21,168 research outputs found

    A survey of recommender systems for energy efficiency in buildings: Principles, challenges and prospects

    Full text link
    Recommender systems have significantly developed in recent years in parallel with the witnessed advancements in both internet of things (IoT) and artificial intelligence (AI) technologies. Accordingly, as a consequence of IoT and AI, multiple forms of data are incorporated in these systems, e.g. social, implicit, local and personal information, which can help in improving recommender systems' performance and widen their applicability to traverse different disciplines. On the other side, energy efficiency in the building sector is becoming a hot research topic, in which recommender systems play a major role by promoting energy saving behavior and reducing carbon emissions. However, the deployment of the recommendation frameworks in buildings still needs more investigations to identify the current challenges and issues, where their solutions are the keys to enable the pervasiveness of research findings, and therefore, ensure a large-scale adoption of this technology. Accordingly, this paper presents, to the best of the authors' knowledge, the first timely and comprehensive reference for energy-efficiency recommendation systems through (i) surveying existing recommender systems for energy saving in buildings; (ii) discussing their evolution; (iii) providing an original taxonomy of these systems based on specified criteria, including the nature of the recommender engine, its objective, computing platforms, evaluation metrics and incentive measures; and (iv) conducting an in-depth, critical analysis to identify their limitations and unsolved issues. The derived challenges and areas of future implementation could effectively guide the energy research community to improve the energy-efficiency in buildings and reduce the cost of developed recommender systems-based solutions.Comment: 35 pages, 11 figures, 1 tabl

    Review of Serious Energy Games : Objectives, Approaches, Applications, Data Integration, and Performance Assessment

    Get PDF
    In recent years, serious energy games (SEGs) garnered increasing attention as an innovative and effective approach to tackling energy-related challenges. This review delves into the multifaceted landscape of SEG, specifically focusing on their wide-ranging applications in various contexts. The study investigates potential enhancements in user engagement achieved through integrating social connections, personalization, and data integration. Among the main challenges identified, previous studies overlooked the full potential of serious games in addressing emerging needs in energy systems, opting for oversimplified approaches. Further, these studies exhibit limited scalability and constrained generalizability, which poses challenges in applying their findings to larger energy systems and diverse scenarios. By incorporating lessons learned from prior experiences, this review aims to propel the development of SEG toward more innovative and impactful directions. It is firmly believed that positive behavior changes among individuals can be effectively encouraged by using SEG

    Digital technologies for behavioral change in sustainability domains: a systematic mapping review

    Get PDF
    Sustainability research has emerged as an interdisciplinary area of knowledge about how to achieve sustainable development, while political actions toward the goal are still in their infancy. A sustainable world is mirrored by a healthy environment in which humans can live without jeopardizing the survival of future generations. The main aim of this contribution was to carry out a systematic mapping (SM) of the applications of digital technologies in promoting environmental sustainability. From a rigorous search of different databases, a set of more than 1000 studies was initially retrieved and then, following screening criteria based on the ROSES (RepOrting standards for Systematic Evidence Syntheses) procedure, a total of N = 37 studies that met the eligibility criteria were selected. The studies were coded according to different descriptive variables, such as digital technology used for the intervention, type of sustainable behavior promoted, research design, and population for whom the intervention was applied. Results showed the emergence of three main clusters of Digital Technologies (i.e., virtual/immersive/augmented reality, gamification, and power-metering systems) and two main Sustainable Behaviors (SBs) (i.e., energy and water-saving, and pollution reduction). The need for a clearer knowledge of which digital interventions work and the reasons why they work (or do not work) does not emerge from the outcomes of this set of studies. Future studies on digital interventions should better detail intervention design characteristics, alongside the reasons underlying design choices, both behaviourally and technologically. This should increase the likelihood of the successful adoption of digital interventions promoting behavioral changes in a more sustainable direction

    Persuasive technology for a sustainable society

    Get PDF

    Conversational Agents for Energy Awareness and Efficiency: A Survey

    Get PDF
    The need to reduce greenhouse gas emissions and promote energy efficiency is crucial to achieve the energy transition and sustainable development goals. The availability of tools that provide clear information on energy consumption plays a key role in this transition, enabling users to monitor, manage, and optimize their energy use. This process, commonly referred to as energy feedback or eco-feedback, involves delivering information regarding energy usage and potentially suggesting more sustainable practices. Within the range of available tools, conversational agents can represent a valuable channel to receive detailed information about energy consumption and tailored advice for improving energy efficiency. The aim of this article is thus to explore the application of conversational agents, focusing on eco-feedback, as these tools are primarily devised to foster user awareness of energy usage and enhance more participatory conservation strategies. To this end, we conducted a keyword-based search of major scientific article databases, applying strict criteria to select relevant studies. The results of the collection showed that there is a very diverse landscape with respect to this topic. The surveyed works exhibit a high versatility in feedback goals. Furthermore, while predominantly applied domestically, they also show potential in commercial and industrial settings. Implementation choices also vary to a great extent, while evaluation practices lack a systematic approach and highlight the need for greater consistency. In light of these remarks, we also outline possible future extensions of this type of application, exploring in particular the emerging challenges associated with the increased use of renewable sources and the rise of local decentralized energy communities

    Data fusion strategies for energy efficiency in buildings: Overview, challenges and novel orientations

    Full text link
    Recently, tremendous interest has been devoted to develop data fusion strategies for energy efficiency in buildings, where various kinds of information can be processed. However, applying the appropriate data fusion strategy to design an efficient energy efficiency system is not straightforward; it requires a priori knowledge of existing fusion strategies, their applications and their properties. To this regard, seeking to provide the energy research community with a better understanding of data fusion strategies in building energy saving systems, their principles, advantages, and potential applications, this paper proposes an extensive survey of existing data fusion mechanisms deployed to reduce excessive consumption and promote sustainability. We investigate their conceptualizations, advantages, challenges and drawbacks, as well as performing a taxonomy of existing data fusion strategies and other contributing factors. Following, a comprehensive comparison of the state-of-the-art data fusion based energy efficiency frameworks is conducted using various parameters, including data fusion level, data fusion techniques, behavioral change influencer, behavioral change incentive, recorded data, platform architecture, IoT technology and application scenario. Moreover, a novel method for electrical appliance identification is proposed based on the fusion of 2D local texture descriptors, where 1D power signals are transformed into 2D space and treated as images. The empirical evaluation, conducted on three real datasets, shows promising performance, in which up to 99.68% accuracy and 99.52% F1 score have been attained. In addition, various open research challenges and future orientations to improve data fusion based energy efficiency ecosystems are explored

    Artificial Intelligence based Anomaly Detection of Energy Consumption in Buildings: A Review, Current Trends and New Perspectives

    Get PDF
    Enormous amounts of data are being produced everyday by sub-meters and smart sensors installed in residential buildings. If leveraged properly, that data could assist end-users, energy producers and utility companies in detecting anomalous power consumption and understanding the causes of each anomaly. Therefore, anomaly detection could stop a minor problem becoming overwhelming. Moreover, it will aid in better decision-making to reduce wasted energy and promote sustainable and energy efficient behavior. In this regard, this paper is an in-depth review of existing anomaly detection frameworks for building energy consumption based on artificial intelligence. Specifically, an extensive survey is presented, in which a comprehensive taxonomy is introduced to classify existing algorithms based on different modules and parameters adopted, such as machine learning algorithms, feature extraction approaches, anomaly detection levels, computing platforms and application scenarios. To the best of the authors' knowledge, this is the first review article that discusses anomaly detection in building energy consumption. Moving forward, important findings along with domain-specific problems, difficulties and challenges that remain unresolved are thoroughly discussed, including the absence of: (i) precise definitions of anomalous power consumption, (ii) annotated datasets, (iii) unified metrics to assess the performance of existing solutions, (iv) platforms for reproducibility and (v) privacy-preservation. Following, insights about current research trends are discussed to widen the applications and effectiveness of the anomaly detection technology before deriving future directions attracting significant attention. This article serves as a comprehensive reference to understand the current technological progress in anomaly detection of energy consumption based on artificial intelligence.Comment: 11 Figures, 3 Table
    corecore