4,846 research outputs found

    The power and limit of adding synchronization messages for synchronous agreement

    Get PDF
    2006-2007 > Academic research: refereed > Refereed conference paperVersion of RecordPublishe

    Context-aware Authorization in Highly Dynamic Environments

    Get PDF
    Highly dynamic computing environments, like ubiquitous and pervasive computing environments, require frequent adaptation of applications. Context is a key to adapt suiting user needs. On the other hand, standard access control trusts users once they have authenticated, despite the fact that they may reach unauthorized contexts. We analyse how taking into account dynamic information like context in the authorization subsystem can improve security, and how this new access control applies to interaction patterns, like messaging or eventing. We experiment and validate our approach using context as an authorization factor for eventing in Web service for device (like UPnP or DPWS), in smart home security

    Tight Bounds for Asymptotic and Approximate Consensus

    Get PDF
    We study the performance of asymptotic and approximate consensus algorithms under harsh environmental conditions. The asymptotic consensus problem requires a set of agents to repeatedly set their outputs such that the outputs converge to a common value within the convex hull of initial values. This problem, and the related approximate consensus problem, are fundamental building blocks in distributed systems where exact consensus among agents is not required or possible, e.g., man-made distributed control systems, and have applications in the analysis of natural distributed systems, such as flocking and opinion dynamics. We prove tight lower bounds on the contraction rates of asymptotic consensus algorithms in dynamic networks, from which we deduce bounds on the time complexity of approximate consensus algorithms. In particular, the obtained bounds show optimality of asymptotic and approximate consensus algorithms presented in [Charron-Bost et al., ICALP'16] for certain dynamic networks, including the weakest dynamic network model in which asymptotic and approximate consensus are solvable. As a corollary we also obtain asymptotically tight bounds for asymptotic consensus in the classical asynchronous model with crashes. Central to our lower bound proofs is an extended notion of valency, the set of reachable limits of an asymptotic consensus algorithm starting from a given configuration. We further relate topological properties of valencies to the solvability of exact consensus, shedding some light on the relation of these three fundamental problems in dynamic networks

    Shake well before use: Authentication based on Accelerometer Data

    Get PDF
    Small, mobile devices without user interfaces, such as Bluetooth headsets, often need to communicate securely over wireless networks. Active attacks can only be prevented by authenticating wireless communication, which is problematic when devices do not have any a priori information about each other. We introduce a new method for device-to-device authentication by shaking devices together. This paper describes two protocols for combining cryptographic authentication techniques with known methods of accelerometer data analysis to the effect of generating authenticated, secret keys. The protocols differ in their design, one being more conservative from a security point of view, while the other allows more dynamic interactions. Three experiments are used to optimize and validate our proposed authentication method

    Autonomous Demand Side Management Based on Energy Consumption Scheduling and Instantaneous Load Billing: An Aggregative Game Approach

    Full text link
    In this paper, we investigate a practical demand side management scenario where the selfish consumers compete to minimize their individual energy cost through scheduling their future energy consumption profiles. We propose an instantaneous load billing scheme to effectively convince the consumers to shift their peak-time consumption and to fairly charge the consumers for their energy consumption. For the considered DSM scenario, an aggregative game is first formulated to model the strategic behaviors of the selfish consumers. By resorting to the variational inequality theory, we analyze the conditions for the existence and uniqueness of the Nash equilibrium (NE) of the formulated game. Subsequently, for the scenario where there is a central unit calculating and sending the real-time aggregated load to all consumers, we develop a one timescale distributed iterative proximal-point algorithm with provable convergence to achieve the NE of the formulated game. Finally, considering the alternative situation where the central unit does not exist, but the consumers are connected and they would like to share their estimated information with others, we present a distributed agreement-based algorithm, by which the consumers can achieve the NE of the formulated game through exchanging information with their immediate neighbors.Comment: 11 pages, 7 figure

    Advanced information processing system: The Army fault tolerant architecture conceptual study. Volume 2: Army fault tolerant architecture design and analysis

    Get PDF
    Described here is the Army Fault Tolerant Architecture (AFTA) hardware architecture and components and the operating system. The architectural and operational theory of the AFTA Fault Tolerant Data Bus is discussed. The test and maintenance strategy developed for use in fielded AFTA installations is presented. An approach to be used in reducing the probability of AFTA failure due to common mode faults is described. Analytical models for AFTA performance, reliability, availability, life cycle cost, weight, power, and volume are developed. An approach is presented for using VHSIC Hardware Description Language (VHDL) to describe and design AFTA's developmental hardware. A plan is described for verifying and validating key AFTA concepts during the Dem/Val phase. Analytical models and partial mission requirements are used to generate AFTA configurations for the TF/TA/NOE and Ground Vehicle missions

    Randomized protocols for asynchronous consensus

    Full text link
    The famous Fischer, Lynch, and Paterson impossibility proof shows that it is impossible to solve the consensus problem in a natural model of an asynchronous distributed system if even a single process can fail. Since its publication, two decades of work on fault-tolerant asynchronous consensus algorithms have evaded this impossibility result by using extended models that provide (a) randomization, (b) additional timing assumptions, (c) failure detectors, or (d) stronger synchronization mechanisms than are available in the basic model. Concentrating on the first of these approaches, we illustrate the history and structure of randomized asynchronous consensus protocols by giving detailed descriptions of several such protocols.Comment: 29 pages; survey paper written for PODC 20th anniversary issue of Distributed Computin
    corecore