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Packet Transport on Scale Free Networks
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We introduce a model of information packet transport on networks in which the packets are
posted by a given rate and move in parallel according to a local search algorithm. By performing a
number of simulations we investigate the major kinetic properties of the transport as a function of
the network geometry, the packet input rate and the buffer size. We find long-range correlations in
the power spectra of arriving packet density and the network’s activity bursts. The packet transit
time distribution shows a power-law dependence with average transit time increasing with network
size. This implies dynamic queueing on the network, in which many interacting queues are mutually
driven by temporally correlated packet streams.
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I. INTRODUCTION

The Internet has become a central feature of all our
lives. This has lead to interest in information packet
transport on massive, heterogeneous, random, network
geometries.

Many empirical studies of packet transport on the In-
ternet have been carried out [1–4]. The principal conclu-
sion of these measurements is that the aggregate packet
streams are fractal, obeying long-range correlated in
time. Of particular interest are studies of packet den-
sity at a particular link (or on a node) and ping time
statistics [2,3], in which the round trip time, or the time
it takes a packet to travel to a destination and back to its
source, are measured. Analysis of the power spectrum of
the packet density and round trip times allows one to dis-
tinguish two regimes with free flow and jammed traffic,
respectively, depending on the traffic intensity. In [4] it
was shown that the power-law behaviour of the distribu-
tion of packet inter-arrival times has a significant effect
on packet queuing performance, and consequently on the
overall packet transport.

These dynamical transport and queuing processes are
taking place on the Internet, the network made up of
routers and computers as vertices and cables as edges.
Recent studies of the geometry of the Internet, [5–7], in-
dicate that the degree distribution has a power-law, scale
free behaviour [8–11].

Another topological property, the betweenness, or the
total number of shortest paths going through each node
[12,13], was also found to have a power-law distribution
with an exponent ≈ 2.2 on a scale free graph. In terms of
transport processes, this corresponds to the distribution
of the number of packets transferred through a node (in
a long-time limit), in a system in which the packet trans-
port is dominated by non-interacting packets that always
take the shortest route between source and destination.

In reality, the information packet transport is much
more complex for the following reasons: (1) no global
navigation is technically available; (2) many packets are
being transported simultaneously, hindering each others
motion, depending on the search algorithm and network
structure. In particular, the kinetics of many interact-
ing packets leads to a qualitatively new feature, which
is manifested in the queueing [14] of packets at individ-
ual nodes. In the network we have the problem of many
interacting queues. Thus a close relationship seems to
exist between the kinetic properties of the packet trans-
port, such as the distribution of round trip times, or the
number of packets on a node, and the network on which
the kinetics takes place. The interplay between network
structure and packet kinetics becomes particularly im-
portant when one imagines the transport in a network
with buffers, which restrict the length of packet queue
at each node, or with reduced ability of nodes to han-
dle the packets. In recent studies of traffic on idealized
geometries—on a linear chain [15] and on Cayley trees
[16,17] and one- and two-dimensional lattices [17] a sharp
transition from a free to congested traffic was found. The
smallest buffer along the chain causes jamming in the lin-
ear model [15], while transport through the node at the
top of hierarchy is crucial for the onset of congestion on
the hierarchical lattice [16,17]. In a network with scale-
free structure of links the multiplicity of potential paths
among pairs of nodes may alter the role of buffers in the
crossover to jammed traffic. It is expected that the lo-
cal geometry of the hub nodes, and their buffer sizes, is
of critical importance, while the buffer sizes of the ma-
jority of other nodes are largely irrelevant. The relative
importance of nodes, of course, depends on the search
algorithm being used. For practical reasons, search al-
gorithms can only be applied to small sections of the
network. An attempt was reported recently [18] to find
optimal topology of the network for a given local algo-
rithm in the presence of congestion.
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In this paper we introduce a simple model of packet
transport on networks in an attempt to understand which
of the elements present in a real system are necessary for
the system to display the observed empirical results. In
particular, we study the effect of the geometry of the
network on the major properties of the packet transport.
We develop a model for simultaneous transport of pack-
ets and implement this model on scale free and randomly
grown networks. Packets are posted by a given input rate
R and moved according to a local algorithm which uses
up to next-neighbour search and the local geometry. In
this way the packet queue at each individual node is dy-
namically formed by packets moving from neighbouring
nodes. We measure a number of kinetic quantities that
allow us to characterize the nature of the packet trans-
port process on the two networks.

The paper is organized as follows: In Section II we
introduce the model by first presenting the algorithm of
graph growth and then the search algorithm for packet
kinetics on the graphs. In Section III we define precisely
the quantities that we determine in the simulations and
present the results for the packet time series and power
spectra of these quantities. In Section IV we study the
distribution of transit times of packets, the queue lengths
and the networks’ output rate. In Section V we present
a short summary of the results and discuss the main con-
clusions.

II. THE MODEL

Our model is developed in two separate stages. Firstly
the network is grown and then we simulate the motion
of packets on the network.

Network Structure

We consider two different tree networks, one of which
is scale-free and the second is a grown random network.

The scale free network (SFN) structure [8] is grown
as follows. At each time step one new node is added to
the network and is linked to a node of degree k with a
rate [10]

p(k, t) =
k + α

D(t) + αN(t)
. (1)

Here D(t) is the total degree of the network at time t and
N(t) is the total number of nodes in the network, and
α > 0 is a tunable parameter. For networks grown in
this way, the degree distribution is power-law [8,10,9,11].
More precisely, the number of nodes with degree k, P (k),
behaves as P (k) ∼ k−τ with τ = 2+α. Choosing α = 0.2
means that this network has the same in-degree distribu-
tion [5] as that observed on the Internet.

The random network (RGN) is grown by adding one
new node at each time step and connecting it to a node
of degree k with rate 1/N(t), independent of k. In this
case the degree distribution P (k) behaves as P (k) ∼ 2−k.

Sending Packets

At each time step, with probability R, a new infor-
mation packet is initiated. This is done by randomly
selecting a source node and a destination node for that
packet.

Packet Transport

At each time step, each node is investigated in turn,
and if it has a packet on it then the top packet on the
node attempts to move. This is done by searching the
nearest and next nearest neighbours of the node for the
destination node of that packet. If found, the packet is
moved to or towards the its destination node. If the desti-
nation node isn’t found, the packet moves to a randomly
selected neighbour. Each node has a buffer size of inte-
ger B, the maximum number of packets that can be on a
node at any one time. If a packet attempts to move to a
full node, it is unable to stay there and moves back to the
node it came from. We assume that every node has the
same buffer size. Similarly, in order to fully investigate
the effect of the geometry of the graph, we assume that
all the links have the same capacity. When the packet
reaches its destination node, it is removed from the net-
work.

In terms of queuing theory [14], our nodes can be
thought of as single server queues, with buffer size B, and
a deterministic service time distribution. The service dis-
cipline is last in first out (LIFO). For single server queues
with this discipline some approximations have been de-
veloped [19] for the waiting time distribution. Finally the
inter-arrival time distribution is not put in by hand, but
arises naturally as a function of the network geometry
and the kinetics of the packets at neighbouring nodes on
the network. The waiting time distribution has two dif-
ferent contributions: First, a node receives packets with a
Poisson distribution as a result of packets being initiated
on that node; and, second, the node receives packets from
neighbouring nodes with a time series that turns out to
have a long range, power-law temporal correlation.

Thus we have packet transport rules which yield paths
for the packet which are close to, but longer than, the
minimum path between source and target node. We also
have networks which are trees containing no loops. We
do not believe that the loops present in real networks
[5,10,11] play an important role in the observed behavior
[1–4].

III. TRAFFIC TIME SERIES AND POWER

SPECTRA

We have performed a number of simulations of the ki-
netics of the packet transport on both the scale free net-
work and the random grown network of size N = 103

nodes. We considered a number of different quantities
that characterise the kinetics and allow comparison to
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be made with real data from the Internet [1,2]. These
were

(a) Activity, a(t), the total number of nodes with a
packet on at time t. This gives a measure of the fraction
of the network that is busy.

(b) Total Load, n(t), the total number of packets in
the network at time t.

(c) Load (or queue length), q(t), the number of packets
on a node at time t.

(d) Load on the active nodes at time t, la(t) =∑
active q(t). This quantifies the load carried by the ac-

tive nodes at a particular time step.
(e) Density, ρ(t), the total number of packets arriving

at the hub node at time t.
(f) Transit time, Ttr, the time taken by a packet to

reach its destination.
The characteristics of these quantities change as a func-

tion of the geometry of the network, the buffer size B
and the input rate R. In order to examine these changes,
we calculated their power-spectra. In general, the power
spectrum of a time series X(t) is defined by

SX(f) = |

∞∑

t=1

X(t)eift|2. (2)

For a time series with no temporal correlation, the plot
of SX(f) against f is independent of f . If the time series
X(t) has an auto-correlation function rX(k) ∼ k−φ then
SX(f) ∼ f−φ.

The output rate, or average number of packets leav-
ing the system per time step, is, along with the transit
time Ttr, a measure of the efficiency of the system. It is
defined by

µ = R −
n(t)

t
. (3)

In general the value of the ratio µ/R allows one to de-
termine [20] whether the queues in the system are get-
ting longer with time. As it will be shown below, in our
model, the queues are growing with time for all values of
the parameters.

A comparison of the packet traffic on the scale-free
network and the randomly grown network in our simu-
lations is demonstrated by time series for load carried
by active nodes and by number of nodes that are active
at given time shown in Fig. 1. With identical driving
conditions, the random network tends to distribute the
activity over many nodes simultaneously, whereas in the
scale-free network the activity is localised to the hub,
which carries most of the packets, and a few other high
degree nodes in the centre of the network.

In Figure 2 we compare the power spectra of the time
series for activity, load at active nodes, density at the
hub, and number of packets in the network for the two
network geometries operating in the identical driving
conditions of low input rate R = 0.01 and buffer size

B = 100 for network size N = 1000 nodes. For these
driving conditions the long-range correlations in the time
series are present in certain range of frequencies in both
networks. The slopes are generally closer to -1 in the case
of SFN (1/f -noise), whereas in the RGN we measure the
slope close to -2, except for the density where it is close
to -0.5, and a whiter spectrum (c.f. Fig. 2). These fea-
tures, however, change with increased input rate and/or
decreased buffer size, suggesting that the character of the
transport depends on the relative ratio of these parame-
ters.

In particular, when the input rate is increased by a
factor of four and the buffer size is unchanged (B = 100,
R = 0.04) the power spectrum of the density at the hub
in SFN behaves as 1/f2 (top line in Fig. 3). In the
case of RGN the slope becomes approximately -1 and
the range of frequencies where the correlation occurs is
reduced. Changes in the spectrum of density indicates
that the character of packet transport at the hub changed
from 1/f noise in the free-flow regime, to simple diffusive
transport.

In Figure 3 we also show the power spectrum of the
density measured at a node away from the hub in the
free-flow regime for both network geometries. It is inter-
esting to note that, in the SFN, in contrast to the density
at hub, the spectrum inside the network for low traffic
intensity is a white noise (bottom curve in Fig. 3). In the
RGN, however, the correlations similar to the ones at the
hub are measured, once again supporting the conclusion
that the RGN tends to distribute the activity over the
entire graph.

IV. PACKET TRANSIT TIMES AND

QUEUEING PROPERTIES

To further investigate how the network performs under
dense packet traffic we study transit times for individual
packets. Within our algorithm we mark the first 103

packets with an additional time label and monitor the
time that they spend on the network from posting until
arrival at their respective destinations. Packets are still
posted probabilistically with rate R. In the inset to Fig.
4 an example of the time series of transit times against
posting time of the packets is shown. It is noticeable
that the duration of the journey for each packet is dif-
ferent, both because the difference in distances that they
make on the graph and because of the time that they
spend waiting in queues at particular nodes. The dis-
tribution of transit times is given in main part of Fig. 4
both for SFN and RGN for low packet density (R = 0.01,
B = 100).

For the range of values of the transit times Ttr we
find power-law distributions, but with different slopes,
indicating the difference in the efficiency of the two net-
work structures. Namely, τT = 1.25± 0.02, for SFN, and
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τT = 0.53± 0.02, for RGN. In addition, the transit times
larger than approximately 103 time steps for SFN, and
104 in the case of RGN, contribute to tail of the distribu-
tion. Among these are packets that become buried deep
in queues at certain nodes in the network. Thus, it is
the dynamics of queueing, in addition to the network’s
structure, that determines the network’s transport effi-
ciency. Next we study some properties of queues in both
networks.

In Figure 5 we show the probability distributions of
the queue lengths (loads) measured at individual nodes
throughout the network after each time step is com-
pleted. Apart from the cut-off which is determined by
the maximum buffer size (here 103), there is a larger
probability to find a queue of given length q in the RGN
compared to the SFN, in agreement with generally lower
efficiency of the randomly grown network. The relative
appearance of large queue lengths in the RGN decays
with the power-law exponent τq = 1.4 ± 0.02, and with
τq = 0.48±0.02 in the SFN. In both cases there is a part
of the network in which nodes carry a small load, with a
similar power-law decay.

Compared to standard single-queue theories [14], here
we have many interacting queues in which packets hop
from one queue to the other along the edges of the graph,
as they are directed by the search algorithm. Thus the
input rate of packets at each node is different and re-
lated to the local connectivity of that node and number
of paths that the actual search algorithm selects to pass
through that node at a single time step. (As already
mentioned in the introduction, we keep the output rate
of one packet per time step equal at each node, in or-
der to single out the effects of networks structure more
clearly.) Therefore, in the SFN, the kinetics of the queues
at the nodes with high connectivity are of primary im-
portance, whereas queues at the majority of other nodes
in the network rarely exceed a few packets. This is due
to the topology of SFN, in which cluster of nodes linked
to the hub increases faster than any other subgraph, and
also due to the search algorithm we are using, which is
suitable for that topology. In the RGN the same search
algorithm is much less effective, because the dominant
cluster grows only logarithmically in time making the
edges more evenly distributed throughout the network.

Thus, the input rate at the hub varies in time and
it is precisely given by the density ρ(t) that we deter-
mined in Section III. In the SFN ρ(t) was found to ex-
hibit long-range correlations of 1/f type for low intensity
of traffic (cf. Fig. 2), that changes to a short-range 1/f2

correlations when traffic intensity increases. In the RGN
within the same conditions, for comparison, the spectrum
is much closer to white noise. Next we investigate how
the queueing dynamics at the hub affects performance of
the network.

We determine the network’s output rate µ, defined as
the number of packets arriving to their destination per

time step. Therefore, the difference of the input and out-
put rate R− µ = n(t)/t determines the workload [20] on
the level of the entire network. In main part of Fig. 6
we show the workload in SFN for two input rates R and
fixed buffer size B = 100. For large input rate (top curve)
R−µ saturates for large times t at a finite average value,
indicating that total load in the network n(t) = (R−µ)t
increases linearly in time. In this case the jamming that
first occurs at the hub seems to spread gradually through-
out network. For comparison, in the case of low input
rate (bottom curve) the workload R − µ, after a sharp
initial increase, decays approximately as ∼ t−1/2, indi-
cating that total load n(t) increases sub-linearly in this
flow regime. Taking the average asymptotic value of µ,
in the inset to Fig. 6 we show the ratio of the network’s
output and input rates µ/R for the SFN and the RGN,
which, once again shows the systematically better per-
formance of the scale-free structure for a range of input
rates.

V. CONCLUSIONS AND DISCUSSION

In this paper we have introduced a new model of
packet transport on networks and investigated its major
properties on both randomly grown and scale free net-
works. The model incorporates in a natural way three
basic elements—network topology, search algorithm, and
queueing dynamics—which determine overall efficiency of
the transport. By fixing the input rate and using the near
and next near neighbour search algorithm, which is fairly
efficient on structured graphs, in this work we focused
on the effects of networks’ topology on the queueing dy-
namics. For this purpose we also keep link capacities at
a minimal one packet per time step.

We found long-range temporal correlations for many
of the important quantities within the system, in partic-
ular for the density of arriving packet streams, with non-
universal exponents that were dependent on the traffic
intensity and the network on which the transport was
taking place. The power-law dependences of the tran-
sit time distribution with the exponent τT < 2 implies
that the average time that a packet spends on the net-
work increases with network size, causing queueing pro-
cesses on the network. We find the power-law behavior of
the queue length distribution reflects the networks’ struc-
tural efficiency in the transport. The character of the
queueing dynamics in our model is dominated by queues
at highly connected nodes, which are driven by fractal
packet streams from neighbouring nodes. Measured by
the single-queue criteria, the queues in our model are pre-
determined to increase with time. However, measured
on the level of entire network, we find that the networks’
workload may increase sub-linearly for low traffic inten-
sity, and linearly when traffic approaches the congested

4



regime. At the same time the observed long-range cor-
relations and power-law dependences of the distributions
are different in two traffic regimes, a transition seems to
take place along a line Rc(B). A detailed analysis of this
transition was not included in this work.

Finally we found that the scale free network was much
more efficient, in terms of network output to input ratio,
than the randomly grown network. Allied to this was
the observation that transport on the scale free network
was very dependent on the queuing at a few highly con-
nected nodes, and many of the low-connectivity nodes
had very low activity. In contrast, the randomly grown
network distributed the activity much more evenly over
the graph.

This work is an initial study, in future we intend to
investigate a system of this type with (i) different search
algorithms and (ii) different queuing disciplines, with a
view to investigating their effect on packet transport.
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[10] B. Tadić, Physica A 293 273 (2001).
[11] P.L. Krapivsky, G. J. Rodgers, and S. Redner, Phys. Rev.

Lett. 86, 5401 (2001).
[12] K.-I. Goh, B. Kahng and D. Kim, Phys. Rev. Lett. 87

278701 (2001).
[13] M. E. J. Newman, Phys. Rev. E 64 016131 (2001).
[14] G. Gross and C.M. Harris, Fundamentals of Queuing

Theory, (Wiley, New York 1998).
[15] T. Huisinga, R. Barlovic, W. Knospe, A. Schadschneider

and M. Schreckenberg, Physica A 294 249 (2001).
[16] A. Arenas, A. Diaz-Guilera, and R. Guimera, Phys. Rev.

Lett. 86, 3196 (2001).
[17] R. Guimera, A. Arenas, A. Diaz-Guilera, and F. Giralt,

cond-mat/0206077.
[18] R. Guimera, A. Arenas, A. Diaz-Guilera, F. Vega-

Redondo, and A. Carbales, cond-mat/0206410.
[19] J. Abate and W. Whitt, Opns. Res. Letters 20 199

(1997).
[20] W. Whitt, Stochastic-Process Limits, Ch. V , (Springer,

New York 2002).

5

http://uk.arXiv.org/abs/physics/0206012
http://uk.arXiv.org/abs/cond-mat/0112400
http://uk.arXiv.org/abs/cond-mat/0206077
http://uk.arXiv.org/abs/cond-mat/0206410


0 2000 4000 6000 8000 10000
t

0

100

a(
t)

(a)

(b)

(b)

(a)

0

100

200
l a(

t)

FIG. 1. Average load at active nodes ℓa(t) vs. time t
(top panel) and number of active nodes in the network a(t)
at time t (lower panel) in jamming regime R = 0.04, B = 100
for scale-free graph (curve a) and for randomly-grown graph
(curve b) with the same driving conditions.
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