84 research outputs found

    The Power of Modeling - a Response to PDDL2.1

    Full text link
    In this commentary I argue that although PDDL is a very useful standard for the planning competition, its design does not properly consider the issue of domain modeling. Hence, I would not advocate its use in specifying planning domains outside of the context of the planning competition. Rather, the field needs to explore different approaches and grapple more directly with the problem of effectively modeling and utilizing all of the diverse pieces of knowledge we typically have about planning domains

    Multi-objective optimisation of machine tool error mapping using automated planning

    Get PDF
    Error mapping of machine tools is a multi-measurement task that is planned based on expert knowledge. There are no intelligent tools aiding the production of optimal measurement plans. In previous work, a method of intelligently constructing measurement plans demonstrated that it is feasible to optimise the plans either to reduce machine tool downtime or the estimated uncertainty of measurement due to the plan schedule. However, production scheduling and a continuously changing environment can impose conflicting constraints on downtime and the uncertainty of measurement. In this paper, the use of the produced measurement model to minimise machine tool downtime, the uncertainty of measurement and the arithmetic mean of both is investigated and discussed through the use of twelve different error mapping instances. The multi-objective search plans on average have a 3% reduction in the time metric when compared to the downtime of the uncertainty optimised plan and a 23% improvement in estimated uncertainty of measurement metric when compared to the uncertainty of the temporally optimised plan. Further experiments on a High Performance Computing (HPC) architecture demonstrated that there is on average a 3% improvement in optimality when compared with the experiments performed on the PC architecture. This demonstrates that even though a 4% improvement is beneficial, in most applications a standard PC architecture will result in valid error mapping plan

    Modelling Mixed Discrete-Continuous Domains for Planning

    Full text link
    In this paper we present pddl+, a planning domain description language for modelling mixed discrete-continuous planning domains. We describe the syntax and modelling style of pddl+, showing that the language makes convenient the modelling of complex time-dependent effects. We provide a formal semantics for pddl+ by mapping planning instances into constructs of hybrid automata. Using the syntax of HAs as our semantic model we construct a semantic mapping to labelled transition systems to complete the formal interpretation of pddl+ planning instances. An advantage of building a mapping from pddl+ to HA theory is that it forms a bridge between the Planning and Real Time Systems research communities. One consequence is that we can expect to make use of some of the theoretical properties of HAs. For example, for a restricted class of HAs the Reachability problem (which is equivalent to Plan Existence) is decidable. pddl+ provides an alternative to the continuous durative action model of pddl2.1, adding a more flexible and robust model of time-dependent behaviour

    An Automated Planning Model for HRI: Use Cases on Social Assistive Robotics

    Get PDF
    Using Automated Planning for the high level control of robotic architectures is becoming very popular thanks mainly to its capability to define the tasks to perform in a declarative way. However, classical planning tasks, even in its basic standard Planning Domain Definition Language (PDDL) format, are still very hard to formalize for non expert engineers when the use case to model is complex. Human Robot Interaction (HRI) is one of those complex environments. This manuscript describes the rationale followed to design a planning model able to control social autonomous robots interacting with humans. It is the result of the authors’ experience in modeling use cases for Social Assistive Robotics (SAR) in two areas related to healthcare: Comprehensive Geriatric Assessment (CGA) and non-contact rehabilitation therapies for patients with physical impairments. In this work a general definition of these two use cases in a unique planning domain is proposed, which favors the management and integration with the software robotic architecture, as well as the addition of new use cases. Results show that the model is able to capture all the relevant aspects of the Human-Robot interaction in those scenarios, allowing the robot to autonomously perform the tasks by using a standard planning-execution architecture.This work has been partially funded by the European Union ECHORD++ project (FP7-ICT-601116), and grants TIN2017-88476-C2-2-R and RTI2018-099522-B-C43 of FEDER/Ministerio de Ciencia e Innovación-Ministerio de Universidades-Agencia Estatal de Investigación. Javier García is partially supported by the Comunidad de Madrid funds under the project 2016-T2/TIC-1712

    ICAPS 2012. Proceedings of the third Workshop on the International Planning Competition

    Get PDF
    22nd International Conference on Automated Planning and Scheduling. June 25-29, 2012, Atibaia, Sao Paulo (Brazil). Proceedings of the 3rd the International Planning CompetitionThe Academic Advising Planning Domain / Joshua T. Guerin, Josiah P. Hanna, Libby Ferland, Nicholas Mattei, and Judy Goldsmith. -- Leveraging Classical Planners through Translations / Ronen I. Brafman, Guy Shani, and Ran Taig. -- Advances in BDD Search: Filtering, Partitioning, and Bidirectionally Blind / Stefan Edelkamp, Peter Kissmann, and Álvaro Torralba. -- A Multi-Agent Extension of PDDL3.1 / Daniel L. Kovacs. -- Mining IPC-2011 Results / Isabel Cenamor, Tomás de la Rosa, and Fernando Fernández. -- How Good is the Performance of the Best Portfolio in IPC-2011? / Sergio Nuñez, Daniel Borrajo, and Carlos Linares López. -- “Type Problem in Domain Description!” or, Outsiders’ Suggestions for PDDL Improvement / Robert P. Goldman and Peter KellerEn prens

    A STUDY ON THE APPLICATIONS OF ARTIFICIAL INTELLIGENCE - WITH SPECIAL REFERENCE TO APPLICATION OF AI IN BUSINESS

    Get PDF
    AI can perform tasks such as identifying patterns in the data more efficiently than humans, enabling businesses to gain more insight out of their data. With the help from AI, massive amounts of data can be analyzed to map poverty and climate change, automate agricultural practices and irrigation, individualize healthcare and learning, predict consumption patterns, streamline energy-usage and waste-management. A meta information can be gathered for these classification techniques and based on these meta information a model of robust for large datasets can be less accurate can be slow for former case. A meta information can be gathered for these classification techniques and based on these meta information a model of robust classifier can be formed which will decide to apply the techniques or their synergic approach based on the requirements of the particular situation

    Efficient Automated Planning with New Formulations

    Get PDF
    Problem solving usually strongly relies on how the problem is formulated. This fact also applies to automated planning, a key field in artificial intelligence research. Classical planning used to be dominated by STRIPS formulation, a simple model based on propositional logic. In the recently introduced SAS+ formulation, the multi-valued variables naturally depict certain invariants that are missed in STRIPS, make SAS+ have many favorable features. Because of its rich structural information SAS+ begins to attract lots of research interest. Existing works, however, are mostly limited to one single thing: to improve heuristic functions. This is in sharp contrast with the abundance of planning models and techniques in the field. On the other hand, although heuristic is a key part for search, its effectiveness is limited. Recent investigations have shown that even if we have almost perfect heuristics, the number of states to visit is still exponential. Therefore, there is a barrier between the nice features of SAS+ and its applications in planning algorithms. In this dissertation, we have recasted two major planning paradigms: state space search and planning as Satisfiability: SAT), with three major contributions. First, we have utilized SAS+ for a new hierarchical state space search model by taking advantage of the decomposable structure within SAS+. This algorithm can greatly reduce the time complexity for planning. Second, planning as Satisfiability is a major planning approach, but it is traditionally based on STRIPS. We have developed a new SAS+ based SAT encoding scheme: SASE) for planning. The state space modeled by SASE shows a decomposable structure with certain components independent to others, showing promising structure that STRIPS based encoding does not have. Third, the expressiveness of planning is important for real world scenarios, thus we have also extended the planning as SAT to temporally expressive planning and planning with action costs, two advanced features beyond classical planning. The resulting planner is competitive to state-of-the-art planners, in terms of both quality and performance. Overall, our work strongly suggests a shifting trend of planning from STRIPS to SAS+, and shows the power of formulating planning problems as Satisfiability. Given the important roles of both classical planning and temporal planning, our work will inspire new developments in other advanced planning problem domains

    Generative planner for hybrid systems with temporally extended goals

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Aeronautics and Astronautics, 2010.Cataloged from PDF version of thesis.Includes bibliographical references (p. 230-237).Most unmanned missions in space and undersea are commanded by a "script" that specifies a sequence of discrete commands and continuous actions. Currently such scripts are mostly hand-generated by human operators. This introduces inefficiency, puts a significant cognitive burden on the engineers, and prevents re-planning in response to environment disturbances or plan execution failure. For discrete systems, the field of autonomy has elevated the level of commanding by developing goal-directed systems, to which human operators specify a series of temporally extended goals to be accomplished, and the goal-directed systems automatically output the correct, executable command sequences. Increasingly, the control of autonomous systems involves performing actions with a mix of discrete and continuous effects. For example, a typical autonomous underwater vehicle (AUV) mission involves discrete actions, like get GPS and take sample, and continuous actions, like descend and ascend, which are influenced by the dynamical model of the vehicle. A hybrid planner generates a sequence of discrete and continuous actions that achieve the mission goals. In this thesis, I present a novel approach to solve the generative planning problem for temporally extended goals for hybrid systems, involving both continuous and discrete actions. The planner, Kongming, incorporates two innovations. First, it employs a compact representation of all hybrid plans, called a Hybrid Flow Graph, which combines the strengths of a Planning Graph for discrete actions and Flow Tubes for continuous actions. Second, it engages novel reformulation schemes to handle temporally flexible actions and temporally extended goals. I have successfully demonstrated controlling an AUV in the Atlantic ocean using mission scripts solely generated by Kongming. I have also empirically evaluated Kongming on various real-world scenarios in the underwater domain and the air vehicle domain, and found it successfully and efficiently generates valid and optimal plans.by Hui X. Li.Ph.D
    corecore