533 research outputs found

    The PHOTON Family of Lightweight Hash Functions

    Get PDF
    RFID security is currently one of the major challenges cryptography has to face, often solved by protocols assuming that an on-tag hash function is available. In this article we present the PHOTON lightweight hash-function family, available in many different flavors and suitable for extremely constrained devices such as passive RFID tags. Our proposal uses a sponge-like construction as domain extension algorithm and an AES-like primitive as internal unkeyed permutation. This allows us to obtain the most compact hash function known so far (about 1120 GE for 64-bit collision resistance security), reaching areas very close to the theoretical optimum (derived from the minimal internal state memory size). Moreover, the speed achieved by PHOTON also compares quite favorably to its competitors. This is mostly due to the fact that unlike for previously proposed schemes, our proposal is very simple to analyze and one can derive tight AES-like bounds on the number of active Sboxes. This kind of AES-like primitive is usually not well suited for ultra constrained environments, but we describe in this paper a new method for generating the column mixing layer in a serial way, lowering drastically the area required. Finally, we slightly extend the sponge framework in order to offer interesting trade-offs between speed and preimage security for small messages, the classical use-case in hardware

    FPGA implementation and DPA resistance analysis of a lightweight HMAC construction based on photon hash family

    Get PDF
    Lightweight security is currently a challenge in the field of cryptography. Most of applications designed for embedded scenarios often focus on authentication or on providing some form of anonymity and/or privacy. A well-known cryptographic element employed to provide such security is the HMAC construction. However, reported solutions are not suitable for constrained-resource scenarios due to their heavy approaches optimized for high-speed operations. In order to cover this lack, a lightweight implementation of HMAC based on the Photon family of hash functions is given in this work. Security of the construction against differential power attacks (DPA) is analyzed using a SASEBO-II development board. Implementation and performance results for Xilinx Virtex-5 FPGAs of the HMAC structure is provide

    Exhaustive Search for Small Dimension Recursive MDS Diffusion Layers for Block Ciphers and Hash Functions

    Full text link
    This article presents a new algorithm to find MDS matrices that are well suited for use as a diffusion layer in lightweight block ciphers. Using an recursive construction, it is possible to obtain matrices with a very compact description. Classical field multiplications can also be replaced by simple F2-linear transformations (combinations of XORs and shifts) which are much lighter. Using this algorithm, it was possible to design a 16x16 matrix on a 5-bit alphabet, yielding an efficient 80-bit diffusion layer with maximal branch number.Comment: Published at ISIT 201

    Survey on Lightweight Primitives and Protocols for RFID in Wireless Sensor Networks

    Get PDF
    The use of radio frequency identification (RFID) technologies is becoming widespread in all kind of wireless network-based applications. As expected, applications based on sensor networks, ad-hoc or mobile ad hoc networks (MANETs) can be highly benefited from the adoption of RFID solutions. There is a strong need to employ lightweight cryptographic primitives for many security applications because of the tight cost and constrained resource requirement of sensor based networks. This paper mainly focuses on the security analysis of lightweight protocols and algorithms proposed for the security of RFID systems. A large number of research solutions have been proposed to implement lightweight cryptographic primitives and protocols in sensor and RFID integration based resource constraint networks. In this work, an overview of the currently discussed lightweight primitives and their attributes has been done. These primitives and protocols have been compared based on gate equivalents (GEs), power, technology, strengths, weaknesses and attacks. Further, an integration of primitives and protocols is compared with the possibilities of their applications in practical scenarios

    Lightweight password hashing scheme for embedded systems

    Get PDF
    Passwords constitute the main mean for authentication in computer systems. In order to maintain the user-related information at the service provider end, password hashing schemes (PHS) are utilized. The limited and old-fashioned solutions led the international cryptographic community to conduct the Password Hashing Competition (PHC). The competition will propose a small portfolio of schemes suitable for widespread usage until 2015. Embedded systems form a special application domain, utilizing devices with inherent computational limitations. Lightweight cryptography focuses in designing schemes for such devices and targets moderate levels of security. In this paper, a lightweight poly PHS suitable for lightweight cryptography is presented. At first, we design two lightweight versions of the PHC schemes Catena and PolyPassHash. Then, we integrate them and implement the proposed scheme – called LightPolyPHS. A fair comparison with similar proposals on mainstream computer is presented

    セキュアRFIDタグチップの設計論

    Get PDF
    In this thesis, we focus on radio frequency identification (RFID) tag. We design, implement, and evaluate hardware performance of a secure tag that runs the authentication protocol based on cryptographic algorithms. The cryptographic algorithm and the pseudorandom number generator are required to be implemented in the tag. To realize the secure tag, we tackle the following four steps: (A) decision of hardware architecture for the authentication protocol, (B) selection of the cryptographic algorithm, (C) establishment of a pseudorandom number generating method, and (D) implementation and performance evaluation of a silicon chip on an RFID system.(A) The cryptographic algorithm and the pseudorandom number generator are repeatedly called for each authentication. Therefore, the impact of the time needed for the cryptographic processes on the hardware performance of the tag can be large. While low-area requirements have been mainly discussed in the previous studies, it is needed to discuss the hardware architecture for the authentication protocol from the viewpoint of the operating time. In this thesis, in order to decide the hardware architecture, we evaluate hardware performance in the sense of the operating time. As a result, the parallel architecture is suitable for hash functions that are widely used for tag authentication protocols.(B) A lot of cryptographic algorithms have been developed and hardware performance of the algorithms have been evaluated on different conditions. However, as the evaluation results depend on the conditions, it is hard to compare the previous results. In addition, the interface of the cryptographic circuits has not been paid attention. In this thesis, in order to select a cryptographic algorithm, we design the interface of the cryptographic circuits to meet with the tag, and evaluate hardware performance of the circuits on the same condition. As a result, the lightweight hash function SPONGENT-160 achieves well-balanced hardware performance.(C) Implementation of a pseudorandom number generator based on the performance evaluation results on (B) can be a method to generate pseudorandom number on the tag. On the other hand, as the cryptographic algorithm and the pseudorandom number generator are not used simultaneously on the authentication protocol. Therefore, if the cryptographic circuit could be used for pseudorandom number generation, the hardware resource on the tag can be exploited efficiently. In this thesis, we propose a pseudorandom number generating method using a hash function that is a cryptographic component of the authentication protocol. Through the evaluation of our proposed method, we establish a lightweight pseudorandom number generating method for the tag.(D) Tag authentication protocols using a cryptographic algorithm have been developed in the previous studies. However, hardware implementation and performance evaluation of a tag, which runs authentication processes, have not been studied. In this thesis, we design and do a single chip implementation of an analog front-end block and a digital processing block including the results on (A), (B), and (C). Then, we evaluate hardware performance of the tag. As a result, we show that a tag, which runs the authentication protocol based on cryptographic algorithms, is feasible.電気通信大学201

    Residual Vulnerabilities to Power side channel attacks of lightweight ciphers cryptography competition Finalists

    Get PDF
    The protection of communications between Internet of Things (IoT) devices is of great concern because the information exchanged contains vital sensitive data. Malicious agents seek to exploit those data to extract secret information about the owners or the system. Power side channel attacks are of great concern on these devices because their power consumption unintentionally leaks information correlatable to the device\u27s secret data. Several studies have demonstrated the effectiveness of authenticated encryption with advanced data, in protecting communications with these devices. A comprehensive evaluation of the seven (out of 10) algorithm finalists of the National Institute of Standards and Technology (NIST) IoT lightweight cipher competition that do not integrate built‐in countermeasures is proposed. The study shows that, nonetheless, they still present some residual vulnerabilities to power side channel attacks (SCA). For five ciphers, an attack methodology as well as the leakage function needed to perform correlation power analysis (CPA) is proposed. The authors assert that Ascon, Sparkle, and PHOTON‐Beetle security vulnerability can generally be assessed with the security assumptions “Chosen ciphertext attack and leakage in encryption only, with nonce‐misuse resilience adversary (CCAmL1)” and “Chosen ciphertext attack and leakage in encryption only with nonce‐respecting adversary (CCAL1)”, respectively. However, the security vulnerability of GIFT‐COFB, Grain, Romulus, and TinyJambu can be evaluated more straightforwardly with publicly available leakage models and solvers. They can also be assessed simply by increasing the number of traces collected to launch the attack

    Review of the NIST Light-weight Cryptography Finalists

    Full text link
    Since 2016, NIST has been assessing lightweight encryption methods, and, in 2022, NIST published the final 10: ASCON, Elephant, GIFT-COFB, Grain128-AEAD, ISAP, Photon-Beetle, Romulus, Sparkle, TinyJambu, and Xoodyak. At the time that the article was written, NISC announced ASCOn as the chosen method that will be published as NIST'S lightweight cryptography standard later in 2023. In this article, we provide a comparison between these methods in terms of energy efficiency, time for encryption, and time for hashing.Comment: 6 page
    corecore