10,255 research outputs found

    The power-series algorithm applied to the shortest-queue model

    Get PDF
    Queueing Theory;operations research

    The power-series algorithm applied to the shortest-queue model

    Get PDF

    Bad Luck When Joining the Shortest Queue

    Get PDF
    A frequent observation in service systems with queues in parallel is that customers in other queues tend to be served faster than those in one’s own queue. This paper quantifies the probability that one’s service would have started earlier if one had joined another queue than the queue that was actually chosen, for exponential multiserver systems with queues in parallel in which customers join one of the shortest queues upon arrival and in which jockeying is not possible.Queueing;Join-the-shortest-queue;Probability of bad luck;Power-series algorithm;Overtaking customers;Dedicated customers

    Packet transport on scale free networks

    Get PDF
    We introduce a model of information packet transport on networks in which the packets are posted by a given rate and move in parallel according to a local search algorithm. By performing a number of simulations we investigate the major kinetic properties of the transport as a function of the network geometry, the packet input rate and the buffer size. We find long-range correlations in the power spectra of arriving packet density and the network's activity bursts. The packet transit time distribution shows a power-law dependence with average transit time increasing with network size. This implies dynamic queueing on the network, in which many interacting queues are mutually driven by temporally correlated packet stream

    Transport on complex networks: Flow, jamming and optimization

    Get PDF
    Many transport processes on networks depend crucially on the underlying network geometry, although the exact relationship between the structure of the network and the properties of transport processes remain elusive. In this paper we address this question by using numerical models in which both structure and dynamics are controlled systematically. We consider the traffic of information packets that include driving, searching and queuing. We present the results of extensive simulations on two classes of networks; a correlated cyclic scale-free network and an uncorrelated homogeneous weakly clustered network. By measuring different dynamical variables in the free flow regime we show how the global statistical properties of the transport are related to the temporal fluctuations at individual nodes (the traffic noise) and the links (the traffic flow). We then demonstrate that these two network classes appear as representative topologies for optimal traffic flow in the regimes of low density and high density traffic, respectively. We also determine statistical indicators of the pre-jamming regime on different network geometries and discuss the role of queuing and dynamical betweenness for the traffic congestion. The transition to the jammed traffic regime at a critical posting rate on different network topologies is studied as a phase transition with an appropriate order parameter. We also address several open theoretical problems related to the network dynamics
    • …
    corecore