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ABSTRACT
We study the performance of asymptotic and approximate consen-

sus algorithms under harsh environmental conditions. The asymp-

totic consensus problem requires a set of agents to repeatedly set

their outputs such that the outputs converge to a common value

within the convex hull of initial values. This problem, and the re-

lated approximate consensus problem, are fundamental building

blocks in distributed systems where exact consensus among agents

is not required or possible, e.g., man-made distributed control sys-

tems, and have applications in the analysis of natural distributed

systems, such as flocking and opinion dynamics. We prove tight

lower bounds on the contraction rates of asymptotic consensus

algorithms in dynamic networks, from which we deduce bounds

on the time complexity of approximate consensus algorithms. In

particular, the obtained bounds show optimality of asymptotic and

approximate consensus algorithms presented in [Charron-Bost et

al., ICALP’16] for certain dynamic networks, including the weakest

dynamic network model in which asymptotic and approximate con-

sensus are solvable. As a corollary we also obtain asymptotically

tight bounds for asymptotic consensus in the classical asynchro-

nous model with crashes.

Central to our lower bound proofs is an extended notion of

valency, the set of reachable limits of an asymptotic consensus

algorithm starting from a given configuration. We further relate

topological properties of valencies to the solvability of exact consen-

sus, shedding some light on the relation of these three fundamental

problems in dynamic networks.
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1 INTRODUCTION
In the asymptotic consensus problem a set of agents, each starting

from an initial value in Rd , update their values such that all agents’

values converge to a common value within the convex hull of initial

values. The problem is closely related to the approximate consensus
problem, in which agents have to irrevocably decide on values that

lie within a predefined distance ε > 0 of each other. The latter is

weaker than the exact consensus problem in which agents need to

decide on the same value. Both the asymptotic and the approxi-

mate consensus problems have not only a variety of applications

in the design of man-made control systems like sensor fusion [4],

clock synchronization [21], formation control [15], rendezvous in

space [22], or load balancing [13], but also for analyzing natural

systems like flocking [31], firefly synchronization [26], or opinion

dynamics [20]. These problems often have to be solved under harsh

environmental restrictions in which exact consensus is not achiev-

able, or too costly to achieve: with limited computational power

and local storage, under restricted communication abilities, and in

presence of communication uncertainty.

In this work we study the performance of asymptotic and approx-

imate consensus algorithms under such harsh conditions. Specifi-

cally, we study algorithms in a network model N with round-based

computation and a dynamic communication topology whose di-
rected communication graphs are chosen each round from a prede-

fined set N of communication graphs. While this model naturally

captures highly unstable communication topologies, we later on

show that it also allows to assess performance within classical,

more stable, distributed fault models.

Solvability and Algorithms. In previous work [8], Charron-Bost

et al. showed that asymptotic consensus is solvable precisely within

rooted network models in which all communication graphs contain

rooted spanning trees. These rooted spanning trees need not have

any edges in common and can change from one round to the next.

An interesting special case of rooted networkmodels are network

models whose graphs are non-split, that is, any two agents have a

common incoming neighbor. Their prominent role is motivated by

two properties: (i) They occur as communication graphs in benign

classical distributed failure models. For example, in synchronous

systems with crashes, in asynchronous systems with a minority of

crashes, and synchronous systems with send omissions. (ii) In [8],

Charron-Bost et al. showed that non-split graphs also play a central

role in arbitrary rooted network models: they showed that any

product of n−1 rooted graphs with n nodes is non-split, allowing to

transform asymptotic consensus algorithms for non-split network

models into their amortized variants for rooted models.

Interestingly, solvability in any rooted network model is already

provided by deceptively simple algorithms [8]: so-called averaging
or convex combination algorithms, in which agents repeatedly broad-

cast their current value, and update it to some weighted average of
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the values they received in this round. One instance, presented by

Charron-Bost et al. [9] is the midpoint algorithm, in which agents

update their value to the midpoint of the set of received values, i.e.,

the average of the smallest and the largest of the received values.

Regarding time complexity, for dimension d = 1, the amortized

midpoint algorithm was shown to have a contraction rate (of the

range of reachable values; see Section 3 for a formal definition)

of
n−1√

1/2 in arbitrary rooted network models with n agents, and

the midpoint algorithm of
1

2
in non-split network models [9]. The

latter is optimal for “memoryless” averaging algorithms, which

only depend on the values received in the current round [9].

A natural question is whether non-averaging or non-memoryless
algorithms, i.e., algorithms that (i) do not necessarily set their output

values to within the convex hull of previously received values or (ii)

whose output is a function not only of the previously received val-

ues, allow faster contraction rates. In the context of classical failure

models, deriving lower bounds independent of such assumptions, is

a long-standing open problem raised by Dolev et al. in [14]. As an

example for (i), consider the algorithm where each agent sends an

equal fraction of its current output value to all out-neighbors and

sets its output to the sum of values received in the current round.

Note that the algorithm is not a convex combination algorithm as

its output may lie outside the convex hull of the values of its in-

neighbors. However, it solves asymptotic consensus algorithm for a

fixed directed communication graph. Other examples of algorithms

that violate (i) and (ii) are from control theory, where the usage of

overshooting fast second-order controllers is common; see, e.g., [3].

Contribution.We prove asymptotically tight lower bounds on the

contraction rate of any asymptotic consensus algorithm regardless

of the structure of the algorithm: algorithms can be full-information

and agents can set their outputs outside the convex hull of received

values. This, e.g., includes using higher-order filters in contrast

to the 0-order filters of averaging algorithms. In particular, the

following lower bounds hold for a network modelN with n agents:

If exact consensus is solvable inN , an optimal contraction rate of 0

can be achieved. Otherwise:

In a system with n = 2 agents, the contraction rate is lower

bounded by 1/3 (Theorem 4.1). This is tight [9].

For an arbitrary communication graph G, we define the set

deaf (G ) = {F1, . . . , Fn }, where Fi is derived from G by making

agent i deaf in Fi , i.e., removing the incoming edges of i in G. In a

system with n ≥ 3 agents, if N contains deaf (G ), then the contrac-

tion rate is lower bounded by 1/2 (Theorem 5.1). This is tight in

non-split network models because of the midpoint algorithm [9].

We then show that if N contains certain rooted graphs Ψ, the
contraction rate is lower bounded by

n−2√
1/2 (Theorem 6.1). This

is asymptotically tight in rooted network models because of the

amortized midpoint algorithm [9]. Specifically, this proves optimal-

ity of the amortized midpoint algorithm for the weakest, i.e., largest,
network model in which asymptotic and approximate consensus is

solvable: the set of all directed rooted communication graphs.

For arbitrary network models we show that in a system with

n ≥ 3 agents, any asymptotic consensus algorithm must have a

contraction rate of at least 1/(D + 1), where D, the so-called α-
diameter ofN , i.e., the smallest value which allows a connection of

any pair of communication graphs in N via an indistinguishability

chain of length at most D (Theorem 7.4).

We demonstrate how to apply the above mentioned bound to

obtain new lower bounds on contraction rates for classical failure

models as an immediate corollary. Specifically, we consider asyn-

chronous message passing system of size n with up to f < n/2
crashes. For such systems, algorithms operating in asynchronous
rounds are widely used [10, 14, 24]: each agent waits for n − f mes-

sages corresponding to the current round, updates its state based

on the received messages and its previous state, and broadcasts the

next round’s messages.

We show that no algorithm operating in asynchronous rounds

can achieve a contraction rate better than
1

⌈n/f ⌉+1 (Theorem 8.2).

This shows that the asynchronous algorithms for systems of size

n > 5f with up to f Byzantine failures by Dolev et al. [14] and

for systems of size n > 2f with up to f crashes by Fekete [18]

have asymptotically optimal contraction rates for round-based al-

gorithms.

We then present an algorithm for n > f that does not operate in
asynchronous rounds and achieves a contraction rate of 0, demon-

strating a large gap between round-based and non round-based

algorithms for asymptotic consensus.

Table 1 summarizes lower and upper bounds. Central to the

proofs is the concept of the valency of a configuration of an asymp-

totic consensus algorithm, defined as the set of limits reachable

from this configuration. By studying the changes in valency along

executions, we infer bounds on the contraction rate.

We extend the above results on contraction rates to derive new

lower bounds on the decision time of any approximate consensus

algorithm: Let ∆ > 0 be the largest distance between initial values.

For n = 2 we obtain ⌈log
3

∆
ε ⌉ (Theorem 9.1). For n ≥ 3 and mod-

els that include deaf (G ) for a communication graph G, we show

⌈log
2

∆
ε ⌉ (Theorem 9.2), and for n ≥ 4 and models that include

certain Ψ graphs, we obtain (n − 2)⌈log
2

∆
ε ⌉ (Theorem 9.3). For

arbitrary network models in which exact consensus is not solv-

able, we show logD+1
∆
εn (Theorem 9.4). Again, deciding versions

of the asymptotic consensus algorithms from [9] have matching

time complexities; showing optimality of these algorithms also for

solving approximate consensus.

Related work. The problem of asymptotic consensus in dynamic

networks has been extensively studied in distributed computing

and control theory, see, e.g., [2, 5, 6, 11, 16, 27]. The question of

guaranteed convergence rates and decision times of the correspond-

ing approximate consensus problems, naturally arise in this context.

Algorithms with convergence times exponential in the number of

agents have been proposed, e.g., in [6].

Olshevsky and Tsitsiklis [30], proposed an algorithm with poly-

nomial convergence time in bidirectional networks with certain

stability assumptions on the occurring communication graphs.

The bounds on convergence times were later on refined in [28].

Chazelle [11] proposed an averaging algorithm with polynomial

convergence time, which works in any bidirectional connected

network model.

To speed up convergence times, algorithms where agents set

their output based on values that have been received in rounds



network model asynchronous + f crashes

agents general non-split with general round-based alg. arbitrary alg.

non-split α-diameter D rooted 0 < f < n
2

0 < f < n

n = 2
1

3

∗
0 or

1

3

∗
1

3

∗
N/A

n ≥ 3
1

2

∗
0 or

[
1

D+1
∗
, 1
2

] [
n−2
√

1

2

∗

, n−1
√

1

2

] [
1

⌈n/f ⌉+1
∗
, 1

⌈n/f ⌉−1

]
0
∗

Table 1: Summary of lower and upper bounds on contraction rates. New bounds proved in this work are marked with an ∗. The
three left columns are worst-case contraction rates for the case the network model is (i) a general non-split, (ii) a non-split
network model with α-diameter D, and (iii) a general rooted network model. For (ii) contraction rates are 0 iff exact consensus
is solvable. The right two columns summarize the bounds for the classical model of an asynchronous system with crashes.

prior to the previous round have also been considered in litera-

ture: Olshevsky [29] proposed a linear convergence time algorithm

that uses messages from two rounds, however, being restricted to

fixed bidirectional communication graphs. In [32], a linear conver-

gence time algorithm for a possibly non-bidirectional fixed topology

was proposed. It requires storing all received values. In previous

work [9], Charron-Bost et al. presented the midpoint algorithm,

which has constant convergence time in non-split network models

and the amortized midpoint algorithm with linear convergence

time in rooted network models.

To the best of our knowledge, the only lower bound on conver-

gence rate in dynamic networks has been shown in [7]: the authors

proved that the convergence rate of a specific averaging algorithm

in a non-split network model with n agents is at least 1 − 1

n .

In the context of classical distributed computing failure scenarios,

Dolev et al. [14] studied the related approximate consensus problem:

they considered fully-connected synchronous distributed systems

with up to f Byzantine agents, and its asynchronous variant. The

two presented algorithms require n ≥ 3f + 1 for the synchronous
and n ≥ 5f + 1 for the asynchronous distributed system, the first

of which is optimal in terms of resilience [19]. The latter result was

improved to n ≥ 3f +1 in [1]. Both papers also address the question
of optimal contraction rate in such systems. Since, however, in

synchronous systems with n ≥ 3f + 1 exact consensus is solvable,
leading to a contraction rate of 0, the authors consider bounds for

round-by-round contraction rates. In [14] they showed that the

achieved round-by-round contraction rate of
1

2
is actually tight for

a certain class of algorithms that repeatedly set their output to the

image of a so-called cautious function applied to the multiset of

received values. A lower bound for arbitrary algorithms, however,

remained an open problem. In higher dimensions, i.e, for any d ≥ 1,

Mendes et al. [25] proposed algorithms with convergence time of

d · ⌈log
2

√
d∆
ε ⌉ under the optimal resiliency condition n ≥ f · (d +

2) + 1.
Fekete [17] also studied round-by-round contraction rates for

several failure scenarios, again, all in which exact consensus is solv-

able. He proved asymptotically tight lower bounds for synchronous

distributed systems in presence of crashes, omission, and Byzantine

agents. The bounds hold for approximate consensus algorithms

that potentially take into account information from all previous

rounds. In [18], Fekete presented an algorithm for asynchronous

message-passing systems with minority of crashes, also proving a

tight lower bound on the contraction rate of any algorithm operat-

ing in asynchronous rounds for such systems.

2 DYNAMIC SYSTEM MODEL
We consider a set [n] = {1, . . . ,n} of n agents (also classically called

processes). We assume a distributed, round-based computational

model in the spirit of the Heard-Of model [10]. Computation pro-

ceeds in rounds: In every round, each agent sends its state to its

outgoing neighbors, receives messages from its incoming neigh-

bors, and finally updates its state according to a deterministic local

algorithm, i.e., a transition function that maps the collection of in-

coming messages to a new state. Rounds are communication closed

in the sense that no agent receives messages in round t that are
sent in a round different from t .

Communications that occur in a round are modeled by a directed
graph with a node for each agent. Since an agent can obviously

communicate with itself instantaneously, every communication

graph contains a self-loop at each node. In the following, we use

the product of two communication graphsG and H , denotedG ◦H ,

which is the directed graph with an edge from i to j if there exists k
such that (i,k ) and (k, j ) are two edges in G and H , respectively.

We fix a nonempty set of communication graphs N which de-

termines the network model. To fully model dynamic networks in

which topology may change continually and unpredictably, the

communication graph at each round is chosen arbitrarily amongN .

Thus we form the infinite sequences of graphs in N which we

call communication patterns in N . In each communication pat-

tern, the communication graph at round t is denoted by Gt , and

Ini (t ) = Ini (Gt ) and Outi (t ) = Outi (Gt ) are the sets of incoming

and outgoing neighbors (in-neighbors and out-neighbors for short)

of agent i in Gt .

Let us fix an algorithm A; a configuration is a collection of n
agent states, one per agent. We assume that all agents pick their

initial state from the same set of states. Obviously the picks can be

different for different agents. Since agents are deterministic, given

some configuration C and some communication graph G, the algo-
rithmA uniquely determines a new configuration, whichwe simply

denote G .C if no confusion can arise. Then the execution E of A
from the initial configuration C0 and with the communication pat-

tern

(
Gt
)
t ≥1

is the sequence C0,G1, . . . ,Ct−1,Gt ,Ct , . . . of alter-

nating configurations and communication graphs such that for each

round t , Ct = Gt .Ct−1. The set of executions with communication

patterns in N , denoted EN
A
, with the distance dist(E,E ′) = 1/2θ ,

where θ is the first index at which E and E ′ differ, is a compact

metric space (e.g., see [23]).



Finally, any configuration that occurs in some execution with

a communication pattern in N is said to be reachable from C0 by
A in N . In the sequel, the algorithm and the network model are

omitted if no confusion can arise.

2.1 Asymptotic Consensus
We assume that the local state of agent i includes a variable yi

in Euclidean d-space, and we let yi
E
(t ) ∈ Rd denote the value

of yi at the end of round t in execution E. Then we let yE (t ) =(
y1
E
(t ), . . . ,yn

E
(t )
)
. We write

diam(A) = sup

x,y∈A
∥x − y∥

for the diameter of A ⊆ Rd and ∆(y (t )) = diam{y1 (t ), . . . ,yn (t )}
for the diameter of the set of values in round t .

We say an algorithm solves the asymptotic consensus problem in

a network model N if the following holds for every execution E
with a communication pattern in N :

• Convergence. Each sequence

(
yi
E
(t )
)
t ≥0

converges.

• Agreement. If yi
E
(t ) and y

j
E (t ) converge, then they have a

common limit.

• Validity. If yi
E
(t ) converges, then its limit is in the convex

hull of the initial values y1
E
(0), . . . ,yn

E
(0).

Observe that the consensus function defined byy∗ : E ∈ (E, dist) 7→

y∗
E
∈ (Rd , ∥.∥), where y∗

E
denotes the common limit of the n se-

quences

(
yi
E
(t )
)
t ≥0

, is a priori not continuous. And indeed, there

exist asymptotic consensus algorithms whose consensus functions

are not continuous.

3 VALENCY AND CONTRACTION RATE
We now extend the notion of valency for a consensus algorithm to

asymptotic consensus algorithms. We fix an asymptotic consensus

algorithm A that solves d-dimensional asymptotic consensus in a

certain network model N with n ≥ 2 agents. Let C be a configu-

ration reachable by A in N . Then we define the valency of C by

Y ∗
N ,A

(C ) = {y∗
E
∈ Rd | C occurs in E ∈ EN

A
}.

If the algorithm A is clear from the context, we skip it from the

subscript. Observe that if A is a convex combination algorithm,

then the valency of a configuration C is a compact set of Rd since

the consensus function is continuous and the set of executions in

which C occurs is a compact set. Set δN (C ) = diam(Y ∗
N
(C )) the

diameter of the set of reachable limits starting from configurationC .
We have δN (Ct ) → 0 in any execution E = G0,C1,G1,C2, . . .

by Convergence and Agreement. To study the speed of conver-

gence, we introduce the contraction rate of algorithmA in network

model N as

sup

E∈EN
A

lim sup

t→∞

t
√
δN (Ct )

where E = C0,G1,C1,G2, . . . In particular, any algorithm that guar-

antees δN (Ct ) ≤ γ tδN (C0) for all t ≥ 0 has a contraction rate of

at most γ .
We obtain the following for subsets of network models:

Lemma 3.1. Let N ,N ′ be two network models with N ′ ⊆ N .
IfA is an algorithm that solves asymptotic consensus inN , then (i) it

also solves asymptotic consensus in N ′, (ii) for every configuration C
reachable by A in N ′, we have Y ∗

N ′
(C ) ⊆ Y ∗

N
(C ), (iii) δN ′ (C ) ≤

δN (C ), and (iv) the contraction rate in N ′ is less or equal to the
contraction rate in N .

Proof. Statements (i), (ii), and (iii) immediately follow from

the definition of valency. It remains to show statement (iv). From

EN
′

A
⊆ EN

A
and (iii), we deduce

sup

E∈EN′
A

lim sup

t→∞

t
√
δN ′ (Ct ) ≤ sup

E∈EN
A

lim sup

t→∞

t
√
δN (Ct ) ,

which concludes the proof. □

We establish two branching properties of valency of configura-

tions in execution trees.

Lemma 3.2. LetC be a configuration reachable by algorithmA in
network model N . Then

Y ∗
N
(C ) =

⋃
G ∈N

Y ∗
N
(G .C ) .

Proof. First lety∗ ∈ Y ∗
N
(C ). By definition ofY ∗

N
(C ), there exists

an execution E = C0,G1,C1,G2, . . . in E
N
A

and a t ≥ 0 such that

y∗ = y∗E and C = Ct . Set G = Gt+1. Hence we have Ct+1 = G .C .
But this shows that y∗ ∈ Y ∗

N
(G .C ) since G .C occurs in execution E

whose limit is y∗. This shows inclusion of the left-hand side in the

right-hand side.

Now let G ∈ N and y∗ ∈ Y ∗
N
(G .C ). Then there is an execution

E = C0,G1,C1,G2, . . . in E
N
A

and a t ≥ 0 such that y∗ = y∗E and

G .C = Ct . Since C is a reachable configuration, there exists an

execution E ′ = C ′
0
,G ′

1
,C ′

1
,G ′

2
, . . . in EN

A
and an s ≥ 0 such that

C ′s = C . Then the sequence

E ′′ = C ′
0
,G ′

1
, . . . ,C ′s ,G,Ct ,Gt+1, . . .

is an execution in EN
A

with y∗E′′ = y∗E = y∗. Hence y∗ ∈ Y ∗
N
(C )

because C occurs in E ′′. This shows inclusion of the right-hand

side in the left-hand side and concludes the proof. □

Lemma 3.3. LetC be a configuration reachable by algorithmA in
network model N . Then there exist G,H ∈ N such that

diam

(
Y ∗
N
(C )
)
= diam

(
Y ∗
N
(G .C ) ∪ Y ∗

N
(H .C )

)
.

Proof. Set Y = Y ∗
N
(C ), and YG = Y ∗

N
(G .C ) for G ∈ N . By

Lemma 3.2 it is Y =
⋃
G ∈N YG , which means that every sequence

of pairs of points inY whose distances converge to diam(Y ) includes
an infinite subsequence in some product YG × YH because there

are only finitely many. Thus diam(Y ) ≤ diam(YG ∪YH ). The other
inequality follows from YG ∪ YH ⊆ Y . □

Two configurations C and C ′ are called indistinguishable for
agent i , denoted C ∼i C ′, if i is in the same state in C and in C ′.

As an immediate consequence of the above definition, we obtain:

Lemma 3.4. Let C and C ′ be two reachable configurations, and
let G and G ′ be communication graphs in N . If some agent i has
the same in-neighbors in G and G ′ and if C ∼j C ′ for each of i’s
in-neighbors j, then G .C ∼i G ′.C ′.



An agent i is said to be deaf in a communication graph G if i has
a unique in-neighbor in G, namely i itself. We are now in position

to relate valencies of successor configurations.

Lemma 3.5. If agent i has the same in-neighbors in two commu-
nication graphs G and G ′ in N , and if there exists a communication
graph in N in which i is deaf and C ∼j C ′ for the in-neighbors j of i ,
then Y ∗

N
(G .C ) ∩ Y ∗

N
(G ′.C ′) , ∅ .

Proof. From Lemma 3.4, we have G .C ∼i G
′.C ′.

Let Di be a communication graph in N in which the agent i is
deaf. Then we consider an execution E in which C occurs at some

round t0 − 1, G is the communication graph at round t0, and from

there on all communication graphs are equal to Di . Analogously,

let E ′ be an execution identical to E except that the communication

graph at round t0 is G
′
instead of G. By inductive application of

Lemma 3.4, we show that for all t ≥ t0, we have Ct ∼i C ′t . In

particular, we obtain yi
E
(t ) = yi

E′
(t ). Thus y∗

E
= y∗

E′
, which shows

that Y ∗
N
(G .C ) and Y ∗

N
(G ′.C ′) intersect. □

From Lemma 3.5 we determine the valency of any initial config-

uration when the network model contains certain communication

graphs. If every agent is deaf in some communication graph of the

network model N , then the next lemma shows that the diameter

of the valency of any initial configuration is equal to the diameter

of the set of its initial values.

Lemma 3.6. If, for every agent i , there is a communication graph
in N in which i is deaf, then each initial configuration C0 satisfies
δN (C0) = ∆(y (0)). In particular, there is an initial configuration for
which δN (C0) > 0.

Proof. Since Y ∗
N
(C0) is a subset of the convex hull of the set

of points {y1 (0), . . . ,yn (0)} by the Validity property of asymp-

totic consensus and since the diameter of the convex hull of the

set {y1 (0), . . . ,yn (0)} is equal to ∆(y (0)), we have the inequality
δN (C0) ≤ ∆(y (0)).

To show the converse inequality, let i and j be two agents such

that ∥yi (0) − y j (0)∥ = ∆(y (0)). Let E be the execution with initial

configuration C0 and a constant communication graph in which

agent i is deaf. Now considerC
(i )
0

, an initial configuration such that

all initial values are set to yi (0), and the execution E (i ) from C
(i )
0

with the same communication pattern as in E.
By a repeated application of Lemma 3.4, we see that at each

round t , we have Ct ∼i C
(i )
t . Hence, y∗

E
= y∗

E (i ) .

From the Validity condition, we deduce that y∗ (E (i ) ) = yi (0). It
then follows that yi (0) ∈ Y ∗

N
(C0). By a similar argument, we see

y j (0) ∈ Y ∗
N
(C0). Hence

δN (C0) ≥ ∥y
i (0) − y j (0)∥ = ∆(y (0)) ,

which concludes the proof. □

4 TIGHT BOUND FOR TWO AGENTS
In this section, we prove a lower bound of 1/3 on the contraction

rate of algorithms that solve asymptotic consensus in the network

model of all rooted (and here also non-split) communication graphs

with two agents. Combined with Algorithm 1, which achieves this

H0

1 2

H1

1 2

H2

1 2

Figure 1: The rooted communication graphs H0, H1, and H2

for n = 2

lower bound [9], we have indeed identified a tight bound on the

contraction rate for n = 2. Moreover, the algorithm also shows

that the lower bound is achieved by a simple convex combination

algorithm.

Algorithm 1 Algorithm with contraction rate 1/3 for n = 2

Initialization:
1: yi ∈ R

In round t ≥ 1 do:
2: send yi to other agent

3: if y j was received from other agent then
4: yi ← yi /3 + 2y j /3
5: end if

A straightforward analysis of Algorithm 1 shows that its con-

traction rate is equal to 1/3.

Note that for n = 2, there are 3 possible rooted communication

graphs that may occur, all of which are non-split; see Figure 1: (i)H0

in which all messages are received, (ii)H1 in which agent 2 receives

agent 1’s message but not vice versa, and (iii) H2 in which agent 1

receives agent 2’s message but not vice versa.

Theorem 4.1. The contraction rate of any asymptotic consensus
algorithm for n = 2 agents in a network model that includes the three
graphs H0, H1, and H2 is greater or equal to 1/3.

Proof. We show the stronger statement that for every initial

configuration C0 there is an execution E = C0,G1,C1,G2, . . . start-

ing from C0 such that

δN (Ct ) ≥
1

3
t · δN (C0) (1)

for t ≥ 0. This, applied to an initial configuration with δN (C0) > 0,

which exists by Lemma 3.6, then shows the theorem.

Note that it suffices to show (1) for the specific network model

N ′ = {H0,H1,H2} shown in Figure 1 because δN (Ct ) ≥ δN ′ (Ct )
by Lemma 3.1 and δN ′ (C0) = δN (C0) by Lemma 3.6 whenever

N ⊇ N ′. We hence suppose N = N ′ in the rest of the proof.

The proof is by inductive construction of an execution E =
C0,G1,C1,G2, . . . whose configurationsCt satisfy (1). Equation (1)

is trivial for t = 0.

Now assume t ≥ 0 and that Equation (1) holds for t . There are
three possible successor configurations of Ct , one for each of the

communication graphs H0, H1, and H2 in N
′
. Set Ckt+1 = Hk .Ct .

Further let Y = Y ∗
N ′

(Ct ), and Yk = Y
∗
N ′

(Ckt+1).



We will show that there is some
ˆk ∈ {0, 1, 2} with diam(Y

ˆk ) ≥

diam(Y )/3. We then define Gt+1 = H
ˆk and Ct+1 = C

ˆk
t+1. By the

induction hypothesis, we then have

δN ′ (Ct+1) ≥ δN ′ (Ct )/3 ≥ δN ′ (C0)/3
t+1 ,

i.e., Equation (1) holds for t + 1.
Assume by contradiction that diam(Yk ) < diam(Y )/3 for all

k ∈ {0, 1, 2}. From Lemma 3.2 we have Y = Y0 ∪ Y1 ∪ Y2. Noting
that agent 1 is deaf in H1 and agent 2 has the same incoming edges

as in H0, and that agent 2 is deaf in H2 and agent 1 has the same

incoming edges as in H0, we obtain from Lemma 3.5 that

Y0 ∩ Y1 , ∅ and Y0 ∩ Y2 , ∅ .

The sets Y0 and Y1 intersecting means

diam(Y0 ∪ Y1) ≤ diam(Y0) + diam(Y1) <
2

3

diam(Y ) .

Further, the sets Y0 ∪ Y1 and Y2 intersecting means

diam(Y ) = diam(Y0 ∪ Y1 ∪ Y2)

≤ diam(Y0 ∪ Y1) + diam(Y2) < diam(Y ) ,

a contradiction. This concludes the proof. □

5 TIGHT BOUND FOR NON-SPLIT MODEL:
CONTRACTION IN PRESENCE OF DEAF
GRAPHS

In this section, we prove a lower bound of 1/2 on the contraction

rate of asymptotic consensus algorithms for n ≥ 3 agents, in a

network model that includes graphs derived from a communication

graph G, where agents are made deaf in the derived graphs. As a

special case this includes the network model of all non-split com-

munication graphs. Charron-Bost et al. [9] presented the midpoint

algorithm (given in Algorithm 2) for dimension one with contrac-

tion rate 1/2 for non-split communication graphs. Together this

shows tightness of our lower bound in dimension one.

Algorithm 2Midpoint algorithm

Initialization:
1: yi ∈ R

In round t ≥ 1 do:
2: send yi to all agents

3: mi ← min

{
y j | j ∈ Ini (t )

}

4: M i ← max

{
y j | j ∈ Ini (t )

}

5: yi ← (mi +M i )/2

Let G be an arbitrary communication graph. Consider a system

with n ≥ 3 agents, and the n communication graphs F1, . . . , Fn
where Fi is obtained by making i deaf inG , i.e., by removing all the

edges towards i except the self-loop (i, i ): let deaf (G ) = {F1, . . . , Fn }

with Fi = G \
{
(j, i ) : j ∈ [n] \ {i}

}
.

With a proof similar to that of Theorem 4.1 but noting that the

valencies of all pairs of successor configurations intersect, we get:

Theorem 5.1. The contraction rate of any asymptotic consensus
algorithm for n ≥ 3 agents in a network model that includes deaf (G )
is greater or equal to 1/2.

ij l

4

5

6

Figure 2: Rooted communication graph Ψi for n = 6

Note that the networkmodel deaf (Kn ), whereKn is the complete

digraph on n nodes, is a subset of the network model that contains

all non-split communication graphs. Hence the lower bound holds

and, since Algorithm 2 is applicable, a tight bound follows. In fact,

it would even be sufficient to reduce deaf (G ) to the graphs Fi , Fj , Fl
for three agents i, j, l ∈ [n].

6 TIGHT BOUND FOR ROOTED MODEL:
CONTRACTION IN PRESENCE OF Ψ
GRAPHS

We next prove a lower bound of
n−2√

1/2 on the contraction rate of

asymptotic consensus algorithms for n ≥ 4 agents.

For i ∈ {1, 2, 3}, let Ψi (see Figure 2) be the communication graph

where agents 4 ≤ j ≤ n − 1 form a path with edges from j to
j + 1, agents {1, 2, 3} \ i have n as their in-neighbor and 4 as their

out-neighbor, and i has 4 as its out-neighbor. For i ∈ {1, 2, 3}, let σi
be the sequence of graphs Ψi of length n − 2.

First observe that any communication pattern arising from the

concatenation of σi sequences necessarily is a communication pat-

tern of the network model of Ψi graphs, which are rooted. The

analysis of the set of these communication patterns necessitates a

generalization of our system model: generalizing from sets of al-

lowed graphs to arbitrary sets of allowed communication patterns.

Theorem 6.1. The contraction rate of any asymptotic consensus
algorithm in a network model including the Ψ graphs is greater or
equal to n−2√

1/2.

From [9] we have that the amortized midpoint algorithm guar-

antees a contraction of
n−1√

1/2 for rooted network models. Theo-

rem 6.1 shows that this is asymptotically optimal.

6.1 From Network Models to Sequences
To prove Theorem 6.1, we generalize the system model from Sec-

tion 2 and some of the basic lemmas we proved for the specific case

of network models.. While we previously allowed the adversary

to choose any sequence of communication graphs from the net-

work model, we next consider more general properties on graph

sequences, including safety and liveness properties.

A property is a set of communication patterns. A snapshot is a
pair S = (C,π ) whereC is a configuration, i.e., a collection of states

of the agents, and π is a finite sequence of communication graphs.

Given a snapshot S = (C,π ) and a communication graph G, define
G .S = (G .C,π ·G ) where π ·G is the addition of G to the end of π .
We extend this definition to a finite sequence σ of communication



graphs. We write S ∼i S
′
if agent i has the same local state in both S

and S ′.
A trace of an algorithmA in a property P is an infinite sequence

T = (S0, S1, . . . ) of snapshots such that there exists a communi-

cation pattern P ∈ P with St = Gt .St−1 for all t ≥ 1. We denote

by T P
A

the set of all traces of A in P. If A solves asymptotic con-

sensus in P, then we write y∗T for the common limit of the agents’

values in trace T ∈ T P
A

.

We define the valency of snapshots and the contraction rate of

an algorithm in P analogously to the case of network models as

Y ∗
P
(S ) =

{
y∗T ∈ R

d | S occurs in T ∈ T P
A

}

and the contraction rate as

sup

T ∈T P
A

lim sup

t→∞

t
√
δP (St )

where δP (St ) = diam

(
Y ∗
P
(St )
)
.

Lemma 6.2. Let P,P ′ be two properties with P ′ ⊆ P. If A is an
algorithm that solves asymptotic consensus in P, then (i) it also solves
asymptotic consensus in P ′, (ii) for every snapshot S reachable by A
in P ′, we have Y ∗

P′
(S ) ⊆ Y ∗

P
(S ), (iii) δP′ (S ) ≤ δP (S ), and (iv) the

contraction rate in P ′ is less or equal to the contraction rate in P.

For a snapshot S = (C,π ) reachable by algorithm A in prop-

erty P, we define Σ(S ) to be the set of communication graphs G
such that π ·G is a prefix of a communication pattern in P.

Lemma 6.3. Let S be a snapshot reachable by algorithm A in
property P. Then

Y ∗
P
(S ) =

⋃
G ∈Σ(S )

Y ∗
P
(G .S ) .

Lemma 6.4. Let S be a configuration reachable by algorithm A in
property P. Then there exist G,H ∈ Σ(S ) such that

diam

(
Y ∗
P
(S )
)
= diam

(
Y ∗
P
(G .S ) ∪ Y ∗

P
(H .S )

)
.

Lemma 6.5. Let S = (C,π ) and S ′ = (C ′,π ′) be two snapshots
with S ∼i S ′. If there exist sequences of communication graphs α
and α ′ such that π · α ∈ P, π ′ · α ′ ∈ P and i is deaf in all communi-
cation graphs in α and α ′, then Y ∗

P
(S ) ∩ Y ∗

P
(S ′) , ∅.

Lemma 6.6. Let ∆ ≥ 0. If there exist agents i , j and communica-
tion patterns Pi , Pj ∈ P such that agent i is deaf in Pi and agent j is
deaf in Pj , then there is an initial snapshot S0 with δP (S0) = ∆. In
particular, there is an initial snapshot for which δP (S0) > 0.

6.2 Proof of Theorem 6.1
Lemma 6.7. For i, j, ℓ ∈ {1, 2, 3} with ℓ , i, j : σi .Ct ∼ℓ σj .Ct .

Proof. We inductively show the following stronger statement.

Let σki be the sequence of graphs Ψi of length k ∈ [n − 2]. For

agents i, j, ℓ ∈ {1, 2, 3} with ℓ , i, j , andm ∈ {k + 3, . . . ,n}, we have

σki .Ct ∼ℓ,m σkj .Ct .

Observe that agents ℓ and {4, . . . ,n} have the same in-neighbors

inΨi andΨj . The base case (k = 1) follows from the observation and

Lemma 3.4. For the inductive step (k 7→ k + 1), observe that agent ℓ
and {k + 4, . . . ,n} have only incoming edges from agents ℓ and

{k + 3, . . . ,n}. From the hypothesis and Lemma 3.4, the inductive

step follows. □

Let property Pseq contain any communication pattern arising

from the concatenation of σi sequences defined at the start of

the section and property P contain all communication patterns

generated by rooted graphs. We show the stronger statement that

for every initial snapshot S0 there is a trace T = S0, S1, . . . starting
at S0 such that

δP (St ) ≥
1

2
⌈ t
n−2 ⌉

δP (S0) (2)

for all t ≥ 0. It suffices to show (2) for Pseq because δP (St ) ≥
δPseq (St ) by Lemma 6.2 and δPseq (S0) = δP (S0) by Lemma 6.6

whenever P ⊇ Pseq. We hence suppose P = Pseq in the rest

of the proof. The proof is by inductive construction of a trace

T = S0, S1, . . . whose snapshots St satisfy (2). This, applied to an

initial snapshot with δP (S0) > 0, which exists by Lemma 6.6, then

shows the theorem.

The base case (t = 0) is trivially fulfilled.

For the inductive step (t = (n − 2)k 7→ t ≤ (n − 2) (k + 1))
assume that Equation (2) holds for t = (n − 2)k . First observe
that, by construction of any P ∈ P, there are three possible suc-
cessor patterns until round t + n − 2: σ1,σ2,σ3. We thus have,

Y ∗
P
(St ) = Y

∗
P
(S1t+1) ∪ Y

∗
P
(S2t+1) ∪ Y

∗
P
(S3t+1) = · · · = Y

∗
P
(S1t+n−2) ∪

Y ∗
P
(S2t+n−2) ∪ Y ∗

P
(S3t+n−2), where S

u
t+n−2 = σu .St for agent u ∈

{1, 2, 3}.

Abbreviate Y = Y ∗
P
(St ) and Yu = Y ∗

P
(Sut+n−2). We will show

that there exists a û ∈ {1, 2, 3} with

diam(Yû ) ≥ diam(Y )/2 . (3)

We then define St+n−2 = Sût+n−2. By (3) and the induction hypoth-

esis, we then have

δP′ (St+n−2) = · · · = δP′ (St+1) ≥
δP′ (St )

2

≥
1

2
⌈ t
n−2 ⌉+1

δP′ (S0) ,

i.e., Equation (2) holds up to round t + n − 2.
Assume by contradiction that for all u ∈ {1, 2, 3} diam(Yu ) <

diam(Y )/2. Sincen ≥ 3 and, by Lemma 6.7, (Ct ,π .σi ) ∼ℓ (Ct ,π .σj )
together with the fact that π .σi .σ

ω
ℓ
∈ Pseq and π .σj .σ

ω
ℓ
∈ Pseq we

can apply Lemma 6.5 which shows that, for any pair i, j ∈ {1, 2, 3}
we have

Yi ∩ Yj , ∅ .

By Lemma 6.4, there existu,u ′ ∈ {1, 2, 3} such that diam(Yu∪Yu′ ) =
diam(Y ). In particular, we can choose i = u and j = u ′, which
implies that

diam(Y ) = diam(Yu ∪ Yu′ ) ≤ diam(Yu ) + diam(Yu′ )

< diam(Y )

which is a contradiction and concludes the proof.

7 RELATION TO EXACT CONSENSUS AND
GENERALIZED BOUNDS

In [12], Coulouma et al. characterized the network models in which

exact consensus is solvable. In [8], Charron-Bost et al. showed that

asymptotic consensus is solvable in a significantly broader class: it

is solvable if and only if a network model is rooted. In this section



we aim to shed light on the deeper relation between these two

problems by studying valencies and convergence rates. Our main

results are a characterization of the topological structure of valen-

cies with respect to solvability of exact consensus (Theorem 7.2)

and nontrivial lower bounds on the contraction rates whenever

exact consensus is not solvable (Theorem 7.4 and Corollary 7.5).

We start with recalling some definitions from Coulouma et

al. [12]. In the following, we denote byR (G ) the set of roots of a com-

munication graphG , i.e., the set of agents that have a directed path

to all other agents inG . For a set S ⊆ [n], let InS (G ) =
⋃
j ∈S Inj (G ).

The set OutS (G ) is defined analogously.

Definition 7.1 (Definition 4.7 in [12]). Let N be a network model.

Given G,H ,K ∈ N , we define GαN ,KH if InR (K ) (G ) = InR (K ) (H ).
The relation α∗

N
is the transitive closure of the union of the rela-

tions αN ,K where K varies in N .

The following theorem is a characterization of network models

in which exact consensus is solvable by the topological structure

of valencies of asymptotic consensus algorithms. Of course, having

to decide in a discrete set of value for exact consensus, valencies

should be disconnected. However, the theorem shows that this

condition is actually already sufficient to solve exact consensus.

Theorem 7.2. Let N be a network model. Exact consensus is
solvable in N if and only if there exists an asymptotic consensus
algorithm A for N such that Y ∗

N ′,A
(C0) is either a singleton or

disconnected for all network models N ′ ⊆ N and all initial configu-
rations C0 of A.

We next introduce the α -diameter of a network modelN , which

we will then (see Theorem 7.4 and Corollary 7.5) show to be directly

linked to a nontrivial lower bound on the contraction rate in N

if exact consensus is not solvable in N . Note, that in case exact

consensus is solvable in N , the optimal contraction rate always

is 0, obtained by a reduction argument to exact consensus.

Definition 7.3. Let N be a network model. The α -diameter of N
is the smallest D ≥ 1 such that for allG,H ∈ N there exist commu-

nication graphs H0, . . . ,Hq ∈ N and K1, . . . ,Kq ∈ N with q ≤ D
such that G = H0, H = Hq , and Hr−1αN ,KrHr for all r ∈ [q]. In
case it does not exists we set D = ∞.

Observe, that for the network model {H0,H1,H2} from Theo-

rem 4.1, it is D = 2. Further, for network model deaf (G ), whereG is

an arbitrary communication graph G, we have D = 1. The follow-

ing theorem and corollary thus generalize Theorems 4.1 and 5.1 to

arbitrary network models in which exact consensus is not solvable.

Theorem 7.4. LetN be a network model in which exact consensus
is not solvable. The contraction rate of any asymptotic consensus
algorithm in N is greater or equal to 1/(D + 1) where D is the α-
diameter of N .

Direct application of Theorem 7.4 to a networkmodelN in which

exact consensus is not solvable may yield a trivial bound of 0 in

case its α-diameter is∞. Indeed, we can, however, use Lemma 3.1 to

derive a strictly positive bound for anyN in which exact consensus

is not solvable:

Corollary 7.5. LetN be a network model in which exact consen-
sus is not solvable. The contraction rate of any asymptotic consensus

algorithm inN is greater or equal to 1/(D+1) whereD is the smallest
α-diameter of N ′ ⊆ N in which exact consensus is not solvable.

Proof. SetN ′ ⊆ N equal to the network model with the small-

est α-diameter in which exact consensus is not solvable. Applying

Theorem 7.4 to N ′, and Lemma 3.1 (iv) to N ′ and N yields the

corollary. □

8 TIGHT BOUNDS FOR ASYNCHRONOUS
SYSTEMS WITH CRASHES: THE PRICE OF
ROUNDS

In this section we show that Corollary 7.5 provides a tool to clearly

separate time complexities of algorithms that operate in rounds to

general algorithms in the classical static fault model of asynchro-

nous message passing systems with crashes. Our result applies to

algorithms without any restriction: we do not make assumptions

on the nature of the functions used by the agents, and agents are

not required to be memoryless.

We start with recalling and adapting notation for the classical

asynchronous message passing systems. We consider a distributed

system where agents perform receive-compute-broadcast steps. An

agent may crash, i.e., stop making steps. Crashes can be unclean:

the final broadcast message may be received by a proper subset of

correct, i.e., non crashed, agents, only. Since an agent that crashes

stops to make steps, we require Convergence, Validity, and Agree-

ment of asymptotic consensus to hold only for the set of correct

agents. Analogously, the consensus function y∗, and thus the va-

lencies, are restricted to correct agents only. Further, we apply the

standard convention of measuring time in asynchronous systems,

by normalizing to the longest end-to-end message delay from a

broadcast to the respective receive in an execution.

8.1 Round-based Algorithms
An algorithm is said to operate in rounds if each agent waits for

n − f messages corresponding to the current round, updates its

state based on the received messages and its previous state, and

broadcasts the next round’s messages. Indeed algorithms that oper-

ate in rounds are widely used in asynchronous systems; see, e.g.,

[10, 14, 24].

We next show that Corollary 7.5 can be applied to obtain new

asymptotically tight bounds for round-based algorithms. Specifi-

cally, we prove a lower bound for asynchronous systems of size

n ≥ 3 with up to f < n/2 crashes whose agents operate in rounds.

Let us construct the following network model: Denote by Gn
the set of communication graphs with n nodes and let

NA =
{
G ∈ Gn | ∀i ∈ [n] : |Ini (G ) | ≥ n − f

}
,

for some f < n/2.

Lemma 8.1. The α-diameter of NA is at most ⌈n/f ⌉.

Proof. Let G,H ∈ NA. Setting q = ⌈n/f ⌉, we choose the com-

munication graphs Hr and Kr defined by

Ini (Hr ) =



Ini (G ) if 1 ≤ i ≤ r f

Ini (H ) if r f + 1 ≤ i ≤ n

and

Ini (Kr ) = [n] \ {i | (r − 1) f + 1 ≤ i ≤ r f }



Clearly, it is H0 = G and Hq = H . Since we can write R (Kr ) =
[n] \ {i | (r − 1) f + 1 ≤ i ≤ r f } and Ini (Hr−1) = Ini (Hr ) for
all i ∈ Kr , we also have Hr−1αNA,KrHr . Noting Hr ∈ NA and

Kr ∈ NA, this concludes the proof. □

From Lemma 8.1 and Corollary 7.5 we immediately obtain the

lower bound:

Theorem 8.2. The contraction rate for any asymptotic consensus
algorithm for n ≥ 3 agents and at most f < n/2 crashes that operates
in rounds is greater or equal to 1

⌈n/f ⌉+1 .

Note that the contraction rate in Theorem 8.2 is with respect to

rounds. However, we can easily construct an execution where a

single round requires 1+ε time for arbitrarily small ε > 0: we assign

all messages that are delivered according to the communication

graph of the respective round, delay 1, and all others delay 1 + ε .
Theorem 8.2 thus also holds for a contraction rate with respect to

time.

8.2 General Algorithms
We next show that there is an algorithm that does not operate in

rounds that ensures that all agents’ outputs are equal by time f + 1.
This gives a contraction rate of 0.

The following algorithm MinRelay is inspired by the exact con-

sensus algorithm for synchronous systems with crash faults (see,

e.g,. [24]), and is based on a non-terminating reliable broadcast

protocol: Initially, at time 0, each agent i sets Si to the set contain-

ing only its initial value, and broadcasts Si . Whenever an agent i
receives a set S , Si , it sets Si ← Si ∪ S , yi ← min(Si ), and
broadcasts Si .

Theorem 8.3. The MinRelay algorithm solves asymptotic con-
sensus in asynchronous message passing systems with up to f < n
crashes. Specifically, all correct agents’ sets Si , and thus yi , are equal
by time f + 1, and the algorithm’s contraction rate is 0.

9 APPROXIMATE CONSENSUS
Alternatively to asymptotic consensus, one may also consider the

approximate consensus problem, in which convergence is replaced

by a decision in a finite number of rounds and where agreement

should be achievedwith an arbitrarily small error tolerance (see, e.g.,

[24]). Formally, the local state of i is augmented with a variable di

initialized to ⊥. Agent i is allowed to set di to some value v , ⊥
only once, in which case we say that i decides v . In addition to the

initial values yi (0), agents initially receive the error tolerance ε and
an upper bound ∆ on the maximum distance of initial values. An

algorithm solves approximate consensus in N if for all ε > 0 and

all ∆, each execution E with a communication pattern in N with

initial diameter at most ∆ satisfies:

• Termination. Each agent eventually decides.

• ε-Agreement. If agents i and j decide v and v ′, then we have

∥v −v ′∥≤ ε .
• Validity. If agent i decides v , then v is in the convex hull of

initial values y1
E
(0), . . . ,yn

E
(0).

The above two problems are clearly closely related. However,

the ε-Agreement condition does not preclude the decisions of a

given agent, as a function of the error tolerance parameter ε , to

diverge, i.e., a priori may lead to unstable decisions with respect to

this parameter.

We next extend our lower bounds on the contraction rate of as-

ymptotic consensus to lower bounds on the decision time of approx-

imate consensus. In particular, we show optimality of the decision

times of the algorithms presented by Charron-Bost et al. [9]: For

n = 2, running Algorithm 1 and deciding yi after ⌈log
3

∆
ε ⌉ rounds

is optimal (Theorem 9.1). For n ≥ 3 and the network model of all

non-split graphs, running the midpoint algorithm and deciding

after ⌈log
2

∆
ε ⌉ rounds is optimal (Theorem 9.2). For n ≥ 4 and the

weakest network model of all rooted graphs, running the amortized

midpoint algorithm and deciding after (n − 1)⌈log
2

∆
ε ⌉ rounds is

optimal within a multiplicative term of at most
n−1
n−2 (Theorem 9.3).

We start with the case of two agents in Theorem 9.1. The proof

is by reducing asymptotic consensus to approximate consensus, ar-

riving at a contradiction with Theorem 4.1 for too fast approximate

consensus algorithms.

Theorem 9.1. Let ∆ > 0 and ε > 0. In a network model of n = 2

agents that includes the three communication graphs H0, H1, and H2,
all approximate consensus algorithms have an execution with initial
diameter ∆(y (0)) ≤ ∆ and decision time greater or equal to log

3

∆
ε .

Proof. Assume to the contrary that algorithmA solves approx-

imate consensus in some network model N ⊇ {H0,H1,H2} that

decides in T < log
3

∆
ε rounds for all vectors of initial values y (0)

with ∆(y (0)) ≤ ∆ and some ε > 0.

Choose any y (0) with ∆(y (0)) = ∆. Define algorithm
˜A by

running algorithm A, updating y to the agents’ decision values

in round T , and then running Algorithm 1 with the initial values

yi (T ) = di from round T + 1 on. Because Algorithm 1 is an asymp-

totic consensus algorithm and the decision values y (T ) ofA satisfy

the Validity condition of approximate consensus, algorithm
˜A is

an asymptotic consensus algorithm.

Let C0 be an initial configuration of
˜A with initial values y (0).

By the proof of Theorem 4.1, namely (1), there is an execution

E = C0,G1,C1,G2, . . . starting from C0 such that

δN (CT ) ≥
1

3
T · δN (C0) .

We have δN (C0) = ∆(y (0)) = ∆ by Lemma 3.6 and δN (CT ) ≤
∆(y (T )) ≤ ε by Validity of Algorithm 1 and ε-Agreement of algo-

rithm A. But this means T ≥ log
3

∆
ε , a contradiction. □

With a similar proof, we also get the lower bound for approxi-

mate consensus with n ≥ 3 agents:

Theorem 9.2. Let ∆ > 0 and ε > 0. In a network model of n ≥ 3

agents that includes the communication graphs deaf (G ), all approxi-
mate consensus algorithms have an execution with initial diameter
∆(y (0)) ≤ ∆ and decision time greater or equal to log

2

∆
ε .

Analogously, for networkmodels with rootedΨ graphs, using (2),

we obtain:

Theorem 9.3. Let ∆ > 0 and ε > 0. In a network model of
n ≥ 4 agents that includes the Ψ communication graphs, all approxi-
mate consensus algorithms have an execution with initial diameter
∆(y (0)) ≤ ∆ and decision time greater or equal to (n − 2) log

2

∆
ε .



In case the network model does not include any of the above

graphs, we obtain the following general bound on the termination

time:

Theorem 9.4. Let ∆ > 0 and ε > 0. In a network model in which
exact consensus is not solvable, all approximate consensus algorithms
have an execution with initial diameter ∆(y (0)) ≤ ∆ and decision
time greater or equal to logD+1

∆
εn , where D is the α -diameter of the

network model.

From Theorem 9.4 and the fact thatN ′ ⊆ N implies E ′ ⊆ E for

the corresponding sets of executions of algorithm A, we get:

Corollary 9.5. Let ∆ > 0 and ε > 0. In a network model in
which exact consensus is not solvable, all approximate consensus
algorithms have an execution with initial diameter ∆(y (0)) ≤ ∆ and
decision time greater or equal to logD+1

∆
εn , where D is the smallest

α -diameter of a network model N ′ ⊆ N in which exact consensus is
not solvable.

10 CONCLUSIONS
We introduced the notion of valency for asymptotic consensus

algorithms, generalizing the concept of valency from exact con-

sensus algorithms. Based on the study of valency diameters along

executions we proved lower bounds on the contraction rates of

asymptotic consensus algorithm in arbitrary network models: In

particular, together with previously published averaging algorithms

in [9], we showed tight bounds for the network model containing all

non-split graphs, and the weakest network model in which asymp-

totic consensus is solvable, the network model of all rooted graphs.

Furthermore we obtained a general lower bound of 1/(D + 1) for
any network model in which exact consensus is not solvable; hereD
denotes the newly introduced α-diameter of the network model.

Interestingly, this result also immediately provides new tight lower

bounds on classical static failure models, as exemplified in the case

of asynchronous message-passing systems with crashes and shows

a fundamental discrepancy in performance between round-based

and general algorithms. We finally demonstrated how to obtain

corresponding results for approximate consensus algorithms.
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