aculeatus A 63 65 0.70

Coho salmon
Oncorhynchus kisutch J 68 30 0.68

Pacific sand lance
Ammodytes hexapterus J(a) 47 34 0.68

Snake prickleback*
Lumpenus sagitta M 61 59 0.67

Buffalo sculpin
Enophrys bison M 42 40 0.64

Crescent gunnel
Pholis laeta A(j) 60 50 0.63

Great sculpin
M. polyacanthocephalus J 72 63 0.63

% 
Present 
Correct

% Absence 
Correct

% 
Absence 
Correct

% 
Presence 
Correct



42 
 

REFERENCES 

Abookire, A.A., Piatt, J.F., Robards, M.D., 2000. Nearshore fish distributions in an Alaskan 

estuary in relation to stratification, temperature and salinity. Estuarine, Coastal and Shelf Science 

51, 45-59. 

Abookire, A.A., Piatt, J.F., Norcross, B.L., 2001. Juvenile groundfish habitat in Kachemak Bay, 

Alaska during late summer. Fishery Bulletin 8, 45-56. 

Albert, D., Shanley, C., Baker, L., 2010. A preliminary classification of bays and estuaries in 

Southeast Alaska: A hierarchical framework and exploratory analysis, Coastal Ecological 

Systems in Southeast Alaska. The Nature Conservancy (http://conserveonline.org/library/a-

preliminary-classification-of-bays-and-estuaries/view.html), Juneau, AK. 

Anderson, T.J., Syms, C., Roberts, D.A., Howard, D.F., 2009. Multi-scale fish-habitat 

associations and the use of habitat surrogates to predict the organization and abundance of deep-

water fish assemblages. Journal of Experimental Marine Biology and Ecology 379, 34-42. 

Austin, M.P., 2002. Spatial prediction of species distribution: an interface between ecological 

theory and statistical modelling. Ecological Modelling 157, 101-118. 

Boulangeat, I., Gravel, D., Thuiller, W., 2012. Accounting for dispersal and biotic interactions to 

disentangle drivers of species distributions and their abundances. Ecology Letters 15, 584-593. 

Breiman, L., 2001. Random Forests. Machine Learning 45, 5-32. 

Brenden, T.O., Wang, L., Clark Jr., R.D., Seelbach, P.W., 2007. Comparison between model-

predicted and field-measured stream habitat features for evaluating fish assemblage-habitat 

relationships. Transactions of the American Fisheries Society 136, 580-592. 

Carroll, J.C., Winn, R.N., 1989. Species Profiles: Brown rock crab, red rock crab and yellow rock 

crab.  Biological Report 82(11.117). 

Cèrèghino, R., Santoul, F., Compin, A., Figuerola, J., Mastrorillo, S., 2005. Co-occurrence 

patterns of some small-bodied freshwater fishes in southwestern France: implications for fish 

conservation and environmental management. Ambio 34, 440-444. 

Cunningham, R.B., Lindenmayer, D.B., 2005. Modeling count data of rare species: some 

statistical issues. Ecology 86, 1135-1142. 

Curtis, D.L., McGaw, I.J., 2012. Salinity and thermal preference of Dungeness crabs in the lab 

and in the field: Effects of food availability and starvation. Journal of Experimental Marine 

Biology and Ecology 413, 113-120. 

http://conserveonline.org/library/a-preliminary-classification-of-bays-and-estuaries/view.html)�
http://conserveonline.org/library/a-preliminary-classification-of-bays-and-estuaries/view.html)�


 43 

Cushman, S., Huettmann, F., 2010. Spatial Complexity, Informatics and Wildlife Conservation. 

Springer, Tokyo, Japan. 

Cutler, D.R., Edwards Jr., T.C., Bears, K.H., Cutler, A., Hess, K., Gibson, J., Lawler, J.J., 2007. 

Random forests for classification in ecology. Ecology 88, 2783-2792. 

Daly, B., Konar, B., 2010. Temporal trends of two spider crabs (Brachyura, Majoidea) in 

nearshore kelp habitats in Alaska, USA. Crustaceana 83, 659-669. 

Digby, M.J., Saenger, P., Whelan, M.B., McConchie, D., Eyre, B., Holmes, N., Bucher, D., 1998. 

A physical classification of Australian estuaries. Centre for Coastal Management, Southern Cross 

University,Urban Water Research Association of Australia, 

(http://au.riversinfo.org/library/nrhp/estuary_clasifn/). 

Drew, C.A., Wiersma, Y., Huettmann, F., 2011. Predictive Modeling in Landscape Ecology. 

Springer, New York, NY. 

Dye, A.H., 2006. Is geomorphic zonation a useful predictor of patterns of benthic infauna in 

intermittent estuaries in New South Wales, Australia. Estuaries and Coasts 29, 455-464. 

Elith, J., Leathwick, J., 2009. Species distribution models: ecological explanation and prediction 

across space and time. Annual Review of Ecology and Systematics 40, 677-697. 

Elmendorf, S.C., Moore, K.A., 2008. The use of community-composition data to predict the 

fecundity and abundance of species. Conservation Biology 22, 1523-1532. 

Fawcett, T., 2006. An introduction to ROC analysis. Pattern Recognition Letters 27, 861-874. 

Fisher, W., Velasquez, D., 2008. Management recommendations for Washington's priority 

habitats and species: Dungeness crab (Cancer magister). Washington Department of Fish and 

Wildlife. 

Genuer, R., Poggi, J.-M., Tuleau-Malot, C., 2010. Variable selection using random forests. 

Pattern Recognition Letters 31, 2225-2236. 

Gratwicke, B., Speight, M.R., 2005. The relationship between fish species richness, abundance 

and habitat complexity in a range of shallow tropical marine habitats. Journal of Fish Biology 66, 

650-667. 

Gray, J.S., Bjørgesæter, A., Ugland, K.I., 2005. The impact of rare species on natural 

assemblages. Journal of Animal Ecology 74, 1131-1139. 

Gray, J.S., Bjørgesæter, A., Ugland, K.I., 2006. On plotting species abundance distributions. 

Journal of Animal Ecology 75, 752-756. 

http://au.riversinfo.org/library/nrhp/estuary_clasifn/)�


44 
 

Gu, W., Swihart, R.K., 2004. Absent or undetected? Effects of non-detection of species 

occurrence on wildlife-habitat models. Biological Conservation 116, 195-203. 

Gutiérrez-Estrada, J.C., Vasconcelos, R., Costa, M.J., 2008. Estimating fish community diversity 

from environmental features in the Tagus estuary (Portugal): Multiple linear regression and 

artificial neural network approaches. Journal of Applied Ichthyology 24, 150-162. 

Hamel, L., 2008. Model assessment with ROC curves, in: Wang, J. (Ed.), The Encyclopedia of 

Data Warehousing and Mining, 2nd Edition. Idea Group Publishers, Hershey, PA, p. 2542. 

Hardy, S., Lindgren, M., Hanumantharao, K., Huettmann, F., 2011. Predicting the distribution 

and ecological niche of unexploited snow crab (Chionoecetes opilio) populations in Alaska 

waters: A first open-access ensemble model. Integrative and Comparative Biology 51, 608-622. 

Harney, J., Morris, M., Harper, J., 2008. Shorezone coastal habitat mapping protocol for the Gulf 

of Alaska. Coastal & Ocean Resources, Inc. (http://www.fakr.noaa.gov/shorezone). 

Hicks, A., Barbee, N.C., Swearer, S.E., Downes, B.J., 2010. Estuarine geomorphology and low 

salinity requirement for fertilisation influence spawning site location in the diadromous fish, 

Galaxias maculatus. Marine and Freshwater Research 61, 1252-1258. 

Holsman, K., McDonald, P.S., Armstrong, D.A., 2006. Intertidal migration and habitat use by 

subadult Dungeness crab, Cancer Magister, in a NE Pacific estuary. Marine Ecology Progress 

Series 308, 183-195. 

Holsman, K., Armstrong, D.A., Beauchamp, D.A., Reusink, J.L., 2003. The necessity for 

intertidal foraging by estuarine populations of subadult Dungeness crab, Cancer Magister: 

Evidence from a bioenergetics model. Estuaries 26, 1155-1173. 

Huettmann, F., Diamond, A.W., 2001. Using PCA scores to classify species communities: an 

example using seabird classifications at sea. Journal of Applied Statistics 28, 843-853. 

Inazu, D., Sato, T., Miura, S., Ohta, Y., Nakamura, K., Fujimoto, H., Larsen, C.F., Higuchi, T., 

2009. Accurate ocean tide modeling in Southeast Alaska and large tidal dissipation around 

Glacier Bay. Journal of Oceanography 65, 335-347. 

Jelbart, J.E., Ross, P.M., Connolly, R.M., 2006. Edge effects and patch size in seagrass 

landscapes: an experimental test using fish. Marine Ecology Progress Series 319, 93-102. 

Jimenez-Valverde, A., Lobo, J.M., 2007. Threshold criteria for conversion of probability of 

species presence to either-or presence-absence. Acta Oecologica 31, 361-369. 

Jiménez-Valverde, A., Lobo, J.M., Hortal, J., 2008. Not as good as they seem: the importance of 

concepts in species distribution modelling. Diversity and Distributions 14, 885-890. 

http://www.fakr.noaa.gov/shorezone)�


 45 

Johnson, S.W., Neff, A.D., Thedinga, J., 2005. An atlas on the distribution and habitat of 

common fishes in shallow nearshore waters of southeastern Alaska. U.S. Department of 

Commerce NOAA Technical Memo NMFS-AFSC-157, 89. 

Johnson, S.W., Murphy, M.L., Csepp, D.J., Harris, P., Thedinga, J., 2003. A survey of fish 

assemblages in eelgrass and kelp habitats of Southeast Alaska. US Department of Commerce, 

NMFS-AFSC-139. 

Keeley, E.R., Slaney, P.A., 1996. Quantitative measures of rearing and spawning habitat 

characteristics for stream-dwelling salmonids: Guidelines for habitat restoration, Watershed 

Restoration Project Report No. 4. Watershed Restoration Program, Ministry of Environment, 

Lands and Parks and Ministry of Forests. URL: env.gov.bc.ca/wld/documents/wrp/wrpr_4.pdf, 

Vancouver, British Columbia. 

Kendall, M.A., Miller, T.J., Pittman, S.J., 2011. Patterns of scale-dependency and the influence of 

map resolution on the seascape ecology of reef fish. Marine Ecology Progress Series 427, 259-

274. 

Knudby, A., Brenning, A., LeDrew, E., 2010. New approaches to modelling fish-habitat 

relationships. Ecological Modelling 221, 503-511. 

Lawler, J.J., Wiersma, Y., Huettmann, F., 2011. Designing predictive models for increased 

utility: Using species distribution models for conservation planning, forecasting and risk 

assessment, in: Drew, C.A., Wiersma, Y., Huettmann, F. (Eds.), Predictive Modeling in 

Landscape Ecology. Springer, New York, NY, p. 314. 

Leathwick, J., Austin, M.P., 2001. Competitive interactions between tree species in New 

Zealand's old-growth indigenous forests. Ecology 82, 2560-2573. 

Liaw, A., Wiener, M., 2002. Classification and regression by randomForest. R News 2/3, 18-22. 

Lobo, J.M., 2008. More complex distribution models or more representative data? Biodiveristy 

Informatics 5, 14-19. 

Lobo, J.M., Jimenez-Valverde, A., Real, R., 2008. AUC: a misleading measure of the 

performance of predictive distribution models. Global Ecology and Biogeography 17, 145-151. 

Lunetta, K.L., Hayward, L.B., Segal, J., Van Eerdewegh, P., 2004. Screening large-scale 

association study data: exploiting interactions using random forests. BMC Genetics 5, 32-45. 

Macreadie, P.I., Hindell, J.S., Keough, M.J., Jenkins, G.P., Connolly, R.M., 2010. Resource 

distribution influences positive edge effects in a seagrass fish. Ecology 91, 2013-2021. 



46 
 

Magness, D.R., Huettmann, F., Morton, J.M., 2010. Using random forests to provide predicted 

species distribution maps as a metric for ecological inventory and monitoring programs, in: 

Cushman, S., F. Huettmann (Ed.), Spatial complexity, informatics and wildlife conservation. 

Springer, New York, p. 464 p. 

Matthews, J.B., 1981. The seasonal circulation of the Glacier Bay, Alaska fjord system. 

Estuarine, Coastal and Shelf Science 12, 679-700. 

Maxwell, D.L., Stelzenmuller, V., Eastwood, P.D., Rogers, S.I., 2009. Modelling the spatial 

distribution of plaice (Pleuronectes platessa), sole (Solea solea), and thornback ray (Raja 

clavataI) in UK waters for marine management and planning. Journal of Sea Research 61, 258-

267. 

McArdle, B.H., Anderson, M.J., 2001. Fitting multivariate models to community data: a comment 

on distance-based redundancy analysis. Ecology 82, 290-297. 

McGarigal, K., Cushman, S., Ene, E., 2002. FRAGSTATS: Spatial pattern analysis program for 

categorical maps.Available at the following website: 

http://www.umas.edu/landco/research/fragstats/fragstats.html. University of Massachusetts, 

Amherst. 

Moles, A., Norcross, B.L., 1995. Sediment preference in juvenile Pacific flatfishes. Netherlands 

Journal of Sea Research 

 34, 177-182. 

Mueter, F.J., Norcross, B.L., 1999. Linking community structure of small demersal fishes around 

Kodiak Island, Alaska to environmental variables. Marine Ecology Progress Series 190, 37-51. 

Mueter, F.J., Litzow, M.A., 2008. Sea ice retreat alters the biogeography of the Bering Sea 

continental shelf. Ecological Applications 18, 309-320. 

Murphy, M.L., Johnson, S.W., Csepp, D.J., 2000. A comparison of fish assemblages in eelgrass 

and adjacent subtidal habitats near Craig, Alaska. Alaska Fishery Bulletin 7, 11-21. 

Neal, E.G., Walter, M.T., Coffeen, C., 2002. Linking the Pacific decadal oscillation to seasonal 

stream discharge patterns in Southeast Alaska. Journal of Hydrology 263, 188-197. 

NOAA, 2012. NOAA Tides and Currents. National Oceanic and Atmospheric 

Administration,Center for Operational Oceanographic Products, http://tidesandcurrents.noaa.gov. 

Norcross, B.L., Mueter, F.J., Holladay, B.A., 1997. Habitat models for juvenile pleuronectids 

around Kodiak Island, Alaska. Fishery Bulletin 95, 504-520. 

http://www.umas.edu/landco/research/fragstats/fragstats.html�
http://tidesandcurrents.noaa.gov/�


 47 

Ohse, B., Huettmann, F., Ickert-Bond, S., Juday, G., 2009. Modeling the distribution of white 

spruce (Picea glauca) for Alaska with high accuracy: an open access role-model for predicting 

tree species in the last remaining wilderness areas. Polar Biology 32, 1717-1724. 

Oppel, S., Huettmann, F., 2010. Using a random forest model and public data to predict the 

distribution of prey for marine wildlife management, in: Cushman, S., Huettmann, F. (Eds.), 

Spatial Complexity, Informatics and Wildlife Conservation. Springer, Tokyo, Japan, pp. 151-164. 

Oppel, S., Strobl, C., Huettmann, F., 2009. Alternative methods to quantify variable importance 

in ecology. Department of Statistics, University of Munich, Technical Report  Number 65, 

Munich, pp. 6  (http://epub.ub.uni-muenchen.de/10992/10991/Oppeletal_techreport.pdf). 

Palialexis, A., Georgakarakos, S., Karakassis, I., Lika, K., Valavanis, V.D., 2011. Fish 

distribution predictions from different points of view: comparing associative neural networks, 

geostatistics, and regression models. Hydrobiologia 670, 165-188. 

Peltonen, H., Luoto, M., Pääkkönen, J.-P., Tuomaala, A., Pönni, J., Viitasalo, M., 2007. Pelagic 

fish abundance in relation to regional environmental variation in the Gulf fo Findland, northern 

Baltic Sea. ICES Journal of Marine Science 64, 487-495. 

Penttila, D., 2007. Marine forage fishes in Puget Sound. Washington Department of Fish and 

Wildlife,  www.pugetsoundnearshore.org/technical_papers/marine_fish.pdf. 

Pittman, S.J., Christensen, J.D., Caldow, C., Menza, C., Monaco, M.E., 2007. Predictive mapping 

of fish species richness across shallow-water seascapes in the Caribbean. Ecological Modelling 

204, 9-21. 

Prasad, A.M., Iverson, L.R., Liaw, A., 2006. Newer classification and regression tree techniques: 

bagging and random forests for ecological prediction. Ecosystems 9, 181-199. 

Robinson, L.M., Elith, J., Hobday, A.J., Pearson, R.G., Kendall, M.A., Possingham, H.P., 

Richardson, A.J., 2011. Pushing the limits in marine species distribution modeling: lessons from 

the land present challenges. Global Ecology and Biogeography 20, 789-802. 

Roy, P.S., Williams, R.J., Jones, A.R., Yassini, I., Gibbs, P.J., Coates, R.J., Scanes, P.R., Hudson, 

J.P., Nichol, S., 2001. Structure and function of south-east Australian estuaries. Estuarine, Coastal 

and Shelf Science 53, 351-384. 

Schueler, T., 1987. Controlling urban runoff: a practical manual for planning and designing urban 

BMPs. Department of Environmental Conservation New York State,  

http:\\www.dec.ny.gov/docs/water_pdf/simple.pdf. 

http://epub.ub.uni-muenchen.de/10992/10991/Oppeletal_techreport.pdf)�
http://www.pugetsoundnearshore.org/technical_papers/marine_fish.pdf�
http://www.dec.ny.gov/docs/water_pdf/simple.pdf�


48 
 

Shi, T., Horvath, S., 2006. Unsupervised learning with Random Forest predictors. Journal of 

Computation and Graphical Statistics 15, 118-138. 

SNAP, 2011. Scenarios Network for Alaska and Arctic Planning. University of Alaska, 

(http://www.snap.uaf.edu/data.php). 

Stojlgren, T.J., Ma, P., Kumar, S., Rocca, M., Morisette, J.T., Jarnevish, C.S., Benson, N., 2010. 

Ensemble habitat mapping of invasive plant species. Risk Analysis 30, 224-235. 

Stone, R.P., O'Clair, C.E., 2001. Seasonal movements and distribution of Dungeness crabs, 

Cancer magister, in a glacial southeastern Alaska estuary. Marine Ecology Progress Series 214, 

167-176. 

Stoner, A.W., Spencer, M.L., Ryer, C., 2007. Flatfish-habitat associations in Alaska nursery 

grounds: Use of continuous video records for multi-scale spatial analysis. Journal of Sea Research 

57, 137-150. 

Strobl, C., Malley, J., Tutz, G., 2009. An introduction to recursive partitioning. University of 

Munich Technical Report Number 55. 

Sundblad, G., Harma, M., Lappalainen, A., Urho, L., Bergstrom, U., 2009. Transferability of 

predictive fish distribution models in two coastal systems. Estuarine, Coastal and Shelf Science 

83, 90-96. 

Svetnik, V., Liaw, A., Tong, C., 2002. Variable selection in random forest with application to 

quantitative structure-activity relationship, in: Intrator, N., Masulli, F. (Eds.), 7th Course on 

Ensemble Methods for Learning Machines, September 22-28, 2002. Springer-Verlag, Salterno, 

Italy  

Termansen, M., McClean, C.J., Preston, C.D., 2006. The use of genetic algorithms and Bayesian 

classification to model species distributions. Ecological Modelling 192, 410-424. 

USDA, 2002. High and low tidelines. USDA Forest Service, Tongass National Forest, Southeast 

Alaska GIS Library,  (http://seakgis.alaska.edu). 

USGS, Alaska 300 m digital elevation model. U.S. Geological Survey EROS Alaska Field Office 

(http://agdc.usgs.gov/data/usgs/erosafo/300m/300m.html), Year accessed: 2009. 

USGS, 1995. Alaska hydrologic units. U.S. Geological Survey (http://nhd.usgs.gov/data.html) 

accessed: 2009. 

Vadas, R.L., 2000. Instream-flow needs for anadromous salmonids and lamprey on the Pacific 

coast, with special reference to the Pacific southwest. Environmental Monitoring and Assessment 

64, 331-358. 

http://www.snap.uaf.edu/data.php)�
http://seakgis.alaska.edu)/�
http://agdc.usgs.gov/data/usgs/erosafo/300m/300m.html)�
http://nhd.usgs.gov/data.html�


 49 

Valavanis, V.D., Pierce, G.J., Zuur, A.F., Palialexis, A., Saveliev, A., Katara, I., Wang, J., 2008. 

Modelling of essential fish habitat based on remote sensing, spatial analysis and GIS. 

Hydrobiologia 612, 5-20. 

Valesini, F.J., Hourston, M., Wilsdsmith, M.D., Coen, N.J., Potter, I.C., 2010. New quantitiative 

approaches for classifying and predicting local-scale habitats in estuaries. Estuarine, Coastal and 

Shelf Science 86, 645-664. 

Wedding, L.M., Friedlander, A.M., 2008. Determining the influence of seascape structure on 

coral reef fishes in Hawaii using a geospatial approach. Marine Geodesy 31, 246-266. 

Wedding, L.M., Lepcxyk, C.A., Pittman, S.J., Friedlander, A.M., Jorgensen, S., 2011. 

Quantifying seascape structure: extending terrestrial spatial pattern metrics to the marine realm. 

Marine Ecology Progress Series 427, 219-232. 

Wei, C.-L., Rowe, G.T., Escobar-Briones, E., Boetius, A., Softwedel, T., Caley, M.J., Soliman, 

Y., Huettmann, F., Qu, F., Yu, Z., Pitcher, C.R., Haedrich, R.L., Wickstein, M.K., Rex, M.A., 

Baguley, J.G., Sharma, J., Danovaro, R., MacDonald, I.R., Nunnally, C.C., Deming, J.W., 

Montagna, P., Lévesque, M., Weslawski, J.M., Wlodarska-Kowalczuk, M., Ingole, B.S., Bett, 

B.J., Billett, D.S.M., Yool, A., Bluhm, B., Iken, K., Narayanaswamy, B.E., 2010. Global patterns 

and predictions of seafloor biomass using random forests. PlosOne 5, e15323. 

Weingartner, T., Eisner, L., Eckert, G.L., Danielson, S., 2009. Southeast Alaska: oceanographic 

habitats and linkages. Journal of Biogeography 36, 387-400. 

Whitlow, W.L., Grabowski, J.H., 2012. Examining how landscapes influence benthic community 

assemblages in seagrass and mudflat habitats in southern Maine. Journal of Experimental Marine 

Biology and Ecology 411, 1-6. 

Wiens, J.J., 2011. The niche, biogeography and species interactions. Philosophical Transactions 

of the Royal Society B: Biological Sciences 366, 2336-2350. 

Wilkins, B.C., Snyder, N.P., 2011. Geomorphic comparison of two Atlantic coastal rivers: toward 

an understanding of physical controls on Atlantic salmon habitat. River Research and 

Applications 27, 135-156. 

Williams, J.N., Seo, C., Thorned, J., Nelson, J.K., Erwin, S., O'Brien, J.M., Schwartz, M.W., 

2009. Using species distribution models to predict new occurrences for rare plants. Diversity and 

Distributions 15, 565-576. 

 

 



50 

 

Chapter 3: Multivariate Random Forest Models of Estuarine-associated Fish and 

Invertebrate Communities
1
 

 

ABSTRACT 

Models that evaluate species habitat relationships at the community level have been 

gaining attention with increasing interest in ecosystem management.  Developing models that can 

incorporate both a multiple response variable of individual species occurrence or abundance, as 

well as a large number of predictor variables is challenging.  One promising new approach is 

Multivariate Random Forests (MRF), a method that combines multivariate regression trees with 

bootstrap resampling and predictor subsampling from traditional Random Forests.  Random 

Forest models have been shown to be highly accurate and powerful in their predictive ability in a 

wide variety of applications.  They can effectively model nonlinear and interacting variables.  Our 

research evaluated change in estuarine assemblage composition along habitat gradients in 

Southeast Alaska using landscape-scale habitat variables and MRF.  For 541 estuaries, we 

identified 24 predictor variables describing the geomorphic and habitat environment on land and 

in the estuary.  MRF models were constructed in R for combined fish and invertebrate 

assemblages.  Cluster analysis of model proximities revealed strong spatial variation in 

community composition in relation to differences in tidal height, precipitation, percent of 

eelgrass, and amount of intertidal habitat.  This research presents a new science-based 

management template that can be used to inform and assess species management and protection 

strategies, as well to guide future research on species distributions. 

 

INTRODUCTION 

The shift in focus from single-species management to ecosystem methods has increased 

interest in community or assemblage-based models.  A common approach to multi-species 

modeling is to model each species independently and evaluate the overlaps in species 

distributions.  An assumption of these single species models is that species respond to 

environmental differences in an individualistic manner (Ferrier & Guisan 2006, Baselga & 

Araújo 2010), which may not be the case where biotic interactions and dispersal pathways limit 

the species’ realized niche (Wiens 2011, Boulangeat et al. 2012).  Methods that do not 

                                                      
1
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incorporate some information on species interactions, such as the use of metrics like species 

richness or diversity, have the severe limitation that they do not capture the identity of the species 

in sampled areas and therefore can provide no information on how communities are structured.   

 Species-habitat relationships are affected by biotic and abiotic processes that occur on a 

variety of spatial scales (Anderson et al. 2009, Elith & Leathwick 2009).  In estuaries species tend 

to have wide environmental tolerances that make them adaptable to many different environments 

and to high environmental variability, and their response to environmental factors can be 

nonlinear or discontinuous (Mueter & Norcross 1999, Gutiérrez-Estrada et al. 2008).  

Furthermore, the effects of most environmental factors do not occur in isolation from effects of 

other factors, which makes it difficult for researchers to attribute simple causality in explaining 

variation in assemblage composition (Oppel et al. 2009).  In Alaska, a number of studies have 

identified species habitat relationships for individual species in estuaries or the nearshore 

(Norcross et al. 1997, Abookire et al. 2001, Stone & O'Clair 2001, Stoner et al. 2007) but the key 

patterns and processes that influence structure in these estuarine communities are still undefined.   

 One reason so much attention has focused on single species models is the challenge of 

developing models that can incorporate both a large number of environmental predictor variables 

and a response composed of individual species occurrence or abundance (Olden 2003).  These 

situations require fitting a model of environmental predictors simultaneously to dependent 

variables representing the presence or abundance of each species in the data.  A relatively new 

approach to multi-species distribution models is Multivariate Random Forests (Segal & Xiao 

2011), a method that combines multivariate regression trees (De'ath 2002) with bootstrap 

resampling and predictor subsampling from traditional Random Forests (Breiman 2001).  

Random Forest models have been shown to be highly accurate in their predictive ability in a wide 

variety of applications (Prasad et al. 2006, Magness et al. 2010, Stojlgren et al. 2010).  They can 

effectively model nonlinear and interacting predictor variables and can identify the predictor 

variables with the strongest influence on community composition patterns.  By modeling the 

response of a community of species to environmental variables, models such as Multivariate 

Random Forests (MRF) incorporate information on species co-occurrence that can be used to 

evaluate the influence of species interactions on community composition (Baselga & Araújo 

2010).  Results from these models can be used to extrapolate beyond the sampled assemblages to 

predict community composition in unsampled areas (Elith et al. 2006, Drew et al. 2011).   
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 A challenge for community modeling is the large number of species that occur in only a 

few samples or occur in low numbers (Cao et al. 1998, Gray et al. 2005, Park et al. 2006, 

Ellingsen et al. 2007).  In some cases, these species can account for up to half the species in the 

dataset (Clarke & Warwick 2001, Cunningham & Lindenmayer 2005).  Species may be rare in 

samples because they are found in only a few of the habitats sampled, or they may be present at a 

broad number of sites and either occur in low numbers or are unable to be captured consistently 

with the sampling gear (Cunningham & Lindenmayer 2005).  Similarly, life-history or behavioral 

traits, such as schooling, may result in spatial clumping of species (McArdle & Anderson 2001, 

Cunningham & Lindenmayer 2005, Gray et al. 2005, 2006).  In most single-species models, 

species with low occurrence in the data are often excluded because they do not exhibit good 

statistical properties.  Modeling methods that use similarity matrices also tend to exclude rare 

species.  Commonly used similarity metrics, such as the Bray-Curtis measure, are strongly 

affected by species abundance (Clarke et al. 2007) and spurious grouping of species can occur as 

the number of individuals of a species within a sample becomes more sparse (Field et al. 1982, 

Cao et al. 1997, Clarke et al. 2006).  Because Random Forest models are robust to violations of 

the normality assumptions required of linear models, they can provide accurate results even with 

sparse or zero-heavy data (Breiman 2001).   

 Our research evaluated change in estuarine assemblage composition along habitat 

gradients in Southeast Alaska.  This region has approximately 22,500 km of shoreline divided 

among 1,100 islands in an area known as the Alexander Archipelago.  The area’s large size and 

remoteness make it difficult to comprehensively sample for habitat characteristics and species.  

Therefore, we evaluated the influence of landscape scale variables on changes in community 

composition in estuaries.  Models predicting community composition over large spatial scales are 

common in terrestrial ecology (Huettmann & Diamond 2006, Magness et al. 2010, Oppel & 

Huettmann 2010), but their application to marine environments has been limited.  Most marine 

landscape models have focused on specific environments or habitat types, such as coral reefs 

(Wedding & Friedlander 2008), mangroves (Jelbart et al. 2006), or seagrasses (Whitlow & 

Grabowski 2012).  Few studies have investigated the relationship between landscape structure 

and composition of estuarine communities.  In Australia, a comparison of fish assemblages 

among tropical estuaries found that estuary-level variables, such as tidal range, intertidal area and 

distance to closest estuary explained more variation in fish assemblages than site-specific 

physical variables such as salinity, substrate and turbidity (Sheaves & Johnston 2009).  These 
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results support other research indicating that environmental variables at intermediate scales may 

explain spatial patterns in species assemblages better than either site-specific or large-scale 

variables (Townsend et al. 2003, Peres-Neto 2004, Wiens 2011).  Digital datasets of 

environmental variables are becoming increasingly available and are much less expensive and 

easier to obtain than site-specific environmental parameters, especially in remote and challenging 

environments like Southeast Alaska.  If these variables can be used to develop models for 

detecting changes in fish and invertebrate community composition, they could become important 

tools in marine conservation and research. 

 

STUDY REGION 

 This research was conducted in the Alexander Archipelago, a collection of approximately 

1,000 mountainous islands in Southeast Alaska, USA.  The study area (Figure 3.1) extends from 

Lance Point in Lynn Canal (58º 44’ N, 135º 13’ W) to Cape Chacon in Dixon Entrance at the 

Canadian border (54º 41’ N, 132º 01’ W).  The coastline is generally steep and the islands are 

separated by deep channels and fjords.  The entire archipelago is a temperate rainforest; 

precipitation varies locally and regionally with a general gradient of lower precipitation in the 

northwest and higher precipitation in the southeast.  Average annual precipitation in the region is 

in excess of 1000 mm/yr (Neal et al. 2002) with much of the precipitation being released directly 

into the marine waters via numerous small streams and wetlands.  Stream flow is highly seasonal 

and influenced both by precipitation and by snow and ice melt.  The highest stream flows tend to 

occur in autumn when precipitation rates are high.  Flows decrease in winter as a result of 

freezing, and increase again in the late spring and summer from melting of snow and ice.  The 

flow of freshwater affects not only nearshore estuarine circulation, but is the driver for larger 

scale oceanographic circulation within Southeast Alaska’s interior channels and on the 

continental shelf (Weingartner et al. 2009).  Stream and river temperatures are influenced both by 

air temperatures and by runoff from glaciers, snowmelt, and precipitation. 

 The estuaries in the study area differ in their hydrologic and geomorphologic 

characteristics.  In many Southeast Alaska estuaries, tidal energy is often much higher than 

energy from freshwater inflow.  Southeast Alaska has mixed semi-diurnal tides with tidal height 

increasing as the tide moves from the continental shelf into the interior of the archipelago (Inazu 

et al. 2009).  Tidal velocities are strongly influenced by bathymetry and channel morphology, and 

these, in turn, affect estuarine circulation, nutrient fluxes, and sediment dynamics (Weingartner et 
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al. 2009).  Coastal geology varies greatly across estuaries in the study area.  Most estuaries have a 

mixture of soft and hard substrate shorelines, but the amount of each type of substrate varies 

depending on both oceanographic and terrestrial processes. 

 Previous research identified approximately 12,000 estuaries in Southeast Alaska using 

the intersection of fresh and marine waters as the defining criteria (Albert et al. 2010); however, 

this definition does not take into account the degree to which an estuary is enclosed and 

somewhat isolated from other coastal waters.  The degree of enclosure has important implications 

for estuarine circulation as well as the physical and chemical properties of the estuarine waters.  

For this research, we developed the following definition for an estuary: a coastal indentation with 

a restricted connection to saltwater and an aquatic environment affected by the physical and 

chemical characteristics of both fluvial drainage and marine systems.  Using this definition, we 

delineated manually 541 estuarine polygons, including 49 polygons for estuaries for which we 

had biological data, between the high tide line and the 30 m depth contour (Figure 3.1) in ArcGIS 

10 ™ (ESRI 2011).  Glacier Bay was excluded from the research because circulation within the 

bay is constrained by the shallow sill at the entrance to this fjord system.  As a result, the 

processes structuring fish and invertebrate communities within that bay are different than those in 

open estuaries in Southeast Alaska (Matthews 1981).  Northern Lynn Canal also was excluded 

due to limited spatial data availability. 

 

MATERIALS AND METHODS 

Biological sampling  

Forty-nine estuaries were sampled for fish and mobile invertebrates between April and 

September from 1998 and 2005 (Figure3.1).  Sampling was conducted during daylight hours 

using an otter trawl (3 m x 1 m, with 6 mm square mesh in the cod end) deployed with a bridle 

scope of approximately 5:1.  The trawl was towed at a speed of approximately 3 kn along a depth 

contour between 5 m and 10 m.  The depth of individual tows varied within this range depending 

on bottom structure of the estuary.  One tow in each direction was made along the same transect 

at high and low slack water equaling four replicates at each station.  The latitude and longitude of 

the beginning and ending points were recorded along with the average depth of the tow.  

Captured fish were identified to species and were measured to the nearest millimeter for total 

length in the field.  Invertebrates were identified to the lowest taxonomic level possible in the 

field and counted.   
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 Life stage, measured as the length at 50% maturity, was obtained from the Alaska Fishery 

Science Center’s (AFSC) Life History database (http://access.afsc.noaa.gov/reem/LHWeb) for 

commercially harvested fish and some forage fish.  This information was used to classify fish as 

adults or juveniles.  For fish not in the AFSC database, other published sources (Froese & Pauley 

2012, MSAP 2012) were used to obtain length at maturity information.  Several species occurred 

in the data entirely as either juveniles or adults and could be analyzed according to life stage.  For 

species with a mix of juvenile and adult life stages, the amount of available data was generally 

insufficient to analyze each life stage separately, so the data were pooled and modeled together.  

Catch-per-unit-effort (CPUE) was calculated as the number of species caught divided by tow 

length and then standardized to number of fish per 100 m.  Most estuaries were sampled only a 

single time during the study period.  For estuaries sampled more than once, CPUE was calculated 

as the total combined catch divided by the average trawl length and standardized to number of 

fish per 100 m.  CPUE for both fish and invertebrates was transformed to relative abundance 

using the Hellinger transformation (Legendre & Gallagher 2001) by dividing the count of species 

in each estuary by the total abundance of species present in the estuary and taking the square root 

of the ratio.  This transformation is widely used in multivariate analysis (Legendre & Gallagher 

2001) including multivariate regression tree approaches (Matabos et al. 2011, Ouellette et al. 

2012, Wehrly et al. 2012) for species data containing many zeros.  All fish and invertebrates were 

collected by NOAA/NMFS under their collection permits. 

  

Environmental data  

For each of the 541 estuaries in this research, we identified 24 predictor variables describing the 

geomorphic and habitat environment of the estuaries.  Data were compiled from GIS layers from 

the Southeast Alaska GIS library, the National Oceanic and Atmospheric Administration, and the 

Alaska ShoreZone database (Table 3.1).  All variables except the ones for intertidal vegetation 

were standardized to a mean of zero and standard deviation of one.  The vegetation variables 

were recorded as percent of the vegetation type within each estuary polygon.  The great diurnal 

tide range and mean tide range for each estuary were compiled from NOAA tide data (NOAA 

2012).  Estuaries without tide stations were attributed the tidal ranges from the nearest estuary 

with tidal data.  Variables that were used to describe the structure of the estuary included the open 

water area, intertidal area, length of the intertidal perimeter, width at the estuary mouth, and 

bathymetric slope and depth.  Open water area was the surface area of open water at low tide and 
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was the difference between the estuary area and the intertidal area.  Minimum depth, and 

maximum and average bathymetric slope, in each estuary polygon were calculated using the 

ArcGIS Spatial Analyst (ESRI 2011) extension.  The width of the estuary mouth was measured 

for each estuary along a line between the landmasses on each side of the estuary entrance, or at 

the 30 m depth contour.   

We included information on the intertidal environment, which provides important 

foraging habitat for subtidal species, such as juvenile Dungeness crab (Metacarcinus magister) 

(Holsman et al. 2003), as well as habitat for eelgrass (Zostera sp) communities.  The intertidal 

area and perimeter length were obtained from the Tongass National Forest High and Low 

Tidelines dataset (USDA 2002) for the intertidal areas within each estuary polygon.  We 

calculated the intertidal ratio: the ratio of the intertidal perimeter to the intertidal area.  This 

variable is an index of the shape and complexity of the intertidal environment.  Area/perimeter 

ratios are widely used in landscape analyses to study species distributions and densities with 

respect to habitat size and edge effects (Jelbart et al. 2006, Martins et al. 2010), and more recently 

are being applied in studies of the marine environment (Wedding et al. 2011).   

 We also included variables describing the size and slope of the watershed surrounding the 

estuaries.  Watershed size was derived from 12-digit hydrologic units depicting watershed 

boundaries (USGS 1995).  We measured watershed slope within a 5 km buffer around the estuary 

and used a digital elevation model (USGS 1997) and ArcGIS Spatial Statistics (ESRI 2011) to 

calculate maximum and average slopes within each buffer. 

 Freshwater inflow into Southeast Alaska estuaries is difficult to calculate.  Much of the 

study area is remote and undeveloped and there is a paucity of stream flow data even for large 

rivers.  To capture the influence of freshwater on estuarine communities, we compiled minimum 

monthly precipitation over the study period from the Scenarios Network for Alaska and Arctic 

Planning (SNAP) climate model for Alaska (SNAP 2011) into five seasonal variables: Spring 

(Feb – Apr), Summer (May – Jul), Autumn (Aug – Oct), Winter (Nov – Jan), and Annual. We 

calculated fluvial flow by multiplying the catchment area with the average annual rainfall and a 

runoff coefficient and dividing by the open water area of the estuary (Digby et al. 1998): 

 

 Fluvial Flow =  
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The runoff coefficient (RV) is based on the impervious fraction (I) of the drainage area (ADEC 

2004): 

RV = 0.05 + 0.9(I) 

 

We calculated the variable I as the non-vegetated, non-ice portions of the watershed from 

the 2001 National Land Cover Dataset for Alaska (Homer et al. 2004).  At the scale of this 

analysis, the variable I was sufficiently small that the runoff coefficient was essentially a constant 

(0.059) across all watersheds. 

 Sediment characteristics have been used in a number of studies to classify estuaries and 

coastal areas (Digby et al. 1998, Edgar et al. 1999) and to predict species assemblages (Schoch & 

Dethier 1996).  In Southeast Alaska, nearly the entire shoreline has been classified using the 

ShoreZone mapping and classification protocol (Harney et al. 2008).  This method uses oblique, 

low altitude video and still images to classify the shoreline according to natural breaks in 

geomorphic, sedimentary and biological features.  Shoreline segments are classified according to 

substrate type, sediment type, across-shore width and slope.  Assemblages of sessile coastal biota 

present within a shoreline segment are given a categorical descriptor of either continuous (>50% 

cover within the unit) or patchy (< 50% coverage).  Shorelines are further defined by their habitat 

class, which is an index that combines geology, wave exposure, and biota into a single variable.  

For this analysis we used shoreline classes and habitat classes that were represented in 5% or 

more of the sampled estuaries for a total of 23 shorelines classes and 13 habitat classes (Table 

3.2).  Variables were calculated as the percentage of each class with respect to the total perimeter 

of the estuary polygon.  We also included percent of continuous or patchy canopy kelp (Alaria 

sp.), eelgrass (Zostera marina) and soft brown kelps (Saccharina latissima) within the estuaries. 

 

Data Analysis 

MRF models were constructed in R 2.13.2 (Segal & Xiao 2011) for combined fish and 

invertebrate assemblages to investigate spatial variation in species relative abundance in relation 

to the environmental predictor variables.  MRFs are a modification of multivariate regression 

trees which can fit models simultaneously to a number of different response variables.  In our 

MRF model, the response is the occurrence of each species at each sampled estuary.  An 

ensemble of multivariate regression trees (Breiman et al. 1984) is grown using variable 

subsampling and bootstrap resampling of the data as in traditional Random Forests (Segal & Xiao 
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2011).  The prediction error for each tree is calculated using the data omitted from the bootstrap 

sample for that tree.  The prediction error for the forest is the average prediction error of the 

individual trees.  Variable importance is calculated in the same manner as for traditional Random 

Forest, by randomly permuting the values of the variables, running them through the model and 

evaluating the change in the mean squared error (MSE).  Variables having the greatest effect on 

MSE have more influence on model accuracy (Breiman 2001).  We applied the MRF algorithm to 

construct 300 trees. 

 In the proximity matrix, Random Forest models also provide a measure of site similarity 

based on both the physical and biological variables at an estuary.  This matrix is constructed by 

comparing the location of estuaries in the terminal nodes of each tree in the forest and giving 

higher proximity values to estuaries in the same node.  Proximity values for each tree are summed 

and normalized by dividing by the number of trees in the forest.  Subtracting 1 from the proximity 

values of the matrix converts the data to squared Euclidean distances (Segal & Xiao 2011).  We 

used multidimensional scaling and partition around the mediod (PAM) clustering (Kaufman & 

Rousseeuw 1990) on the distance matrix to classify the 49 sampled estuaries.  The optimal 

number of clusters (k) was determined by selecting the k with the maximum average silhouette 

width, which is a measure of the difference between intra-cluster similarity and similarity with 

the next closest cluster.  Silhouette widths close to 1 indicate perfectly assigned clusters.  To 

predict the class membership of the unsampled estuaries, we used the clusters from the MRF 

PAM clustering as the response variable in a traditional Random Forest Model.  The resulting 

model provided the splitting rules for assigning unsampled estuaries to each cluster and provided 

a misclassification rate that we used to evaluate model performance.  All modeling and analysis 

was done in R (Hinchley et al. 2008). 

 

RESULTS 

 The modeling dataset contained 22 species of fish from 12 families, and 14 species of 

invertebrates from 11 families.  Snake prickleback (Lumpenus sagitta), yellowfin sole (Limanda 

aspera), and starry flounder (Platichthys stellatus) were the most numerous fish in the data, 

comprising 15%, 14% and 12% of the total catch over all samples and years, respectively.  Four 

fish species were captured at 50% or more of the estuaries: Pacific staghorn sculpin (Leptocottus 

armatus), crescent gunnel (Pholis laeta), starry flounder, and rock sole (Lepidopsetta sp.).  Shell 

shrimp (Crangon alaskensis) and spot shrimp (Pandalus platyceros) were the most numerically 
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abundant invertebrate species comprising 24% and 19% of the total catch, respectively, but 90% 

of the spot shrimp catch occurred at a single estuary.  Three species and one family of 

invertebrates were captured at over 50% of the estuaries: sunflower sea star (Pycnopodia 

helianthoides), shell shrimp, helmet crab (Telmessus cheiragonus) and gammarid amphipods 

(Gammarididae) (Table 3.3). 

 Several fish species occurred more frequently or entirely as juveniles in the data.  Species 

occurring only as juveniles included Pacific herring (Clupea pallasi), Pacific cod (Gadus 

macrocephalus), lingcod (Ophiodon elongatus), kelp greenling (Hexagrammos decagrammus), 

butter sole (Isopsetta isolepis), and great sculpin (Myoxocephalus polyacanthocephalus).  Species 

whose abundance was predominantly composed of juveniles were yellowfin sole, rock sole, and 

Pacific sand lance (Ammodytes hexapterus).  Species with mixes of juveniles and adults were 

starry flounder, Pacific staghorn sculpin, and shiner perch (Cymatogaster aggregata).  Species for 

which life stage could not be determined from the literature were the snake prickleback, tube-

snout (Aulorhynchus flavidus), and sturgeon poacher (Podothecus accipenserinus).   

 PAM clustering of estuaries using the MRF proximities identified three clusters (Figure 

3.2) with silhouette widths of 0.31, 0.33, and 0.42, which explained approximately 55% of the 

point variability in the data.  Using these clusters as dependent variables, the traditional Random 

Forest model had a classification error rate of 4% with one estuary in Cluster 1 (19 estuaries), 

zero estuaries in Cluster 2 (20 estuaries), and one estuary in Cluster 3 (10 estuaries) being 

misclassified.  Tidal height, minimum precipitation, and percent of continuous eelgrass were the 

most influential variables in the model (Figure 3.3).  Variables describing the amount of intertidal 

habitat, open water area, and characteristics of the watershed surrounding the estuary also were 

influential. Variable importance was measured by the percent increase in the mean squared error 

of the model when the variable is permuted or randomized (Figure 3.4).  The data for all variables 

except vegetation had been standardized to a mean of zero.  This means a zero value indicated an 

average value for the variable, with values above average plotted to the right of center and values 

below average plotted to the left.  Vegetation variables were measured in percent of estuary 

perimeter and all had positive values.   

Estuaries in Cluster 1 had intermediate tidal height values, small open water and intertidal 

areas, but high estuary slopes and depths and high minimum precipitation throughout the year.  

Despite having relatively small watersheds and open water areas these estuaries had high fluvial 

flow, likely as a result of the much higher than average precipitation.  Cluster 1 estuaries had the 
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most even mix of fish species (Figure 3.5) with all species represented except the white spotted 

greenling (Hexagrammos stelleri).  Dock shrimp (Pandalus danae) and the graceful decorator 

crab (Oregonia gracilis) also were absent from this cluster (Figure 3.6).  Lingcod, Pacific cod, 

Pacific sand lance, rock greenling (Hexagrammos lagocephalus), northern sculpin (Icelenus 

borealis), and buffalo sculpin (Enophrys bison) were found in this cluster but occurred at low 

relative abundances or were absent from other clusters.  Average continuous and patchy kelp 

coverage in these estuaries was 60% compared with 40% for estuaries in Clusters 2 and 3.  

Northern kelp crab (Pugettia producta), an herbivore that feeds on kelp and utilizes kelp 

pigments to maintain its shell color similar to it surrounding habitat (Lunetta et al. 2004), were 

abundant in this cluster.  Other species whose high relative abundance may be explained by 

environmental variables were crescent gunnels and northern sculpin, which are regularly captured 

in kelp and eelgrass habitats in Southeast Alaska (Johnson et al. 2003), and juvenile lingcod and 

juvenile Pacific cod, which prefer structured habitats that include kelp and eelgrass beds (Petrie & 

Ryer 2006, Laurel et al. 2007).   

 Estuaries in Cluster 2 were characterized by low tidal ranges, large open water and 

intertidal values, and low minimum precipitation and fluvial flow.  Estuaries in this cluster had 

the highest relative abundance of flatfishes and Dungeness crab (Metacarcinus magister), species 

typically found in estuaries with large intertidal areas (Holsman et al. 2003, Holsman et al. 2006), 

relatively shallow depths (Norcross et al. 1997), and steeper than average bathymetric slopes 

characteristic of low gradient stream systems and stream derived sediments.  Cluster 2 estuaries 

also had high relative abundances of tube-snouts, a species associated with mixed habitats of 

sand, kelp, and eelgrass (Ishwaran 2007).  Dock shrimp and graceful decorator crabs were absent 

from this cluster, and abundances of other shrimp were generally lower than in the other two 

clusters.   

 Cluster 3 estuaries had higher than average precipitation for all seasons except summer.  

Intertidal area in Cluster 3 was lower than average for the dataset, but both intertidal perimeter 

and intertidal ratio were higher than average.  This was a result of the deeper depths and steeper 

slopes in these estuaries compared with estuaries in the other two clusters.  Estuaries in Cluster 3 

had the lowest number of fish taxa but the highest number of invertebrate species, particularly 

shrimp.  In this cluster, estuaries averaged between 39% and 93% patchy or continuous eelgrass 

coverage.  This cluster was characterized by high relative abundances of bay pipefish 

(Syngnathus leptorhynchus) and three-spine sticklebacks (Gasterosteus aculeatus), both eelgrass-
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associated species (Johnson et al. 2003), but low abundances of Dungeness crab, a species that 

relies on the intertidal area for foraging at high tides (Holsman et al. 2003).  Cluster 3 estuaries 

had high abundances of rock sole and starry flounder similar to estuaries in Cluster 2, but low 

relative abundances of yellowfin sole.  The majority of yellowfin sole and rock sole occurred in 

the data as juveniles.  Previous research has found that juvenile yellowfin sole prefer shallow 

locations at the head of bays while juvenile rock sole tend to prefer deeper water (Norcross et al. 

1997).   

 The majority of the ShoreZone coastal class and habitat class variables had very low or 

negative variable importance, indicating low direct predictive value for the MRF model.  Variable 

predictor scores in Random Forest models take into account interactions among variables 

(Lunetta et al. 2004), and variables that do not have high individual prediction scores may 

influence and increase or decrease the prediction scores of other variables.  As a result, step-wise 

removal of variables with low or negative importance can result in deleting interacting variables 

that are otherwise important to the scores of variables that are retained resulting in unstable 

models.  A number of methods have been proposed to select the most relevant variables in 

Random Forest models (Svetnik et al. 2002, Sandri & Zuccolotto 2006, Genuer et al. 2010), but 

there is no concurrence on how or whether variable removal should be done.  Rather than 

implementing a step-wise variable removal method that might introduce bias into the model from 

interacting variables, we chose to remove all ShoreZone coastal and habitat class variables from 

the analysis and run the models on the remaining 24 environmental variables.   

 The spatial distribution of clusters reflected the influence of the highest performing 

variables: tidal height and winter precipitation (Figure 3.7a).  Estuaries in Cluster 1 (black) were 

located on both the outer coast and along the deeper channels where precipitation from the 

interaction of ocean storms and coastal mountains is high.  Cluster 2 estuaries (red) were located 

among the inland waters where tidal height is lowest and the rain shadow of the coastal 

mountains results in lower precipitation than the other clusters.  Estuaries in Cluster 3 (green) 

were located on the outer coast adjacent to the open ocean.  These estuaries tended to have the 

lowest tidal heights due to their proximity to the shelf.  These general patterns of cluster 

distribution held when cluster membership was predicted for the 492 other estuaries in the study 

area, but more overlap occurred as a result of the other variables in the model (Figure 3.7b). 
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DISCUSSION 

 Fish and invertebrate communities in Southeast Alaska demonstrated strong spatial 

variation related to differences in precipitation, tidal height, percent of eelgrass, and amount of 

intertidal habitat.  One of the strongest patterns in the environmental data is the difference in 

precipitation and tidal exchange between the clusters, but it can be difficult to tease apart the 

influence of individual variables in models where the importance of any variable may be 

influenced by other interacting variables in the data (Lunetta et al. 2004, Knudby et al. 2010).  

Both precipitation and tidal exchange vary substantially across the study area at small spatial 

scales.  Precipitation patterns are strongly influenced by watershed elevation with ocean storms 

releasing moisture as air is adiabatically cooled by the high mountainous landscape (Weingartner 

et al. 2009).  This process results in areas of high precipitation near the coast, and in rain shadows 

along the interior passes.  Tidal height increases as water moves inland away from the continental 

shelf and into the interior of the archipelago.  Tidal currents are strongly influenced by channel 

width, bathymetric structure, and depth resulting in substantial variations in tidal current strengths 

at the scale of several kilometers.  The interaction of these variables results in a spatial 

distribution of estuary clusters that generally aligns with patterns of precipitation (Figure 3.7b), 

but with deviations based on estuary-specific differences in bathymetry, estuary size, and amount 

of intertidal habitat.  These complex interactions between ecosystem components would likely 

not have been identified using a linear model.   

 The variables used in this analysis were those that could be extrapolated from available 

spatial datasets, rather than environmental conditions measured in-situ.  This approach increases 

the value of the models for predicting community composition to unsampled areas, but can make 

it more difficult to relate mechanisms of community assemblages to environmental data.  

Precipitation and fluvial flow variables were included in the analysis to capture differences in 

salinity, and buoyancy-driven circulation between estuaries, but the relationship between 

community composition and salinity is complex.  Several studies on juvenile groundfish in 

Alaska found only small or insignificant correlations between salinity and abundance (Norcross et 

al. 1997, Norcross et al. 1999, Abookire et al. 2001).  In Kachemak Bay, AK Pacific herring and 

sand lance are substantially more abundant in the interior of the estuary in less-saline surface 

waters (Abookire et al. 2000).  However, in the Skagit River estuary in Puget Sound, WA there is 

no correlation between Pacific herring annual abundance and river discharge (Sandri & 

Zuccolotto 2006).   
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 Precipitation may also be a proxy for other oceanographic processes.  Higher 

precipitation can freshen the surface water layer and result in stratification, which can enhance 

primary productivity (Weingartner 2007).  Higher freshwater discharge is also associated with the 

development of tidal fronts: areas of mixing that occur at the interface between stratified water 

and well mixed saline water as a result of tidal inflow into the estuary.  Constrictions, such as a 

narrowing of the estuary mouth, act as hydraulic controls that can enhance formation of these 

fronts (Largier 1992).  Nutrients are drawn into the stratified surface layer of the front by 

diapycnal mixing at the frontal boundary, and over a period of time can enhance phytoplankton 

production (Largier 1992, 1993, Johnson & Costello 2002).  At the same time, convergent flows 

along the frontal boundary advect and concentrate plankton (Dustan & Pinckney 1989, Franks & 

Chen 1996), which attract grazers and higher trophic level predators (Largier 1993, Kingsford & 

Suthers 1994).  These fronts may also act as barriers to larval transport helping to retain and 

distribute planktonic larvae within the estuary (Eggleston et al. 1998).  Freshwater discharge into 

estuaries in Cluster 1 was higher year round than for the other two clusters, and estuaries in this 

cluster have narrow average mouth widths.  The oceanographic conditions in these estuaries may 

favor enhanced productivity that could explain the more even mix of fish species and the higher 

relative abundance of species such as sand lance and Pacific herring (Arimitsu et al. 2004); 

however, additional research is needed to further evaluate species-environment relationships.   

 Cluster results explained a little over half the variability in the data, and the average 

silhouette widths for the clusters were below 0.50, implying only moderate cluster assignment.  

This suggests that variables not included in the model are influencing species distributions and 

community composition.  One such variable might be substrate type.  Several studies have 

demonstrated strong associations between fish (Norcross et al. 1999, Abookire et al. 2001) and 

invertebrates (Schoch & Dethier 1996, Lunetta et al. 2004, Hovel & Wahle 2010) and substrate 

type.  Although we did not find inclusion of subtidal geology variables from the ShoreZone 

dataset to be informative in our models, this may be a result of the way the variables were 

derived.  These variables were calculated as the percent of each substrate occurring within the 

estuary, a method that is not sensitive to the patch size of the habitat and sediment types.  

Therefore, an estuary with 30% continuous coverage of sand, for example, is equivalent to an 

estuary with three small and well-spaced patches of sand of 10% each.  While inclusion of the 

absolute area of each substrate type within the estuary might improve the performance of these 

variables in the model, it would be preferable to have some measure of both the size and 
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separation of habitats within each estuary.  Size and shape of habitat patches are important factors 

affecting species abundance, diversity and habitat use (Barrantes & Sandoval 2009, Baselga & 

Araújo 2010, Morin 2011).   

 The spatial arrangement of habitat in estuaries may also be important in influencing 

community structure (Whitlow & Grabowski 2012).  ShoreZone variables were extracted for the 

entire estuary polygon and may not correspond directly to the habitat in the area sampled.  Trawl 

sampling is constrained to occur in areas with minimal rocks or hard structures, and these may 

represent only a portion of the substrates in the estuary.  Including substrate variables directly 

under sampling transects along with information on adjacent habitats, may enhance the 

performance of ShoreZone substrate variables in the model.  Our future research will attempt to 

include this type of finer scale substrate information in the models.   

 Biotic factors, such as competition, dispersal limitation and predation, are known to 

constrain species distributions (Dunson & Travis 1991, Boulangeat et al. 2012, Wisz et al. 2012), 

and some of the variance that is not captured in our model could be the result of biotic 

interactions.  Unfortunately, incorporating relevant biotic factors into species distributions models 

is complicated by lack of data on species interactions at the scale of the analysis, and confounding 

effects of abiotic and biotic variables on individual species (Manly et al. 2002, Elith & Leathwick 

2009).  By using the species assemblage as the response variable, the multivariate Random Forest 

model used in this research implicitly incorporates patterns of species co-occurrence that could be 

reflections of species interactions, but the model cannot identify specific relationships with biotic 

factors or whether such factors are having a direct or indirect effect on the model.  Methods for 

incorporating biotic interactions into species distribution models include adding competing or 

predator/prey species as explanatory variables (Kissling et al. 2011), including estimates of 

habitat productivity (Wisz et al. 2012), and including data on dispersal (Boulangeat et al. 2012).  

Incorporating these data into multispecies models is especially challenging due to the complexity 

of species interactions within a community.  For marine species, incorporation of dispersal data is 

also hampered by lack of oceanographic data on a scale relevant to the analysis.  Our ongoing 

work in this area involves evaluating the strength of biotic interactions through the development 

of niche models that use behavioral, functional, or phylogenetic traits (Miller 2013).  We will be 

evaluating ways to incorporate insights on the importance of biotic factors to estuarine 

communities gained from these null models into our community analyses.   



65 

 

 In this study, field data were collected over a period of seven years with most estuaries 

sampled only once during that period.  As a result, not all estuaries were sampled in the same 

month or season.  Seasonality in the data may have introduced uncertainty into some aspects of 

the analysis.  Several Alaskan estuarine species have strong seasonal patterns.  An example is the 

tube-snout, which is found in a variety of sandy and rocky habitats with adjacent eelgrass or kelp.  

Tube-snouts occur in the nearshore to depths of 30 m (Hunter-Thomson 2011).  In nearshore 

seine net fish sampling in Southeast Alaska from 1998 to 2000, tube-snouts were captured in low 

numbers, but consistently, throughout Southeast Alaska (Johnson et al. 2003).  In this analysis, 

tube-snouts were entirely absent from Cluster 3, although species that frequently co-occur with 

them, such as the bay pipefish, were abundant in that cluster and Cluster 3 has the highest 

percentage of eelgrass.  This may be explained by the season in which the sampling occurred.  

Although tube-snouts are year-round residents of estuaries and nearshore areas, sampling in 

Prince William Sound, Alaska in 2006 and 2007 (Johnson et al. 2011) captured substantially 

more tube-snouts in September (331) than in April (21) or July (between 67 and 95).  Estuaries in 

Cluster 3 were sampled primarily in April with some samples occurring in May and June.  In 

contrast, estuaries in Cluster 2, which had the highest relative abundance of tube-snouts, were 

sampled relatively uniformly between April and September.  Unfortunately, the September Prince 

William Sound surveys (Johnson et al. 2010) were conducted in a single year, giving no 

information on interannual differences, and no other information on seasonality in tube-snouts is 

available.  Similarly, seasonal movement of species from nearshore areas to offshore areas in 

Alaska has been documented in other studies (Abookire & Norcross 1998, Stone & O'Clair 2001, 

Johnson & Thedinga 2006) but, as with the present research, sampling was not consistent 

between months and years.  Interannual differences in temperature and oceanographic conditions 

affect timing of migratory behavior and make it difficult to compare species composition at 

estuaries sampled in different months and years.  Most sampling in Southeast Alaska occurs from 

March to August and sometimes September, but there has been no research comparing species 

abundances for all of these months across more than one year at the same location.  Until such 

research can be conducted, it is unclear whether changes in the seasonal abundance of species 

have an impact on the results of this analysis. 
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CONCLUSIONS 

Understanding the mechanisms that structure communities is fundamental to ecology and 

a precursor for ecosystem management.  Multi-species management strategies require knowledge 

not only of abiotic factors affecting species distributions (fundamental niche), but also of the 

relationship between species within a community.  To this end, methods that can quantitatively 

model multiple species will provide additional insight into species functional roles and 

interactions.  This is the first implementation of a MRF model to marine fish and invertebrate 

communities, and the first research to evaluate the relationship between landscape structure and 

estuarine community composition in Southeast Alaska.  At the regional scale, estuaries clustered 

from the model show strong association with spatial patterns of precipitation and tidal height.  At 

a more local scale the amount of intertidal habitat and availability of kelp and eelgrass habitats 

influenced the relative of abundance of individual species within the communities.  Evaluating 

both large- and fine-scale patterns in community composition can inform species management 

and protection strategies, as well guide future research on species co-occurrence.   
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Figure 3.1: Study area in Southeast Alaska  showing sampling locations (    ), and estuaries to 

which model results were predicted (   ).  Hash marks indicate exclusion of Glacier Bay and 

North Lynn Canal. 
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Figure 3.2: Multidimensional scaling plot of MRF proximity values.Ellipses delineate PAM 

cluster membership, and numbers are sample estuaries.  The two components explain 54.85 % of 

the variation in the data.  Lines indicate the distance between clusters.   

 
 

Figure 3.3: Relative importance of the predictor variables scaled by the decrease in the mean 

squared error of the model when the variable is permuted.  Higher bars equate to higher variable 

importance.   
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Figure 3.4: Average value of predictor variables for sampled estuaries by cluster.  

The data for all variables except vegetation were standardized to a mean of zero, so a zero value 

indicates an average value for the variable, with values above average plotted to the right of 

center and values below average plotted to the left.  Vegetation variables are measured in percent 

of estuary perimeter and all have positive values. 
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Figure 3.5: Average relative abundance of fish species for sampled estuaries by cluster. 
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Figure 3.6: Average relative abundance of invertebrates by cluster for sampled estuaries. 
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Figure 3.7: (a) Spatial distribution of 49 sample estuaries by cluster from MRF model and PAM 

analysis, and (b) predicted cluster membership of 492 delineated estuaries.  Cluster 1 =   , Cluster 

2 =   , and Cluster 3 =    .  Estuaries colored by cluster membership and overlaid on winter 

minimum precipitation.   
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Table 3.1: Predictor variables used in MRF model.  NA indicates variables without a spatial scale.   
 

Variable No. Unit Time Scale 
Spatial Scale of 

data source Source 

Intertidal Area 
1 

Sq.  Meters   1:63,360 USFS Tongass GIS  

Intertidal Perimeter 
1 

Meters   1:63,360 USFS Tongass GIS  

Intertidal ratio 
1 

Meters   1:63,360 Derived 

Open water 
1 

Sq.  Meters   1:63,360 USFS Tongass GIS - derived 

Watershed Area 
1 

Sq.  Meters   1:63,360 USGS Hydrologic Unit Maps  

Watershed Slope 
1 

Degrees   300 m USGS Digital Elevation Model 

Tidal range 
2 

Feet   NA NOAA 

Width 
1 

Meters   1:63,360 measured  

Estuary slope 
2 

Degrees   5 m 
NMFS AKR Bathymetry -
derived 

Depth 
1 

Meters   5 m 
NMFS AKR Bathymetry -
derived 

Minimum seasonal 
precipitation 

 
4 Millimeters 1998-2005 2 km PRISM Climate Model 

Minimum annual 
precipitation 

1 
Millimeters 1998-2005 2 km PRISM Climate Model 

Fluvial flow 
1 

Flow/sq m 1998-2005 NA Derived 

Continuous/patchy 
subtidal vegetation 

6 Percent                NA Derived 
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Table 3.2: ShoreZone coastal class variables used in the MRF model.  No.  is the numeric 

ShoreZone designation for the variable.   

SUBSTRATE SEDIMENT WIDTH SLOPE COASTAL CLASS NO. 

ROCK N/A NARROW (<30m) 
STEEP (>20°) Rock cliff 3 

INCLINED (5-20°) Rock Ramp, narrow 4 

ROCK & 
SEDIMENT 

GRAVEL 

WIDE(>30m) 
INCLINED (5-20°) Ramp with gravel beach, wide 6 

FLAT (<5°) Platform with gravel beach, wide 7 

NARROW (<30m) 

STEEP (>20°) Cliff with gravel beach 8 

INCLINED (5-20°) Ramp with gravel beach 9 

FLAT (<5°) Platform with gravel beach 10 

SAND & 
GRAVEL 

WIDE(>30m) 
INCLINED (5-20°) Ramp w/ gravel & sand beach, wide 11 

FLAT (<5°) Platform  w/ gravel & sand beach, wide 12 

NARROW (<30m) 

STEEP (>20°) Cliff  w/ gravel & sand beach 13 

INCLINED (5-20°) Ramp  w/ gravel & sand beach 14 

FLAT (<5°) Platform  w/ gravel & sand beach 15 

SEDIMENT 

GRAVEL 
WIDE(>30m) FLAT (<5°) Gravel flat, wide 21 

NARROW (<30m) INCLINED (5-20°) Gravel beach, narrow 22 

SAND & 
GRAVEL 

WIDE(>30m) FLAT (<5°) Sand & gravel flat or fan 24 

NARROW (<30m) 
INCLINED (5-20°) Sand & gravel beach, narrow 25 

FLAT (<5°) Sand & gravel flat or fan 26 

SAND/MUD WIDE(>30m) 
FLAT (<5°) Sand flat 28 

FLAT (<5°) Mudflat 29 

ORGANICS n/a n/a Estuaries 31 

ANTHROPOGENIC 
Man-made 

n/a n/a 
Man-made, permeable 32 

Man-made, impermeable 33 

CHANNEL Current n/a n/a Channel 34 

GLACIER Ice n/a n/a Glacier 35 
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Table 3.3: CPUE of fish and invertebrates from trawl samples 
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Chapter 4: Taxonomic and functional diversity of fishes in Alaskan estuaries 

 

ABSTRACT 

The change in diversity between communities (β-diversity) has been widely used as a 

metric for evaluating the biotic and abiotic factors affecting community composition.  In 

particular, understanding the functional composition of ecosystems can provide insight into how 

gain or loss of species may affect ecosystem processes.  I compared functional and taxonomic β-

diversity between 49 estuaries in Southeast Alaska to 1) evaluate how estuaries differed in terms 

of species composition and functions, 2) investigate patterns of species dominance, and 3) and to 

examine factors affecting estuarine community assembly.  Species turnover within the region was 

high (74%) but functional turnover was much lower (23%).  Functional diversity did not have a 

strong linear relationship to species richness indicating that the number of species in the estuary 

was not a good indication of how functionally diverse the estuary was.  Both biotic and abiotic 

factors were important for structuring estuarine fish communities.  The results of this research 

provide insight into the vulnerability of these estuarine ecosystems to change, including 

alterations in species composition as a result of anthropogenic disturbance or exploitation. 

 

INTRODUCTION 

A fundamental issue for ecosystem management is the understanding of the relationship 

between the composition of the biotic community and the functioning of the ecosystem.  How do 

changes in the composition of species affect ecosystem properties?  How well can the ecosystem 

compensate for species’ gains or losses?  Many community analyses compare the presence or 

abundance of species, or the change in species composition, between sampling areas without 

consideration of the functional roles that those species perform (Devictor et al. 2010, Villéger et 

al. 2012) resulting in an incomplete view of ecosystem structure.  The functional characteristics 

of species influence ecosystem processes and, in concert with information on taxonomic 

composition, can better explain ecosystem functioning than taxonomic comparisons of species 

occurrence or abundance alone (Hooper et al. 2005, Wright et al. 2006, Devictor et al. 2010, 

Mouchet et al. 2010).   

Functional groups, or guilds, are assemblages of species that exploit ecological resources 

in the same way.  The taxonomic diversity in a community is a function of hierarchical processes, 

including evolutionary processes and physiological constraints defining a regional species pool 
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that is then additionally limited in the local community by the species’ dispersal ability and 

interspecific interactions (Tilman et al. 1997, Guillemot et al. 2011).  Functional diversity is 

entirely independent of taxonomic restrictions and assignment to functional groups or guilds is 

based on the species’ specific resource use or an ecological process they engage in (Simberloff 

and Dayan 1991).  Competitive interactions among species from the same group or guild can 

increase functional diversity by enhancing resource partitioning or decrease diversity by 

competitive exclusion (de Bello et al. 2009).  The extent to which mechanisms that change 

species composition, such as disturbance or invasion, affect ecosystem processes depends on the 

amount of functional redundancy in the system and how species with similar functional attributes 

differ in their response to change (Tilman et al. 1997, Pratchett et al. 2011).   

Ecosystems have high functional redundancy when there are a number of species that 

perform the same function.  Changes in the composition of functionally similar species will have 

a smaller effect on ecosystem processes than changes in functionally dissimilar species or loss of 

entire functional groups (Naeem 1998, Folke et al. 2004, Foley et al. 2010, Pratchett et al. 2011).  

Ecological niche theory states that species are functionally different and coexist as a result of 

functional specialization.  Habitat filtering results in communities of species with similar 

functional traits adapted to the conditions of the habitat, while species interactions (e.g., 

competition) result in communities of functionally dissimilar species (Podani 2009, de Bello et al. 

2012).  These mechanisms often act simultaneously at different spatial scales (Mouchet et al. 

2010).  Understanding the functional structure of an ecosystem can provide insight into the 

system’s vulnerability to change, including alterations in species composition as a result of 

anthropogenic disturbance or exploitation.   

 Estuaries provide a unique opportunity to evaluate the relative contributions of abiotic 

and biotic filtering.  These complex systems are characterized by widely varying hydrological, 

morphological and chemical conditions, and estuarine fish demonstrate resource partitioning, 

particularly for habitat (Attrill and Power 2004, Rooper et al. 2006, Eaton 2010).  In Southeast 

Alaska, more than a third of the commercially managed fish species have been documented to 

occur in estuaries, many of them as juveniles, making these habitats potentially important nursery 

grounds (Murphy et al. 2000, Johnson et al. 2003).  I compared functional and taxonomic β-

diversity of Southeast Alaskan estuarine fish to identify the factors affecting each type of 

diversity and evaluate whether estuaries with dissimilar species are ecologically dissimilar as 

well. 
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MATERIALS AND METHODS 

Study area and sampling 

This research was conducted in the Alexander Archipelago, a collection of approximately 

1,000 mountainous islands in Southeast Alaska from Dixon Entrance at the Canadian border (54º 

47’35”N, 130º 38’06”W) to Lance Point in Lynn Canal (58º 44’ 141”N, 135º 13’ 996”W).  The 

entire archipelago is a temperate rainforest; precipitation varies locally and regionally with a 

general gradient of lower precipitation in the northwest and higher precipitation in the southeast.  

Average annual precipitation in the region is in excess of 1000 mm/yr (Neal et al. 2002) with 

much of the precipitation being released directly into the marine waters via numerous small 

streams and wetlands.  Stream flow is highly seasonal and influenced both by precipitation and by 

snow and ice melt.  The highest stream flows tend to occur in autumn when precipitation rates are 

high.  Flows decrease in winter as a result of freezing, and increase again in the late spring and 

summer from melting of snow and ice.  The flow of freshwater affects not only nearshore 

estuarine circulation, but is the driver for larger scale oceanographic circulation within Southeast 

Alaska’s interior channels and on the continental shelf (Weingartner et al. 2009).  Stream and 

river temperatures are influenced both by air temperatures and by runoff from glaciers, snowmelt, 

and precipitation.  Estuaries in the study area differ in their hydrological and geomorphological 

characteristics: most estuaries have a mixture of soft and hard substrate shorelines, but the 

amount of each type of substrate varies depending on both oceanographic and terrestrial 

processes. 

 Fish were sampled in 49 estuaries between 1998 and 2005 using both trawl and seine 

gear (Figure 4.1).  Sampling was conducted during daylight hours between February and 

September.  An otter trawl (3 m x 1 m, with 6 mm square mesh in the cod end) was deployed 

with a bridle scope of approximately 20 m and towed at a speed of approximately 3 kn along a 

depth contour between 5 m and 10 m in each estuary.  One tow in each direction was made along 

the same transect during high and low slack water, and the modal depth of the tow was recorded.  

The length of the trawl was calculated by marking the beginning and ending coordinates on the 

GIS and measuring along the appropriate depth contour on the chart.  Fish also were sampled 

with a 37-m long variable mesh beach seine that tapered from 5 m deep at the center to 1 m at the 

ends.  Outer panels were each 10 m with 32 mm stretch mesh, intermediate panels were each 4 m 

with 6 mm square mesh, and the bunt was 9 m with 2.3 mm square mesh.  The net was set as a 

round haul by fixing one end on the beach, backing the skiff while deploying the net, and 
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bringing the other end to shore approximately 18 m down shore from the first end.  The latitude 

and longitude for each estuary were recorded.  For both sampling methods, captured fish were 

identified to species and measured in the field to the nearest millimeter for total length.   

 Trawl and seine gear target different species.  As both gear types were used at all the 

estuaries in my study, I combined the catch from both gears to calculate composite species 

composition in each estuary.  This results in a more representative grouping of resident nearshore 

species than using data from each gear type separately (Lapointe et al. 2006, Ruetz III et al. 

2007).  For trawl samples, catch per unit effort (CPUE) was calculated as the number of species 

caught divided by trawl length and standardized to number of fish per 100 m.  For seine samples, 

CPUE was the number of fish per haul.  The relative abundance of each species in an estuary was 

calculated by dividing the combined CPUE of the species by the combined catch of all species.  

All fish and invertebrates were collected by NOAA/NMFS under their collection permits. 

  

Diversity calculations 

Methods for assigning estuarine species to functional groups are quite varied, and include 

life history characteristics such as estuarine use or residence (Elliott et al. 2007, Nicolas et al. 

2010, Franca et al. 2011), feeding preferences and feeding mode (Elliott et al. 2007, Franco et al. 

2008, Cardoso et al. 2011), reproductive mode (Mathieson et al. 2000, Elliott et al. 2007, Fisher 

et al. 2011), morphology (Bremner et al. 2003, Dimitriadis and Koutsoubas 2011) and behavior 

(Fisher et al. 2011).  For this research, I collated available life history and ecological data for each 

species into a matrix of functional traits (Table 4.1) describing body size, body shape, trophic 

level, prey type, habitat use, and spawning season.  This information on available life history and 

ecological traits was compiled from Fishbase (Froese and Pauley 2012), supplemented by the 

National Marine Fishery Service's Life History Database (NMFS 2012), and primary literature.  

Data from a taxonomically close species was used when species-specific information (i.e., nest 

guarding) was not available.  These exceptions are noted in Table 4.1.  The functional trait 

information available for less well studied species was primarily for adult fish.  Therefore, I 

included adult information for all fish species even though many fish occurred primarily as 

juveniles in the data, and other species were represented by a mix of juveniles and adults (Miller 

2013a).  There was insufficient information on ontogenic changes in functional traits to include 

life-stage specific data in the analysis.   
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 Functional distance between species was calculated using the Gower coefficient, which is 

a similarity measure that can handle a mix of quantitative and categorical variables (Romesburg 

2004, Botta-Dukát 2005, Pavoine et al. 2009).  Principal components analysis (PCA) was used to 

visualize each species’ relative position in functional space and to identify group membership and 

species dominance within estuaries and clusters.  For the PCA, the table of species morphological 

traits (Table 4.1) was converted to a matrix with binary (0 and 1) indications for whether a 

species had the trait or not.  PCA was implemented using the vegan package in R (Oksanen et al. 

2011). 

 Functional diversity was calculated using Rao’s quadratic entropy (Rao 1982, Ricotta and 

Marignani 2007) because this is the only diversity estimator that combines measures of species 

functional dissimilarity with species relative abundance (de Bello et al. 2010).  This index can be 

used to compute functional α- and γ-diversity, from which functional β-diversity can be 

calculated (de Bello et al. 2010, Mouchet et al. 2010).  Rao’s Q for α-diversity (Qα) is defined as: 

𝑄𝛼 = ��𝑑𝑖𝑗𝑝𝑖𝑝𝑗

𝑆

𝑗=1

𝑆

𝑖=1

 

Where dij is the functional dissimilarity between species i and j, pi and pj are the relative 

abundances of species i and j in an individual estuary, and S is the species richness of the estuary.  

The functional diversity, Qα, corresponds to the expected dissimilarity between two randomly 

chosen individuals in an estuary and is at a maximum when all species in the estuary are 

maximally dissimilar and equally abundant. 

 Rao’s Q for γ-diversity (Qγ) is calculated on the regional species pool: the relative 

abundances of all species in the sampling area.  The formula for Qγ is identical to the formula for 

Qα 

𝑄𝛾 = ��𝑑𝑖𝑗𝑝𝑖𝑝𝑗

𝑆

𝑗=1

𝑆

𝑖=1

 

where dij is still the functional dissimilarity between species i and j, but pi and pj are regional 

relative abundances of each species, and S is the total number of species in the sampling region 

(de Bello et al. 2010).  Qγ is the expected dissimilarity between two randomly chosen individuals 

in the study area.   

 Entropies, such as Rao or Shannon-Wiener, are measures of the uncertainty associated 

with determining whether species randomly drawn from a community are the same.  These 
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entropies are not true diversity indices and values cannot be directly comparable between 

communities unless they are converted to equivalent or effective number of species: the number 

of equally abundant species needed to produce the diversity value (Jost 2006, 2007, de Bello et al. 

2010).  This conversion is accomplished for Qα and Qγ as follows: 

𝑄𝛼𝐸𝑞𝑣 =
1

1 − 𝑄𝛼
 

and 

𝑄𝛾𝐸𝑞𝑣 =
1

1 − 𝑄𝛾
 

The proportional functional β-diversity between sites can be expressed as: 

𝛽𝑝𝑟𝑜𝑝 =
𝑄𝛾𝐸𝑞𝑣 −  𝑄𝛼𝐸𝑞𝑣

𝑄𝛾𝐸𝑞𝑣
 

When applied at the regional level, this equation has an upper limit defined by the number of 

sampling units and takes a value of 1 or 100% when all sampling units are completely distinct.  

When applied to pair-wise comparisons of composition between estuaries, this equation 

represents the percent turnover in composition, or degree of change in composition, between two 

estuaries.  It takes a maximum value of 0.5, or 50%, when two sites do not share any species in 

common (de Bello et al. 2010).   

 To maintain consistency in diversity measures, I also used Rao’s Q to calculate 

taxonomic diversity.  This is done by setting the pairwise functional distances to 1 for all i≠j 

(maximum distance) and to 0 for all i=j.  Constraining the dissimilarity matrix in this way reduces 

Rao’s Q to the Simpson index (Ricotta and Marignani 2007), which measures the probability that 

two individuals selected at random from a population belong to different species.  Values for 

taxonomic Qα, Qβ, Qγ, and βprop are computed using this constrained distance matrix in the same 

manner as for functional diversity. 

  

Null models 

To evaluate whether observed functional and taxonomic β-diversity differed from random 

expectations, I constructed null models using permutations of species abundances to construct 

new species assemblages.  Null models test the hypothesis that patterns of taxonomic and 

compositional diversity are non-random resulting from abiotic or biotic factors that influence 

community assembly (Wilson 1987, Azevedo et al. 2006, de Bello 2012).  Null models were 

constructed by holding species richness constant and randomly sampling species from the species 
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pool.  This approach assumes that each species has an equal opportunity of occurring in all 

estuaries.  The R library picante (Kembel et al. 2010) was used to construct 1000 random 

matrices.  I computed functional and taxonomic β-diversity independently for each of the random 

species matrices.  Random expectation for functional and taxonomic β-diversity was calculated as 

the mean of diversities for the 1000 matrices for each diversity type.  The difference between 

observed and predicted β-diversity was calculated by subtracting the mean functional and 

taxonomic β-diversity of the null models from observed functional and taxonomic β-diversity, 

respectively.  This difference was divided by the standard deviation of the null models to obtain 

the standardized effect size index (SES) (de Bello et al. 2010, Azeria et al. 2011).  SES values 

greater than zero indicate estuaries with diversity more dissimilar than expected by chance (trait 

divergence), while SES values below zero indicate that estuaries are more similar than expected 

by chance (trait convergence). 

 

Estuary Clusters 

Miller (2013b)  used multivariate random forest models (Segal and Xiao 2011) to predict 

trawl-captured estuarine fish and invertebrate assemblage composition with respect to tidal 

height, seasonal precipitation, amount of intertidal habitat, estuary depth and slope, and amount 

of subtidal vegetation.  The proximity matrix from this model was clustered using the partition 

around the mediod (PAM) clustering method to create three clusters of estuaries with similar 

environmental composition and relative abundance and composition of species.  For each of these 

clusters, I calculated functional β-diversity and used multivariate dispersion (Anderson et al. 

2006) to assess whether functional diversity of estuaries within the clusters was different than 

diversity between the clusters.  ANOVA was then used to test if dispersions between clusters 

were significantly different.  Species abundance for a cluster was calculated by summing 

abundances across all estuaries in the cluster.  These abundances were used to calculate 

functional β-diversity for the cluster in the same manner as these indices were calculated for 

individual estuaries.  Clusters also were used to evaluate differences in species dominance by 

evaluating the composition and relative abundance of species in each cluster 

. 

RESULTS 

A total of 6,431 fish were captured from all estuaries comprising 57 species from 23 

families.  Chum salmon (Oncorhynchus keta) were the most numerically abundant fish species, 



 

 

92 

comprising 12% of the total catch across all years, followed closely by pink salmon 

(Oncorhynchus gorbuscha) with 10% of the total catch.  Twelve species were captured at more 

than 40% of the sites: coho salmon (Oncorhynchus kisutch), chum salmon, pink salmon, three-

spine stickleback (Gasterosteus acculeatus), buffalo sculpin (Enophrys bison), rock sole 

(Lepidopsetta sp.), starry flounder (Platichthys stellatus), crescent gunnel (Pholis laeta), kelp 

greenling (Hexagrammos decagrammus), Bay pipefish (Syngnathus leptorhynchus), snake 

prickleback (Lumpenus sagitta), and Pacific staghorn sculpin (Leptocottus armatus).  

Approximately half the species occurred in 10% or fewer of the estuaries. 

 The PCA of the functional traits identified three broad functional groups (Figure 4.2).  

The first two principal components explained 44% of the variation.  Functional group 1 was 

characterized by higher trophic level anadromous and pelagic species and included all seven 

species of salmonids, Pacific cod (Gadus macrocephalus), walleye pollock (Theragra 

chalcogramma), and threespine stickleback (Figure 4.3).  This group had the lowest number of 

taxa and contributed 42% of the total species abundance (Table 4.2).  Within functional group 1, 

chum salmon, pink salmon, and three-spine stickleback comprised 66% of the species abundance 

(28, 24%, and 14%, respectively).  Functional group 2 was characterized by benthic marine 

species that rest on the sea floor and mostly do not guard their nests.  This included all six 

pleuronectids, sturgeon poacher (Podothecus accipenserinus), tubenose poacher (Pallasina 

barbata), buffalo sculpin, lingcod (Ophiodon elongatus), and Pacific tomcod (Microgadus 

proximus).  This group contributed 21% of the total species abundance.  Starry flounder 

(Platichthys stellatus), yellowfin sole (Limanda aspera), and rock sole (Lepidopsetta sp.) 

comprised 72% of the total species abundance for functional group 2 (26%, 28% and 18%, 

respectively).  Functional group 3 was characterized by benthopelagic, brackish, and intertidal 

species, which occur in the water column above the sea floor.  Many of these species guard their 

nests or brood their young.  This group contained the majority of the cottids, bay pipefish, 

crescent gunnel, saddleback gunnel (Pholis ornata), tube-snouts (Aulorhynchus flavidus), and 

Arctic shanny (Stichaeus punctatus).  This group had the highest number of taxa and contributed 

37% of the total species abundance.  Species dominance, measured by species abundance, in 

functional group 3 was less defined.  Snake prickleback (Lumpenus sagitta), Pacific herring, 

crescent gunnel, and Pacific staghorn sculpin accounted for 58% of the abundance in relatively 

equal portions within functional group 3 (18%, 15%, 13% and 12%, respectively). 
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 The three clusters of estuaries from the multivariate random forest model (Miller 2013b) 

were used to assess differences in the functional composition of fishes (Table 4.2).  Tidal height 

and minimum precipitation were the most influential variables in the multivariate random forest 

models, and the spatial distribution of the clusters reflects these influences (Figure 4.4).  Estuaries 

in Cluster 1 are located in the areas of highest precipitation and moderate tidal heights.  This 

cluster had 18 estuaries with a total of 39 species and 2056 individuals.  Forty-six percent of the 

total catch for this cluster was species from functional group 1, 18% was from functional group 2, 

and 36% was from functional group 3 (Figure 4.5).  Only two species (chum salmon and pink 

salmon) each comprised more than 10% of the total relative abundance of species in the cluster, 

but eleven species were captured in 40% or more of the estuaries.  Two estuaries from this cluster 

did not have any species from functional group 2, and one estuary did not have species from 

functional group 1.  The average taxonomic α-diversity (Qα_tax) for this cluster was 15.5, and 

average functional α-diversity (Qα_funct) was 2.23.  Both of these measures are expressed in 

equivalent numbers of species.  Average species turnover (βprop_tax) between estuaries in this 

cluster was 39%, while average functional turnover (βprop_funct) was 20%.   

 Estuaries in Cluster 2 are located in the areas with the lowest precipitation in the rain 

shadow of the coastal mountains.  These estuaries also had relatively high tidal heights.  This 

cluster had 20 estuaries with 47 species and 3214 individuals.  Forty-three percent of the total 

catch for this was species from functional group 3, while the remainder was nearly evenly divided 

between functional groups 1 (29%) and 2 (28%).  Pacific herring (Clupea palasii) was the only 

species with more than 10% of the total relative abundance of species in the cluster with over 

90% of the overall Pacific herring captured in cluster 2 estuaries.  Over 70% of the overall catch 

of starry flounder, yellowfin sole, and rock sole also occurred in estuaries in cluster 2.  The 

average taxonomic α-diversity (Qα_tax) for this cluster was 17.2, and average functional α-

diversity (Qα_funct) was 2.28.  Average species turnover (βprop_tax) between estuaries in this cluster 

was 39% while average functional turnover (βprop_funct) was 21%. 

 Cluster 3 was the smallest cluster having 10 estuaries with 31 species and 1161 

individuals.  These estuaries had the lowest tidal heights and were located adjacent to the open 

ocean on the outer coast of the archipelago.  These estuaries also had relatively high precipitation.  

Species from functional group 1 comprised 72% of the total species abundance in this cluster.  

Three species (chum salmon, pink salmon, and three-spine stickleback) from functional group 1 

each contributed over 15% of the total relative abundance of this cluster.  These three species also 
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were captured in 90% or more of the estuaries in this cluster.  A little over half of the three-spine 

stickleback was captured in cluster 3 estuaries.  Species from functional group 3 contributed 21%, 

and species from functional group 2 contributed only 6% of the relative abundance.  All estuaries 

in this cluster had species from all of the functional groups 2.  The average taxonomic α-diversity 

(Qα_tax) for this cluster was 5.62, and average functional α-diversity (Qα_funct) was 1.76.  Average 

species turnover (βprop_tax) between estuaries in this cluster was 18% while average functional 

turnover (βprop_funct) was 5%. 

 Species richness ranged from 5 to 24 species per estuary, with an average of 12 species in 

each estuary.  βprop_tax between all estuaries in the region was 74%, with 83% of the sites having 

pair-wise species turnover of 25% or higher.  Average βprop_tax across all pair-wise samples of 

estuaries in the region was 38%.  βprop_tax between estuary clusters was highest for clusters 2 and 3 

(31%) and 1 and 3 (21%) and lowest between clusters 1 and 2 (14%).  All measures of functional 

diversity were much lower than taxonomic diversity.  βprop_funct in the region was 22.7% and fewer 

than 15% of the pair-wise samples had βprop_funct greater than 20%.  Average βprop_funct between 

pair-wise samples was 11%.  Approximately half the estuaries had functional turnover of less 

than 10%.  βprop_funct between estuary clusters followed a similar pattern to βprop_tax with the highest 

functional turnover occurring between clusters 2 and 3 (6%) and clusters 1 and 3 (4%) and the 

lowest turnover occurring between estuaries in clusters 1 and 2 (2%).  The multivariate dispersion 

and ANOVA analyses found significant differences in functional β-diversity between cluster 3 

and the other two clusters, but not between clusters 1 and 2 (Figure 4.6). 

 Species richness was not strongly correlated to functional α-diversity (R = 0.56): having a 

higher number of species present in an estuary did not result in an increase in functional attributes 

within that estuary (Figure 4.7a).  Regionally, functional α-diversity was related to taxonomic α-

diversity with functional diversity showing a general increase as taxonomic diversity increased 

(Figure 4.7b), but the relationship was not strongly linear (R=0.77).  For estuaries in cluster 1, 

and to a lesser extent in cluster 2, changes in taxonomic and functional β-diversity between 

estuary pairs was not strongly linear (R=0.55, and R=0.73, respectively) (Figures 4.8a and 4.8b).  

This was not the case for estuaries in cluster 3, where changes in taxonomic β-diversity were 

strongly correlated to changes in functional β-diversity (R=0.94) (Figure 4.8c).   

 Neither taxonomic nor functional β-diversity were correlated to β-diversity from the null 

models (R=0.23 and R=0.12, respectively) (Figures 4.8a and 4.8b).  Functional β-diversity was 

strongly correlated (R=0.90) to differences between observed and null model predictions (β_Diff), 
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but the correlation for taxonomic β-diversity was weaker (R=0.63).  Observed taxonomic β-

diversity was generally lower than predicted by the null models (Figure 4.8c).  SES values for 

taxonomic diversity were below zero indicating estuaries were less dissimilar than predicted by 

the null model.  In contrast, observed functional β-diversity for many estuaries was higher than 

null model predictions (Figure 4.9).  SES values for the estuaries with low observed functional 

diversity were zero or below, indicating that these estuaries were less functionally diverse than 

predicted by the null models, while SES values for estuaries with higher observed functional 

diversity were above zero indicating estuaries that were more functionally diverse than null 

models predicted. 

 

DISCUSSION 

Comparing differences in functional and taxonomic diversity between estuaries can 

provide insight into patterns of species co-occurrence and the biotic and abiotic processes shaping 

community composition.  Southeast Alaska estuaries differ substantially in their hydrological and 

geomorphological characteristics (Miller 2013a, b).  Thus it is reasonable to expect that this 

heterogeneity would affect both species composition within estuaries as well as diversity between 

estuary pairs.  I found regional species richness to be relatively high and to vary substantially 

between estuaries.  This high species richness is coupled with high proportional species turnover.  

In contrast, functional diversity was low in both the region and the estuary clusters.   

 Functional diversity did not have a strong linear relationship to species richness 

indicating that the number of species in the estuary was not a good indication of how functionally 

diverse the estuary is.  The positive relationship between functional α-diversity and taxonomic α-

diversity indicates that the loss or addition of a species tended to result in a decrease or increase 

in functional diversity, but the relationship was not strongly linear.  In general, functional 

diversity showed relatively high values at high values of taxonomic diversity, but at intermediate 

taxonomic diversity values functional diversity could be either high or low.  Along with the 

overall low functional diversity of the region, this suggest that there is functional redundancy in 

the estuarine fish community such that in some estuaries, gains or losses in species did not have a 

strong effect on ecosystem processes, while in other estuaries the effects of species changes were 

stronger.   

 Cluster 3 estuaries were substantially less diverse both taxonomically and functionally 

than estuaries in the other two clusters.  These estuaries had very low species turnover and were 
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dominated by anadromous species from functional group 1.  The combination of low taxonomic 

and functional diversity is consistent with communities where environmental constraints select 

for similar functional attributes.  The strong positive correlation between proportional change 

species diversity and proportional change in functional diversity indicates that estuaries with the 

greatest difference in taxonomic composition also tended to be the estuaries that were more 

functionally diverse.  In both this analysis and the multivariate random forest models, estuaries in 

this cluster had the lowest number of fish taxa.  In the multivariate random forest models, these 

estuaries also had the highest abundance of mobile invertebrates.  Invertebrates were not included 

in this functional analysis because the taxonomic resolution of the invertebrate data was not fine 

enough for attributing functional traits.  The dominance of anadromous species, which are present 

in the estuaries during only a portion of their life, and the low prevalence of other fish species, 

suggests that other taxa, such as invertebrates, may be performing functional traits in these 

estuaries that are performed by fish in the other clusters.   

 For estuaries in clusters 1 and 2, both niche filtering as a result of environmental factors, 

and similarity limitation through competition appear to be an important structuring mechanism.  

Species and functional turnover between estuaries in both of these clusters was high, but turnover 

between the two clusters was relatively low.  Unlike estuaries in cluster 3, estuaries in these two 

clusters demonstrated high functional redundancy.  At low levels of both functional and 

taxonomic diversity, proportional changes in species composition were more likely to result in an 

equivalent proportional change in functional diversity.  However, this relationship did not hold 

well at higher levels of taxonomic diversity.  Large differences in species composition between 

estuaries did not necessarily equate to large differences in functional diversity.  Even where 

turnover in species between the estuaries was complete and the estuaries shared no species in 

common, functional turnover could be quite low.  This results from a large pool of functionally 

similar species that occurred in a relatively small portion of the estuaries.  Twelve species 

occurred in 40% or more of the estuaries at relative abundances of 5% or more, but nearly half of 

all species occurred in fewer than 10% of the estuaries.  While abundant species were evenly 

distributed across the three functional groups (7, 6 and 9 species), the distribution of rare species 

was more uneven.  Twenty percent (10 species) of the rare species were benthopelagic, intertidal 

and brackish species from functional group 3, 13% (7 species) were benthic marine species from 

functional group 2 and only 8% (5 species) were anadromous and pelagic species from functional 
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group 1.  Clusters 1 and 2 both had similar functional composition, with 50% or more of the 

species abundance coming from the functional groups with the largest number of rare species.   

 Taxonomic diversity was substantially lower than predicted by the null models, 

indicating that, with respect to species composition, estuaries were  more similar than predicted 

by chance.  The null models were constructed to give all species equal consideration in every 

estuary.  The taxonomic model results suggest that, in reality, species distributions may be more 

constrained and that some species are limited by either environmental (e.g., currents and dispersal 

opportunities) or biotic (e.g., resource partitioning) factors, or both.  Random assignment of 

species to estuaries in the null models thus resulted in higher potential diversity than actually 

existed.  For many estuaries, the null models predicted higher functional overlap or similarity 

between estuaries than was observed.  This pattern is suggestive of environmental filtering within 

each estuary that selects for species that are adapted to the environmental conditions there 

(Hooper et al. 2005, de Bello et al. 2009).   

 These results provide information about potential gains and losses in functional diversity 

associated with changes in estuarine fish communities.  Although the relationship between 

functional and taxonomic diversity is positive, it is not strictly linear, and in this research I have 

shown that for Southeast Alaskan estuaries, higher taxonomic diversity does not equate to higher 

functional diversity.  This finding is important for biodiversity conservation.  Some management 

guides have suggested that maintaining species diversity will adequately protect functional 

diversity (Foley et al. 2010) , but this research suggests that that is not necessarily the case.  The 

estuaries in cluster three show the greatest potential for loss of functional diversity if species were 

removed.  Since the dominant species in these estuaries are anadromous, they are susceptible to 

changes in both marine and terrestrial habitats.  Because of their higher functional redundancy, 

estuaries in the other two clusters are less susceptible to ecosystem perturbations from changes in 

species composition.  It should be noted, however, that this analysis does not address the potential 

role of these estuaries as nursery areas for juvenile fish.  Many fish occurred in these estuaries 

primarily as juveniles or as mixtures of juveniles and adults, but the functional trait data used in 

this analysis were only for adults because data for juveniles were limited.  Juvenile fish may have 

different habitat and feeding patterns than adults, and incorporating this information could change 

the functional relationships between species in the data.  Research on coastal marine assemblages 

in California found that even a small increase in functional specificity can have a substantial 

impact on the sensitivity of the functional diversity analysis (Micheli and Halpern 2005).   
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 Finer resolution trophic data also would be very useful.  For all of the species in the data I 

was able to obtain general information on prey items, but even for well-studied species there is 

little information on preferred prey or prey sizes and this lack of specificity results in greater 

functional redundancy.  For species like poachers, gunnel, and sculpin, which are not of 

commercial interest or are not forage for commercial species, all types of functional data are 

particularly limited.  This is unfortunate, as some of these taxa, such as sculpin, prey on the 

commercial species at certain life-stages (Spies et al. 2012).  In combination with length-

frequency data more detailed information on predator-prey interactions would be especially 

valuable in evaluating niche specialization or competition.  As fisheries management moves 

toward ecosystem-based approaches, more research will need to be directed toward obtaining 

functional trait data for commercial and non-commercial species at various life stages.   

The diversity calculation I used for this analysis is susceptible to sampling issues 

associated with schooling and migratory species.  By considering species abundance, Rao’s index 

gives more weight to differences in functional diversity between dominant species than less 

dominant species (de Bello et al. 2009).  That is because a larger number of individuals will 

contribute more to a function than a smaller number of similar species.  Juvenile salmon, shiner 

perch (Cymatogaster aggregata), and Pacific herring were among the most abundant species in 

my estuaries and all of these species exhibit schooling behavior.  Salmon were captured in a large 

proportion of estuaries, and they are generally well sampled by the gears used.  It is therefore 

unlikely that salmon are artificially skewing the data in this analysis.  However, salmon also are 

seasonal users of estuaries in the study area, with highest abundance occurring in spring during 

outmigration from streams.  Thus, their high abundance during the period when the estuaries were 

sampled may not reflect their ecological role during other times of the year.  Addressing this 

would require repeated sampling to allow comparison across season.  Shiner perch and Pacific 

herring were captured in 5% or fewer of the estuaries.  Because these species are common in the 

study area, it is likely that this represents a sampling bias rather than a true distribution.  Both 

species exhibit onshore and offshore movement within estuaries (Penttila 2007, Froese and 

Pauley 2012), possibly related to temperature.  Temperature changes could induce these species 

to move into and out of the capture range of the gear used in this study, thereby skewing the 

diversity comparisons between estuaries where these species were captured in large numbers and 

estuaries where they were not.  There is no easy way to address this potential bias except with 

more comprehensive sampling.   
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 Management and conservation of estuarine ecosystems will require understanding of how 

species composition and species functional roles affect ecosystem processes.  These relationships 

can provide insight into the vulnerability of these ecosystems to anthropogenic or natural change, 

and can inform management and restoration efforts.  My results suggest that both environmental 

niche filtering and biotic interactions are important in structuring fish assemblages in Southeast 

Alaska estuaries, and that these factors act within estuary clusters as well as between individual 

estuaries.  This information can be used to develop strategies for habitat protection, resource 

allocation, or response to perturbations such as the introduction of invasive species, ocean 

acidification, sea level rise, and climate change.   
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Figure 4.1: Estuaries sampled between 1998 and 2005 in Southeast Alaska.   
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Figure 4.2: Principal component analysis of species functional traits for estuarine fish showing 

variation among species with vectors of traits.  The first two principal component axes account 

for 44% of the variation among species.   
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Figure 4.3: Variation in sign and strength of the life history traits.  Codes for species are: 

BF=Buffalo sculpin, BL=Black Irish lord, BP=Black prickleback, BT=Butter sole, CA=Capelin, 

CM=Chum salmon, CO=Coho salmon, CP=Canary rockfish, CS=Crescent gunnel, CT=Cutthroat 

trout, DL=Dolly varden, EL=English sole, EU=Eulachon, FT=Flathead sole, FR=Frog sculpin, 

GT=Great sculpin, HH=High cockscomb, KL=Kelp greenling, LI=Lingcod, MA=Masked 

greenling, NT=Northern sculpin, PC=Pacific cod, PH=Pacific halibut, PK=Pink salmon, 

PO=Walleye Pollock, PP=Bay pipefish, PR=Pacific herring, RC=Rock sole, RD=Red Irish lord, 

RC=Rock greenling, RP=Rock prickleback, SA=Sailfin sculpin, SD=Pacific sand land, 

SF=Pacific sand fish, SG=Staghorn sculpin, SH=Rainbow trout, SH=Shiner perch, SK=Sockeye 

salmon, SL=Saddleback gunnel, SN=Arctic shanny, SP=Snake prickleback, SR=Sturgeon 

poacher, SS=Spinynose sculpin, ST=Starry flounder, SV=Silverspotted sculpin, TB=Tubenose 

poacher, TC=Pacific tom cod, TD=Tadpole sculpin, TE=Three-spine stickleback, TP=Tidepool 

sculpin, TU=Tube-snout, WT=Whitespotted greening, YN=Yellowfin sole.  
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Figure 4.4: Spatial distribution of estuaries clustered using the multivariate random forest model 
(Miller 2013b) and PAM clustering.  Cluster 1=    ,Cluster 2 =   , and Cluster 3 =    .  
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Figure 4.5: Relative of abundance of species from each functional group  in the random forest 
clusters (Miller 2013b). 
 

  
Figure 4.6: Boxplot of ANOVA analysis of differences in multivariate dispersion of functional β-
diversity for estuaries in the random forest clusters (Miller 2013b).  Lines mark median values 
while circles show extreme values.  A significant difference was found only between cluster 3 
and the other two clusters.    
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Figure 4.7:  Relationship between species richness and functional β-diversity (a), and between 
taxonomic β-diversity and functional β-diversity (b). 
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Figure 4.8: Relationship between changes in species turnover (βprop_tax) and functional turnover 
(βprop_funct) between estuaries in the three clusters 
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Figure 4.9: Relationship between observed β-diversity and β-diversity predicted by the null 
models. Taxonomic (a) and functional (b) β-diversity showed low correlation to null model 
predictions.  Taxonomic (c) and functional (d) β-diversity plotted against SES values  
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Table 4.1: List of fish species and functional traits. Shape codes: A=attenuated, C=laterally compressed, E=elongate, FL=flat, 
FU=fusiform.  Nest guarding codes: N=no guarding, Y=guarding, B=brooding.  Spawning season codes: S=spring, SU=summer, F=fall, 
W=winter.  Primary food codes: A=amphipods, AN=annelids, C=cephalopods, D=decapods, F=fish, P=polychaetes, Z=zooplankton.  
Habitat codes: A=anadromous, BR=brackish, I=intertidal, M=marine.  Location codes: B=benthic, D=demersal, P=pelagic.  References: 
1) Froese & Pauley 2012, 2) NMFS 2012, 3) MSAP 2012, 4) similar species, 5) Hughes 1985. 
  
 
Family 

Code 

Max. 
Length 
(mm) 

Shap
e 

Nest 
guard 

Spawn 
season 

Trophic 
level 

Primary 
food Habitat Location Species 

Clupeidae 
        

  
Clupea pallasii (Pacific herring) 1, 2 PR 42 FU N S 2.3 Z BR P 

Osmeridae 
        

  
Mallotus villosus (capelin) 1,2 CP 20 FU N F 3.15 Z BR P 
Thaleichthys pacificus (eulachon) 1,2 EU 34 FU N S 3.2 Z BR P 

Salmonidae 
        

  
Salvelinus malma (Dolly Varden)  1 DL 127 FU N F 4.2 F A P 
Oncorhynchus clarkii (cutthroat trout) 1 CT 99 FU N S 3.2 F A P 
Oncorhynchus mykiss (rainbow trout) 1 SH 120 FU N W 4.4 C A P 
Oncorhynchus gorbuscha (pink salmon)  1 PK 76 FU N F 4.2 F A P 
Oncorhynchus kisutch (coho salmon)  1 CO 108 FU N F 4.2 F A P 
Oncorhynchus keta (chum salmon) 1 CM 100 FU N F 3.5 F A P 
Oncorhynchus nerka (sockeye salmon) 1 SK 84 FU N S 3.7 F A P 

Gadidae 
        

  
Theragra chalcogramma (walleye pollock) 1,2 PO 105 FU N S 3.5 Z M P 
Microgadus proximus (Pacific tomcod) 1,2 TC 31 FU N S 3.6 A M D 
Gadus macrocephalus (Pacific cod) 1,2 PC 147 FU N W 4 Z M D 

Aulorhynchidae 
        

  
Aulorhynchus flavidus (tube-snout) 1,3  TU 18 A G S 3.4 Z BR D 

Gasterosteidae 
        

  
Gasterosteus aculeatus (threespine stickleack) 1,3 TE 11 FU G SU 3.5 AN A P 

Sygnathidae 
        

  
Syngnathus leptorhynchus (Bay pipefish) 1 PP 33 A B S 3.2 A I B 

Scorpaenidae 
        

  
Sebastes caurinus (canary rockfish) 1,2,3 CP 58 A N S 4.1 F M D 
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Table 4.1 (cont.)  
 
 
Family 

Code 

Max.  
Length 
(mm) Shape 

Nest 
guard 

Spawn 
season 

Trophic 
level 

Primary 
food Habitat Location Species 

Hexagrammidae 
        

  
Ophiodon elongatus (lingcod)  1,2 LI 127 E G W 4.3 D M D 
Hexagrammos stelleri  (whitespotted greenling) 1,2 WT 32 E G S 3.3 Z M D 
H.octogrammus (masked greenling) 1,2 MA 42 E G W 3.5 D M D 
H.  decagrammus (kelp greenling) 1,2 KL 52 E G F 3.6 D M D 
H.  lagocephalus (rock greenling) 1,2 RG 61 E N W 3.9 A M D 

Cottidae 
        

  
Hemilepidotus spinosus (brown irish lord) 1,2,3 BL 29 S G W 3.5 A BR D 
Hemilepidotus hemilepidotus (red irish lord) 1,2,3 RD 51 S G S 3.5 D BR D 
Icelinus borealis (northern sculpin) 1,2,4 NT 10 E G S 3.6 D M D 
Radulinus taylori (spinynose sculpin) 4 SS 8 E N S 3.3 A M D 
Leptocottus armatus (Pacific staghorn sculpin) 1,2 SG 46 S G W 3.5 P BR D 
Enophrys bison (buffalo sculpin) 1,2 BF 37 S G S 3.3 I M D 
Myoxocephalus stelleri (frog sclupin) 1, 4 FR 60 S N U 3.9 F BR D 
M.  polyacanthocephalus (great sculpin) 1,2 GT 72 S G W 4.1 D M D 

Hemitripteridae 
        

  
Blepsias cirrhosus (silverspotted sculpin) 1,4  SV 20 S G SU 3.3 A BR D 
Nautichthys oculofasciatus (sailfin sclupin) 1,4 SA 20 S G W 4 D M D 

Psychrolutidae 
        

  
Psychrolutes paradoxus (tadpole sculpin) 1,2 TDPS 7 S G S 3.1 D I B 
Oligocottus maculosus (tidepool sculpin) 1,3 TP 9 S G S 3.4 P I D 

Agonidae 
        

  
Pallasina barbata (tubenose poacher) 1,2, 4 TB 19 E N SU 3.2 Z M D 
Podothecus accipenserinus (sturgeon poacher) 1,2 SR 28 E N U 3.4 A M B 

Embiotocidae 
        

  
Cymatogaster aggregata (shiner perch)  1, 3 SI 20 C B SU 3 I BR P 
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Table 4.1 (cont.)  
 
Family 

Code 

Max 
Length 
(mm) Shape 

Nest 
guard 

Spawn 
season 

Trophic 
level 

Primary 
food Habitat Location Species 

Stichaediae 
        

  
Lumpenus sagitta (snake prickleback) 1,2 SP 51 E N F 3.1 Z I D 
Stichaeus punctatus (Arctic shanny) 1,2 SN 22 A N S 3.1 P I D 
Anoplarchus purpurescens (high cockscomb) 1,3 HH 20 A G W 2.8 P I D 
Xiphister mucosus (rock prickleback) 1,3, 4 RP 58 A G F 2.2 AL M D 
X.(black prickleback ) 1,3 BP 31 A G S 2.41 Z I D 

Pholidae 
        

  
Pholis laeta (crescent gunnel) 1,3,5 CS 25 A G W 3.3 I I D 
Pholis ornata (saddleback gunnel) 5, 4 SA 30 A G W 3.5 I I D 

Trichodintidae 
        

  
Trichodon trichodon (Pacific sandfish)1,2,3 SF 31 S N W 3.7 F M B 

Ammodytidae 
        

  
A.s hexapterus (Pacific sand lance) 1,2,3 SD 22 A N F 3.1 Z BR B 

Pleuronectidae 
        

  
Hippoglossus stenolepis (Pacific halibut) 1,2 PH 258 FL N W 4.1 D M B 
Hippoglossoides elassodon (flathead sole) 1, 2 FL 74 FL N S 3.6 P BR B 
Platichthys stellatus (starry flounder) 1,2 ST 91 FL N S 3.3 P BR B 
Lepidopsetta sp.  (rock sole)  1,2 RC 65 FL N S 3.2 AN M B 
Isopsetta isolepis (butter sole) 1,3 BY 55 FL N S 3.6 P BR B 
Limanda aspera (yellowfin sole) 1,2 YN 63 FL N SU 3.2 A M B 
Parophrys vetulus (english sole) 1,2,3 EL 49 FL N W 3.4 P M B 
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Table 4.2: Species arranged by functional group  and ordered by relative abundance in the data set. The number of sites within each cluster 
where the species were captured and the relative abundance within each cluster are shown.   

FUNCTIONAL GROUP ONE % sites % Rel.  abundance 

Species 
In 

data 
Cluster 

1 
Cluster 

2 
Cluster 

3 
In 

data 
Functional 

Group 
Cluster 

1 
Cluster 

2 
Cluster 

3 
chum salmon (Oncorhynchus keta) 62.5 56.0 50.0 100.0 11.9 28.1 11.4 6.8 27.0 
pink salmon (Oncorhynchus gorbuscha) 60.4 44.4 50.0 100.0 10.1 24.0 11.0 4.6 23.9 
three-spine stickleback (Gasterosteus aculeatus) 47.9 16.7 55.0 90.0 6.0 14.2 2.0 4.6 16.8 
coho salmon (Oncorhynchus kisutch) 47.9 33.0 80.0 10.0 5.1 12.0 7.4 5.4 0.1 
Pacific sand lance (Ammodytes hexapterus) 33.3 44.4 35.0 10.0 4.0 9.4 7.0 3.5 0.1 
Dolly Varden (Salvelinus malma) 31.3 28.0 50.0 0.0 2.8 6.5 5.4 2.1 0.0 
sockey salmon (Oncorhynchus nerka) 22.9 6.0 35.0 30.0 1.5 3.6 0.4 1.4 3.8 
Pacific cod (Gadus macrocephalus) 18.8 33.3 15.0 0.0 0.4 0.8 0.8 0.2 0.0 
capelin (Mallotus villosus) 6.3 0.0 15.0 0.0 0.2 0.6 0.0 0.0 0.0 
walleye pollock (Theragra chalcogramma) 8.3 11.1 5.0 10.0 0.1 0.3 0.2 0.1 0.2 
cutthroat trout (Oncorhynchus clarkii) 6.3 0.0 15.0 0.0 0.1 0.3 0.0 0.2 0.0 
rainbow trout (Oncorhynchus mykiss) 6.3 0.0 15.0 0.0 0.1 0.1 0.0 0.1 0.0 
eulachon (Thaleichthys pacificus) 6.3 0.0 5.0 20.0 0.0 0.1 0.0 0.0 0.2 

TOTAL         42.0         
FUNCTIONAL GROUP TWO % sites % Relative abundance 

Species 
In 

data 
Cluster 

1 
Cluster 

2 
Cluster 

3 
In 

data 
Functional 

Group 
Cluster 

1 
Cluster 

2 
Cluster 

3 
yellowfin sole (Limanda aspera) 31.3 27.8 45.0 10.0 5.8 27.9 5.1 8.3 0.1 
starry flounder (Platichthys stellatus) 62.5 44.4 75.0 70.0 5.4 26.1 1.6 8.7 3.1 
rock sole (Lepidopsetta sp.) 68.8 50.0 85.0 70.0 3.8 18.1 1.9 5.7 1.8 
buffalo sculpin (Enophrys bison)  52.1 78.0 30.0 50.0 1.9 9.0 3.8 1.1 0.4 
tubenose poacher (Pallasina barbata) 12.5 5.6 20.0 10.0 1.2 6.0 0.2 2.3 0.1 
rock greenling (Hexagrammos lagocephalus) 10.4 11.1 15.0 0.0 0.7 3.6 2.2 0.1 0.0 
sturgeon poacher (Podothecus accipenserinus) 20.8 22.2 30.0 0.0 0.5 2.2 0.7 0.5 0.0 
flathead sole (Hippoglossoides elassodon) 12.5 11.1 10.0 20.0 0.4 1.7 0.6 0.2 0.3 
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FUNCTIONAL GROUP TWO % sites % Relative abundance 

Species 
In 

data 
Cluster 

1 
Cluster 

2 
Cluster 

3 
In 

data 
Functional 

Group 
Cluster 

1 
Cluster 

2 
Cluster 

3 
Pacific halibut (Hippoglossus stenolepis) 4.2 5.6 5.0 0.0 0.3 1.6 1.0 0.0 0.0 
Pacific tomcod (Gadus macrocephalus) 2.1 0.0 5.0 0.0 0.2 1.2 0.0 0.0 0.0 
butter sole (Isopsetta isolepis) 10.4 22.2 5.0 0.0 0.2 0.8 0.5 0.0 0.0 
lingcod (Ophiodon elongatus) 8.3 22.2 0.0 0.0 0.1 0.7 0.4 0.0 0.0 
spinynose sculpin (Radulinus taylori) 6.3 0.0 0.0 30.0 0.1 0.5 0.0 0.0 0.6 
canary rockfish (Sebastes caurinus) 6.3 11.1 0.0 10.0 0.1 0.4 0.2 0.0 0.1 
english sole (Parophrys vetulus) 2.1 5.6 0.0 0.0 0.0 0.1 0.0 0.0 0.0 

Pacific sandfish (Trichodon trichodon) 2.1 0.0 5.0 0.0 0.0 0.1 0.0 0.0 0.0 

TOTAL         21.0         
FUNCTIONAL GROUP THREE % sites % Relative abundance 

Species 
In 

data 
Cluster 

1 
Cluster 

2 
Cluster 

3 
In 

data 
Functional 

Group 
Cluster 

1 
Cluster 

2 
Cluster 

3 
snake prickleback (Lumpenus sagitta) 45.8 38.9 75.0 0 6.5 17.6 7.2 8.4 0 
Pacific herring (Clupea pallasii) 25.0 22.2 35.0 10.0 5.5 15.0 1.6 10.0 0.1 
crescent gunnel (Pholis laeta) 68.8 72.0 75.0 50.0 5.0 13.4 8.3 4.4 0.8 
Bay pipefish (Syngnathus leptorhynchus) 45.8 44.4 25.0 90.0 4.7 12.6 6.6 0.7 12.1 
Pacific staghorn sculpin (Leptocottus armatus) 70.8 77.8 70.0 60.0 4.4 11.9 4.2 5.5 1.6 
tube-snout (Aulorhynchus flavidus) 27.1 11.1 35.0 40.0 3.0 8.0 0.2 4.4 3.9 
kelp greenling (Hexagrammos decagrammus) 41.7 55.6 40.0 20.0 2.1 5.6 3.6 1.8 0.2 
rock prickleback (Xiphister mucosus) 25.0 27.8 35.0 0.0 1.7 4.7 2.4 1.9 0.0 
shiner perch (Cymatogaster aggregata) 16.7 11.1 30.0 0.0 1.6 4.5 0.1 3.2 0.0 
silverspotted sculpin (Blepsias cirrhosus) 25.0 27.8 25.0 10.0 0.9 2.5 0.8 1.3 0.1 
great sculpin (M.  polyacanthocephalus) 22.9 17.0 35.0 10.0 0.3 0.8 0.4 0.3 0.1 
northern sculpin (Icelinus borealis) 14.6 11.1 15.0 20.0 0.2 0.6 0.1 0.1 0.7 
tidepool sculpin (oligocottus maculosus) 4.2 0.0 5.0 10.0 0.2 0.5 0.0 0.0 0.9 
whitespotted greenling (Hexagrammos stelleri) 10.4 0.0 10.0 30.0 0.1 0.3 0.0 0.1 0.4 
high cockscomb (Anoplarchus purpurescens) 10.4 5.6 5.0 30.0 0.1 0.3 0.0 0.1 0.3 
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FUNCTIONAL GROUP THREE % sites % Relative abundance 

Species 
In 

data 
Cluster 

1 
Cluster 

2 
Cluster 

3 
In 

data 
Functional 

Group 
Cluster 

1 
Cluster 

2 
Cluster 

3 
frog sculpin (Myoxocephalus stelleri) 8.3 0.0 20.0 0.0 0.1 0.3 0.0 0.2 0.0 
brown irish lord (Hemilepidotus spinosus) 4.2 0.0 10.0 0.0 0.1 0.2 0.0 0.2 0.0 
sailfin sculpin (Nautichthys oculofasciatus) 4.2 5.6 5.0 0.0 0.1 0.2 0.1 0.1 0.0 
masked greenling (Hexagrammos octogrammus) 4.2 5.6 5.0 0.0 0.1 0.2 0.1 0.1 0.0 
saddleback gunnel (Pholis ornata) 4.2 5.6 0.0 10.0 0.1 0.2 0.1 0.0 0.1 

tadpole sculpin (Psychrolutes paradoxus) 8.3 11.1 5.0 0.0 0.1 0.2 0.1 0.0 0.0 

red irish lord (Hemilepidotus hemilepidotus) 4.2 0.0 5.0 10.0 0.0 0.1 0.0 0.1 0.1 

Arctic shanny (Stichaeus punctatus) 4.2 0.0 10.0 0.0 0.0 0.1 0.0 0.1 0.0 

black prickleback (Xyphister atropurpureus) 2.1 0.0 0.0 10.0 0.0 0.1 0.0 0.0 0.2 

TOTAL         37.0         
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Chapter 5: Summary, Conclusions and Recommendations 

 

SUMMARY 

 Accurate predictive models of species occurrence can be developed for estuarine-associated 

fish and invertebrates using regional-scale spatial datasets as surrogates for environmental 

data collected in the field.  Models confirmed species-habitat relationships documented in 

previous research and highlighted new relationships that could further refine understanding of 

factors affecting the spatial distribution of species.   

 The random forest algorithm produced highly accurate species occurrence predictions when 

validated against independent data.  Sixty-six percent of the fish and 72% of the invertebrate 

models had predictive accuracies greater that 70%. 

 Individual species models plotted in GIS can provide critical information for managers and 

researchers on spatial distributions and predicted species occurrence in relation to 

anthropogenic or other habitat changes.  Because many fish species occur in estuaries as 

juveniles, these models can help identify nearshore areas important to fish early life stages.   

 Species composition within estuaries showed strong associations with regional patterns of 

tidal height and precipitation and with local availability of intertidal habitat, kelp, and 

eelgrass.  Multispecies models can provide insight into species co-occurrence patterns and the 

effect of co-occurring species on abundances of individual species.   

 Methods, such as multivariate random forests, that can model multivariate responses against 

multivariate predictors retain information on individual species responses to both biotic and 

abiotic factors, and therefore provide information necessary for ecosystem-level management  

 Both environmental niche filtering and biotic interactions are important structuring 

mechanisms for estuarine communities.  Functional diversity in the estuaries was not 

correlated to the number of species present, but showed a slight positive relationship to 

change in species composition.  Rare species that occurred in fewer than 10% of the sampled 

estuaries were primarily responsible for the high taxonomic diversity in the region, and the 

relatively high functional redundancy among these species contributed to the relatively low 

functional diversity in the region 

 Taxonomic diversity was substantially lower than expected by chance, a result consistent 

with the large number of rare species in the data and environmental filtering limiting 

dispersal of these species across estuaries.  In contrast, functional diversity was higher than 
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expected by chance.  This result is also consistent with environmental filtering within 

estuaries selecting for species adapted to the environmental conditions of that estuary 

 

CONCLUSIONS AND RECOMMENDATIONS  

  The spatial distribution of estuarine species can be quantifiably related to differences in 

the quality and composition of habitat at the landscape scale.  This finding is of substantial value 

for improving species management, understanding ecosystem processes, and identifying areas for 

conservation.  For areas like Southeast Alaska where comprehensive data collection is hampered 

by the area’s large size and challenging climate, model-based estimates of species occurrence and 

community composition can provide information that can guide research and inform management 

decisions. 

 A potential application of this research is to provide a stronger scientific and analytical 

basis for evaluating how environmental changes may affect species occurrence and distribution.  

The National Marine Fisheries Service (NMFS) has been tasked under the Magnuson-Stevens 

Fisheries Management Act with evaluating how fishing and non-fishing activities may adversely 

affect essential fish habitat.  For nearshore development in Alaska, this determination is made 

with very little scientific information on species distributions or habitat use because for much of 

coastal Alaska the relative abundance of species within different habitats is virtually unknown.  

This research has identified species-habitat relationships for a number of species of concern to 

NMFS.  The models constructed in Chapter 1 provide a scientific and quantifiable basis for 

evaluating scenarios of habitat loss that may occur from nearshore development and determining 

how this loss may affect species occurrence and distribution.  These models can also assist in 

identifying areas of importance to species of commercial interest which can be used to prioritize 

areas for conservation.   

 As fishery management methods change to focus more on ecosystem processes than 

individual species, modeling will be a critical part of the approach used to understand the 

composition of estuarine communities in relation to the biotic and abiotic environment.  Models 

that evaluate species-habitat relationships at the community level have the advantage of being 

able to evaluate species interactions as they affect community composition in a way that 

individual models cannot.  The use of co-occurring species to understand patterns in target 

species is not new, but it is only recently that accurate multivariate methods have been developed 

that can incorporate not only several species as the response, but also a large number of predictor 
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variables.  This provides the opportunity to explore new relationships between individual species 

and between species and their environment that are not possible with standard statistical methods.  

As shown in Chapter 2, community composition in Southeast Alaska estuaries is strongly 

influenced by environmental gradients in precipitation, tidal energy, and intertidal habitat 

availability.  These models can be used to justify additional funding to further define the 

environmental gradients along which species are distributed.   

 Ecosystem processes are affected by the functional characteristics of species, which is 

only weakly related to a species’ taxonomic identity.  Yet most ecosystem management 

approaches still focus on the presence or abundance of species without evaluating either the 

functional role those species play in the ecosystem or the functional similarity between areas with 

dissimilar species.  These approaches assume functional diversity will be maintained if species 

diversity is maintained (Foley et al. 2010).  In Chapter 3, I demonstrated that functional diversity 

of fishes in Southeast Alaska estuaries was not correlated to species richness and only moderately 

related to taxonomic diversity.  Most of the estuaries have a relatively high level of functional 

similarity despite having high taxonomic diversity as a result of having a large pool of rare 

species that occur in only a few estuaries.  However, a portion of the estuaries are dominated by a 

small number of anadromous species and have little functional redundancy.  These estuaries are 

most vulnerable to changes in ecosystem processes resulting from anthropogenic or natural 

changes in species composition.  The results of this research have direct application to decisions 

on habitat management and conservation.    

 Although this research makes major strides in understanding estuarine ecosystem 

processes and developing methods for evaluating large complex data, it is but a start.  Habitat, in 

the many ways it is defined, is well recognized within the fisheries and marine research 

communities as a critical factor that affects species abundance and distribution (Foley et al. 2010, 

Yoklavich et al. 2010), yet it is also peripheral to most fisheries management decisions and 

management-related research (Armstrong & Falk-Petersen 2008).  As an example, consider that 

the standard stock-recruit model used for assessing fish abundance for setting allowable fishing 

levels has no habitat variable: the influence of habitat is assumed through spawner and recruit 

survival and the carrying capacity.  There have been several approaches to incorporating habitat 

more explicitly into these models (Scheuerell et al. 2006, Stier & Osenberg 2010, Mizerek et al. 

2011, Su et al. 2012), but methods incorporating habitat are still not widely used.  Ecosystem 

fisheries management demands an understanding of the ecological linkages between species and 
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their habitats (Link 2000).  The models developed in this research could be used to develop a 

stronger understanding of the relationship among species, habitats and co-occurring species that 

could inform fisheries stock assessments and ecosystem management activities.  Especially for 

juveniles, models that can estimate species abundance in relation to biotic and abiotic factors 

could be incorporated into stock assessments (Yoklavich et al. 2010).  This research is one 

example of how these models can be developed.  A future challenge will be to bring these 

modeling methods to bear on the extensive fisheries and habitat data available and assess how 

they enhance fisheries stock assessment and ecosystem management.   
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