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THE POWER-SERIES ALGORITHM APPLIED 
TO THE SHORTEST-QUEUE MODEL 

J. P. C. BLANC 
Tilburg University, Tilburg, The Netherlands 

(Received March 1989; revision received February 1990; accepted May 1990) 

An iterative numerical technique for the evaluation of queue length distributions is applied to multiserver systems with 
queues in parallel in which customers join (one of) the shortest queues upon arrival. The technique is based on power- 
series expansions of the state probabilities as functions of the load of the system. The convergence of the series is 
accelerated by applying a modified form of the epsilon algorithm. The shortest-queue model lends itself particularly well 
to a numerical analysis by means of the power-series algorithm due to a specific property of this model. Numerical values 
for the mean and the standard deviation of the total number of customers and the waiting times in stationary symmetrical 
systems are obtained for practically all values of the load for systems with up to ten queues and for a load not exceeding 
75% for systems with up to 30 queues. Data are also presented for systems with four queues and unequal service rates. 

T he power-series algorithm is a numerical proce- 
dure for computing state probabilities and 

moments of joint queue-length distributions for sys- 
tems with more than one waiting line, which can be 
modeled by multidimensional (quasi-) birth-and- 
death processes (Blanc 1987b, 1990, Hooghiemstra, 
Keane and Van de Ree 1988). The algorithm is based 
on power-series expansions of state probabilities and 
moments as a function of a parameter of the system, 
usually the traffic intensity p of the system. With the 
aid of limiting properties of the state probabilities in 
light traffic, a recursive scheme is obtained for calcu- 
lating the coefficients of their power-series expansions. 
It appears, however, that the state probabilities of 
many queueing models possess singularities inside the 
unit circle in the complex p-plane (it is assumed that 
the traffic intensity is defined in such a way that the 
system is stable if and only if 0 < p < 1). In all cases 
considered, a bilinear transformation of the traffic 
intensity is suitable for obtaining convergence of the 
power-series expansions of the state probabilities over 
the whole range of values of the traffic intensity for 
which the system is stable, i.e., the interval (0, 1). To 
accelerate the convergence of the power-series expan- 
sions of the state probabilities and the moments of the 
queue-length distributions for systems in heavy traffic 
(p close to 1) extrapolation methods such as the E- 
algorithm (Wynn 1966, Brezinski 1977, Blanc 1990) 
can be applied to partial sums of the series. 

Still, the power-series algorithm is an experimental 
method. It is, in general, not possible to give upper 

bounds for errors. But experience has taught that the 
algorithm is more powerful than algorithms based on 
truncation of the state space, and that it provides more 
accurate results for moderately sized models than 
simulations, in less computing time (once the coeffi- 
cients of the power-series expansions have been com- 
puted, queueing characteristics can be calculated for 
an arbitrary number of values of the traffic intensity 
in a relatively negligible time). 

The power-series algorithm applies in theory to 
systems with an arbitrary number of queues, but in 
practice the size of the models is limited by the amount 
of memory space, which is available in a particular 
computer for storing the coefficients of the power 
series. Procedures for the economic use of memory 
space during the execution of the power-series algo- 
rithm have been developed in Blanc (1990). With 
these procedures it is possible to obtain numerical 
data for systems with, typically, up to 4-6 queues, 
depending on the structure of the model, the load of 
the system, the desired accuracy, and the available 
memory space. 

The power-series algorithm will be applied in this 
paper to the well known shortest-queue problem. In 
this model, there are several service units in parallel, 
each with its own queue in front, and there is one 
arrival stream of customers who join one of the short- 
est queues upon arrival and remain in the queue of 
their choice until they have been served. This model 
has been investigated by several authors, by means of 
analytical as well as numerical methods, but usually 
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only in the case of two service units (e.g., Kingman 
1961, Flatto and McKean 1977, Conolly 1984, 
Gertsbakh 1984, Halfin 1985, Rao and Posner 1987). 
The shortest-queue model lends itself particularly well 
to a numerical analysis with the aid of the power- 
series algorithm, especially when all service units are 
identical, because many more coefficients of the 
power-series expansions of the state probabilities van- 
ish in this model than in other models. This is due to 
the property that a certain queue can only contain n 
customers if all queues contain at least n - 1 customers 
at a previous instant during the current busy period 
(n = 2, 3, .. . ). This paper presents numerical values 
for the mean and the standard deviation of the number 
of customers in the system and of the waiting times 
for symmetrical shortest-queue models with up to ten 
queues (for p < 0.75 even up to 30 queues). Also, we 
derive light traffic asymptotes of these quantities from 
the recursive scheme of the algorithm, and we give 
estimations of their heavy traffic asymptotes based on 
numerical data generated by the algorithm. Further- 
more, we consider other quantities of interest for these 
models, such as the amount of work in the system, 
the difference between the longest and the shortest 
queue, and the number of servers which are idle but 
could work if they were able to serve customers who 
are waiting in other queues. Finally, a system with 
four queues and unequal service rates is discussed. 
The primary focus of this paper is a study of the 
shortest model. We will not discuss details of the 
implementation of the algorithm and the execution of 
the computations. The reader is referred to Blanc 
(1990) for a discussion of these issues in a more general 
context. 

The organization of this paper is as follows. Section 
1 contains definitions for the shortest-queue model, 
the balance equations for the state probabilities in this 
model, and some general relations between various 
queueing characteristics. In Section 2 the power-series 
algorithm is outlined; also, we show that the algorithm 
requires less computation time and storage capacity 
for the shortest-queue model than for other models of 
comparable complexity. Section 3 contains asymp- 
totic expansions in light traffic for several performance 
measures. Numerical results are presented and dis- 
cussed in Section 4. 

1. GENERAL RELATIONS FOR 
SHORTEST-QUEUE SYSTEMS 

1.1. Description of the Model 

The system consists of s servers in parallel. Customers 
arrive to the system according to a Poisson process 

with rate X. They require service from (any) one of 
the servers, and they form separate queues in front of 
each server. We will assume that the amount of service 
that is required by a customer is negative exponen- 
tially distributed with mean 1Au. Server j serves the 
customers who have joined its queue in order of arrival 
with rate rj, j = 1, . . ., s. Without loss of generality it 
may be assumed that the total service capacity of the 
system is 1, i.e., 

S 

= 1. (1) 
j= 1 

The foregoing implies that the holding times of cus- 
tomers who join queue j are negative exponentially 
distributed with mean 1 /(rjA), j = 1, . . ., s. Arriving 
customers only observe the lengths of the s queues 
and have no knowledge about the service rates of the 
servers. Therefore, they join one of the shortest queues 
upon arrival. Due to physical circumstances it is not 
possible for customers to leave one queue and join 
another queue. Each queue may contain an 
unbounded number of jobs. When there is not a 
unique queue that is shorter than all other queues at 
the instant of an arrival of a new customer, this 
arriving customer chooses one of the shortest queues 
according to some probability distribution. This will 
be described more precisely below. 

First, the condition for ergodicity of the system will 
be considered. The rate of arrivals to the system is X, 
and the maximal departure rate of the total system is 
A. Hence, the load or traffic intensity p of the system 
is in a natural way defined by p :-= XI/, and a necessary 
and sufficient condition for ergodicity of the system is 
p < 1. Throughout this paper, it will be assumed that 
the system is in steady state. Let Nj denote the number 
of customers in queue j (waiting or being served), j = 

1, . . ., , N T:= (N,, . . . , Ns), and let f7 = (nl, . . * , ns) 
be a vector with nonnegative integer entries. The 
stationary state probabilities are defined as: 

p(p;7):= PrFNV =; atloadp} forO<p<1. (2) 

Furthermore, let C be a random variable indicating 
the number of the queue which an arriving customer 
joins. Clearly, the variable C is dependent on the 
vector N. Because arriving customers join one of the 
shortest queues, the conditional distribution of C 
given the vector N has the following property: 

PrIC = j I N = F with 2i ni < nj} = 0 

forj = 1, ..., s. (3) 

To simplify the discussion we will restrict the condi- 
tional distribution of C given N. Let IJE} stand 
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for the indicator function of the event E, and j 
be a positive weight factor attributed to queue j, j = 

1, . . ., s. Then, we assume that 

PrIC= jIN= with Vinio unj 

= i/[ tiilni = nj] for] = 1, ..., s. (4) 

A relatively large weight factor of a queue means a 
relatively strong preference of customers to join that 
queue (provided that it is one of the shortest queues). 
This preference may be based, for instance, on the 
physical distance between the entrance of the waiting 
room and the various service counters. 

1.2. Balance Equations 

Let ej be the vector with zero entries except an entry 
of one at the jth position (j = 1, ... , s). The balance 
equations for the state probabilities (2) are readily 
verified to be: 

p + E rjItnj > i)p(p; h) 
J= 1 

S S 

= a rjp(p; h + ej) + p a Ilnj> Olp(p; f - ej) 
j=1 j=I 

* PrIC=jIN=ni-Aj. (5) 

The following relations, which can be derived from 
the balance equations (5) by summation over all states 
h with nj = m for some fixed j and m, and by means 
of induction, express the balance of flows between the 
hyperplanes nj = m and nj = m + 1: 

p PrIC=j, Nj= m} = rjPrINj= m + I I 

forj = 1, ... ,s, m=O.,l .... (6) 

Summation of these relations over m (m = 0, 1, ...) 
leads to balance equations for the flows into and out 
of queue ]: 

pPrIC=jI=rjPrINj>O} forj= 1,.. .,s. (7) 

These relations determine the unconditional distri- 
bution of C, i.e., the proportion of the customers who 
join queue j, j = 1, ... , s, in terms of the queue length 
distribution. They lead further, with (1), to: 

S 

E rjPrINj= 0 = I1-p. (8) 
j= 1 

This relation is useful for checking the correctness 
of computations of the state probabilities. Note 
that (8) and (7) imply that if all servers have the 
same service rates and all queues have the same 

weight factors, then: 

PrJNj=O}= 1-p, PrlC=j}= 1/s 

forj = 1, ...,s. (9) 

Let L denote the total number of customers in the 
system. The following relations, which can also be 
deduced from the balance equations (5), express the 
balance of flows between the hyperplanes n1 + . . . + 
ns = m and n, + . . . + ns = m + 1: 

p PrL = m} 
S 

=PrIL=m+ 1}- E r1PrIL=m+ 1,Nj= 0 
j=1 

form=O,1,.... (10) 

With induction it follows from (10) that 
m s 

PrIL=ml= E pi E rjPrIL=m- i,Nj =0 
z=O j=I 

form=O, 1,. (11) 

It is readily verified that ( 1), together with (8), implies 

EL=1 p+ErjEJL I Nj=O)}PrJNj=0j. (12) 

In the case of symmetrical systems (12) reduces with 
(8) to 

EJL}=- P +EJLINj=O forj=1,. . . ,S. (13) 
1 -p 

1.3. Waiting Time, Sojourn Time and Workload 

The last part of this section concerns the derivation of 
general relations between the distributions of W, the 
waiting time of a customer, H, the holding time of a 
customer, S, the sojourn time of a customer, Y, the 
amount of work in the system, and those of C and N. 
First, consider the waiting time of a customer. When 
a customer joins queue j and this queue contains m 
customers at the instant of arrival, then the waiting 
time consists of m exponentially distributed phases 
each with mean length I/(rjg), j = 1, . .. , s, m = 0, 1, 
.... This observation leads to the following expression 
for the waiting time distribution (with m* denoting 
an m-fold convolution): 

PrIW<tl 
S 00 

= E [1 e-riyt]m*PrJC=jNj=m}. (14) 
j=I m=O 

With the aid of relation (6) the distribution of the 
waiting time can be expressed in terms of the marginal 
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queue-length distributions: 
s X 

Pr W< t}= E rj[l - e it]m*PrNji=m+ 1}. (15) 
Pj=1 m=O 

From this relation the probability that a customer 
does not have to wait and the moments of the waiting 
time distribution are readily obtained: 

1 
Pr{W=O}=PrJ3iNi=O=- rjPr{Nj=1}, (16) 

Pj=i 

ElW'J=- E{LV- } PrWNj> OJ, (17) 
PA j= I 

ElW}= 2 - [EJNj} - EJNj}]. (18) 
Aj=1,r 

Similar expressions as for the waiting time distri- 
bution, developed in (I 4) and (I 5), can be given for 
the distributions of the holding time and the sojourn 
time. The first two moments of these distribution are: 

I s 

EJH= - - PrINj > O}, 
PA j=1 

(19) 

EJH = -2 - PrN1j > O}' .1 j= 1 ri 

EIS) = EIL), 
PA (20) 

EJS2}= 
- 

- [EJNj2} + EJNj]. 

Finally, consider the amount of work Y in the 
system, i.e., the sum of the holding times of all waiting 
customers and of the remaining holding times of all 
customers in service. It is readily verified that the 
distribution of Y satisfies: 

00 00 

PrIY< t} E ... E p(p; f) 
n, O n,=O 

[1 -erlut]l* * * [1 - rerst]ns*. 

From this relation the moments of the distribution of 
Y are found to be: 

S 
I 

El Y}= X-EENj}, 
j=l jl 

EJY 2(21 

W Zent syst EmNiNjs + E the exNjoJ (21) 

When the system is symmetrical, these expressions 

reduce to 

El Y} EIL), 

(22) 

El}= (<) [ElL2} + EILIl. 

2. THE POWER-SERIES ALGORITHM 

2.1. The Recurrence Relations 

The power-series algorithm will be briefly discussed in 
this section. The reader is referred to Blanc (1987b, 
1990), and Hooghiemstra, Keane and Van de Ree 
(1988) for more details and a motivation of the 
method. First, we introduce the bilinear mapping of 
the interval [0, 1] onto itself, 

P = P(O)(I 
+ G~p 

G.>,O. (23) 1 + G - GO I + Gp 

Here 0 = (1 + G)p/(l + Gp) and G is a parameter to 
be chosen (see the remarks in Section 2.3). Then, we 
introduce the following power-series expansions: 

00 

pWO(); fi) = 0ni +... E kb (k; i). (24) 
k=O 

Replace p by 0 in the balance equations (5) according 
to (23), and substitute the power series (24) into these 
equations. Equating the coefficients of corresponding 
powers of 0 in the resulting equations leads to the 
following iterative scheme for computing the coeffi- 
cients of the power series (24): 

S 

(1 + G) E. rjllnj > O1b(k; ni) 
j=1 

S j= 1 

(I- + G) 
E 

rjltj }lk> O1b(k - 1; fi+n) 
j-l 

S 

-( +G rjllk> I b(k- 2lq+ jj) 

j=1 

j=I 

*PrIC=jIN= n-ej fork=O,1 (25) 

Note that the left-hand side of equation (25) vanishes 
when h = 0. To complete the recursive scheme, the 
law of total probability is used to determine the coef- 
ficients of p(p(0); 0). Substituting (23) and (24) into 
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the law of total probability gives: 

b(O; i)= 1, 

b(k; b(k - ni .. - n,; h), 
O<n1 +...+n,<k 

k= 1,2 . (26) 

There are several ways to compute the coefficients 
b(k; h) recursively from (25) and (26) (see Blanc 
1987a, 1990). 

2.2. Notes on Implementation 

A property that can be derived from (25), (26) and (3) 
by means of induction is: 

b(k; h) = 0, 

if k + n + . . . + ns 

< s[maxlnl, ... ., ns} 1 

+ #Ji; ni = maxn1, . . ., ns}}. (27) 

This property can be explained intuitively by noting 
that states h for which there exist i and j, such that 
ni - nj > 1, can only be reached from the empty state 
by passing through a state in which all coordinates are 
at least equal to maxIn1, . . ., nsI - 1 because arriving 
customers join one of the shortest queues. For exam- 
ple, when s = 4, then the state h = (3, 3, 0, 1) cannot 
be reached from the empty state unless there have 
been at least two customers in each of queues 3 and 4 
(otherwise, the length of queues 1 and 2 could not 
have become 3); this implies that p(p; 3, 3, 0, 1) = 

O(p 10) as p I 0, this order being the minimum number 
of arrivals which are necessary to reach a state 
from the empty state; hence, b(k; 3, 3, 0, 1) = 0 for 
k < 10 - 7 = 3, using (24). 

The number of computations becomes much 
smaller for the shortest-queue model when compared 
with other models with the same number of queues 
(Blanc 1988, 1990). A further reduction of computa- 
tion time and of the amount of storage capacity, which 
is needed for the coefficients, can be realized when 
the model is symmetrical. 

Suppose that performance measures for the 
shortest-queue model need to be calculated up to the 
Mth power of 0. With the aid of combinatorial argu- 
ments we can deduce the number of coefficients 
b(k; h) required for this purpose. When the model is 
symmetrical, then M + 1 - j coefficients are nonvan- 
ishing for the number of states, (27): 

(a +sk) if j - as + k < M, 

a-O, l,..., k= l,...,s. 

This implies that the total number of coefficients that 
need to be calculated is equal to, 

1 + As + I (S+ (I 5S 

A~~s~l s~l / +Ck 

+ Y (c +1-k) A I) 
k= I 

forM=As+c, c= l,...,s, A=O,l0. (28) 

When the model is not symmetrical, then M + 1 - j 
coefficients are nonvanishing for the following num- 
ber of states, (27): 

k(a + 1)sk ifj = as + k < M, 

a=O, 1,..., k= 1,...,s. 

This implies that the total number of coefficients that 
need to be calculated is equal to, 

A c 

s Z a(a + 1)s-1 + Y, (c + 1 - k)S (A + 1)S k 

a=1 k=O 

forM=As+c, c= 1,...,s, A=O, 1. (29) 

Table I gives an overview of these numbers of 
coefficients for some values of M, for the shortest- 
queue model, as well as for general multidimensional 
birth-and-death models. It can be seen that the num- 
ber of coefficients which is required for the shortest- 
queue model is considerably less than for other models 
due to property (27). It is remarkable that the required 
number of coefficients decreases for s beyond some 
threshold so(M) (so(M) A-T) for the symmetrical 
shortest-queue model. As can be seen from (28), this 
number is equal to 1?2(M + 1)(M + 2), independent of 
s for s 3 M. However, the first s terms of the power- 
series expansions contain no information on the spe- 
cific properties of the shortest-queue system. As long 
as no more than s customers are present in the system, 
there is no difference between the behavior of this 
system and that of an M/M/s system. In general, more 
terms of the power-series expansions are required with 
an increasing number of queues to reach a certain 
level of accuracy for a fixed value of the load p because 
the power series converge less quickly. This is related 
to the fact that the interaction between the queues 
increases with an increasing number of queues. While 
storage capacity is the main limiting factor for the 
application of the algorithm for other models, 
computation time becomes the main factor for the 
shortest-queue model. 
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Table I 
The Number of Coefficients b(k; h) Which are Required to Determine Power-Series Expansions up to a 

Certain Power (M) of 0 
Asymmetrical Symmetrical 

Shortest Queue Shortest Queue 
General _________________ General ____________ 

s M= 48 M=48 M= 72 M=48 M= 48 M= 96 

2 20,825 11,025 35,113 10,725 5,825 41,601 
3 270,725 69,785 315,925 50,625 14,365 176,121 
4 2,869,685 352,521 2,236,585 157,977 24,193 471,745 
5 25,827,165 1,548,460 13,422,565 368,149 32,671 926,234 
6 202,927,725 5,676,921 68,191,357 694,497 36,609 1,444,609 
7 1.42 E + 09 19,953,444 323,368,848 1,121,693 38,611 1,951,568 
8 9.00 E + 09 59,421,537 1.30 E + 09 1,614,444 36,609 2,273,921 
9 5.22 E + 10 201,270,006 4.95 E + 09 2,131,737 35,938 2,544,608 

10 2.80 E + 11 529,806,725 1.91 E + 10 2,637,924 32,671 2,620,255 
11 1.40 E + 12 1.62 E + 09 7.08 E + 10 3,107,797 29,947 2,544,606 
12 6.57 E + 12 2.74 E + 09 1.80 E + 11 3,526,974 24,193 2,273,921 
13 2.91 E + 13 9.70 E + 09 7.50 E + 11 3,889,825 24,094 2,240,166 
14 1.22 E + 14 2.85 E + 10 1.78 E + 12 4,196,781 21,679 1,951,568 
15 4.89 E + 14 5.03 E + 10 5.32 E + 12 4,451,881 17,539 1,829,125 
16 1.87 E + 15 5.63 E + 10 1.99 E + 13 4,660,969 14,365 1,444,609 

2.3. Acceleration of Convergence 

Once the coefficients of the power-series expansions 
of the state probabilities have been determined, those 
of the moments of the queue length distribution can 
be obtained as well (Blanc 1987b). To accelerate the 
convergence of the power-series expansions the mod- 
ified E-algorithm (Blanc 1990) can be applied. It means 
that extrapolating terms, which take into account the 
asymptotic behavior of moments and probabilities 
as p T 1, are added to the partial sums of the power- 
series expansions; then the E-algorithm, described in 
Brezinski (1977) and Wynn (1966), can be applied. 
Because the E-algorithm transforms polynomials into 
rational functions, it is not necessary to choose the 
value of G in the transformation (23) so large that the 
power series are convergent for all required values of 
0: The E-algorithm transforms divergent series into 
convergent series as long as singularities are poles. 
Numerical experiments have shown that values of G 
for which the series are divergent, but not too strongly, 
give the best performance of the power-series algo- 
rithm together with the E-algorithm (for G = 0, when 
computations are less than for G > 0, (25), the series 
are in most cases so strongly divergent that numerical 
instabilities occur). We have used G = 0.5 (s = 2) up 
to G = 1.25 (s = 30) for symmetrical models, and 
G = 1.5 up to G = 2.5 for asymmetrical models to 
obtain the data presented in Section 4. 

3. LIGHT TRAFFIC BEHAVIOR 

In this section, we shall derive some light traffic limits 
for symmetrical systems (systems with rj = 1 s, /j = 
1, j = 1, ..., s), and for G = O, i.e., 0 = p, in 
(23)-(25). First, the following expression holds for 
coefficients b(k; h) with k + nI + ... + n, < s and, (27), 
ni - nj 1 for all i and j, i, j= 1, . . ., s: 

k m 

b(k; h)( 1)k S S 
k! m! kmi 

with m := nj + ***+ nS 

These coefficients are the same as those for the cor- 
responding M/M/s queueing system; as long as there 
are not more than s customers in the system during a 
busy period the behavior of the shortest-queue model 
is the same as that of the M/M/s model. Also, the first 
coefficient of the state probabilities can easily be 
obtained for states h with, (27), | ni - nj 1 for all i 
and], ,1=1,...,s: 

o; fi) = ! (m) with nj + ns = as + m, 

a= 1, 2,... 0, Osm<s. 

With the above and similar relations the following 
asymptotical expansions for light traffic can be derived 
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as p , 0: 
s+ l (-sp)k Ssp s+1 1 

PIL 01= , (Sp- Oss+)l 
k=O * S j=2 J 

(Sp)S+ l 
EI{LI = Sp + s!) P + o(P2) 

2{L-5p + (SPp l 

p{WIL }= sp [1- 2 p+0(p2)], 

c2{W} - 2(-) ( ') [1 - 1 p+O(p2)1, 

s-A1[1-p 2(s!)L 

3 4S2 -l3s+3p+ O(p2)}1. (30) 

Here R denotes the coefficient of correlation between 
the lengths of two arbitrarily chosen queues in 
symmetrical shortest-queue models; it is readily veri- 
fied that R satisfies: 

Rcov{N1, N2} 1 [o2{L} 1 1 o2{N1} s(s-1) 22Ni}J s-i 

From (30), it follows that the mean waiting time for 
the shortest-queue model is asymptotically s times as 
large as that for the corresponding M/M/s model in 
light traffic.. This can be explained by noting that the 
waiting time of the first customer, who has to wait in 
a busy period, is equal to the minimum of the s 
remaining holding times of the customers in service 
for the M/M/s model, while it is equal to the remain- 
ing holding time of the customer in front of the waiting 
customer in the shortest-queue model. 

4. NUMERICAL RESULTS 

This section contains numerical data for the shortest- 
queue model which have been obtained by means of 
the power-series algorithm together with the modified 
E-algorithm described in Blanc (1990). The moments 
of the waiting time distributions have been computed 
for = 1 in all tables. 

4.1. Symmetrical Systems 

Tables II and III show numerical values for the zero- 
probabilities, averages and standard deviations of 
the total number L of customers in the system and 
of the waiting time W. and for the correlation coef- 
ficient R in the symmetrical shortest-queue models 
(rj = I/s, /j = 1, j = 1, ..., s). It is interesting to 
compare these data with data for corresponding 
M/M/s models (Blanc 1987a). While customers are 
taken into service in the order of arrival in M/M/s 
systems, this is not the case in systems in which 
customers join one of the shortest queues upon arrival 
(although customers are taken into service in order of 
arrival in each individual queue). This feature gives 
rise to a larger standard deviation of the waiting times 
in systems with the "join-the-shortest-queue" disci- 
pline. Furthermore, it may happen in the latter sys- 
tems that some servers are idle while there are 
customers waiting in other queues. This inefficiency, 
on the one hand, causes a larger probability that a 
customer finds a free server upon arrival, but it leads, 
on the other hand, to, on the average, a larger number 
of customers in the system, and as a consequence to 
a larger mean waiting time than in M/M/s systems. 

Table IV concerns, for symmetrical systems, the 
random variables D, the largest difference between the 
lengths of the various queues, i.e., 

D:= maxfNi,,. . . Ins NJ-minJN1, . . . , NJ, 

and J, the number of servers who are idle but could 
work if they were able to serve customers who are 
waiting in other queues; more formally: 

J:= #{j; Nj = 0} - [s - L] . 

The tables show that in the shortest-queue model 
both the mean and the standard deviation of the 
waiting times are decreasing with s for low values of 
p (see Table II, p = 0.1). For moderate values of p the 
standard deviation is first increasing with s, but after 
having reached a maximal value (at s = 6 when p = 
0.5, at s = 11 when p = 0.6, and at s = 21 when p = 
0.7) it again becomes a decreasing function of s, while 
the mean waiting time still decreases with s (see Table 
II). Finally, for high values of p both the mean and 
the standard deviation of the waiting time are increas- 
ing functions of s as far as they have been computed 
(see Table III). The behavior of the mean waiting 
time, as a function of the number of queues, is 
governed by two opposite forces: On the one hand, 
the probability that a customer finds a free server 
upon arrival increases, but, on the other hand, the 
mean total number of customers in the system also 
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Table II 
Queueing Characteristics for Lightly and Moderately Loaded Symmetrical Systems 

p s PIL= 0} EILI HAL} PIW= ?0 ElW} al WI R 

0.1 2 0.8175 0.203543 0.4571 0.98246906 0.03542858 0.37675 0.0998 
0.1 3 0.7405 0.301049 0.5506 0.99650615 0.01049253 0.25082 0.0553 
0.1 4 0.6703 0.400296 0.6333 0.99925981 0.00296105 0.15389 0.0371 
0.1 5 0.6065 0.500081 0.7073 0.99983770 0.00081149 0.09008 0.0278 
0.1 6 0.5488 0.600022 0.7747 0.99996364 0.00021818 0.05117 0.0222 
0.1 7 0.4966 0.700006 0.8367 0.99999173 0.00005788 0.02847 0.0185 
0.1 8 0.4493 0.800002 0.8944 0.99999810 0.00001520 0.01560 0.0159 
0.1 9 0.4066 0.900000 0.9487 0.99999956 0.00000396 0.00845 0.0139 
0.1 10 0.3679 1.000000 1.0000 0.99999990 0.00000103 0.00453 0.0123 

0.5 2 0.315967 1.426 1.541 0.68403 0.85264 1.9653 0.5257 
0.5 3 0.197604 1.867 1.665 0.78821 0.73451 2.1327 0.3925 
0.5 4 0.122744 2.316 1.782 0.85297 0.63260 2.2451 0.3060 
0.5 5 0.075867 2.772 1.891 0.89532 0.54321 2.3112 0.2472 
0.5 6 0.046715 3.232 1.995 0.92400 0.46476 2.3384 0.2053 
0.5 7 0.028679 3.698 2.095 0.94394 0.39626 2.3334 0.1744 
0.5 8 0.017565 4.168 2.190 0.95810 0.33685 2.3028 0.1507 
0.5 9 0.010738 4.643 2.283 0.96834 0.28564 2.2523 0.1322 
0.5 10 0.006555 5.121 2.374 0.97586 0.24171 2.1868 0.1173 
0.5 15 0.000548 7.551 2.799 0.99315 0.10283 1.7534 0.0738 
0.5 20 0.000045 10.021 3.188 0.99785 0.04291 1.3093 0.0535 
0.5 25 3.7 E - 06 12.509 3.547 0.99929 0.01769 0.9403 0.0420 
0.5 30 3.1 E - 07 15.004 3.878 0.99976 0.00723 0.6584 0.0346 

0.7 2 0.156485 2.951 2.891 0.4435 2.2164 3.553 0.766 
0.7 3 0.080853 3.589 3.000 0.5440 2.1266 3.896 0.656 
0.7 4 0.041542 4.232 3.109 0.6198 2.0458 4.209 0.565 
0.7 5 0.021259 4.878 3.214 0.6791 1.9685 4.494 0.490 
0.7 6 0.010845 5.525 3.315 0.7265 1.8930 4.751 0.430 
0.7 7 0.005518 6.173 3.412 0.7652 1.8186 4.982 0.381 
0.7 8 0.002802 6.822 3.504 0.7970 1.7450 5.189 0.341 
0.7 9 0.001420 7.471 3.593 0.8234 1.6725 5.373 0.307 
0.7 10 0.000718 8.121 3.678 0.8456 1.6011 5.535 0.279 
0.7 15 0.000023 11.389 4.056 0.9159 1.2693 6.060 0.188 
0.7 20 7.4 E - 07 14.694 4.385 0.9505 0.9912 6.222 0.139 
0.7 21 3.7 E - 07 15.360 4.447 0.9552 0.9425 6.223 0.132 
0.7 22 1.9 E - 07 16.027 4.508 0.9593 0.8959 6.216 0.125 
0.7 25 2.3 E - 08 18.038 4.688 0.9693 0.7687 6.152 0.108 
0.7 30 5.0 E - 10 21.416 4.978 0.9802 0.5944 5.942 0.088 

increases with an increasing number of queues. The 
mean waiting time stops being a monotonically 
decreasing function of s between p = 0.86 and p = 
0.87. For p = 0.87 it has a local minimum at s = 4 
and a local maximum at s = 9. For p = 0.88 these 
extremal values are located at s = 3 and at s = 13, 
respectively. Note that the mean and the standard 
deviation of the waiting times in the M/M/s model 
are decreasing functions of s for every value of p. 
Furthermore, the mean values of the random variables 
D and J increase with increasing s for fixed p and 
small values of s (see Table IV). This is due to the 
effect that increasing the number of queues leads to 

more stochastic fluctuations between the lengths of 
the various queues. When the number of queues 
increases further, however, these fluctuations will fade 
because the average lengths of the individual queues 
become smaller and smaller. Asymptotically, as the 
number of queues tends to infinity, there will be, with 
probability tending to one, no customers waiting for 
service (but their mean holding time tends to infinity); 
this suggests that EID) will tend to one and E{JI to 
zero. We remark that E{D) approaches one from 
below for low values of p. The above mentioned 
features will also contribute to the behavior of the 
standard deviation of the waiting times. 



Table III 
Queueing Characteristics for Heavily Loaded Symmetrical Systems 

p S PIL = 0} E{L} oIL} PIW=0} El W} al W} R 

0.9 2 0.042246 9.855 9.534 0.1578 8.950 10.43 0.965 
0.9 3 0.017664 10.753 9.593 0.2049 8.947 10.91 0.940 
0.9 4 0.007352 11.667 9.657 0.2457 8.963 11.40 0.914 
0.9 5 0.003052 12.589 9.726 0.2822 8.988 11.88 0.885 
0.9 6 0.001265 13.515 9.797 0.3153 9.016 12.36 0.856 
0.9 7 0.000524 14.441 9.871 0.3456 9.046 12.84 0.826 
0.9 8 0.000217 15.368 9.945 0.3737 9.076 13.31 0.796 
0.9 9 0.000089 16.294 10.021 0.3997 9.104 13.78 0.767 
0.9 10 0.000037 17.218 10.098 0.4241 9.131 14.25 0.738 
0.9 1 1 0.000015 18.141 10.174 0.4468 9.156 1470 0.710 
0.9 12 6.3 E - 06 19.061 10.250 0.4683 9.179 15.16 0.683 

0.98 2 0.007707 49.97 49.51 0.03229 48.99 50.49 0.9984 
0.98 3 0.002933 51.00 49.52 0.04284 49.04 50.99 0.9973 
0.98 4 0.001110 52.07 49.54 0.05243 49.13 51.50 0.9960 
0.98 5 0.000419 53.15 49.56 0.06138 49.24 52.01 0.9944 
0.98 6 0.000158 54.25 49.58 0.06985 49.36 52.52 0.9927 
0.98 7 0.000059 55.36 49.60 0.07794 49.49 53.04 0.9909 
0.98 8 0.000022 56.47 49.63 0.08573 49.62 53.56 0.9889 
0.98 9 8.4 E - 06 57.59 49.65 0.09325 49.76 54.08 0.9866 
0.98 1o 3.2 E - 06 58.71 49.68 0.10056 49.91 54.58 0.9856 

0.99 2 0.003808 99.98 99.50 0.01619 98.99 100.49 0.9996 
0.99 3 0.001431 101.04 99.51 0.02154 99.06 101.00 0.9993 
0.99 4 0.000535 102.13 99.52 0.02642 99.16 101.50 0.9991 
0.99 5 0.000199 103.23 99.53 0.03101 99.28 102.01 0.9986 
0.99 6 0.000074 104.36 99.54 0.03537 99.41 102.51 0.9982 
0.99 7 0.000028 105.49 99.55 0.03956 99.56 103.03 0.9977 
0.99 8 0.000010 106.63 99.57 0.04360 99.71 103.54 0.9972 
0.99 9 3.8 E - 06 107.78 99.58 0.04754 99.87 104.05 0.9966 
0.99 10 1.4 E - 06 108.93 99.60 0.05137 100.03 104.56 0.9963 

Table IV 
Other Queueing Characteristics for Symmetrical Systems 

s p PID> 11 EIDI P{J>01 EIJI p P{D> 11 EID} P{J>0} EIJ} 

2 0.5 0.06597 0.5737 0.05210 0.05210 0.7 0.1235 0.735 0.0680 0.0680 
3 0.5 0.09104 0.8008 0.08161 0.08236 0.7 0.1850 0.990 0.1263 0.1284 
4 0.5 0.09914 0.9183 0.09405 0.09796 0.7 0.2214 1.111 0.1713 0.1811 
5 0.5 0.09858 0.9828 0.09607 0.10351 0.7 0.2445 1.176 0.2050 0.2261 
6 0.5 0.09338 1.0178 0.09220 0.10252 0.7 0.2595 1.213 0.2294 0.2638 
7 0.5 0.08583 1.0357 0.08529 0.09751 0.7 0.2691 1.234 0.2467 0.2948 
8 0.5 0.07730 1.0435 0.07706 0.09024 0.7 0.2747 1.247 0.2584 0.3200 
9 0.5 0.06862 1.0454 0.06851 0.08190 0.7 0.2773 1.254 0.2655 0.3398 

10 0.5 0.06026 1.0441 0.06022 0.07326 0.7 0.2776 1.257 0.2693 0.3549 
11 0.5 0.05250 1.0410 0.05248 0.06482 0.7 0.2762 1.258 0.2702 0.3660 
12 0.5 0.04545 1.0371 0.04544 0.05687 0.7 0.2732 1.257 0.2690 0.3735 
14 0.5 0.03360 1.0290 0.03360 0.04293 0.7 0.2641 1.251 0.2620 0.3797 
16 0.5 0.02451 1.0219 0.02451 0.03182 0.7 0.2519 1.241 0.2510 0.3769 
18 0.5 0.01771 1.0161 0.01771 0.02328 0.7 0.2381 1.229 0.2376 0.3677 
20 0.5 0.01271 1.0117 0.01271 0.01688 0.7 0.2233 1.215 0.2231 0.3541 
25 0.5 0.00542 1.0051 0.00542 0.00733 0.7 0.1861 1.181 0.1860 0.3097 
30 0.5 0.00227 1.0022 0.00227 0.00310 0.7 0.1519 1.148 0.1518 0.2611 

2 0.9 0.1883 0.905 0.0395 0.0395 0.98 0.2154 0.980 0.0095 0.0095 
3 0.9 0.2835 1.191 0.0802 0.0821 0.98 0.3211 1.282 0.0197 0.0202 
4 0.9 0.3424 1.323 0.1184 0.1265 0.98 0.3846 1.421 0.0297 0.0318 
5 0.9 0.3828 1.396 0.1535 0.1718 0.98 0.4272 1.498 0.0392 0.0439 
6 0.9 0.4125 1.441 0.1857 0.2173 0.98 0.4578 1.545 0.0483 0.0565 
7 0.9 0.4353 1.471 0.2153 0.2629 0.98 0.4808 1.577 0.0570 0.0694 
8 0.9 0.4536 1.492 0.2426 0.3083 0.98 0.4987 1.598 0.0653 0.0826 
9 0.9 0.4686 1.507 0.2678 0.3534 0.98 0.5130 1.614 0.0734 0.0960 

10 0.9 0.4813 1.519 0.2913 0.3980 0.98 0.5264 1.627 0.0812 0.1097 
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Table V 
Heavy Traffic Limits for Symmetrical Systems 

S ?0 1 i2 WI W2 a 60 61 

2 0.3763 0.00 1.14 1.62 -1.00 -0.86 4.0 0.222 1.00 0.49 0.49 
3 0.1397 1.07 2.68 2.17 -0.93 0.36 6.9 0.330 1.31 1.03 1.06 
4 0.0516 2.18 4.52 2.66 -0.82 2.64 10.3 0.395 1.45 1.56 1.67 
5 0.0190 3.32 6.62 3.13 -0.68 5.96 14.2 0.437 1.53 2.07 2.32 
6 0.0070 4.47 8.94 3.58 -0.53 10.3 18.6 0.468 1.57 2.56 2.99 
7 0.0026 5.63 11.5 4.01 -0.37 15.7 23.4 0.491 1.61 3.03 3.69 
8 0.0009 6.80 14.1 4.44 -0.20 21.9 28.6 0.509 1.63 3.49 4.40 

Table VI 
Queueing Characteristics for Asymmetrical Systems With Four Queues 

p P{L = 0} E{L} OIL} P{W= 0} E{W} SOW} E{H} E{D} 

0.1 1 0.5694 0.5433 0.7135 0.998700 0.007814 0.3083 5.426 0.430 
0.1 I2 0.6494 0.4294 0.6523 0.999155 0.003665 0.1855 4.291 0.350 
0.1 I3 0.7382 0.3098 0.5676 0.999527 0.001387 0.0912 3.096 0.261 

0.5 TI1 0.07619 2.681 1.847 0.8280 0.9240 3.114 4.439 1.034 
0.5 I2 0.10699 2.430 1.806 0.8442 0.7159 2.571 4.144 0.952 
0.5 I3 0.15549 2.134 1.752 0.8640 0.5153 1.981 3.752 0.858 

0.7 TI1 0.02235 4.751 3.187 0.5877 2.560 5.257 4.227 1.262 
0.7 'I2 0.03383 4.427 3.146 0.6059 2.234 4.728 4.090 1.163 
0.7 I3 0.05331 4.046 3.092 0.6293 1.878 4.118 3.901 1.050 

0.9 TI1 0.00330 12.475 9.725 0.2264 9.792 12.96 4.069 1.530 
0.9 'I2 0.00541 12.042 9.698 0.2356 9.347 12.51 4.033 1.410 
0.9 I3 0.00933 11.519 9.661 0.2482 8.818 11.99 3.982 1.269 

0.95 TI1 0.00131 22.84 19.64 0.1169 20.01 23.79 4.034 1.612 
0.95 I2 0.00220 22.37 19.62 0.1220 19.53 23.39 4.017 1.485 
0.95 I3 0.00390 21.79 19.60 0.1289 18.94 22.92 3.993 1.335 

Table V contains values of the following limits: 

7ql = lim {P 
= 

ml = lim [EBIL- -j, 

p11 \' 
[f2L -P1 1p +lP1' 

wo2 = limP2IL) 1 =lim [Et - 1 1, 
pS1 l-p ' p11 1-pj 2T pt lp) -P 

ae P lim 2- oi=limP{D>1, 

WO = lim WI , 0= lim El WI, 
p11 ( -p)2 p11- 

p11 p~1 1-P 

C02= lim a 2. WI1) 

PT' PT'P- 

The limits in Table V have been computed by fitting 

Laurent series expansions at p = 1, with the aid of 
more data than are shown in the Tables III and IV. 
The most remarkable difference with the heavy traffic 
behavior of M/M/s systems is the term (s - 1)/ 
(1 - p) in the expansion of u2{ W). It should be noted 
that the forms of this term and of the other terms 
indicated in (31) have been deduced from numerical 
data (they have been checked for values of s up to 10). 
The heavy traffic behavior of E{LI in the case s = 2 
has been found in Flatto and McKean (1977) by 
means of an analytical method. 

4.2. Asymmetrical Systems 

Tables VI and VII present values of performance 
measures for asymmetrical shortest-queue systems 
with s = 4 queues. The service rates at the queues are: 
r, = 0.16, r2 = 0.24, r3 = 0.24, and r4 = 0.36. Three 
sets of weight factors, (4), have been considered: 
1j:+ 41, = 100:1 for j = 1, 2, 3 (model TP1, preference 

for queues with lower indices, i.e., for the slower 
servers), 41j: 4j+ = 1: 1 for j = 1, 2, 3 (model T2, no 
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Table VII 
The Distribution of Customers Over the Queues and the Mean Number of Customers 

in the Various Queues in Asymmetrical Systems 
p PIC= l} PIC= 21 PIC= 3} PIC= 4} EINI} EIN2} E{N3} E{N4} 

0.1 Tls 0.7099 0.2348 0.0484 0.0069 0.2842 0.0939 0.0194 0.0028 
0.1 T1 0.6125 0.3014 0.0737 0.0124 0.3836 0.1256 0.0307 0.0034 
0.1 T2 0.2350 0.2509 0.2509 0.2633 0.1470 0.1046 0.1046 0.0732 
0.1 T3 0.0043 0.0335 0.1851 0.7771 0.0027 0.0140 0.0771 0.2160 

0.5 TIls 0.3574 0.2908 0.2135 0.1384 0.8743 0.6688 0.4728 0.3004 
0.5 t'1 0.2605 0.3068 0.2380 0.1947 1.0721 0.7555 0.5588 0.2950 
0.5 T'2 0.1949 0.2484 0.2484 0.3084 0.7283 0.6048 0.6048 0.4921 
0.5 T'3 0.1005 0.1871 0.2634 0.4490 0.3423 0.4300 0.6261 0.7354 

0.95 'Ils 0.2566 0.2531 0.2483 0.2419 5.841 5.598 5.355 5.116 
0.95 T 1 0.1667 0.2457 0.2422 0.3454 6.304 5.837 5.594 5.103 
0.95 T2 0.1639 0.2414 0.2414 0.3533 5.857 5.590 5.590 5.328 
0.95 T'3 0.1583 0.2370 0.2420 0.3628 5.327 5.315 5.560 5.589 

preference for any queue), and i/:'j, = 1:100 for 
] = 1, 2, 3 (model T3, preference for queues with 
higher indices, i.e., for the faster servers). The data in 
Table VI indicate that systems with unequal service 
rates perform better than the corresponding symmet- 
rical system only if the fastest servers possess suffi- 
ciently high weight factors. Table VII also contains 
data for models with four queues and equal service 
rates (rj =0.25 for] = 1, . . ., 4), with weight factors 
ik: >+1 = 100: 1 for = 1, 2, 3 (model 'I' s); the 
distributions of L and W do not depend on the weight 
factors for models with equal service rates, so that 
data concerning these distributions can be found in 
the Tables II and III for this model. 
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