2,328 research outputs found

    Incremental, Inductive Coverability

    Full text link
    We give an incremental, inductive (IC3) procedure to check coverability of well-structured transition systems. Our procedure generalizes the IC3 procedure for safety verification that has been successfully applied in finite-state hardware verification to infinite-state well-structured transition systems. We show that our procedure is sound, complete, and terminating for downward-finite well-structured transition systems---where each state has a finite number of states below it---a class that contains extensions of Petri nets, broadcast protocols, and lossy channel systems. We have implemented our algorithm for checking coverability of Petri nets. We describe how the algorithm can be efficiently implemented without the use of SMT solvers. Our experiments on standard Petri net benchmarks show that IC3 is competitive with state-of-the-art implementations for coverability based on symbolic backward analysis or expand-enlarge-and-check algorithms both in time taken and space usage.Comment: Non-reviewed version, original version submitted to CAV 2013; this is a revised version, containing more experimental results and some correction

    Automating the transformation-based analysis of visual languages

    Full text link
    The final publication is available at Springer via http://dx.doi.org/10.1007/s00165-009-0114-yWe present a novel approach for the automatic generation of model-to-model transformations given a description of the operational semantics of the source language in the form of graph transformation rules. The approach is geared to the generation of transformations from Domain-Specific Visual Languages (DSVLs) into semantic domains with an explicit notion of transition, like for example Petri nets. The generated transformation is expressed in the form of operational triple graph grammar rules that transform the static information (initial model) and the dynamics (source rules and their execution control structure). We illustrate these techniques with a DSVL in the domain of production systems, for which we generate a transformation into Petri nets. We also tackle the description of timing aspects in graph transformation rules, and its analysis through their automatic translation into Time Petri netsWork sponsored by the Spanish Ministry of Science and Innovation, project METEORIC (TIN2008-02081/TIN) and by the Canadian Natural Sciences and Engineering Research Council (NSERC)

    On Modelling and Analysis of Dynamic Reconfiguration of Dependable Real-Time Systems

    Full text link
    This paper motivates the need for a formalism for the modelling and analysis of dynamic reconfiguration of dependable real-time systems. We present requirements that the formalism must meet, and use these to evaluate well established formalisms and two process algebras that we have been developing, namely, Webpi and CCSdp. A simple case study is developed to illustrate the modelling power of these two formalisms. The paper shows how Webpi and CCSdp represent a significant step forward in modelling adaptive and dependable real-time systems.Comment: Presented and published at DEPEND 201

    Solving the Petri-Nets to Statecharts Transformation Case with UML-RSDS

    Full text link
    This paper provides a solution to the Petri-Nets to statecharts case using UML-RSDS. We show how a highly declarative solution which is confluent and invertible can be given using this approach.Comment: In Proceedings TTC 2013, arXiv:1311.753

    Algorithmic Verification of Asynchronous Programs

    Full text link
    Asynchronous programming is a ubiquitous systems programming idiom to manage concurrent interactions with the environment. In this style, instead of waiting for time-consuming operations to complete, the programmer makes a non-blocking call to the operation and posts a callback task to a task buffer that is executed later when the time-consuming operation completes. A co-operative scheduler mediates the interaction by picking and executing callback tasks from the task buffer to completion (and these callbacks can post further callbacks to be executed later). Writing correct asynchronous programs is hard because the use of callbacks, while efficient, obscures program control flow. We provide a formal model underlying asynchronous programs and study verification problems for this model. We show that the safety verification problem for finite-data asynchronous programs is expspace-complete. We show that liveness verification for finite-data asynchronous programs is decidable and polynomial-time equivalent to Petri Net reachability. Decidability is not obvious, since even if the data is finite-state, asynchronous programs constitute infinite-state transition systems: both the program stack and the task buffer of pending asynchronous calls can be potentially unbounded. Our main technical construction is a polynomial-time semantics-preserving reduction from asynchronous programs to Petri Nets and conversely. The reduction allows the use of algorithmic techniques on Petri Nets to the verification of asynchronous programs. We also study several extensions to the basic models of asynchronous programs that are inspired by additional capabilities provided by implementations of asynchronous libraries, and classify the decidability and undecidability of verification questions on these extensions.Comment: 46 pages, 9 figure

    Semantics and Verification of UML Activity Diagrams for Workflow Modelling

    Get PDF
    This thesis defines a formal semantics for UML activity diagrams that is suitable for workflow modelling. The semantics allows verification of functional requirements using model checking. Since a workflow specification prescribes how a workflow system behaves, the semantics is defined and motivated in terms of workflow systems. As workflow systems are reactive and coordinate activities, the defined semantics reflects these aspects. In fact, two formal semantics are defined, which are completely different. Both semantics are defined directly in terms of activity diagrams and not by a mapping of activity diagrams to some existing formal notation. The requirements-level semantics, based on the Statemate semantics of statecharts, assumes that workflow systems are infinitely fast w.r.t. their environment and react immediately to input events (this assumption is called the perfect synchrony hypothesis). The implementation-level semantics, based on the UML semantics of statecharts, does not make this assumption. Due to the perfect synchrony hypothesis, the requirements-level semantics is unrealistic, but easy to use for verification. On the other hand, the implementation-level semantics is realistic, but difficult to use for verification. A class of activity diagrams and a class of functional requirements is identified for which the outcome of the verification does not depend upon the particular semantics being used, i.e., both semantics give the same result. For such activity diagrams and such functional requirements, the requirements-level semantics is as realistic as the implementation-level semantics, even though the requirements-level semantics makes the perfect synchrony hypothesis. The requirements-level semantics has been implemented in a verification tool. The tool interfaces with a model checker by translating an activity diagram into an input for a model checker according to the requirements-level semantics. The model checker checks the desired functional requirement against the input model. If the model checker returns a counterexample, the tool translates this counterexample back into the activity diagram by highlighting a path corresponding to the counterexample. The tool supports verification of workflow models that have event-driven behaviour, data, real time, and loops. Only model checkers supporting strong fairness model checking turn out to be useful. The feasibility of the approach is demonstrated by using the tool to verify some real-life workflow models
    corecore