View metadata, citation and similar papers at core.ac.uk brought to you by fCORE

provided by Bournemouth University Research Online

Lightweight Password Hashing Scheme for
Embedded Systems

George Hatzivasilis!, Ioannis Papaefstathiou!, Charalampos Manifavas?, and
Ioannis Askoxylakis®

! Dept. of Electronic & Computer Engineering, Technical University of Crete,
Chania, Crete, Greece
gchatzivasilis@isc.tuc.gr, ygp@mhl.tuc.gr
2 Dept. of Informatics Engineering, Technological Educational Institute of Crete,
Heraklion, Crete, Greece
harryman@ie.teicrete.gr
3 Foundation for Research and Technology — Hellas (FORTH), Heraklion, Crete,
Greece
askoQics.forth.gr

Abstract. Passwords constitute the main mean for authentication in
computer systems. In order to maintain the user-related information
at the service provider end, password hashing schemes (PHS) are uti-
lized. The limited and old-fashioned solutions led the international cryp-
tographic community to conduct the Password Hashing Competition
(PHC). The competition will propose a small portfolio of schemes suit-
able for widespread usage until 2015. Embedded systems form a spe-
cial application domain, utilizing devices with inherent computational
limitations. Lightweight cryptography focuses in designing schemes for
such devices and targets moderate levels of security. In this paper, a
lightweight poly PHS suitable for lightweight cryptography is presented.
At first, we design two lightweight versions of the PHC schemes Catena
and PolyPassHash. Then, we integrate them and implement the proposed
scheme — called LightPolyPHS. The schemes are applied on a MANET
with BeagleBone embedded devices and a fair comparison with similar
proposals on mainstream computer is presented.

Keywords: password hashing - PHC - Catena - PolyPassHash - lightweight
cryptography - LWC - embedded systems - BeagleBone

1 Introduction

Attacks on widely known organizations, like SONY [1] and LinkedIn [2], have
exposed mounts of user accounts and credentials. The poor password protection
practises [3] are exploited by the attackers in order to recover the user passwords
from the stolen data. These attacks lead to negative and significant loss in the
vendor’s market value [4].

https://core.ac.uk/display/46571948?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://www.researchgate.net/publication/3189760_An_Empirical_Analysis_of_the_Impact_of_Software_Vulnerability_Announcements_On_Firm_Stock_Price?el=1_x_8&enrichId=rgreq-4f1e4f05dfe44a51f9e1625b04dd7bfd-XXX&enrichSource=Y292ZXJQYWdlOzI3ODMwMDc4NDtBUzoyNDA1Mzk0MTcxODIyMDhAMTQzNDM2MDQ3NDIyNQ==

Advanced password hashing schemes (PHS) are proposed to fortify the secure
maintenance of such information. PBKDF2 [5], berypt [6] and scrypt [7] are
currently the most common solutions.

However, the evolving parallel computing and hardware dedicated devices
enable attacks [8] that overcome the PHS protection. GPUs, FPGAs and ASICs
implement efficient password crackers that try out several attempts in parallel,
gaining a significant boost in disclosing the user information. PBKDF2 and

berypt are vulnerable to such attacks.

Memory-hard PHSs can counter password scrambling. The memory elements
in parallel platforms are considered expensive. All parallel components share the
same memory and the access to it is bounded. Thus, attackers are significantly
slowed-down when PHSs with high memory requirements are applied. The goal
is to derive password scrambling on parallel cores not much faster than it is on
single cores. scrypt is the current solution of memory-hard PHS. Unfortunately,
it remains vulnerable to other attacks, like cache-timing [9] and garbage-collector
attacks [10].

The limited and old-fashioned solutions led the international cryptographic
community to conduct the Password Hashing Competition (PHC) [11] in 2013.
It targets in modern and secure designs for password hashing, with 22 initial
candidates being submitted. In 2014, 9 finalists were selected based on security,
efficiency, simplicity, and the extra features that they provide. A comprehensive
survey and benchmark analysis of the 22 PHC submissions and the 3 current
solutions for password hashing is presented in [12]. In 2015, a small portfolio
of schemes will be announced based on further performance and security anal-
ysis. The winners are expected to become ”de facto” standards and be further
examined by organizations like NIST [13] for formal standardization.

PHSs are applied in several domains (e.g. general applications on mainstream
computers, web applications and embedded systems) with diverse features and
properties. The candidate scheme must comply with them. Typically, a PHS
utilizes core cryptographic primitives, such as block ciphers and hash functions,
that constitute the main computational components of the scheme.

The mainstream cryptographic solutions provide high levels of security, ig-
noring the requirements of resource constrained devices. The research field of
lightweight cryptography (LWC) focuses in designing schemes for devices with
constrained capabilities in processing, power supply, connectivity, hardware and
software. They are mainly applied in embedded systems that are deployed in
pervasive and ubiquitous computing [14]. Security is just a part of the whole
functionality and the lightweight designs consume low computational resources
and memory [15]. In case of most constraint devices (e.g. sensors) only a few
KBs of memory are devoted to provide moderate level of security [16].

Regarding passwords, embedded systems maintain a small amount of authentication-
related data. Device-to-device and short-term communication forms the most
common interaction (e.g. in wireless sensor networks) [17], making session key
deviation from passwords a desirable goal to enhance security. The garbage-

https://www.researchgate.net/publication/260305382_Twelve_Random_Characters_Passwords_in_the_Era_of_Massive_Parallelism?el=1_x_8&enrichId=rgreq-4f1e4f05dfe44a51f9e1625b04dd7bfd-XXX&enrichSource=Y292ZXJQYWdlOzI3ODMwMDc4NDtBUzoyNDA1Mzk0MTcxODIyMDhAMTQzNDM2MDQ3NDIyNQ==
https://www.researchgate.net/publication/261548591_The_Catena_Password_Scrambler?el=1_x_8&enrichId=rgreq-4f1e4f05dfe44a51f9e1625b04dd7bfd-XXX&enrichSource=Y292ZXJQYWdlOzI3ODMwMDc4NDtBUzoyNDA1Mzk0MTcxODIyMDhAMTQzNDM2MDQ3NDIyNQ==
https://www.researchgate.net/publication/273959978_Password_Hashing_Competition_-_Survey_and_Benchmark?el=1_x_8&enrichId=rgreq-4f1e4f05dfe44a51f9e1625b04dd7bfd-XXX&enrichSource=Y292ZXJQYWdlOzI3ODMwMDc4NDtBUzoyNDA1Mzk0MTcxODIyMDhAMTQzNDM2MDQ3NDIyNQ==
https://www.researchgate.net/publication/241623838_A_reliable_gateway_for_in-vehicle_networks_based_on_LIN_CAN_and_FlexRay?el=1_x_8&enrichId=rgreq-4f1e4f05dfe44a51f9e1625b04dd7bfd-XXX&enrichSource=Y292ZXJQYWdlOzI3ODMwMDc4NDtBUzoyNDA1Mzk0MTcxODIyMDhAMTQzNDM2MDQ3NDIyNQ==
https://www.researchgate.net/publication/260299474_Embedded_system_for_sensor_communication_and_security?el=1_x_8&enrichId=rgreq-4f1e4f05dfe44a51f9e1625b04dd7bfd-XXX&enrichSource=Y292ZXJQYWdlOzI3ODMwMDc4NDtBUzoyNDA1Mzk0MTcxODIyMDhAMTQzNDM2MDQ3NDIyNQ==
https://www.researchgate.net/publication/260525061_Efficient_and_secure_dynamic_ID-based_remote_user_authentication_scheme_for_distributed_systems_using_smart_cards?el=1_x_8&enrichId=rgreq-4f1e4f05dfe44a51f9e1625b04dd7bfd-XXX&enrichSource=Y292ZXJQYWdlOzI3ODMwMDc4NDtBUzoyNDA1Mzk0MTcxODIyMDhAMTQzNDM2MDQ3NDIyNQ==

collector attacks [10] can be countered by build-in memory safety techniques,
specifically designed for embedded applications [18].

In this paper, we present LightPolyPHS — a lightweight poly PHS for em-
bedded devices and LWC. To our knowledge this is the first scheme that targets
constrained devices. Section 2, introduces the background theory and related
work regarding passwords and LWC. Section 3, analyses the LightPolyPHS de-
sign and its subcomponents. In section 4, the proposed scheme is applied and
evaluated on real embedded devices. A comparative analysis is held with similar
schemes on mainstream computers. Finally, section 5 concludes.

2 Background Theory and Related Work

2.1 Password Hashing

User passwords are human-memorable secrets [19], consisting of 8-12 printable
characters and form the main mean for authentication in computer systems. The
service provider maintains a pair of the user’s name and password-related infor-
mation for each active account. To authenticate himself and login the service,
the user must inputs this information first (e.g. [20, 21]).

Passwords can also be used for the generation of cryptographic keys. Key
Deviation Functions (KDF) [22] parse a password and derive one or more user-
related keys. These keys are used on cryptographic operations, like session com-
munication encryption [23, 24].

Ordinary passwords are 8 characters long (8 bytes). The deriving secrets
may produce low entropy and be vulnerable to relative attacks. In exhaustive
search, an attacker tries out all character combinations until he finds the right
password for an examined username. Then, he owns the relevant account, like
the legitimate user does. Even newer user-drawn graphical passwords suffer from
low-entropy properties and similar security issues, as they provide an average
security of 4-5 bytes [25].

The typical method to counter these attacks with PHSs, is key stretching.
A hash function parses the password and produces a fixed-length output, acting
as the new password. The hash password is longer (usually 32-64 bytes long),
making the attacks less feasible. The hash function is iterating several times to
further fortify the hash result. The attacker is slowed down by a factor of 2¢7°,
where 7 is the iteration count and o is the number of the output bits. However, the
user is also slowed down. Thus, the key stretching parameters are also bounded
by the user’s tolerance to compute a robust hash password.

In modern services a high volume of users must be verified simultaneously.
The load on the server may become unmanageable and lead to denial of service.
Server relief (SR) protocols are established and balance the total effort between
clients and the server. A client may perform part of the PHS computations (e.g.
the first PHS iterations) while the server performs the rest steps and the account
verification.

The server might need to increase security (e.g. increase the hash size or
PHS iterations). Hash password upgrade techniques independent from the user

https://www.researchgate.net/publication/261548591_The_Catena_Password_Scrambler?el=1_x_8&enrichId=rgreq-4f1e4f05dfe44a51f9e1625b04dd7bfd-XXX&enrichSource=Y292ZXJQYWdlOzI3ODMwMDc4NDtBUzoyNDA1Mzk0MTcxODIyMDhAMTQzNDM2MDQ3NDIyNQ==
https://www.researchgate.net/publication/220094364_Memory_safety_without_garbage_collection_for_embedded_applications?el=1_x_8&enrichId=rgreq-4f1e4f05dfe44a51f9e1625b04dd7bfd-XXX&enrichSource=Y292ZXJQYWdlOzI3ODMwMDc4NDtBUzoyNDA1Mzk0MTcxODIyMDhAMTQzNDM2MDQ3NDIyNQ==
https://www.researchgate.net/publication/260299446_A_new_password_authentication_and_user_anonymity_scheme_based_on_elliptic_curve_cryptography_and_smart_card?el=1_x_8&enrichId=rgreq-4f1e4f05dfe44a51f9e1625b04dd7bfd-XXX&enrichSource=Y292ZXJQYWdlOzI3ODMwMDc4NDtBUzoyNDA1Mzk0MTcxODIyMDhAMTQzNDM2MDQ3NDIyNQ==
https://www.researchgate.net/publication/273021249_Inter_cluster_communication_and_rekeying_technique_for_multicast_security_in_mobile_ad_hoc_networks?el=1_x_8&enrichId=rgreq-4f1e4f05dfe44a51f9e1625b04dd7bfd-XXX&enrichSource=Y292ZXJQYWdlOzI3ODMwMDc4NDtBUzoyNDA1Mzk0MTcxODIyMDhAMTQzNDM2MDQ3NDIyNQ==
https://www.researchgate.net/publication/273021166_Parallel_key_management_scheme_for_mobile_ad_hoc_network_based_on_traffic_mining?el=1_x_8&enrichId=rgreq-4f1e4f05dfe44a51f9e1625b04dd7bfd-XXX&enrichSource=Y292ZXJQYWdlOzI3ODMwMDc4NDtBUzoyNDA1Mzk0MTcxODIyMDhAMTQzNDM2MDQ3NDIyNQ==
https://www.researchgate.net/publication/220593678_On_predictive_models_and_user-drawn_graphical_passwords?el=1_x_8&enrichId=rgreq-4f1e4f05dfe44a51f9e1625b04dd7bfd-XXX&enrichSource=Y292ZXJQYWdlOzI3ODMwMDc4NDtBUzoyNDA1Mzk0MTcxODIyMDhAMTQzNDM2MDQ3NDIyNQ==
https://www.researchgate.net/publication/254056851_oPass_A_User_Authentication_Protocol_Resistant_to_Password_Stealing_and_Password_Reuse_Attacks?el=1_x_8&enrichId=rgreq-4f1e4f05dfe44a51f9e1625b04dd7bfd-XXX&enrichSource=Y292ZXJQYWdlOzI3ODMwMDc4NDtBUzoyNDA1Mzk0MTcxODIyMDhAMTQzNDM2MDQ3NDIyNQ==

| Salt [Password §| = Iteration = | Salt | Hash result

count (i)

¥l

Fig. 1. PHS generic scheme.

(HUIU) enhances the convenience of the user and enables the seamless operation
of the service. The server upgrades the security of the stored hash passwords
without prior-knowledge of the initial passwords or the user’s involvement.

It is quite common for a user to utilize the same password in different services
or many users of a service to have the same password. The hash passwords would
be the same too. The disclosure of a single account erases security issues for
the rest ones. To prevent this correlation a small parameter of random bytes,
called salt (usually 8 bytes long), is utilized. The salt also hardens dictionary
(try hundreds of likely possibilities to determine the secret) [9] and rainbow
table attacks (ability to use tables of precomputed hashes) [10]. Typically, the
salt is generated when the user account is created and is concatenated with
the password during hashing. Thus, the same password produces different hash
passwords. At the server-end, the salt is stored in plaintext along with the hashed
password. They are used in the authentication process to validate the password
of a login request. Figure 1, illustrates the generic PHS.

2.2 Poly Password Hashing

Strong PHS can protect the password data that are maintained at the service-
end. However, attackers have proven themselves adept at cracking large amounts
of passwords once the stored data is compromised.

To further fortify security and harden attackers’ cracking capabilities, poly
(many) password hashing (PPH) schemes have been recently proposed. They
leverage cryptographic hashing and threshold cryptography by combining strong
PHS with shares.

Cryptographic hashing and PHSs are described in the previous subsection. A
cryptographic (k,n)-threshold scheme protects secret information, by deriving
n different shares from this information. The threshold determines how any k
shares out of total n can recover the secret information. If fewer than k shares
are known, no secret information is disclosed.

The Shamir Secret Sharing (SSS) [26] is a fundamental threshold scheme in
this domain. It computes k — 1 random coefficients for a k — 1 degree polynomial
f(z) in a finite field (e.g. GF-256 or GF-65536). The kth term comprises the
secret (usually the constant term of the polynomial). The share is identified by a
share value z, taking values between 1 and the order of the field. The share z is
the polynomial value of f(x). The secret can be reconstructed by interpolating
the values of k shares to find the constant term of the polynomial (i.e., the
secret). Interpolation is computationally optimized and only the constant term
is revealed.

https://www.researchgate.net/publication/261548591_The_Catena_Password_Scrambler?el=1_x_8&enrichId=rgreq-4f1e4f05dfe44a51f9e1625b04dd7bfd-XXX&enrichSource=Y292ZXJQYWdlOzI3ODMwMDc4NDtBUzoyNDA1Mzk0MTcxODIyMDhAMTQzNDM2MDQ3NDIyNQ==
https://www.researchgate.net/publication/220425267_How_to_Share_a_Secret?el=1_x_8&enrichId=rgreq-4f1e4f05dfe44a51f9e1625b04dd7bfd-XXX&enrichSource=Y292ZXJQYWdlOzI3ODMwMDc4NDtBUzoyNDA1Mzk0MTcxODIyMDhAMTQzNDM2MDQ3NDIyNQ==

Invalid
Account

NO

Share (2)’ == Share(2)

User Login Request |

| lmem.mel] I:,':,'J [PIIS resull (2 U—»E}—-[Share (2

Yes Valid
Account

—rFind Share No.
’ |-
Username § Salt Share No. Share P PHS result § Shamir Secret Share (SSS)
| [Root 0xI'45G 1 Share (1) @ PLS result (1) | | Share (1)
(Uscrname 1 | 0x245D 2 Share (2) @ PHS result (2) Share (2)
| [Username 2 J0xC79E 3 Share (3) @ PHS result (3) | | Share (
. | |
| [Username n [OsAJFE2[T Share (n) @PHS result (n) | | | Share (n) |
__Password File on Disk (=) 1 |_ Memory J

Fig. 2. Poly password hashing scheme. The figure illustrates the elements that are
stored in memory and hard disk and the account verification for a login request.

In the PPH domain, there is one share for each account. The share is XORed
with the relevant PHS result and is maintained by the server (instead of the pure
PHS result). The shares are derived from a master key. This key is only known
to the service provider and is not stored on disk in order to prevent attacks that
would disclose the key along with the stolen password data. When the server
starts, k clients must login and be correctly verified in order to reconstruct the
shares. Implementations of SSS provide integrity check mechanisms to detect if
incorrect shares are parsed. After this startup phase, the server operates in the
ordinary manner. Figure 2, illustrates the generic PPH scheme and the account
verification of a login request after initialization.

The attacker has to crack a threshold of password hashes before being able
to recover passwords. At a small additional cost by the server, security increases
by many orders of magnitude.

Poly password hashing is easily implemented and deployed on a server with-
out any changes to clients and can be integrated to current forms of authenti-
cation (e.g. two factor authentication, hardware tokens and fingerprint authen-
tication). It is also efficient in terms of storage, memory and computational
demands.

2.3 Password Hashing Competition

Secure cryptographic hash functions or HMACs constitute the most common
solution for PHSs and KDFs. PBKDF2, berypt and scrypt are currently the
widely-used PHSs and KDFs for mainstream applications.

The Password-Based Key Derivation Function 2 (PBKDF2) [5] is the only
standardized scheme (RSA Laboratories’ Public-Key Cryptography Standards
(PKCS) series (PKCS #5 v2.0) [27] and the RFC 2898 [5]). The input password

and salt are processed by an HMAC. The standard, which was established 15
years ago, recommended a minimum of 1000 iterations but it is not adequate for
current applications. PBKDF2 is not memory-hard and can be implemented as
a small circuit wit low RAM requirements. This is evinced in a main drawback
as cheap brute-force attacks are enabled on GPUs and ASICs.

berypt [6] is based on the block cipher Blowfish [28] and is the default PHS of
the BSD operating system. The iteration count is a power of 2 and is periodically
increased to counter the increasing computation power of the attackers. It uses
4KB RAM and is slightly stronger than PBKDF2 in defending attacks on parallel
computing platforms and dedicated hardware devices. However, these memory
requirements render efficient attacks on FPGAs.

scrypt [7] was announced as an Internet Draft by the IETF in 2012, with
the intention to become an informational RFC [29]. It utilizes the PBKDF2
and the stream cipher Salsa [30] and uses arbitrarily large amounts of memory.
scrypt is the most resistant widely-used scheme. The cost of a hardware brute
force attack is considered around 4000 and 20000 times larger than in berypt
and PBKDF2 respectively. However, the huge memory requirements can derive
denial-of-service (DoS) attacks on servers, when large amounts of simultaneous
login requests are handled. Also, scrypt is vulnerable to new types of attacks,

like cache-timing [9] and garbage-collector attacks [10].

Password Hashing Competition (PHC) [11] advances our knowledge in de-
signing secure and efficient PHSs and KDF's. At the first round 22 new PHSs
[31] were evaluated in terms of security, performance and flexibility. 9 state-of-
the-art finalists are announced and a small portfolio of them will be selected as
the winners in 2015. A survey and benchmark analysis of the 3 aforementioned
widely-used PHSs and the 22 candidates is presented in [12].

All submissions implement a common API. The parameters t_cost and m_cost
are introduced to adjust the timing and memory requirements of each scheme
respectively. The defender adjusts the PHS iteration count and memory require-
ments to design secure schemes.

The finalist Catena is one of the most notable submissions and is intended to
be included in the winners list. It implements the full functionality of PHS, KDF,
SR, and HUIU, is well-documented and analysed, and is one of the most efficient
candidate in terms of execution time and memory usage. Catena exhibits low
code size and memory requirements, making it suitable for embedded systems.

A PPH scheme, called PolyPassHash, is also presented in the competition. It
is actually a protocol that recovers a symmetric key used to encrypt passwords
and does not constitute a pure PHS. Thus, it is not included in the finalists.
Still, PolyPassHash demonstrates state-of-the-art features regarding PPH and is
efficient in terms of storage, memory and computational requirements.

We utilize the PHC candidates Catena and PolyPassHash to design our
lightweight proposal. Both schemes are analysed in the following section.

https://www.researchgate.net/publication/252853607_STRONGER_KEY_DERIVATION_VIA_SEQUENTIAL_MEMORY-HARD_FUNCTIONS?el=1_x_8&enrichId=rgreq-4f1e4f05dfe44a51f9e1625b04dd7bfd-XXX&enrichSource=Y292ZXJQYWdlOzI3ODMwMDc4NDtBUzoyNDA1Mzk0MTcxODIyMDhAMTQzNDM2MDQ3NDIyNQ==
https://www.researchgate.net/publication/261548591_The_Catena_Password_Scrambler?el=1_x_8&enrichId=rgreq-4f1e4f05dfe44a51f9e1625b04dd7bfd-XXX&enrichSource=Y292ZXJQYWdlOzI3ODMwMDc4NDtBUzoyNDA1Mzk0MTcxODIyMDhAMTQzNDM2MDQ3NDIyNQ==
https://www.researchgate.net/publication/273959978_Password_Hashing_Competition_-_Survey_and_Benchmark?el=1_x_8&enrichId=rgreq-4f1e4f05dfe44a51f9e1625b04dd7bfd-XXX&enrichSource=Y292ZXJQYWdlOzI3ODMwMDc4NDtBUzoyNDA1Mzk0MTcxODIyMDhAMTQzNDM2MDQ3NDIyNQ==
https://www.researchgate.net/publication/220942465_Description_of_a_New_Variable-Length_Key_64-bit_Block_Cipher_Blowfish?el=1_x_8&enrichId=rgreq-4f1e4f05dfe44a51f9e1625b04dd7bfd-XXX&enrichSource=Y292ZXJQYWdlOzI3ODMwMDc4NDtBUzoyNDA1Mzk0MTcxODIyMDhAMTQzNDM2MDQ3NDIyNQ==
https://www.researchgate.net/publication/2644370_A_Future-Adaptable_Password_Scheme?el=1_x_8&enrichId=rgreq-4f1e4f05dfe44a51f9e1625b04dd7bfd-XXX&enrichSource=Y292ZXJQYWdlOzI3ODMwMDc4NDtBUzoyNDA1Mzk0MTcxODIyMDhAMTQzNDM2MDQ3NDIyNQ==
https://www.researchgate.net/publication/226808260_The_Salsa20_Family_of_Stream_Ciphers?el=1_x_8&enrichId=rgreq-4f1e4f05dfe44a51f9e1625b04dd7bfd-XXX&enrichSource=Y292ZXJQYWdlOzI3ODMwMDc4NDtBUzoyNDA1Mzk0MTcxODIyMDhAMTQzNDM2MDQ3NDIyNQ==

2.4 Lightweight Cryptographic Mechanisms

Traditional cryptography targets high level of security. The main primitive types
that are investigated in this paper include block ciphers and hash functions.

The block cipher AES[32] is considered a landmark in this field. Camellia
[33], IDEA [34], KASUMI [34] and Blowfish are other widely used ciphers. In
PHC, AES and Blowfish are mainly utilized for cryptographic operations.

There are many standardized or widely-used hash functions for mainstream
applications, like MD5 [35], SHA1 [36], SHA2[37] and Whirlpool [38]. In 2012, the
NIST’s SHA3 competition [39] establish a new function to replace the older SHA1
and SHA2. The SHA3 competition helped our understanding of hash functions
and derive a new design trend of hash functions with sponge constructions. The
winner function Keccak and the finalist BLAKE[40] adopt this strategy. SHAL,
SHA2, SHA3 and BLAKE are widely used by PHC candidates.

However, these mainstream ciphers and functions are too large to fit in many
types of embedded systems. Lightweight cryptography (LWC) focuses in design-
ing cryptographic primitives for resource constraint devices. The main design
goals in software are the reduction of processing and memory requirements.
Embedded software implementations are optimized for throughput as well as
memory and power savings.

Lightweight primitives provide moderate levels of security from 80 to 128 bits
[41]. 80 bit security is adequate for constrained devices [42], like RFID tags and
micro-controllers, while 128 bits is typical for mainstream applications [32].

In recent years, a high variety of lightweight proposals are presented [16]. The
standardized primitives for LWC are referred in the ISO/IEC standard 29192
[43]. The part 2 of the standard includes block ciphers and the upcoming part 5
includes hash functions.

PRESENT [41] and CLEFIA [44] are the standardized block ciphers. PRESENT
is a milestone in LWC due to its compact hardware implementation. CLEFIA
was designed by SONY and is highly efficient both in hardware and software. In
software, CLEFIA performs better than PRESENT [45].

PHOTON [46] and Spongent [47] are lightweight hash functions with sponge
construction. They are considered for inclusion in the ISO/TEC 29192 standard
for lightweight hash functions that is currently under development. Spongent is
hardware oriented. PHOTON performs well both in embedded hardware and
software.

The proposed LightPolyPHS scheme utilizes CLEFIA for cryptographic op-
erations and PHOTON for hashing.

3 Lightweight PHS and PPH

LightPolyPHS is a lightweight PHS and PPH, designed for embedded systems
and constrained devices. The overall system complies with the principles of LWC.
First, we replace the inner cryptographic primitives that are utilized by the PHS
Catena and the PPH PolyPassHash and implement two relevant lightweight

https://www.researchgate.net/publication/221348261_Pushing_the_Limits_A_Very_Compact_and_a_Threshold_Implementation_of_AES?el=1_x_8&enrichId=rgreq-4f1e4f05dfe44a51f9e1625b04dd7bfd-XXX&enrichSource=Y292ZXJQYWdlOzI3ODMwMDc4NDtBUzoyNDA1Mzk0MTcxODIyMDhAMTQzNDM2MDQ3NDIyNQ==
https://www.researchgate.net/publication/221348261_Pushing_the_Limits_A_Very_Compact_and_a_Threshold_Implementation_of_AES?el=1_x_8&enrichId=rgreq-4f1e4f05dfe44a51f9e1625b04dd7bfd-XXX&enrichSource=Y292ZXJQYWdlOzI3ODMwMDc4NDtBUzoyNDA1Mzk0MTcxODIyMDhAMTQzNDM2MDQ3NDIyNQ==
https://www.researchgate.net/publication/220831095_A_Case_Against_Currently_Used_Hash_Functions_in_RFID_Protocols?el=1_x_8&enrichId=rgreq-4f1e4f05dfe44a51f9e1625b04dd7bfd-XXX&enrichSource=Y292ZXJQYWdlOzI3ODMwMDc4NDtBUzoyNDA1Mzk0MTcxODIyMDhAMTQzNDM2MDQ3NDIyNQ==
https://www.researchgate.net/publication/221239550_Compact_ASIC_Architectures_for_the_512-Bit_Hash_Function_Whirlpool?el=1_x_8&enrichId=rgreq-4f1e4f05dfe44a51f9e1625b04dd7bfd-XXX&enrichSource=Y292ZXJQYWdlOzI3ODMwMDc4NDtBUzoyNDA1Mzk0MTcxODIyMDhAMTQzNDM2MDQ3NDIyNQ==
https://www.researchgate.net/publication/221291660_PRESENT_An_ultra-lightweight_block_cipher?el=1_x_8&enrichId=rgreq-4f1e4f05dfe44a51f9e1625b04dd7bfd-XXX&enrichSource=Y292ZXJQYWdlOzI3ODMwMDc4NDtBUzoyNDA1Mzk0MTcxODIyMDhAMTQzNDM2MDQ3NDIyNQ==
https://www.researchgate.net/publication/221291660_PRESENT_An_ultra-lightweight_block_cipher?el=1_x_8&enrichId=rgreq-4f1e4f05dfe44a51f9e1625b04dd7bfd-XXX&enrichSource=Y292ZXJQYWdlOzI3ODMwMDc4NDtBUzoyNDA1Mzk0MTcxODIyMDhAMTQzNDM2MDQ3NDIyNQ==
https://www.researchgate.net/publication/221355393_The_PHOTON_family_of_lightweight_hash_functions?el=1_x_8&enrichId=rgreq-4f1e4f05dfe44a51f9e1625b04dd7bfd-XXX&enrichSource=Y292ZXJQYWdlOzI3ODMwMDc4NDtBUzoyNDA1Mzk0MTcxODIyMDhAMTQzNDM2MDQ3NDIyNQ==
https://www.researchgate.net/publication/221291933_spongent_A_Lightweight_Hash_Function?el=1_x_8&enrichId=rgreq-4f1e4f05dfe44a51f9e1625b04dd7bfd-XXX&enrichSource=Y292ZXJQYWdlOzI3ODMwMDc4NDtBUzoyNDA1Mzk0MTcxODIyMDhAMTQzNDM2MDQ3NDIyNQ==
https://www.researchgate.net/publication/221274733_Very_Compact_Hardware_Implementations_of_the_Blockcipher_CLEFIA?el=1_x_8&enrichId=rgreq-4f1e4f05dfe44a51f9e1625b04dd7bfd-XXX&enrichSource=Y292ZXJQYWdlOzI3ODMwMDc4NDtBUzoyNDA1Mzk0MTcxODIyMDhAMTQzNDM2MDQ3NDIyNQ==
https://www.researchgate.net/publication/221291758_Piccolo_An_Ultra-Lightweight_Blockcipher?el=1_x_8&enrichId=rgreq-4f1e4f05dfe44a51f9e1625b04dd7bfd-XXX&enrichSource=Y292ZXJQYWdlOzI3ODMwMDc4NDtBUzoyNDA1Mzk0MTcxODIyMDhAMTQzNDM2MDQ3NDIyNQ==

schemes. Then, we integrate them by using the lightweight Catena as the PHS
for the lightweight PolyPassHash and implement the proposed LightPolyPHS.

3.1 Catena PHS

Catena is suitable for multiple environments, like multi-core CPUs, databases,
and low-memory devices. It is a composed cryptographic operation based on a
cryptographic hash function and is simple and easy to analyse. The design consti-
tutes a graph-based structure, called ”Bit-Reversal Graph”, that is instantiated
by the cryptographic hash function. Any strong hash function can be embod-
ied. The reference implementation selects SHA512 and BLAKE2b. SHA512 is
standardized and widely-implemented in many platforms. BLAKE2b supports
the Simple Instruction Multiple Data (SIMD) approach and protects massively
parallel attacks on GPUs.

The scheme is well-documented with thorough security analysis. The time-
memory tradeoff analysis is based on the pebble-game approach [10]. Catena

provides lower bounds on the time-memory tradeoff, preimage security, indistin-
guishability from random and resistance against side-channel (e.g. cache-timing
attacks [9]). The computational cost for massively parallel crackers on GPUs,
ASICs and FPGAs is high.

HUIU is implemented by increasing the t_cost and m_cost parameters. For
SR, the client can compute most of the PHS iterations while the server computes
only the last one. Catena can also operate in a keyed password hashing mode by
XORing the unkeyed output with the hash of the user ID, the m_cost and the
secret key.

Lightweight Catena. Catena utilizes a cryptographic hash function to in-
stantiate the graph-based structure. The reference implementation propose the
functions SHA512 and BLAKE2b. Both hashes result in a 512-bit output and of-
fer high level of security. SHA512 is selected as a widely-used and implemented
standard while BLAKE2b is proposed due to its high efficiency and security
against massively parallel attacks.

The lightweight Catena utilizes PHOTON-256 as the cryptographic hash
function, which outputs a 256-bit digest. This results in a smaller datapath and
implementation size than the original scheme as well as lower computational and
memory requirements. The output size complies with the relevant primitive in
PolyPassHash and provides moderate level of security. Table 1 summarizes the
security properties of the three hash functions.

The security level of the Catena is determined by the underlying hash func-
tion. Consider that Catena-shab12, Catena-blake2b and Catena-photon256 offer
2512 9481 and 2244 bits security respectively.

3.2 PolyPassHash PPH

PolyPassHash is a PPH scheme that provides protection above PHS. It is com-
posed of two building blocks: the aforementioned SSS threshold scheme and the

https://www.researchgate.net/publication/261548591_The_Catena_Password_Scrambler?el=1_x_8&enrichId=rgreq-4f1e4f05dfe44a51f9e1625b04dd7bfd-XXX&enrichSource=Y292ZXJQYWdlOzI3ODMwMDc4NDtBUzoyNDA1Mzk0MTcxODIyMDhAMTQzNDM2MDQ3NDIyNQ==

Table 1. Security properties of the examined hash functions

Hash function Hash Size (bits) |Collision Resistance |Pre-image Resistance
SHA512[37] 512 525G 2°12
BLAKE2[48] 512 2771 2781
PHOTON-256[46] 256 212 271

standardized SHA256 [37] hash function. The computational complexity of SSS
is based on the k degree polynomial over a finite field. For PolyPassHash, the
default k value is 3 and it is assigned as the t_cost parameter. SHA256 simple
parses the password and the salt. The hashes are also encrypted with the AES.

At the server-side, PolyPassHash processes the password file when the sys-
tem restarts. Then, a threshold of users must login before the passwords can be
verified. After startup, the login requests are processed with similar computa-
tional overhead as in PHS-only systems. The memory overhead is about 1KB
independent of the number of passwords and the storage cost is one byte per
user account (the share value). An alternative partial verification process is also
supported that allows users to login immediately after the restart without the
need to verify a threshold of users.

No modification of the client applications or the login process is required.
PolyPassHash is solely based on software and the system administrator can
adjust the threshold value without affecting the users.

The attacker must guess 3 passwords simultaneously. On GPUs, PolyPassHash
imposes about 23 orders of magnitude more effort than on PHS-only systems.
On CPUs, even a threshold of 2 secrets provides sufficient security.

Lightweight PolyPassHash. PolyPassHash processes the passwords with SHA256.
The hash function outputs 256-bits and AES with 128-bit key encrypts the SSS
shares.

The lightweight PolyPassHash replaces SHA256 with the lightweight PHO-
TON256. AES is substituted by CLEFIA with the same key size. The two
schemes exhibit the same datapath size and the resource saving is low. The
security level of the lightweight version is similar to the original one.

In both schemes, the disk space requires 1 additional byte for each account
to store the share value, in contrast to PHS-only solutions. The server must also
store the polynomial coefficients for the SSS in memory. The total size is small:
the XORed share and hash (256 bits long) multiplied by the threshold value
(usually 2-5). In real systems, this value would result in a few hundred bytes.

3.3 PolyPHS

In PolyPassHash, passwords are simply parsed by SHA256. To further increase
security, we replace the hash function with the Catena PHS. The PHS enhances

10

resistance against attacks but is more resource demanding than SHA256. Also,
Catena exhibits larger output size (512-bits) and the integrated implementation
size is higher.

LightPolyPHS. The original Catena offers high level of security but it can
not be applied on constrained devices. The lightweight Catena offers moderate
level of security and is appropriate for the targeted systems. To fill the gap,
the lightweight PolyPassHash is applied to increase security. The simple hash
function is replaced by the PHS. Lightweight Catena uses the same datapath size
as the SHA256 of PolyPassHash and provides higher password protection. With
3 shares as the threshold, an attacker must guess 3 lightweight-Catena passwords
simultaneously to recover the password file. The security level is increased by 23
magnitudes on GPUs, resulting in 22%* % 1023 ~ 2320 bits security.

4 Evaluation

The examined PHSs, PPHs, and the core cryptographic primitives are evaluated
under an Intel Core i7 at 2.10GHz CPU with 8GB RAM, running 64-bit op-
erating systems. Reference C or C++ implementations are utilized in order to
provide a fair comparison with the unoptimized versions of PHC [31]. All imple-
mentations are installed on Windows 8.1 Pro and are executed on cygwin. The
different primitives are assessed under common assumptions. We measure the
code size, memory consumption, execution time and throughput of each scheme.

4.1 Cryptographic primitives

Table 2 summarizes the software details of the block ciphers and hash functions
that are examined in this study. The measured parameters are calculated from
reference implementations. All lightweight primitives consume lower resources
than the mainstream ones but are slower. For block ciphers, CLEFIA produces
about 3.6 times smaller implementation than AES for slightly lower memory
consumption and 1/12 of the speed. PRESENT has even lower code requirements
but consumes more memory than AES and is slower than CLEFIA. For the
hash functions, PHOTON consumes the least memory and exhibits the largest
code size. Compared to SPONGENT it is about 8 times faster. Both CLEFIA
and PHOTON can fit in constraint devices. The implementation size of both
primitives is 21.9KB and the maximum RAM consumption can not exceed the
11.28KB.

4.2 PHSs and PPHs

Table 3 summarizes the software evaluation of the examined PHSs and PPHs
based on the default sizes for output, password and salt, and the indicative t_cost
and m_cost parameters as reported by each scheme.

11

Table 2. Software implementations of block ciphers and hash functions

Primitive Key/Hash | ROM (KB -RAM (KB -|Throughput (MBps
Size (bits) |lower is better)|lower is better)|- higher is better)
(Block ciphers)
AES 128 20.0 10.25 56.35
PRESENT 128 2.6 14.5 0.44
CLEFIA 128 6.9 10.08 4.65
(Hash functions)
SHA3 256 12 3.8 62.71
SHA3 512 12 3.9 36.80
SHA?2 256 14 2.2 95.44
SHA2 512 14 2.4 36.91
BLAKE2b 256 14 2.18 96.66
BLAKE2b 512 14 2.38 42.82
Spongent 256 8.7 1.6 0.99
PHOTON 256 15 1.2 8.2

The standardized PBKDF2 is not memory-hard and consumes neglected
memory. berypt has low memory requirements and achieves similar performance
as scrypt. scrypt is the first widely-used memory-hard PHS and exhibits the
higher memory consumption and larger implementation size.

Catena is a novel PHS that applies memory hardness to enhance security.
Three versions are evaluated based on the underlying hash function. Catena-
blake2d is the fastest and consumes similar memory as Catena-sha512. Catena-
photon256 reduces memory demandings around 50% in exchange of lower per-
formance. All three versions produce similar code size.

PolyPassHash is a novel PPH that utilizes the hash function SHA256 and the
block cipher AES. It is quite efficient and has low and constant memory require-
ments. The Light-PolyPassHash version uses the hash function PHOTON and
the block cipher CLEFIA. It decreases the code size and accomplishes slightly
lower memory consumption and worsen speed.

The security of the initial scheme is fortified by replacing the hash function
with a PHS. The PHS constitutes the most resource demanding component. The
t_cost parameter determines the k shares of the SSS component and linearly af-
fects the execution time. As t_cost increases, the number of password hashing
operations, which are performed by the PHS, also increases. PolyPHS uses the
Catena-blake2b (t_cost = 3, m_cost = 18) as the PHS of PolyPassHash. Light-
PolyPHS uses the Catena-photon256 (t_cost = 3, m_cost = 18) as the PHS of
Light-PolyPassHash.

Figure 3, illustrates the evaluation results of the 10 PHS and PPH schemes.
For k = 2, LightPolyPHS has slightly worsen performance than berypt and
scrypt. The memory-hard Catena-photon256 component enhanced with the SSS
provide adequate security for around 39 times lower memory consumption and
2.3 smaller implementation size than scrypt.

12

ROM (KB) RAM (KB) CPU (sec) PBKDF2
® berypt

m scrypt
= Catena-blake2
\ = Catena-sha512
® Catena-photon256
(PolyPassHash
Light-PolyPassHash
u PolyPHS
® LightPolyPHS

Fig. 3. Comparison of the examined PHSs

PHS Password Salt Output t_cost m_cost ROM RAM CPU(secs)
(bytes) (bytes) (bytes) (KB) (KB)
(PHSs)
24 8 64 1000 0 30 0 0.002024
PBKDF2 24 8 64 2048 0 30 0 0.004150
24 8 64 4096 0 30 0 0.008141
24 8 64 10000 0 30 0 0.019386
berypt 12 16 54 12 0 97 492 2.668653
scrypt 8 32 64 5 0 182 450656 2.837654
Catena— 8 16 64 3 18 25 16384 0.353742
blake2b 8 16 64 3 20 25 65596 2.619238
8 16 64 3 21 25 128484 5.461030
Catena— 8 16 64 3 18 25 16496 0.783590
shab12 8 16 64 3 20 25 65720 5.389355
8 16 64 3 21 25 131240 11.664960
Catena— 8 16 32 3 18 26 8188 1.749200
photon256 8 16 32 3 20 26 32760 13.065627
8 16 32 3 21 26 65532 27.301944
(PPHs)
PolyPassHash 16 16 32 1 0 78 3412 0.000054
16 16 32 2 0 78 3412 0.000055
16 16 32 4 0 78 3412 0.000055
Light— 16 16 32 1 0 66 3410 0.000060
PolyPassHash 16 16 32 2 0 66 3410 0.000068
16 16 32 4 0 66 3410 0.000080
PolyPHS 16 16 64 1 0 89 19794 0.353695
16 16 64 2 0 89 19794 0.707538
16 16 64 4 0 89 19794 1.415020
LightPolyPHS 16 16 32 1 0 77 11579 1.749253
16 16 32 2 0 77 11579 3.498454
16 16 32 4 0 77 11579 6.996854

Table 3: Software implementations of PHSs and PPHs

4.3 MANET application

As a proof of concept, we apply LightPolyPHS on BeagleBone embedded devices
[49]. BeagleBone is a credit-card-sized Linux computer with Internet connection
that runs Android and Ubuntu OSs. The processor is an AM335x 720MHz ARM
Cortex-A8 with 256 MB DDR2 RAM and 4GB microSD.

We create a mobile ad hoc network (MANET) with 20 BeagleBone client
devices and 1 BeagleBone acting as the server. The devices sense environmental

13

parameters (e.g. temperature and moisture) and periodically upload this infor-
mation to the server. They communicate wirelessly through USB-WiFi equip-
ment in order to login the service and exchange data.

For 3 shares as the threshold, the server must authenticate three clients at
initialization. Then, the account verification requires a single lightweight-Catena
operation. The BeagleBone server takes on average 5 sec to startup and 1.8 sec
to execute the PHS verification.

5 Conclusions

The maintenance of user passwords constitutes a significant factor related to the
provided security of a service. Security breaches on famous applications have
reveal massive amounts of user data, harming the reliability of their providers.
The poor password hashing techniques and the limited available solutions lead
the international cryptographic community to organize the Password Hashing
Competition (PHC). The competition intends to delivery a small portfolio of
modern and secure schemes for password hashing and key deviation. This paper
presents the LightPolyPHS - a lightweight poly password hashing scheme for
embedded systems and lightweight cryptography. We apply the proposed sys-
tem on a MANET with BeagleBone embedded devices and held a comparative
analysis with similar schemes on a mainstream computer. LightPolyPHS is the
first lightweight password hashing and poly password hashing scheme suitable
for constrained devices. Compared to current solutions it requires around 39
times less memory and 2.3 times smaller code size.

References

1. Richmond, S., Williams, C.: Millions of internet wusers hit by massive
Sony PlayStation data theft, The Telegraph, London, April 26, 2011.
http://www.telegraph.co.uk/technology /news/8475728 /Millions-of-internet-users-
hit-by-massive-Sony-PlayStation-data-theft.html (2011)

2. Finkle, J., Saba J.: LinkedIn suffers data breach - security experts,
Reuters, June 2012. http://in.reuters.com/article/2012/06/06/linkedin-breach-
idINDEE8550EN20120606 (2012)

3. Florencio, D., Herley, C., Van Oorschot, P. C.: An administrator’s guide to internet
password research, 28" USENIX conference on Large Installation System Admin-
istration (LISA’14), Seattle, WA, November 9-14, 2014, pp. 35-52 (2014)

4. Telang, R., Wattal, S.: An Empirical Analysis of the Impact of Software Vulnera-
bility Announcements on Firm Stock Price, IEEE Transactions on Software Engi-
neering (TSE), IEEE, vol. 33, issue 8, 2007, pp. 544-557 (2007)

5. Kaliski, B., RSA Laboratories: RFC 2898 - PKCS #b5: Password-Based Cryptogra-
phy Specification Version 2.0. Technical report, IETF, 2000 (2000)

6. Provos, N., Mazires, D.: A Future-Adaptable Password Scheme, USENIX Annual
Technical Conference, pp. 8192 (1999)

7. Colin Percival. Stronger Key Derivation via Sequential Memory-Hard Functions.
presented at BSDCan09, May 2009 (2009)

https://www.researchgate.net/publication/3189760_An_Empirical_Analysis_of_the_Impact_of_Software_Vulnerability_Announcements_On_Firm_Stock_Price?el=1_x_8&enrichId=rgreq-4f1e4f05dfe44a51f9e1625b04dd7bfd-XXX&enrichSource=Y292ZXJQYWdlOzI3ODMwMDc4NDtBUzoyNDA1Mzk0MTcxODIyMDhAMTQzNDM2MDQ3NDIyNQ==
https://www.researchgate.net/publication/3189760_An_Empirical_Analysis_of_the_Impact_of_Software_Vulnerability_Announcements_On_Firm_Stock_Price?el=1_x_8&enrichId=rgreq-4f1e4f05dfe44a51f9e1625b04dd7bfd-XXX&enrichSource=Y292ZXJQYWdlOzI3ODMwMDc4NDtBUzoyNDA1Mzk0MTcxODIyMDhAMTQzNDM2MDQ3NDIyNQ==
https://www.researchgate.net/publication/3189760_An_Empirical_Analysis_of_the_Impact_of_Software_Vulnerability_Announcements_On_Firm_Stock_Price?el=1_x_8&enrichId=rgreq-4f1e4f05dfe44a51f9e1625b04dd7bfd-XXX&enrichSource=Y292ZXJQYWdlOzI3ODMwMDc4NDtBUzoyNDA1Mzk0MTcxODIyMDhAMTQzNDM2MDQ3NDIyNQ==
https://www.researchgate.net/publication/252853607_STRONGER_KEY_DERIVATION_VIA_SEQUENTIAL_MEMORY-HARD_FUNCTIONS?el=1_x_8&enrichId=rgreq-4f1e4f05dfe44a51f9e1625b04dd7bfd-XXX&enrichSource=Y292ZXJQYWdlOzI3ODMwMDc4NDtBUzoyNDA1Mzk0MTcxODIyMDhAMTQzNDM2MDQ3NDIyNQ==
https://www.researchgate.net/publication/252853607_STRONGER_KEY_DERIVATION_VIA_SEQUENTIAL_MEMORY-HARD_FUNCTIONS?el=1_x_8&enrichId=rgreq-4f1e4f05dfe44a51f9e1625b04dd7bfd-XXX&enrichSource=Y292ZXJQYWdlOzI3ODMwMDc4NDtBUzoyNDA1Mzk0MTcxODIyMDhAMTQzNDM2MDQ3NDIyNQ==
https://www.researchgate.net/publication/2644370_A_Future-Adaptable_Password_Scheme?el=1_x_8&enrichId=rgreq-4f1e4f05dfe44a51f9e1625b04dd7bfd-XXX&enrichSource=Y292ZXJQYWdlOzI3ODMwMDc4NDtBUzoyNDA1Mzk0MTcxODIyMDhAMTQzNDM2MDQ3NDIyNQ==
https://www.researchgate.net/publication/2644370_A_Future-Adaptable_Password_Scheme?el=1_x_8&enrichId=rgreq-4f1e4f05dfe44a51f9e1625b04dd7bfd-XXX&enrichSource=Y292ZXJQYWdlOzI3ODMwMDc4NDtBUzoyNDA1Mzk0MTcxODIyMDhAMTQzNDM2MDQ3NDIyNQ==

14

8. Orman, H: Twelve Random Characters: Passwords in the Era of Massive Parallelism,
IEEE Internet Computing, vol. 17, issue 5, September-October, 2013, pp. 91-94
(2013)

9. Forler, C., Lucks, S., Wenzel, J.: Catena: A memory-consuming password scrambler,
Cryptology ePrint Archive, Report 2013/525 (2013)

10. Forler, C., Lucks, S., Wenzel, J.: The Catena Password Scrambler, PHC sub-
mission, May 15, 2014. https://password-hashing.net/submissions/specs/Catena-
v3.pdf (2014)

11. Cryptographic competition: Password Hashing Competition (PHC), April 25, 2013.
https://password-hashing.net/ (2013)

12. Hatzivasilis, G., Papaefstathiou, I., Manifavas, C.: Password Hashing Competition
— Survey and Benchmark, Cryptology ePrint Archive, Report 2015/265 (2015)

13. U.S. Department of Commerce, National Institute of Standards and Technology
(NIST). http://www.nist.gov/

14. Seo, S.-H., Kim, J.-H., Hwang, S.-H., Kwon, K. H., Jeon, J. W.: A reliable gateway
for in-vehicle networks based on LIN, CAN, and FlexRay, ACM Transactions on
Embedded Computing Systems (TECS), vol. 11, issue 1, March 2012, Article No. 7
(2012)

15. Feng, A., Knieser, M., Rizkalla, M., King, B., Salama, P., Bowen, F.: Embedded
system for sensor communication and security, IET Informaiton Security, vol. 6,
issue 2, June 2012, pp. 111-121 (2012)

16. Manifavas, C., Hatzivasilis, G., Fysarakis, K., Rantos, K.: Lightweight cryptogra-
phy for embedded systems a comparative analysis, 6" International Workshop on
Autonomous and Spontaneous Security (SETOP 2013), ESORICS, Springer, LNCS,
vol. 8247, 12-13 September, 2013, pp. 333-349. (2013)

17. Leu, J.-S., Hsieh, W.-B.: Efficient and secure dynamic ID-based remote user au-
thentication scheme for distributed systems using smart cards, IET Informaiton
Security, vol. 8, issue 2, March 2014, pp. 104-113 (2014)

18. Dhurjati, D., Kowshik, S., Adve, V., Lattner, C.: Memory safety without garbage
collection for embedded applications, ACM Transactions on Embedded Computing
Systems (TECS), vol. 4, issue 1, February 2005, pp. 73-111 (2005)

19. Bonneau, J., Schechter, S.: Towards reliable storage of 56-bit secrets in human
memory, 23" USENIX conference on Security Symposium (SEC’14), San Diego,
CA, USA, 2014, pp. 607-623 (2014)

20. Li, C.: A new password authentication and user anonymity scheme based on elliptic
curve cryptography and smart card, IET Information Security, vol. 7, issue 1, March
2013, pp. 3-10 (2013)

21. Sun, H.-M., Chen, Y.-H., Lin, Y.-H.: oPass: A User Authentication Protocol Re-
sistant to Password Stealing and Password Reuse Attacks, IEEE Transactions on
Information Forensics and Security, vol. 7, issue 2, 29 September, 2011, pp. 651-663
(2011)

22. NIST: Recommendation for Password-Based Key Derivation, NIST Special Pub-
lication 800-132, December 2010. http://csrc.nist.gov/publications/nistpubs/800-
132 /nist-sp800-132.pdf (2010)

23. Rajamanickam, V., Veerappan, D.: Inter cluster communication and rekeying tech-
nique for multicast security in mobile ad hoc networks, IET Information Security,
vol. 8, issue 4, July 2014, pp. 234-239 (2014)

24. Lakshmi, R. P., Kumar, A. V. A.: Parallel key management scheme for mobile
ad hoc network based on traffic mining, IET Information Security, vol. 9, issue 1,
January 2015, pp. 14-23 (2015)

https://www.researchgate.net/publication/260305382_Twelve_Random_Characters_Passwords_in_the_Era_of_Massive_Parallelism?el=1_x_8&enrichId=rgreq-4f1e4f05dfe44a51f9e1625b04dd7bfd-XXX&enrichSource=Y292ZXJQYWdlOzI3ODMwMDc4NDtBUzoyNDA1Mzk0MTcxODIyMDhAMTQzNDM2MDQ3NDIyNQ==
https://www.researchgate.net/publication/260305382_Twelve_Random_Characters_Passwords_in_the_Era_of_Massive_Parallelism?el=1_x_8&enrichId=rgreq-4f1e4f05dfe44a51f9e1625b04dd7bfd-XXX&enrichSource=Y292ZXJQYWdlOzI3ODMwMDc4NDtBUzoyNDA1Mzk0MTcxODIyMDhAMTQzNDM2MDQ3NDIyNQ==
https://www.researchgate.net/publication/260305382_Twelve_Random_Characters_Passwords_in_the_Era_of_Massive_Parallelism?el=1_x_8&enrichId=rgreq-4f1e4f05dfe44a51f9e1625b04dd7bfd-XXX&enrichSource=Y292ZXJQYWdlOzI3ODMwMDc4NDtBUzoyNDA1Mzk0MTcxODIyMDhAMTQzNDM2MDQ3NDIyNQ==
https://www.researchgate.net/publication/261548591_The_Catena_Password_Scrambler?el=1_x_8&enrichId=rgreq-4f1e4f05dfe44a51f9e1625b04dd7bfd-XXX&enrichSource=Y292ZXJQYWdlOzI3ODMwMDc4NDtBUzoyNDA1Mzk0MTcxODIyMDhAMTQzNDM2MDQ3NDIyNQ==
https://www.researchgate.net/publication/261548591_The_Catena_Password_Scrambler?el=1_x_8&enrichId=rgreq-4f1e4f05dfe44a51f9e1625b04dd7bfd-XXX&enrichSource=Y292ZXJQYWdlOzI3ODMwMDc4NDtBUzoyNDA1Mzk0MTcxODIyMDhAMTQzNDM2MDQ3NDIyNQ==
https://www.researchgate.net/publication/261548591_The_Catena_Password_Scrambler?el=1_x_8&enrichId=rgreq-4f1e4f05dfe44a51f9e1625b04dd7bfd-XXX&enrichSource=Y292ZXJQYWdlOzI3ODMwMDc4NDtBUzoyNDA1Mzk0MTcxODIyMDhAMTQzNDM2MDQ3NDIyNQ==
https://www.researchgate.net/publication/273959978_Password_Hashing_Competition_-_Survey_and_Benchmark?el=1_x_8&enrichId=rgreq-4f1e4f05dfe44a51f9e1625b04dd7bfd-XXX&enrichSource=Y292ZXJQYWdlOzI3ODMwMDc4NDtBUzoyNDA1Mzk0MTcxODIyMDhAMTQzNDM2MDQ3NDIyNQ==
https://www.researchgate.net/publication/273959978_Password_Hashing_Competition_-_Survey_and_Benchmark?el=1_x_8&enrichId=rgreq-4f1e4f05dfe44a51f9e1625b04dd7bfd-XXX&enrichSource=Y292ZXJQYWdlOzI3ODMwMDc4NDtBUzoyNDA1Mzk0MTcxODIyMDhAMTQzNDM2MDQ3NDIyNQ==
https://www.researchgate.net/publication/241623838_A_reliable_gateway_for_in-vehicle_networks_based_on_LIN_CAN_and_FlexRay?el=1_x_8&enrichId=rgreq-4f1e4f05dfe44a51f9e1625b04dd7bfd-XXX&enrichSource=Y292ZXJQYWdlOzI3ODMwMDc4NDtBUzoyNDA1Mzk0MTcxODIyMDhAMTQzNDM2MDQ3NDIyNQ==
https://www.researchgate.net/publication/241623838_A_reliable_gateway_for_in-vehicle_networks_based_on_LIN_CAN_and_FlexRay?el=1_x_8&enrichId=rgreq-4f1e4f05dfe44a51f9e1625b04dd7bfd-XXX&enrichSource=Y292ZXJQYWdlOzI3ODMwMDc4NDtBUzoyNDA1Mzk0MTcxODIyMDhAMTQzNDM2MDQ3NDIyNQ==
https://www.researchgate.net/publication/241623838_A_reliable_gateway_for_in-vehicle_networks_based_on_LIN_CAN_and_FlexRay?el=1_x_8&enrichId=rgreq-4f1e4f05dfe44a51f9e1625b04dd7bfd-XXX&enrichSource=Y292ZXJQYWdlOzI3ODMwMDc4NDtBUzoyNDA1Mzk0MTcxODIyMDhAMTQzNDM2MDQ3NDIyNQ==
https://www.researchgate.net/publication/241623838_A_reliable_gateway_for_in-vehicle_networks_based_on_LIN_CAN_and_FlexRay?el=1_x_8&enrichId=rgreq-4f1e4f05dfe44a51f9e1625b04dd7bfd-XXX&enrichSource=Y292ZXJQYWdlOzI3ODMwMDc4NDtBUzoyNDA1Mzk0MTcxODIyMDhAMTQzNDM2MDQ3NDIyNQ==
https://www.researchgate.net/publication/260299474_Embedded_system_for_sensor_communication_and_security?el=1_x_8&enrichId=rgreq-4f1e4f05dfe44a51f9e1625b04dd7bfd-XXX&enrichSource=Y292ZXJQYWdlOzI3ODMwMDc4NDtBUzoyNDA1Mzk0MTcxODIyMDhAMTQzNDM2MDQ3NDIyNQ==
https://www.researchgate.net/publication/260299474_Embedded_system_for_sensor_communication_and_security?el=1_x_8&enrichId=rgreq-4f1e4f05dfe44a51f9e1625b04dd7bfd-XXX&enrichSource=Y292ZXJQYWdlOzI3ODMwMDc4NDtBUzoyNDA1Mzk0MTcxODIyMDhAMTQzNDM2MDQ3NDIyNQ==
https://www.researchgate.net/publication/260299474_Embedded_system_for_sensor_communication_and_security?el=1_x_8&enrichId=rgreq-4f1e4f05dfe44a51f9e1625b04dd7bfd-XXX&enrichSource=Y292ZXJQYWdlOzI3ODMwMDc4NDtBUzoyNDA1Mzk0MTcxODIyMDhAMTQzNDM2MDQ3NDIyNQ==
https://www.researchgate.net/publication/260525061_Efficient_and_secure_dynamic_ID-based_remote_user_authentication_scheme_for_distributed_systems_using_smart_cards?el=1_x_8&enrichId=rgreq-4f1e4f05dfe44a51f9e1625b04dd7bfd-XXX&enrichSource=Y292ZXJQYWdlOzI3ODMwMDc4NDtBUzoyNDA1Mzk0MTcxODIyMDhAMTQzNDM2MDQ3NDIyNQ==
https://www.researchgate.net/publication/260525061_Efficient_and_secure_dynamic_ID-based_remote_user_authentication_scheme_for_distributed_systems_using_smart_cards?el=1_x_8&enrichId=rgreq-4f1e4f05dfe44a51f9e1625b04dd7bfd-XXX&enrichSource=Y292ZXJQYWdlOzI3ODMwMDc4NDtBUzoyNDA1Mzk0MTcxODIyMDhAMTQzNDM2MDQ3NDIyNQ==
https://www.researchgate.net/publication/260525061_Efficient_and_secure_dynamic_ID-based_remote_user_authentication_scheme_for_distributed_systems_using_smart_cards?el=1_x_8&enrichId=rgreq-4f1e4f05dfe44a51f9e1625b04dd7bfd-XXX&enrichSource=Y292ZXJQYWdlOzI3ODMwMDc4NDtBUzoyNDA1Mzk0MTcxODIyMDhAMTQzNDM2MDQ3NDIyNQ==
https://www.researchgate.net/publication/220094364_Memory_safety_without_garbage_collection_for_embedded_applications?el=1_x_8&enrichId=rgreq-4f1e4f05dfe44a51f9e1625b04dd7bfd-XXX&enrichSource=Y292ZXJQYWdlOzI3ODMwMDc4NDtBUzoyNDA1Mzk0MTcxODIyMDhAMTQzNDM2MDQ3NDIyNQ==
https://www.researchgate.net/publication/220094364_Memory_safety_without_garbage_collection_for_embedded_applications?el=1_x_8&enrichId=rgreq-4f1e4f05dfe44a51f9e1625b04dd7bfd-XXX&enrichSource=Y292ZXJQYWdlOzI3ODMwMDc4NDtBUzoyNDA1Mzk0MTcxODIyMDhAMTQzNDM2MDQ3NDIyNQ==
https://www.researchgate.net/publication/220094364_Memory_safety_without_garbage_collection_for_embedded_applications?el=1_x_8&enrichId=rgreq-4f1e4f05dfe44a51f9e1625b04dd7bfd-XXX&enrichSource=Y292ZXJQYWdlOzI3ODMwMDc4NDtBUzoyNDA1Mzk0MTcxODIyMDhAMTQzNDM2MDQ3NDIyNQ==
https://www.researchgate.net/publication/260299446_A_new_password_authentication_and_user_anonymity_scheme_based_on_elliptic_curve_cryptography_and_smart_card?el=1_x_8&enrichId=rgreq-4f1e4f05dfe44a51f9e1625b04dd7bfd-XXX&enrichSource=Y292ZXJQYWdlOzI3ODMwMDc4NDtBUzoyNDA1Mzk0MTcxODIyMDhAMTQzNDM2MDQ3NDIyNQ==
https://www.researchgate.net/publication/260299446_A_new_password_authentication_and_user_anonymity_scheme_based_on_elliptic_curve_cryptography_and_smart_card?el=1_x_8&enrichId=rgreq-4f1e4f05dfe44a51f9e1625b04dd7bfd-XXX&enrichSource=Y292ZXJQYWdlOzI3ODMwMDc4NDtBUzoyNDA1Mzk0MTcxODIyMDhAMTQzNDM2MDQ3NDIyNQ==
https://www.researchgate.net/publication/260299446_A_new_password_authentication_and_user_anonymity_scheme_based_on_elliptic_curve_cryptography_and_smart_card?el=1_x_8&enrichId=rgreq-4f1e4f05dfe44a51f9e1625b04dd7bfd-XXX&enrichSource=Y292ZXJQYWdlOzI3ODMwMDc4NDtBUzoyNDA1Mzk0MTcxODIyMDhAMTQzNDM2MDQ3NDIyNQ==
https://www.researchgate.net/publication/273021249_Inter_cluster_communication_and_rekeying_technique_for_multicast_security_in_mobile_ad_hoc_networks?el=1_x_8&enrichId=rgreq-4f1e4f05dfe44a51f9e1625b04dd7bfd-XXX&enrichSource=Y292ZXJQYWdlOzI3ODMwMDc4NDtBUzoyNDA1Mzk0MTcxODIyMDhAMTQzNDM2MDQ3NDIyNQ==
https://www.researchgate.net/publication/273021249_Inter_cluster_communication_and_rekeying_technique_for_multicast_security_in_mobile_ad_hoc_networks?el=1_x_8&enrichId=rgreq-4f1e4f05dfe44a51f9e1625b04dd7bfd-XXX&enrichSource=Y292ZXJQYWdlOzI3ODMwMDc4NDtBUzoyNDA1Mzk0MTcxODIyMDhAMTQzNDM2MDQ3NDIyNQ==
https://www.researchgate.net/publication/273021249_Inter_cluster_communication_and_rekeying_technique_for_multicast_security_in_mobile_ad_hoc_networks?el=1_x_8&enrichId=rgreq-4f1e4f05dfe44a51f9e1625b04dd7bfd-XXX&enrichSource=Y292ZXJQYWdlOzI3ODMwMDc4NDtBUzoyNDA1Mzk0MTcxODIyMDhAMTQzNDM2MDQ3NDIyNQ==
https://www.researchgate.net/publication/273021166_Parallel_key_management_scheme_for_mobile_ad_hoc_network_based_on_traffic_mining?el=1_x_8&enrichId=rgreq-4f1e4f05dfe44a51f9e1625b04dd7bfd-XXX&enrichSource=Y292ZXJQYWdlOzI3ODMwMDc4NDtBUzoyNDA1Mzk0MTcxODIyMDhAMTQzNDM2MDQ3NDIyNQ==
https://www.researchgate.net/publication/273021166_Parallel_key_management_scheme_for_mobile_ad_hoc_network_based_on_traffic_mining?el=1_x_8&enrichId=rgreq-4f1e4f05dfe44a51f9e1625b04dd7bfd-XXX&enrichSource=Y292ZXJQYWdlOzI3ODMwMDc4NDtBUzoyNDA1Mzk0MTcxODIyMDhAMTQzNDM2MDQ3NDIyNQ==
https://www.researchgate.net/publication/273021166_Parallel_key_management_scheme_for_mobile_ad_hoc_network_based_on_traffic_mining?el=1_x_8&enrichId=rgreq-4f1e4f05dfe44a51f9e1625b04dd7bfd-XXX&enrichSource=Y292ZXJQYWdlOzI3ODMwMDc4NDtBUzoyNDA1Mzk0MTcxODIyMDhAMTQzNDM2MDQ3NDIyNQ==
https://www.researchgate.net/publication/254056851_oPass_A_User_Authentication_Protocol_Resistant_to_Password_Stealing_and_Password_Reuse_Attacks?el=1_x_8&enrichId=rgreq-4f1e4f05dfe44a51f9e1625b04dd7bfd-XXX&enrichSource=Y292ZXJQYWdlOzI3ODMwMDc4NDtBUzoyNDA1Mzk0MTcxODIyMDhAMTQzNDM2MDQ3NDIyNQ==
https://www.researchgate.net/publication/254056851_oPass_A_User_Authentication_Protocol_Resistant_to_Password_Stealing_and_Password_Reuse_Attacks?el=1_x_8&enrichId=rgreq-4f1e4f05dfe44a51f9e1625b04dd7bfd-XXX&enrichSource=Y292ZXJQYWdlOzI3ODMwMDc4NDtBUzoyNDA1Mzk0MTcxODIyMDhAMTQzNDM2MDQ3NDIyNQ==
https://www.researchgate.net/publication/254056851_oPass_A_User_Authentication_Protocol_Resistant_to_Password_Stealing_and_Password_Reuse_Attacks?el=1_x_8&enrichId=rgreq-4f1e4f05dfe44a51f9e1625b04dd7bfd-XXX&enrichSource=Y292ZXJQYWdlOzI3ODMwMDc4NDtBUzoyNDA1Mzk0MTcxODIyMDhAMTQzNDM2MDQ3NDIyNQ==
https://www.researchgate.net/publication/254056851_oPass_A_User_Authentication_Protocol_Resistant_to_Password_Stealing_and_Password_Reuse_Attacks?el=1_x_8&enrichId=rgreq-4f1e4f05dfe44a51f9e1625b04dd7bfd-XXX&enrichSource=Y292ZXJQYWdlOzI3ODMwMDc4NDtBUzoyNDA1Mzk0MTcxODIyMDhAMTQzNDM2MDQ3NDIyNQ==

15

25. Van Oorschot, P. C., Thorpe, J.: On predictive models and user-drawn graphical
passwords, ACM Transactions on Information and System Security (TISSEC), vol.
10, issue 4, January 2008, Article No. 5 (2008)

26. Shamir, A.: How to share a secret, Communications of the ACM, vol. 22, no. 11,
1979, pp. 612-613 (1979)

27. RSA Laboratories: PKCS #b5: Password-Based Cryptographic Standard, ver-
sion 2.0, 2000. http://www.emc.com/emc-plus/rsa-labs/standards-initiatives/pkcs-
5-password-based-cryptography-standard.htm (2000)

28. Schneier, B.: Description of a New Variable-Length Key, 64-Bit Block Cipher
(Blowfish), Fast Software Encryption, Springer, LNCS, vol. 809, 1994, pp. 191-204
(1994)

29. Percival, C., Josefsson, S.: The scrypt Password-Based Key Derivation Function,
IETF, January 26, 2015. https://tools.ietf.org/html/draft-josefsson-scrypt-kdf-02
(2015)

30. Bernstein, D.J.: The Salsa20 family of stream ciphers, eSTREAM project, 2007.
http://cr.yp.to/papers.html#salsafamily (2007)

31. Password Hashing Competition (PHC): Candidates, March 31, 2014.
https://password-hashing.net/candidates.html (2014)

32. Moradi, A., Poschmann, A., Ling, S., Paar, C., Wang, H.: Pushing the Limits: a
Very Compact and a Threshold Implementation of AES. In: Advances in Cryptology
EUROCRYPT 2011 30th Annual International Conference on the Theory and
Applications of Cryptographic Techniques, vol. 6632, pp. 69 (2011)

33. Cakiroglu, M.: Software Implementation and Performance Comparison of Popu-
lar Block Ciphers on 8-bit Low-Cost Microcontroller. International Journal of the
Physical Sciences, vol. 5, issue 9, pp. 1338-1343, 18 August (2010)

34. Eisenbarth, T., Gong, Z., Guneysu, T., Heyse, S., Indesteege, S., Kerckhof, S.,
Koeune, F., Nad, T., Plos, T., Regazzoni, F., Standaert, F.-X., Oldenzeel, Loic van
Oldeneel: Compact Implementation and Performance Evaluation of Block Ciphers
in ATiny Devices. ECRYPT Workshop on Lightweight Cryptography, Louvain-la-
Neuve, Belgium (November 2011), and AFRICACRYPT 2012, LNCS, vol. 7374, pp.
172-187. Springer (2012)

35. Feldhofe, M., Rechberger, C.: A Case Against Currently Used Hash Functions in
RFID Protocols. In: Meersman, R., Tari, Z., Herrero, P. (eds.) OTM 2006 Work-
shops, LNCS, vol. 4277, pp. 372-381. Springer, Heidelberg (2006)

36. NIST: Secure Hash Standard (SHS), FIPS PUB 180-4, March 2012.
http://csre.nist.gov/publications/fips/fips180-4 /fips-180-4.pdf (2012)

37. NIST: Secure Hash Standard, FIPS 180-2, April 1995. http://csrc.nist.gov (1995).

38. Sugawara, T., Homma, N., Aoki, T., Satoh, A.: Compact ASIC Architectures for
the 512-Bit Hash Function Whirlpool. In: Chung, K.-I., Sohn, K., Yung, M. (eds.)
Information Security Applications. LNCS, vol. 5379, pp 28-40. Springer, Berlin,
Heidelberg (2009)

39. SHA3 Contest, NIST, http://csrc.nist.gov/groups/ST /hash /sha-
3/Round3/submissions_rnd3.html

40. Aumasson, J.-P., Neves, S., Wilcox-OHearn, Z., Winnerlein, C.: BLAKE2: Simpler,
Smaller, Fast as MD5, ACNS, Springer, LNCS, vol. 7954, 2013, pp 119135 (2013)

41. Bogdanov, A., Knudsen, L.R., Leander, G., Paar, C., Poschmann, A., Robshaw, M.
J. B., Seurin, Y., Vikkelsoe, C.: PRESENT: An Ultra-Lightweight Block Cipher. In:
Proceedings of Workshop Cryptographic Hardware and Embedded Systems (CHES
07) (2007)

https://www.researchgate.net/publication/220593678_On_predictive_models_and_user-drawn_graphical_passwords?el=1_x_8&enrichId=rgreq-4f1e4f05dfe44a51f9e1625b04dd7bfd-XXX&enrichSource=Y292ZXJQYWdlOzI3ODMwMDc4NDtBUzoyNDA1Mzk0MTcxODIyMDhAMTQzNDM2MDQ3NDIyNQ==
https://www.researchgate.net/publication/220593678_On_predictive_models_and_user-drawn_graphical_passwords?el=1_x_8&enrichId=rgreq-4f1e4f05dfe44a51f9e1625b04dd7bfd-XXX&enrichSource=Y292ZXJQYWdlOzI3ODMwMDc4NDtBUzoyNDA1Mzk0MTcxODIyMDhAMTQzNDM2MDQ3NDIyNQ==
https://www.researchgate.net/publication/220593678_On_predictive_models_and_user-drawn_graphical_passwords?el=1_x_8&enrichId=rgreq-4f1e4f05dfe44a51f9e1625b04dd7bfd-XXX&enrichSource=Y292ZXJQYWdlOzI3ODMwMDc4NDtBUzoyNDA1Mzk0MTcxODIyMDhAMTQzNDM2MDQ3NDIyNQ==
https://www.researchgate.net/publication/220942465_Description_of_a_New_Variable-Length_Key_64-bit_Block_Cipher_Blowfish?el=1_x_8&enrichId=rgreq-4f1e4f05dfe44a51f9e1625b04dd7bfd-XXX&enrichSource=Y292ZXJQYWdlOzI3ODMwMDc4NDtBUzoyNDA1Mzk0MTcxODIyMDhAMTQzNDM2MDQ3NDIyNQ==
https://www.researchgate.net/publication/220942465_Description_of_a_New_Variable-Length_Key_64-bit_Block_Cipher_Blowfish?el=1_x_8&enrichId=rgreq-4f1e4f05dfe44a51f9e1625b04dd7bfd-XXX&enrichSource=Y292ZXJQYWdlOzI3ODMwMDc4NDtBUzoyNDA1Mzk0MTcxODIyMDhAMTQzNDM2MDQ3NDIyNQ==
https://www.researchgate.net/publication/220942465_Description_of_a_New_Variable-Length_Key_64-bit_Block_Cipher_Blowfish?el=1_x_8&enrichId=rgreq-4f1e4f05dfe44a51f9e1625b04dd7bfd-XXX&enrichSource=Y292ZXJQYWdlOzI3ODMwMDc4NDtBUzoyNDA1Mzk0MTcxODIyMDhAMTQzNDM2MDQ3NDIyNQ==
https://www.researchgate.net/publication/221348261_Pushing_the_Limits_A_Very_Compact_and_a_Threshold_Implementation_of_AES?el=1_x_8&enrichId=rgreq-4f1e4f05dfe44a51f9e1625b04dd7bfd-XXX&enrichSource=Y292ZXJQYWdlOzI3ODMwMDc4NDtBUzoyNDA1Mzk0MTcxODIyMDhAMTQzNDM2MDQ3NDIyNQ==
https://www.researchgate.net/publication/221348261_Pushing_the_Limits_A_Very_Compact_and_a_Threshold_Implementation_of_AES?el=1_x_8&enrichId=rgreq-4f1e4f05dfe44a51f9e1625b04dd7bfd-XXX&enrichSource=Y292ZXJQYWdlOzI3ODMwMDc4NDtBUzoyNDA1Mzk0MTcxODIyMDhAMTQzNDM2MDQ3NDIyNQ==
https://www.researchgate.net/publication/221348261_Pushing_the_Limits_A_Very_Compact_and_a_Threshold_Implementation_of_AES?el=1_x_8&enrichId=rgreq-4f1e4f05dfe44a51f9e1625b04dd7bfd-XXX&enrichSource=Y292ZXJQYWdlOzI3ODMwMDc4NDtBUzoyNDA1Mzk0MTcxODIyMDhAMTQzNDM2MDQ3NDIyNQ==
https://www.researchgate.net/publication/221348261_Pushing_the_Limits_A_Very_Compact_and_a_Threshold_Implementation_of_AES?el=1_x_8&enrichId=rgreq-4f1e4f05dfe44a51f9e1625b04dd7bfd-XXX&enrichSource=Y292ZXJQYWdlOzI3ODMwMDc4NDtBUzoyNDA1Mzk0MTcxODIyMDhAMTQzNDM2MDQ3NDIyNQ==
https://www.researchgate.net/publication/220831095_A_Case_Against_Currently_Used_Hash_Functions_in_RFID_Protocols?el=1_x_8&enrichId=rgreq-4f1e4f05dfe44a51f9e1625b04dd7bfd-XXX&enrichSource=Y292ZXJQYWdlOzI3ODMwMDc4NDtBUzoyNDA1Mzk0MTcxODIyMDhAMTQzNDM2MDQ3NDIyNQ==
https://www.researchgate.net/publication/220831095_A_Case_Against_Currently_Used_Hash_Functions_in_RFID_Protocols?el=1_x_8&enrichId=rgreq-4f1e4f05dfe44a51f9e1625b04dd7bfd-XXX&enrichSource=Y292ZXJQYWdlOzI3ODMwMDc4NDtBUzoyNDA1Mzk0MTcxODIyMDhAMTQzNDM2MDQ3NDIyNQ==
https://www.researchgate.net/publication/220831095_A_Case_Against_Currently_Used_Hash_Functions_in_RFID_Protocols?el=1_x_8&enrichId=rgreq-4f1e4f05dfe44a51f9e1625b04dd7bfd-XXX&enrichSource=Y292ZXJQYWdlOzI3ODMwMDc4NDtBUzoyNDA1Mzk0MTcxODIyMDhAMTQzNDM2MDQ3NDIyNQ==
https://www.researchgate.net/publication/221239550_Compact_ASIC_Architectures_for_the_512-Bit_Hash_Function_Whirlpool?el=1_x_8&enrichId=rgreq-4f1e4f05dfe44a51f9e1625b04dd7bfd-XXX&enrichSource=Y292ZXJQYWdlOzI3ODMwMDc4NDtBUzoyNDA1Mzk0MTcxODIyMDhAMTQzNDM2MDQ3NDIyNQ==
https://www.researchgate.net/publication/221239550_Compact_ASIC_Architectures_for_the_512-Bit_Hash_Function_Whirlpool?el=1_x_8&enrichId=rgreq-4f1e4f05dfe44a51f9e1625b04dd7bfd-XXX&enrichSource=Y292ZXJQYWdlOzI3ODMwMDc4NDtBUzoyNDA1Mzk0MTcxODIyMDhAMTQzNDM2MDQ3NDIyNQ==
https://www.researchgate.net/publication/221239550_Compact_ASIC_Architectures_for_the_512-Bit_Hash_Function_Whirlpool?el=1_x_8&enrichId=rgreq-4f1e4f05dfe44a51f9e1625b04dd7bfd-XXX&enrichSource=Y292ZXJQYWdlOzI3ODMwMDc4NDtBUzoyNDA1Mzk0MTcxODIyMDhAMTQzNDM2MDQ3NDIyNQ==
https://www.researchgate.net/publication/221239550_Compact_ASIC_Architectures_for_the_512-Bit_Hash_Function_Whirlpool?el=1_x_8&enrichId=rgreq-4f1e4f05dfe44a51f9e1625b04dd7bfd-XXX&enrichSource=Y292ZXJQYWdlOzI3ODMwMDc4NDtBUzoyNDA1Mzk0MTcxODIyMDhAMTQzNDM2MDQ3NDIyNQ==
https://www.researchgate.net/publication/221239550_Compact_ASIC_Architectures_for_the_512-Bit_Hash_Function_Whirlpool?el=1_x_8&enrichId=rgreq-4f1e4f05dfe44a51f9e1625b04dd7bfd-XXX&enrichSource=Y292ZXJQYWdlOzI3ODMwMDc4NDtBUzoyNDA1Mzk0MTcxODIyMDhAMTQzNDM2MDQ3NDIyNQ==
https://www.researchgate.net/publication/221239550_Compact_ASIC_Architectures_for_the_512-Bit_Hash_Function_Whirlpool?el=1_x_8&enrichId=rgreq-4f1e4f05dfe44a51f9e1625b04dd7bfd-XXX&enrichSource=Y292ZXJQYWdlOzI3ODMwMDc4NDtBUzoyNDA1Mzk0MTcxODIyMDhAMTQzNDM2MDQ3NDIyNQ==
https://www.researchgate.net/publication/221239550_Compact_ASIC_Architectures_for_the_512-Bit_Hash_Function_Whirlpool?el=1_x_8&enrichId=rgreq-4f1e4f05dfe44a51f9e1625b04dd7bfd-XXX&enrichSource=Y292ZXJQYWdlOzI3ODMwMDc4NDtBUzoyNDA1Mzk0MTcxODIyMDhAMTQzNDM2MDQ3NDIyNQ==
https://www.researchgate.net/publication/221239550_Compact_ASIC_Architectures_for_the_512-Bit_Hash_Function_Whirlpool?el=1_x_8&enrichId=rgreq-4f1e4f05dfe44a51f9e1625b04dd7bfd-XXX&enrichSource=Y292ZXJQYWdlOzI3ODMwMDc4NDtBUzoyNDA1Mzk0MTcxODIyMDhAMTQzNDM2MDQ3NDIyNQ==
https://www.researchgate.net/publication/221291660_PRESENT_An_ultra-lightweight_block_cipher?el=1_x_8&enrichId=rgreq-4f1e4f05dfe44a51f9e1625b04dd7bfd-XXX&enrichSource=Y292ZXJQYWdlOzI3ODMwMDc4NDtBUzoyNDA1Mzk0MTcxODIyMDhAMTQzNDM2MDQ3NDIyNQ==
https://www.researchgate.net/publication/221291660_PRESENT_An_ultra-lightweight_block_cipher?el=1_x_8&enrichId=rgreq-4f1e4f05dfe44a51f9e1625b04dd7bfd-XXX&enrichSource=Y292ZXJQYWdlOzI3ODMwMDc4NDtBUzoyNDA1Mzk0MTcxODIyMDhAMTQzNDM2MDQ3NDIyNQ==
https://www.researchgate.net/publication/221291660_PRESENT_An_ultra-lightweight_block_cipher?el=1_x_8&enrichId=rgreq-4f1e4f05dfe44a51f9e1625b04dd7bfd-XXX&enrichSource=Y292ZXJQYWdlOzI3ODMwMDc4NDtBUzoyNDA1Mzk0MTcxODIyMDhAMTQzNDM2MDQ3NDIyNQ==
https://www.researchgate.net/publication/221291660_PRESENT_An_ultra-lightweight_block_cipher?el=1_x_8&enrichId=rgreq-4f1e4f05dfe44a51f9e1625b04dd7bfd-XXX&enrichSource=Y292ZXJQYWdlOzI3ODMwMDc4NDtBUzoyNDA1Mzk0MTcxODIyMDhAMTQzNDM2MDQ3NDIyNQ==
https://www.researchgate.net/publication/226808260_The_Salsa20_Family_of_Stream_Ciphers?el=1_x_8&enrichId=rgreq-4f1e4f05dfe44a51f9e1625b04dd7bfd-XXX&enrichSource=Y292ZXJQYWdlOzI3ODMwMDc4NDtBUzoyNDA1Mzk0MTcxODIyMDhAMTQzNDM2MDQ3NDIyNQ==
https://www.researchgate.net/publication/226808260_The_Salsa20_Family_of_Stream_Ciphers?el=1_x_8&enrichId=rgreq-4f1e4f05dfe44a51f9e1625b04dd7bfd-XXX&enrichSource=Y292ZXJQYWdlOzI3ODMwMDc4NDtBUzoyNDA1Mzk0MTcxODIyMDhAMTQzNDM2MDQ3NDIyNQ==
https://www.researchgate.net/publication/220425267_How_to_Share_a_Secret?el=1_x_8&enrichId=rgreq-4f1e4f05dfe44a51f9e1625b04dd7bfd-XXX&enrichSource=Y292ZXJQYWdlOzI3ODMwMDc4NDtBUzoyNDA1Mzk0MTcxODIyMDhAMTQzNDM2MDQ3NDIyNQ==
https://www.researchgate.net/publication/220425267_How_to_Share_a_Secret?el=1_x_8&enrichId=rgreq-4f1e4f05dfe44a51f9e1625b04dd7bfd-XXX&enrichSource=Y292ZXJQYWdlOzI3ODMwMDc4NDtBUzoyNDA1Mzk0MTcxODIyMDhAMTQzNDM2MDQ3NDIyNQ==

16

42. Shibutani, K., Isobe, T., Hiwarati, H., Mitsuda, A., Akishita, T., Shirai, T.: Pic-
colo: An Ultra-Lightweight Blockcipher. Cryptographic Hardware and Embedded
Systems CHES 2011, LNCS, vol. 6917/2011, pp. 342-357. Springer (2011)

43. ISO/IEC 29192:2012, International standard for
lightweight cryptographic methods, ISO/IEC, 2012,
http://www.iso.org/iso/home/store/catalogue_tc/catalogue_detail.htm?csnumber=>56425

44. Akishita, T., Hiwatari, H.: Very Compact Hardware Implementations of
the Blockcipher CLEFIA, Sony Corporation, Technical Paper, June 2011,
http://www.sony.co.jp/Products/cryptography/clefia/download /data/clefia-
hwcompact-20110615.pdf (2011)

45. Hatzivasilis, G., Theodoridis, A., Gasparis, E., Manifavas, C.: ULCL: an Ultra-
Lightweight Cryptographic Library for embedded systems, Measurable security for
Embedded Computing and Communication Systems (MeSeCCS 2014), within the
4th International Conference on Pervasive and Embedded Computing and Commu-
nication Systems (PECCS 2014), 7-9 January, 2014, Lisbon, Portugal (2014)

46. Guo, J., Peyrin, T., Poschmann, A.: The PHOTON Family of Lightweight Hash
Functions. In: Rogaway, P. (ed.) CRYPTO 2011, LNCS, vol. 6841, pp. 222-239
(2011)

47. Bogdanov, A., Knezevic, M., Leander, G., Toz, D., Varici, K., Verbauwhede, I.:
SPONGENT: A Lightweight Hash Function. In: Preneel, B., Takagi, T. (eds.) CHES
2011, LNCS, vol. 6917, pp. 312-325 (2011)

48. Guo, J., Karpman, P., Nikolic, I., Wang, L., Wu, S.: Analysis of Blake2, Cryptology
ePrint Archive, Report 2013/467 (2013)

49. BeagleBoard.org Foundation: BeagleBone manual, 2011,
http://beagleboard.org/bone (2011)

https://www.researchgate.net/publication/221355393_The_PHOTON_family_of_lightweight_hash_functions?el=1_x_8&enrichId=rgreq-4f1e4f05dfe44a51f9e1625b04dd7bfd-XXX&enrichSource=Y292ZXJQYWdlOzI3ODMwMDc4NDtBUzoyNDA1Mzk0MTcxODIyMDhAMTQzNDM2MDQ3NDIyNQ==
https://www.researchgate.net/publication/221355393_The_PHOTON_family_of_lightweight_hash_functions?el=1_x_8&enrichId=rgreq-4f1e4f05dfe44a51f9e1625b04dd7bfd-XXX&enrichSource=Y292ZXJQYWdlOzI3ODMwMDc4NDtBUzoyNDA1Mzk0MTcxODIyMDhAMTQzNDM2MDQ3NDIyNQ==
https://www.researchgate.net/publication/221355393_The_PHOTON_family_of_lightweight_hash_functions?el=1_x_8&enrichId=rgreq-4f1e4f05dfe44a51f9e1625b04dd7bfd-XXX&enrichSource=Y292ZXJQYWdlOzI3ODMwMDc4NDtBUzoyNDA1Mzk0MTcxODIyMDhAMTQzNDM2MDQ3NDIyNQ==
https://www.researchgate.net/publication/221291933_spongent_A_Lightweight_Hash_Function?el=1_x_8&enrichId=rgreq-4f1e4f05dfe44a51f9e1625b04dd7bfd-XXX&enrichSource=Y292ZXJQYWdlOzI3ODMwMDc4NDtBUzoyNDA1Mzk0MTcxODIyMDhAMTQzNDM2MDQ3NDIyNQ==
https://www.researchgate.net/publication/221291933_spongent_A_Lightweight_Hash_Function?el=1_x_8&enrichId=rgreq-4f1e4f05dfe44a51f9e1625b04dd7bfd-XXX&enrichSource=Y292ZXJQYWdlOzI3ODMwMDc4NDtBUzoyNDA1Mzk0MTcxODIyMDhAMTQzNDM2MDQ3NDIyNQ==
https://www.researchgate.net/publication/221291933_spongent_A_Lightweight_Hash_Function?el=1_x_8&enrichId=rgreq-4f1e4f05dfe44a51f9e1625b04dd7bfd-XXX&enrichSource=Y292ZXJQYWdlOzI3ODMwMDc4NDtBUzoyNDA1Mzk0MTcxODIyMDhAMTQzNDM2MDQ3NDIyNQ==
https://www.researchgate.net/publication/221274733_Very_Compact_Hardware_Implementations_of_the_Blockcipher_CLEFIA?el=1_x_8&enrichId=rgreq-4f1e4f05dfe44a51f9e1625b04dd7bfd-XXX&enrichSource=Y292ZXJQYWdlOzI3ODMwMDc4NDtBUzoyNDA1Mzk0MTcxODIyMDhAMTQzNDM2MDQ3NDIyNQ==
https://www.researchgate.net/publication/221274733_Very_Compact_Hardware_Implementations_of_the_Blockcipher_CLEFIA?el=1_x_8&enrichId=rgreq-4f1e4f05dfe44a51f9e1625b04dd7bfd-XXX&enrichSource=Y292ZXJQYWdlOzI3ODMwMDc4NDtBUzoyNDA1Mzk0MTcxODIyMDhAMTQzNDM2MDQ3NDIyNQ==
https://www.researchgate.net/publication/221274733_Very_Compact_Hardware_Implementations_of_the_Blockcipher_CLEFIA?el=1_x_8&enrichId=rgreq-4f1e4f05dfe44a51f9e1625b04dd7bfd-XXX&enrichSource=Y292ZXJQYWdlOzI3ODMwMDc4NDtBUzoyNDA1Mzk0MTcxODIyMDhAMTQzNDM2MDQ3NDIyNQ==
https://www.researchgate.net/publication/221274733_Very_Compact_Hardware_Implementations_of_the_Blockcipher_CLEFIA?el=1_x_8&enrichId=rgreq-4f1e4f05dfe44a51f9e1625b04dd7bfd-XXX&enrichSource=Y292ZXJQYWdlOzI3ODMwMDc4NDtBUzoyNDA1Mzk0MTcxODIyMDhAMTQzNDM2MDQ3NDIyNQ==
https://www.researchgate.net/publication/221291758_Piccolo_An_Ultra-Lightweight_Blockcipher?el=1_x_8&enrichId=rgreq-4f1e4f05dfe44a51f9e1625b04dd7bfd-XXX&enrichSource=Y292ZXJQYWdlOzI3ODMwMDc4NDtBUzoyNDA1Mzk0MTcxODIyMDhAMTQzNDM2MDQ3NDIyNQ==
https://www.researchgate.net/publication/221291758_Piccolo_An_Ultra-Lightweight_Blockcipher?el=1_x_8&enrichId=rgreq-4f1e4f05dfe44a51f9e1625b04dd7bfd-XXX&enrichSource=Y292ZXJQYWdlOzI3ODMwMDc4NDtBUzoyNDA1Mzk0MTcxODIyMDhAMTQzNDM2MDQ3NDIyNQ==
https://www.researchgate.net/publication/221291758_Piccolo_An_Ultra-Lightweight_Blockcipher?el=1_x_8&enrichId=rgreq-4f1e4f05dfe44a51f9e1625b04dd7bfd-XXX&enrichSource=Y292ZXJQYWdlOzI3ODMwMDc4NDtBUzoyNDA1Mzk0MTcxODIyMDhAMTQzNDM2MDQ3NDIyNQ==
https://www.researchgate.net/publication/221291758_Piccolo_An_Ultra-Lightweight_Blockcipher?el=1_x_8&enrichId=rgreq-4f1e4f05dfe44a51f9e1625b04dd7bfd-XXX&enrichSource=Y292ZXJQYWdlOzI3ODMwMDc4NDtBUzoyNDA1Mzk0MTcxODIyMDhAMTQzNDM2MDQ3NDIyNQ==
https://www.researchgate.net/publication/221291758_Piccolo_An_Ultra-Lightweight_Blockcipher?el=1_x_8&enrichId=rgreq-4f1e4f05dfe44a51f9e1625b04dd7bfd-XXX&enrichSource=Y292ZXJQYWdlOzI3ODMwMDc4NDtBUzoyNDA1Mzk0MTcxODIyMDhAMTQzNDM2MDQ3NDIyNQ==
https://www.researchgate.net/publication/221291758_Piccolo_An_Ultra-Lightweight_Blockcipher?el=1_x_8&enrichId=rgreq-4f1e4f05dfe44a51f9e1625b04dd7bfd-XXX&enrichSource=Y292ZXJQYWdlOzI3ODMwMDc4NDtBUzoyNDA1Mzk0MTcxODIyMDhAMTQzNDM2MDQ3NDIyNQ==
https://www.researchgate.net/publication/221291758_Piccolo_An_Ultra-Lightweight_Blockcipher?el=1_x_8&enrichId=rgreq-4f1e4f05dfe44a51f9e1625b04dd7bfd-XXX&enrichSource=Y292ZXJQYWdlOzI3ODMwMDc4NDtBUzoyNDA1Mzk0MTcxODIyMDhAMTQzNDM2MDQ3NDIyNQ==
https://www.researchgate.net/publication/221291758_Piccolo_An_Ultra-Lightweight_Blockcipher?el=1_x_8&enrichId=rgreq-4f1e4f05dfe44a51f9e1625b04dd7bfd-XXX&enrichSource=Y292ZXJQYWdlOzI3ODMwMDc4NDtBUzoyNDA1Mzk0MTcxODIyMDhAMTQzNDM2MDQ3NDIyNQ==
https://www.researchgate.net/publication/221291758_Piccolo_An_Ultra-Lightweight_Blockcipher?el=1_x_8&enrichId=rgreq-4f1e4f05dfe44a51f9e1625b04dd7bfd-XXX&enrichSource=Y292ZXJQYWdlOzI3ODMwMDc4NDtBUzoyNDA1Mzk0MTcxODIyMDhAMTQzNDM2MDQ3NDIyNQ==
https://www.researchgate.net/publication/221291758_Piccolo_An_Ultra-Lightweight_Blockcipher?el=1_x_8&enrichId=rgreq-4f1e4f05dfe44a51f9e1625b04dd7bfd-XXX&enrichSource=Y292ZXJQYWdlOzI3ODMwMDc4NDtBUzoyNDA1Mzk0MTcxODIyMDhAMTQzNDM2MDQ3NDIyNQ==
https://www.researchgate.net/publication/221291758_Piccolo_An_Ultra-Lightweight_Blockcipher?el=1_x_8&enrichId=rgreq-4f1e4f05dfe44a51f9e1625b04dd7bfd-XXX&enrichSource=Y292ZXJQYWdlOzI3ODMwMDc4NDtBUzoyNDA1Mzk0MTcxODIyMDhAMTQzNDM2MDQ3NDIyNQ==
https://www.researchgate.net/publication/221291758_Piccolo_An_Ultra-Lightweight_Blockcipher?el=1_x_8&enrichId=rgreq-4f1e4f05dfe44a51f9e1625b04dd7bfd-XXX&enrichSource=Y292ZXJQYWdlOzI3ODMwMDc4NDtBUzoyNDA1Mzk0MTcxODIyMDhAMTQzNDM2MDQ3NDIyNQ==
https://www.researchgate.net/publication/221291758_Piccolo_An_Ultra-Lightweight_Blockcipher?el=1_x_8&enrichId=rgreq-4f1e4f05dfe44a51f9e1625b04dd7bfd-XXX&enrichSource=Y292ZXJQYWdlOzI3ODMwMDc4NDtBUzoyNDA1Mzk0MTcxODIyMDhAMTQzNDM2MDQ3NDIyNQ==
https://www.researchgate.net/publication/221291758_Piccolo_An_Ultra-Lightweight_Blockcipher?el=1_x_8&enrichId=rgreq-4f1e4f05dfe44a51f9e1625b04dd7bfd-XXX&enrichSource=Y292ZXJQYWdlOzI3ODMwMDc4NDtBUzoyNDA1Mzk0MTcxODIyMDhAMTQzNDM2MDQ3NDIyNQ==

