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Abstract

A frequent observation in service systems with queues in parallel is that customers in other queues
tend to be served faster than those in one’s own queue. This paper quantifies the probability that one’s
service would have started earlier if one had joined another queue than the queue that was actually
chosen, for exponential multiserver systems with queues in parallel in which customers join one of
the shortest queues upon arrival and in which jockeying is not possible.

Jel codes: C44, C60
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taking customers; Dedicated customers.

1 Introduction

Consider a service system with c ≥ 2 parallel servers. Separate queues are formed in front of each
server. Throughout, queues are defined as including the customer in service, if there is one. Each queue
is served in a FIFO order. Customers arrive according to a Poisson process at rate λ. They join one of
the shortest queues upon arrival and stay in the queue of their choice until they have been served. Then,
they leave the system. This means that jockeying (see Zhao and Grassmann, 1990) is not considered. An
example of a parallel service system in which jockeying is hardly possible is a toll booth at an autostrada
(see Conolly, 1984). Services performed by server j have an exponentially distributed duration with a
mean of 1/µj , j = 1, . . . , c. Customers in such systems often notice that customers in other queues
are being served faster than those in their own queue, and that they are overtaken by customers that
arrived later. Of course, this phenomenon may be due to different skills, and hence different service
rates, among the servers. If customers are aware of such differences, joining the shortest queue may
not be the optimal decision. But even if the service rates of all servers are equal, this phenomenon
frequently occurs. A simple explanation is found by considering the situation that a customer meets an
equal number of customers n ≥ 1 in each of the queues upon arrival. Then, by the lack of memory
of the exponential service time distributions and the symmetry of the system, each queue has the same
probability of becoming the queue that is soonest exempted of its n customers. Hence, the arriving
customer has in this situation a probability of (c− 1)/c of bad luck, in the sense that he does not join the
queue in which his service would have started earliest.
The aim of the present paper is to quantify the probability of bad luck for systems in which customers
join one of the shortest queues upon arrival. For the computations reported in this paper we have used
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the power-series algorithm to compute the stationary queue length distribution as described in Blanc
(1987a, 1987b, 1992) for the shortest-queue system. The efficiency of the algorithm is further enhanced
in Blanc (1993). Other approaches to shortest-queue systems can be found, among others, in Haight
(1958), Flatto and McKean (1977), Halfin (1985), Rao and Posner (1987), Hanqin and Rongxin (1989),
Adan, Wessels and Zijm (1990), Adan, Van Houtum and Van der Wal (1994) and Wu and Posner (1997).
Winston (1977), Johri (1989) and Hordijk and Koole (1990) consider the optimality of the shortest queue
discipline.
The organization of the rest of this paper is as follows. Section 2 considers the probability of bad luck
for symmetric shortest-queue systems. Section 3 contains a discussion of this probability for asymmetric
shortest-queue systems with different service rates among the servers. Section 4 is devoted to systems
with both customers who join a shortest queue and customers who are dedicated to specific servers. A
conclusion can be found in Section 5.

2 Symmetric systems

Consider a symmetric system in the sense that the service rates of all servers are equal, µj = µ, j =
1, . . . , c, and that an arriving customer joins one of the shortest queues with equal probabilities. The
load of this system is defined as ρ

.= λ/(cµ), and for stability it is assumed that ρ < 1. Given that
a customer joins a queue in which n customers were already present, the waiting time Wn of this new
customer has an Erlang distribution with mean n/µ and consisting of n phases, n = 1, 2, . . . , by the
assumption of exponential service times. The conditional probabilities of bad luck given the state of the
system upon arrival of a customer and the queue that is joined by this customer are defined as follows.
Suppose the system is in state (n1, . . . , nc), with nk the length of queue k, k = 1, . . . , c, and the arriving
customer joins queue j, then φj(n1, . . . , nc) is the probability that some server i, i 6= j, will be the first
to complete service of its current ni customers. This probability can be determined from the relation

φj(n1, . . . , nc)
.= Pr{ min

i=1,...,c
Wni < Wnj}, j = 1, . . . , c; (2.1)

here, Wni , i = 1, . . . , c, represent independent, Erlang distributed random variables with mean ni/µ and
consisting of ni phases. To keep notation simple this probability will be evaluated for the case j = 1; the
other cases follow by interchanging the indices. Clearly, if n1 = 0 an arriving customer has zero waiting
time, and, hence, for all n2, . . . , nc ∈ IN,

φ1(0, n2, . . . , nc) = 0. (2.2)

Next, let n1 ≥ 1. By conditioning on the length y of the n1 services in queue 1 this conditional proba-
bility becomes, for n2, . . . , nc ≥ 1,

φ1(n1, . . . , nc) = 1−
∫ ∞

0
Pr{Wn2 > y, . . . , Wnc > y} d Pr{Wn1 ≤ y}. (2.3)

By the independence of the services by the various servers this can be written as

φ1(n1, . . . , nc) = 1−
∫ ∞

0
Pr{Wn2 > y} · · ·Pr{Wnc > y} d Pr{Wn1 ≤ y}. (2.4)

Using the explicit expressions for the Erlang distribution and its density it follows that

φ1(n1, . . . , nc) = 1−
∫ ∞

0




c∏

j=2

nj−1∑

ij=0

(µy)ij

ij !
e−µy


 µ

(µy)n1−1

(n1 − 1)!
e−µy dy. (2.5)

2



Table 1: Conditional probability of bad luck in queue 1 in the symmetric system with c = 2.

n2\n1 1 2 3 4 5 6
6 0.0156 0.0625 0.1445 0.2539 0.3770 0.5000
5 0.0313 0.1094 0.2266 0.3633 0.5000 0.6230
4 0.0625 0.1875 0.3438 0.5000 0.6367 0.7461
3 0.1250 0.3125 0.5000 0.6563 0.7734 0.8555
2 0.2500 0.5000 0.6875 0.8125 0.8906 0.9375
1 0.5000 0.7500 0.8750 0.9375 0.9688 0.9844

Table 2: Conditional probability of bad luck in queue 1 if n1 = 2 in the symmetric system with c = 3.

n3\n2 2 3 4 5 6
6 0.5066 0.3271 0.2117 0.1431 0.1045
5 0.5158 0.3448 0.2379 0.1764 0.1431
4 0.5364 0.3813 0.2887 0.2379 0.2117
3 0.5802 0.4527 0.3813 0.3448 0.3271
2 0.6667 0.5802 0.5364 0.5158 0.5066

By interchanging the order of summation and integration this expression can be written as

φ1(n1, . . . , nc) = 1−
n2−1∑

i2=0

· · ·
nc−1∑

ic=0

1
(n1 − 1)!i2! · · · ic!

∫ ∞

0
µ(µy)n1+i2+···+ic−1 e−cµy dy. (2.6)

This integral can be evaluated as, for n1, . . . , nc ≥ 1,

φ1(n1, . . . , nc) = 1−
n2−1∑

i2=0

· · ·
nc−1∑

ic=0

(n1 + i2 + · · ·+ ic − 1)!
(n1 − 1)!i2! · · · ic!

1
cn1+i2+···+ic

. (2.7)

In the special case that all queues are equally short this probability becomes, for n ≥ 1,

φ1(n, . . . , n) = 1−
n−1∑

i2=0

· · ·
n−1∑

ic=0

(n + i2 + · · ·+ ic − 1)!
(n− 1)!i2! · · · ic!

1
cn+i2+···+ic

= 1− 1
c

=
c− 1

c
, (2.8)

which is immediate for symmetrical systems, as noted in Section 1. Table 1 shows the conditional
probability of bad luck φ1(n1, n2) for customers joining queue 1 in the case c = 2, for n1, n2 = 1, . . . , 6.
Note that the values φ1(n + m,n), n ≥ 1, m ≥ 1, are irrelevant since an arriving customer will join
the shorter queue, and, hence, not queue 1 in these states. Further, observe that φ1(n, n + m) → 0 as
m →∞ for fixed n ≥ 1, but that φ1(n, n + m) increases with increasing n for fixed m ≥ 1. Moreover,
using (2.7) it follows with the aid of Stirling’s formula that for fixed m ≥ 1, as n →∞,

φ1(n, n + m) = 1−
n+m−1∑

i=0

(n + i− 1)!
(n− 1)!i!

1
2n+i

=
1
2
−

m−1∑

k=0

(
2n + k − 1

n− 1

)
1

22n+k
↑ 1

2
. (2.9)

Table 2 shows the conditional probability of bad luck φ1(2, n2, n3) for customers joining queue 1 in the
case c = 3, for n2, n3 = 2, . . . , 6. Note that φ1(2, 2, 2 + m) = φ1(2, 2 + m, 2) → 1

2 as m →∞, which
agrees with the value of φ1(2, 2) for c = 2. More generally, as m → ∞, φ1(n, n + k, n + k + m) =
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φ1(n, n + k + m,n + k) tends to the value of φ1(n, n + k) for c = 2. For instance, for n = 2 and
k = 1 the limit is φ1(2, 3) = 0.3125, see Tables 2 and 1. Hence, the limiting behavior of the conditional
probabilities for c = 3 is more complex than that for c = 2. However, the most important property is that
parallel to the main diagonal n1 = n2 = n3 these probabilities tend to 2

3 , although rather slowly. For
instance, φ1(n, n, n + 1) = φ1(n, n + 1, n) equals 0.6527 for n = 100 and 0.6568 for n = 200, while
φ1(n, n + 1, n + 1) equals 0.6379 for n = 100 and 0.6464 for n = 200.
The (unconditional) probability of bad luck is defined as

PBL
.=

∞∑

n1=1

· · ·
∞∑

nc=1

p(n1, . . . , nc)
c∑

j=1

γj(n1, . . . , nc)φj(n1, . . . , nc); (2.10)

here, γj(n1, . . . , nc), j = 1, . . . , c, denotes the probability that a customer joins queue j when the system
is in state (n1, . . . , nc). It is defined by, with I{.} the indicator function,

γj(n1, . . . , nc)
.= I{∀i ni≥nj}

/
c∑

i=1

I{ni=nj}, j = 1, . . . , c, n1, . . . , nc ∈ IN; (2.11)

in particular, γj(n1, . . . , nc) = 0 whenever nj > ni for some i 6= j, j = 1, . . . , c. For application
of the power-series algorithm, the equilibrium state probabilities p(n1, . . . , nc) of the joint queue length
process in (2.10) are represented as

p(n1, . . . , nc) = ρn1+···+nc

∞∑

k=0

ρk b(k;n1, . . . , nc), n1, . . . , nc ∈ IN. (2.12)

The coefficients b(k; n1, . . . , nc) can be recursively computed by a scheme (see Blanc 1987a, 1987b,
1992) that follows after substitution of (2.12) into the following global balance equations


λ +

c∑

j=1

µj I{nj≥1}


 p(n) = λ

c∑

j=1

γj(n− ej)I{nj≥1} p(n− ej) +
c∑

j=1

µj p(n + ej); (2.13)

here, n .= (n1, . . . , nc) ∈ INc denotes a state vector, and ej are vectors of all zeros except a 1 at the jth
coordinate, j = 1, . . . , c.
Figure 1 shows the probability of bad luck in symmetric systems with c = 2, 3, 4, 5 servers, respectively,
and a fixed service capacity of cµ = 1, as a function of the load ρ. Recall that ρ = λ < 1 if cµ = 1. It can
be seen that at fixed, low values of ρ the probability of bad luck is decreasing with the number of servers.
This can be explained by noting that in light traffic the probability that a customer finds an idle server
upon arrival, and hence has zero probability of bad luck, increases with an increasing number of servers.
In fact, it follows from the power-series expansions at ρ = 0 that in light traffic: for c = 2, 3, . . . ,

PBL ∼ cc−2ρc

(c− 2)!
− cc−2ρc+1

c!
(c3 − c2 − c + 2) + O(ρc+2), ρ ↓ 0. (2.14)

On the other hand, the figure shows that at fixed values of ρ close to 1 the probability of bad luck is
increasing with the number of servers. For these moderate numbers of servers the probability of bad luck
seems to tend to (c− 1)/c as ρ → 1. This is supported by (2.9) for the case c = 2. The general form of
the heavy traffic asymptote can be written as: for c = 2, 3, . . . ,

PBL ∼ c− 1
c

−Ac(1− ρ)qc , ρ ↑ 1. (2.15)
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Figure 1: Probability of bad luck in symmetric systems, for c = 2, 3, 4, 5.

Based on values of this probability for ρ in the range 0.95–0.99, least square estimates of the constants
are A2 ≈ 0.51, q2 ≈ 0.45, for c = 2. For c = 3, A3 ≈ 0.75 and q3 ≈ 0.47. And for c = 4, A4 ≈ 0.88
and q4 ≈ 0.48. This asymptotic behavior is illustrated by Figure 2 which displays the difference between
(c−1)/c and PBL on a logarithmic scale for values of 1−ρ between 0.01 and 0.1, for c = 2, 3, 4, 5. Due
to the rapidly changing behavior of PBL for ρ close to 1 many coefficients of the power-series expansions
in (2.12) are required to compute PBL with sufficient accuracy in this area, much more than are needed
for computing the mean and standard deviations of queue lengths and waiting times. We have used 80 or
more terms for c ≤ 4, and 58 terms for c = 5 because not only the power-series algorithm but also the
evaluation of the conditional probabilities in (2.7) became very time consuming. As a consequence, the
graphs for c = 5 in Figures 1 and 2 are less accurate for ρ > 0.95. Finally, we note that the probability
of bad luck as defined in (2.10) is a rather crude performance measure for systems with three or more
servers. Then, one can distinguish several degrees of bad luck. For instance, it is worse luck if all c− 1
other servers work faster than the selected server than if only one of the other servers works faster. The
expressions for such refined performance measures are more complicated than (2.7) but can be evaluated
with the same techniques as discussed above.

3 Asymmetric systems

Next, consider an asymmetric system in which server j serves customers at rate µj , j = 1, . . . , c.
Customers are supposed to be not aware of these differences among the servers, and still join the shortest
queue upon arrival. Hence, we will apply (2.11) unless stated otherwise. Expression (2.7) is generalized
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Figure 2: Heavy-traffic behavior of probability of bad luck in symmetric systems, for c = 2, 3, 4, 5.

for this case to, for n1, . . . , nc ≥ 1,

φ1(n1, . . . , nc) = 1−
n2−1∑

i2=0

· · ·
nc−1∑

ic=0

(n1 + i2 + · · ·+ ic − 1)!
(n1 − 1)!i2! · · · ic!

µn1
1 µi2

2 · · ·µic
c

(µ1 + · · ·+ µc)n1+i2+···+ic
. (3.1)

Table 3 shows the conditional probability of bad luck φ1(n1, n2) for customers joining queue 1 in the case
c = 2, µ1 = 1.2, µ2 = 0.8 for n1, n2 = 1, . . . , 6. The values φ1(n + m,n), n ≥ 1, m ≥ 1, are again
irrelevant as in Table 1, but they indicate that in some cases (when φ1(n+m,n) ≤ 1

2 ) arriving customers
would be better off if they did not join the shorter queue. Further, note that φ2(n1, n2) = 1− φ1(n1, n2)
for all n1, n2 = 1, 2, . . . .
Table 4 shows the probability of bad luck for an arbitrary customer in systems with c = 2 servers
for varying service rates. The load of the system is given by ρ = λ/(µ1 + µ2). In the first three
columns, γ1(n, n) = γ2(n, n) = 1

2 for all n ∈ IN, according to (2.11). In the last column, the case
γ1(n, n) = 1, γ2(n, n) = 0, n ∈ IN, that is, customers join queue 1 when they find both queues equally
short upon arrival, is considered. It turns out that in lightly to moderately loaded systems, asymmetry
in the service rates increases the probability of bad luck. This has more to do with an increase of
congestion with increasing difference between the service rates than with the conditional probabilities of
bad luck. For instance, PBL ∼ p(1, 1) [12φ1(1, 1) + 1

2φ2(1, 1)] (ρ ↓ 0), see (2.10), (2.12), and p(1, 1) ∼
1
2ρ2(µ1 + µ2)2/(µ1µ2) (ρ ↓ 0) increases for fixed (small) load ρ as µ1 = 2 − µ2 increases, while
1
2φ1(1, 1) + 1

2φ2(1, 1) = 1
2 remains constant. However, if customers join queue 1 when they find both

queues equally short, both the congestion and the conditional probability of bad luck decrease with
increasing difference between the service rates, since now PBL ∼ p(1, 1)φ1(1, 1) (ρ ↓ 0), and p(1, 1) ∼
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Table 3: Conditional probability of bad luck if queue 1 is joined, for c = 2, µ1 = 1.2, µ2 = 0.8.

n2\n1 1 2 3 4 5 6
6 0.0041 0.0188 0.0498 0.0994 0.1662 0.2465
5 0.0102 0.0410 0.0963 0.1737 0.2666 0.3669
4 0.0256 0.0870 0.1792 0.2898 0.4059 0.5174
3 0.0640 0.1792 0.3174 0.4557 0.5801 0.6846
2 0.1600 0.3520 0.5248 0.6630 0.7667 0.8414
1 0.4000 0.6400 0.7840 0.8704 0.9222 0.9533

Table 4: Probability of bad luck for arbitrary customer in asymmetric systems with c = 2.

ρ µ1 = µ2 = 1 µ1 = 1.2, µ2 = 0.8 µ1 = 1.5, µ2 = 0.5 µ1 = 1.5, µ2 = 0.5†

0.25 0.0417 0.0427 0.0490 0.0262
0.50 0.1256 0.1265 0.1297 0.0950
0.75 0.2328 0.2285 0.2019 0.1779
0.90 0.3217 0.3061 0.2341 0.2238
0.95 0.3676 0.3421 0.2426 0.2374
0.99 0.4353 0.3843 0.2486 0.2475
↑ 1 0.5000 0.4000 0.2500 0.2500

† customers join queue 1 if queues are equally short upon arrival

ρ2(µ1+µ2)/µ1 (ρ ↓ 0), while φ1(1, 1) = µ2/(µ1+µ2). It further turns out that, on the contrary, in more
heavily loaded systems, asymmetry in the service rates decreases the probability of bad luck. This can
be explained by the features that if server 1 works faster (µ1 > µ2), the joint queue length process will
tend to spend more time in the area n1 < n2 than in the area n1 > n2, while for n1 < n2, φ1(n1, n2)
is smaller than its opposite φ2(n2, n1) = 1 − φ1(n2, n1), see Table 3. A further analysis indicates that
PBL approaches µ2/(µ1 + µ2) as ρ ↑ 1 if µ1 > µ2, while the approach of this limit is less steep with
increasing value of µ1 = 2− µ2, 1 ≤ µ1 ≤ 2. This limit is obtained from numerical analysis. There is
no simple generalization of (2.9) to the asymmetric case, since, e.g., φ1(n, n) ↓ 0 as n → ∞, see Table
3.

4 Systems with dedicated traffic

In this section we extend the foregoing analysis to shortest queue systems with dedicated customers to
some or all of the servers. Let λ0 denote the arrival rate of customers who have a simple service demand
that can be dealt with by any server, and who join one of the shortest queues upon arrival. Further, let
λj , j = 1, . . . , c, denote the arrival rate of customers who have a specialized service demand that can
only be dealt with by server j, and who join queue j whatever the state of the system upon their arrival.
The conditional probabilities of bad luck given the state of the system upon arrival are the same as for
systems without dedicated customers, see (3.1). But the dedicated customers do influence the equilibrium
queue length probabilities p(n1, . . . , nc), cf. (2.10), which satisfy the global balance equations


λ0 +

c∑

j=1

λj +
c∑

j=1

µj I{nj≥1}


 p(n)
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Table 5: Probability of bad luck in systems with dedicated customers.

ρ λ1 = λ2 = 0 λ1 = λ2 = 1
8λ0 λ1 = λ2 = 3

4λ0 λ1 = 2
3λ0, λ2 = 0

0.25 0.0417 0.0387 0.0320 0.0353
0.50 0.1256 0.1179 0.0985 0.1042
0.75 0.2328 0.2190 0.1791 0.1802
0.90 0.3217 0.3041 0.2458 0.2318
0.95 0.3676 0.3503 0.2874 0.2621
0.99 0.4353 0.4232 0.3719 0.3359

=
c∑

j=1

[λj + λ0 γj(n− ej)] I{nj≥1} p(n− ej) +
c∑

j=1

µj p(n + ej); (4.1)

here, we used the same notations as in (2.13). The above set of balance equations forms a straight-
forward extension of the set of equations (2.13) for systems without dedicated traffic. The probabilities
p(n1, . . . , nc) again allow a power-series expansion of the form (2.12), and the corresponding coefficients
b(k; n1, . . . , nc), which depend in this case on the service rates µj , j = 1, . . . , c, and the normalized
arrival rates λj/ρ, j = 0, . . . , c, can be recursively computed.
Table 5 shows the probability of bad luck for an arbitrary customer who joins the shorter queue in
systems with c = 2 servers with equal service rates (µ1 = µ2 = 1). The load of the system is defined
by ρ = (λ0 + λ1 + λ2)/(µ1 + µ2) and the system is stable for ρ < 1. In all cases, changing the load is
performed by changing all arrival rates in fixed proportions. The first three columns concern symmetric
systems, with equal shares of dedicated traffic for both servers. It turns out that the presence of dedicated
customers decreases the probability of bad luck for customers who join the shorter queue. This is caused
by the fact that the queue length process tends to move further away from the diagonal n1 = n2 due
to the arrivals of dedicated customers, which is advantageous for customers joining the shorter queue,
see Table 1. The last column concerns an asymmetric system, in which only server 1 receives dedicated
traffic. Although the total proportion of dedicated traffic (40%) in this case is less than that in the case of
column 3 (60%), it turns out that in heavy traffic the probability of bad luck is smaller due to the fact that
the queue length process tends to move further away to one side of the diagonal (n1 > n2). Note that,
as a consequence of (2.9), the probability of bad luck will tend to 1

2 as ρ ↑ 1 in all cases. The approach
of this limit is even steeper the higher the fraction of dedicated traffic because the queue length process
tends to reside further away from the diagonal n1 = n2 and φ2(n + m,n) = φ1(n, n + m) approaches
its limit 1

2 as n →∞ slower the higher the value of m.

5 Conclusion

This paper has studied what we have called the probability of bad luck for shortest-queue systems. A
customer is said to experience bad luck if he joined one of the shortest queues upon arrival, but his
service would have started earlier if he had joined one of the other queues. In symmetric systems, the
probability of bad luck may well exceed 1

2 when there are three or more servers, but this only occurs if
the load of the system is very close to 1. The approach of this probability to its heavy traffic limit is very
steep, so that this limit, which is easily computable, will not be a good approximation for most values of
the load. Asymmetry in the service rates tends to increase this probability in light traffic, but to decrease
it in moderate to heavy traffic. Dedicated background traffic decreases this probability.
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