
FPGA IMPLEMENTATION AND DPA RESISTANCE ANALYSIS OF A LIGHTWEIGHT
HMAC CONSTRUCTION BASED ON PHOTON HASH FAMILY

Susana Eiroa and Iluminada Baturone

Microelectronics Institute of Seville (IMSE-CNM-CSIC)
University of Seville (Dept. of Electronics and Electromagnetism)

email:{eiroa,lumi}@imse-cnm.csic.es

ABSTRACT

Lightweight security is currently a challenge in the field of
cryptography. Most of applications designed for embed-
ded scenarios often focus on authentication or on provid-
ing some form of anonymity and/or privacy. A well-known
cryptographic element employed to provide such security is
the HMAC construction. However, reported solutions are
not suitable for constrained-resource scenarios due to their
heavy approaches optimized for high-speed operations. In
order to cover this lack, a lightweight implementation of
HMAC based on the Photon family of hash functions is
given in this work. Security of the construction against dif-
ferential power attacks (DPA) is analyzed using a SASEBO-
II development board. Implementation and performance re-
sults for Xilinx Virtex-5 FPGAs of the HMAC structure is
provided.

1. INTRODUCTION

The use of constrained resource devices is widely extended
in several fields of everyday life. The most important re-
quirements to be satisfied in secure communications are data
integrity and data origin authentication. A very common
practice is the use of Message Authentication Codes (MACs)
[1]. MACs are widely employed since they can provide
security without additional mechanisms. The National In-
stitute of Standards and Technology (NIST) recommends
the use of the Keyed-Hash Message Authentication Code
(HMAC) for the primitives previously mentioned [2]. Hence,
this is the construction studied over this work.

Most of reported HMACs are usually targeted at high
speed and throughput applications that require high costs in
area and power consumption. This makes them not suitable
for constrained-resource scenarios. Therefore, the necessity
of new compact HMAC constructions has became relevant.

This work has been partially supported by P08-TIC-03674 project
from the Andalusian Regional Government and by IPT-2012-0695-390000
and TEC2011-24319 projects from Ministerio de Economı́a y Competitivi-
dad of the Spanish Government (with support from the PO FEDER-FSE).

This work presents a HMAC construction based on Pho-
ton family of lightweight hash functions, suitable for con-
strained resource devices. Its resistance against DPA side-
channel attacks is analyzed. The paper is structured as fol-
lows. Section II briefly describes the HMAC standard algo-
rithm and Photon basic characteristics. Section III presents
the hardware architecture of the HMAC structure and im-
plementation results for Xilinx FPGAs. A power analysis
attack has been developed to analyze its resistance against
side-channel attacks. Finally, conclusions are given in Sec-
tion V.

2. PRELIMINARIES: HMAC AND PHOTON
CONSTRUCTIONS

The Keyed-Hash Message Authentication Code (HMAC) rep-
resents a type of message authentication code (MAC) based
on hash functions. The input of the HMAC is a secret key,
K, and the data, text. Current HMAC standard, which is
described in [2], is essentially a two pass HMAC described
as follows:

HMAC(K, text) =
Hash[(Ko ⊕ opad)‖Hash((Ko ⊕ ipad)‖text)]

whereKo is the keyK after any necessary pre-processing to
form a multiple of the hash input block size; ipad and opad
are, respectively, the inner and outer pads with values x’36’
and x’5c’.

The security provided by HMAC constructions comes
defined by its underlying hash function. Well-known hashes
are MD5 and SHA-1. However, several attacks have been
reported since 1993 for MD5 and 2005 for SHA-1 [3]. To
solve this, NIST opened a public competition to develop a
new standard hash algorithm (SHA-3), pointing Keccak [4]
as winner. It is based on the new paradigm of sponge con-
structions [5]. Specific lightweight hash functions based on
sponge constructions for tiny devices have been also pro-
posed, as is the case of Photon family [6]. They work as
follows: each time a new input data is processed, it must be

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by idUS. Depósito de Investigación Universidad de Sevilla

https://core.ac.uk/display/132461282?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


divided into blocks (m0, m1, .., mn) of r bits before enter-
ing the function. The sponge function then proceeds in two
steps: absorbing and squeezing. During first step, blocks
are inserted into the internal state and processed in groups
of r bits. When all the input data is absorbed, r bits are pro-
vided as output until the required length is achieved. Sponge
functions allow minimizing the amount of hardware mem-
ory registers because only the bits of the internal state should
be stored. Hence, they can offer good speed-area-security
trade-off [6].

Each Photon function denoted by Photon-n/r/r’ comes
defined by its output and input rates, r’ and r, and the out-
put hash size, n, which ranges from 64 to 256 [6]. Photon-
80/20/16 using a 60 bits key has been selected herein since
it is the lightest and simplest version of the family. Mini-
mum values of Photon flavor and key (60 bits) have been
intentionally chosen in order to establish a lower bound for
security. In case that higher key length and/or pre-image
or collision values are required, bigger implementations can
be chosen without substantial difference either in the imple-
mentation (only the implementation of the Photon hash core
must be replaced), or in the model attacks.

3. HMAC IMPLEMENTATION

The system architecture of the HMAC implemented is shown
in Figure 1. It is based on Photon-80/20/16 with a key of
60 bits and considers (without any lost of generality) an in-
put text value of 256 bits (260 with required padding). It
is composed of three different modules: Registers Module,
where OPAD and IPAD are stored; In data Module, which
provides correct data to the core of the hash, and finally the
Hashing Module, which is the heart of the HMAC.

Registers

Module

In_data

Module

Hashing

Module

Hmac_out

Hmac_Ready

Key

Msg

Reset

Clk

Start

4

4

4

In_data_out

Reg_out

4

Input_Hmac

Hmac_fdbk

Fig. 1: Architecture of the HMAC implemented.

The Hashing Module shown in Figure 2 contains four
elements: the Enable HMAC Out block provides the output
of the HMAC to the exterior of the module. The controller,
Controller Hashing, synchronizes the input values for the
Hash Core. The Hash Core itself, which is the kernel of the
hashing, implements the four types of operations performed
over the internal state (the serial implementation proposed
by the authors in [6] has been selected to achieve a low area
utilization). Finally, an internal memory, HMAC Internal
Memory, formed by a set of registers is needed to store the
first and second hash values. The memory units have 4 bits.
Since the Photon provides only a part of the complete hash

digest in each squeezing step, the final value is obtained by
the concatenation of the consecutive outputs. Hence, it is
necessary to store fragments of the final hash value. The 80
bits memory can be read in serial mode, if it is the feedback
for the second hashing, or in parallel, if it is the final value.

Hashing_Module
Controller

Hashing

Hash

Core

HMAC

Internal

Memory

Enable

Hmac_Out

Hmac_ready

80Hmac_out

Hmac_fdbk 4Input_Hmac

Fig. 2: Internal structure of HMAC Hashing Module.

3.1. Operation mode of the HMAC structure

The HMAC has to perform two passes of the hash algorithm,
each with different input data sizes.

First hash generation: the input data is the concatena-
tion of M bits of the text plus K bits of the key. Hence, it
requires to process (M+K)/20 blocks. In order to absorb and
squeeze a block, a round must be run 12 times. According
to [6], a round requires (2 × d(d + 1) − 1) clock cycles,
where d is related to the size of the internal state (five bits
in Photon-80/20/16). Total time required to process all the
input data is:

(Nabsblock +Nsqzblock)× 12× (2× d(d+ 1)− 1)

Where Nabsblock is the number of blocks in the absorb-
ing phase andNsqublock is the number of blocks in the squeez-
ing phase. The selected Photon-80/20/16 for a message of
260 bits concatenated with a key of 60 bits takes 14,160
clock cycles for the first hash.

Second hash generation: the input data is now the out-
put value of the previous hash concatenated to the key. The
hash output is obtained, so, after 7,788 clock cycles because
Nabsblock and Nsqublock are now 7 and 4, respectively.

As it is noticeable, the amount of clock cycles to carry
out the HMAC is dominated by the latency of absorbing and
squeezing processes. For the current example the total la-
tency is around 21,948 clock cycles. A considerably amount
of clock cycles is devoted to absorbing the blocks related to
the key: (2× d(d+ 1)− 1)*K/20 clock cycles in each hash
calculation. In the case of a 60-bit key, these are 2,124 clock
cycles. If several messages are to be authenticated with the
same key, the intermediate results of the hash function on
the blocks related to the key can be precomputed once (at
the time of generating the key or before its first use). This
way, the total latency could be reduced to above 17,700 cy-
cles. The saving in the total latency is more significant when
authenticating short streams of data.

3.2. Implementation results

Table 1 compares implementation results of Photon-80/20/16
hashing module (see Figure 2) with MD5, SHA-1, SHA-2



Table 1: Hash functions implementation in FPGAs

Throughput Power Area Max. Freq.

[Gbps] [mW] [Slices] [MHz]

MD5 [7] 0.744 - 613 96

SHA-1 [8] 0.518 - 518 82

SHA-256 [9] 1.98 210@24MHz 609 260

Keccak [9] 8.397 290@24MHz 1,433 205

Keccak [10] 0.077 - 188 285

Photon
0.007 0.35@25MHz 149 250

(this work)

Table 2: Area occupation of HMAC IP cores

HMACSHA-1 [11] HMACSHA-256 [12] This work

Area [Slices] 6,011 3,463 199

Device Virtex-E Virtex-E Virtex-5

and SHA-3 winner (Keccak) 1. From results shown in Table
1 it can be concluded that Photon-80/20/16 implementation
is competitive in area and power consumption. The cost to
pay is a low operation speed in terms of throughput and la-
tency. Hence, it can be a suitable option for non high-speed
constrained-resource scenarios.

Table 2 shows area results in FPGAs of some HMAC IP
cores based on SHA-1, SHA-2 and Photon-80/20/16 imple-
mented in this work 2. It is apparent that the occupied area
decreases substantially by using HMAC structure described
above. Of course, this comparison, should not be strictly
restricted to area due to the different security level provided.

Table 3 shows a summary of HMAC-Photon-80/20/16
implementation features in a Virtex-5 FPGA of Xilinx. Val-
ues obtained include the padding (carried out by the In data
module) and the text and key input fragmentation. There-
fore, the structure behaves as an autonomous entity without
additional hardware requirements. The maximum working
frequency is 114 MHz. This means that for 320-bit mes-
sage (60-bit key and 256-bit text), the total latency of the
HMAC is 192,5 µs without reusing the key (155,3 µs if the
key is reused). Power consumption values were obtained
using the Xpower Analyzer tool from Xilinx ISE 12.4. The
total HMAC process would require 440µW@25MHz and
870µW@50MHz. More than 70% of those values corre-
spond to the hash core process.

Table 3: HMAC-Photon-80/20/16 features for Virtex-5

Power [mW] Area [Slices] Max. Freq. [MHz] Latency[µs]

0.44@25MHz 199 114 192.5@114MHz

1Results of MD5 and SHA-1 correspond to Virtex 2 and Virtex 1
whereas SHA-256, Keccak and Photon are provided for Virtex 5.

2To the best of our knowledge, there are not results for HMAC imple-
mentations based on SHA-3 candidates.

4. DPA RESISTANCE OF THE IMPLEMENTATION

Theoretical security analysis about sponge functions and Pho-
ton structure has been performed in [5] and [6]. From data
presented in those works, it is immediate to calculate that
the HMAC based on Photon-80/20/16 with 60-bit key has
60 bits of security with collision and pre-image resistance
of 240. However, no tests have been performed to define
their resistance against the so called hardware attacks. In or-
der to define the resistance of the HMAC structure to power
analysis, a DPA has been performed over the construction.
Typically, DPA attacks follow a well-defined strategy con-
sisting in the next steps [13]: a) choose an intermediate value
of HMAC, obtain the function that models the relationship
among the value, the input message, and the key, and map
it into power consumption values (usually with Hamming
Distance); 2) obtain real power consumption and; 3) com-
pare hypothetical model with real power traces (usually, by
calculating the correlation coefficient between both models).

In the HMAC construction considered, the secret key K
only affects the internal state value of the sponge function
before the text is inserted. The internal state value does not
change if K is fixed. From an attacker point of view, there
is no difference between revealing the internal state and the
key itself. The basic idea of the attack described herein is to
find the internal state with differential power analysis.

The complete hash procedure carried out by any Photon-
80/20/16 presents an internal state of 5x5 cells of 4 bits per
cell. The data is absorbed in groups of 20 bits and a permu-
tation, ’P’, is applied to the 25 cells presented in the internal
state. A permutation consists in applying 12 times the fol-
lowing four operations: AddConstant, SubCell, ShiftRows
and MixColumnsSerial [6]. As a consequence, if the key
has 60 bits, it is necessary to wait until 3 key-related blocks
are processed before the text enters the Photon internal state.
The intermediate results selected to be analyzed during the
attack are the differences in the values of the flip-flops as-
sociated to the cells in the internal state. Since the text is
absorbed in the state and the cells are displaced as shown
in Figure 3, the intermediate results are measured after the
ShiftRows operation of the first round.

According to this, the three models (HD1, HD2, and
HD3) proposed for obtaining each of the five first secrets ap-
pear described in Equations 1-3 (where ’Sb’ states for Sbox
operation, and ’HW’ for Hamming Weight).

HD1 = HW [Sb(M00⊕ S00I ⊕ 1)⊕ Sb(M01⊕ S01I)] (1)

HD2 = HW [Sb(M02⊕ S02I)⊕ Sb(M03⊕ S03I)] (2)

HD3 = HW [Sb(M03⊕ S03I)⊕ Sb(M04⊕ S04I)] (3)

Each value allows to obtain two secrets simultaneously
with each hypothetical value. Since there is no direct re-
lation between the input text and the secrets for the rest of
the internal state during first round, it is necessary to wait



S00 S01 S02 S03

S10 S11 S12 S13

S20 S21 S22 S23

S30 S31 S32 S33

S40 S41 S42 S43

S04

S14

S24

S34

S44

AddConstant

Sbox
(Sb)

M00 M01 M02

S03 S04 S10 S11

S13 S14 S20 S21

S23 S24 S30 S31

S33 S34 S40 S41

S43 S44

S12

S22

S32

S42

AddConstant

Sbox
(Sb)

M03 M04

Sb((S00xorM00)+1) Sb(S01xorM01) Sb(S02xorM02)

S00 S01 S02 S03

S10 S11 S12 S13

S20 S21 S22 S23

S30 S31 S32 S33

S40 S41 S42 S43

S04

S14

S24

S34

S44

AddConstant

Sbox
(Sb)

M00 M01 M02

S03 S04 S10 S11

S13 S14 S20 S21

S23 S24 S30 S31

S33 S34 S40 S41

S43 S44

S12

S22

S32

S42

AddConstant

Sbox
(Sb)

M03 M04

Sb((S00xorM00)+1) Sb(S01xorM01) Sb(S02xorM02)

Fig. 3: Absorbing process of the message: (a) initial state with 5x5 cells, (b) the fourth block is absorbed.

until the second round to discover the remaining 20 secrets.
Models used are similar to those presented in Equations 1-3,
assuming that the initial state is given by the values of the
cells presented at the end of the first round.

In order to obtain the power consumption traces exper-
imentally, the HMAC construction was implemented in a
SASEBO-II board which contains two FPGAs [14]. One of
them (Virtex-5) usually implements the cryptographic tar-
get elements, and the other (Spartan-3A) acts as interface
to communicate with the external world and to control the
measurement modules, such as the oscilloscopes, needed to
obtain the power values. In this work, the HMAC module
was inserted into the Virtex-5 FPGA whereas the Spartan-
3A FPGA stored the secret key and acted as a bridge be-
tween the HMAC and a PC. A C program was used to record
the traces to generate the plaintexts, and to activate the os-
cilloscope that measures the power traces when processing
each text (the used oscilloscope had 1-GHz bandwidth and
a resolution of 8 bits).

Using the previously defined set-up and models, a total
of 13,000 input plain texts and 10,000 points per trace were
required to obtain a successful DPA attack, which recovers
that conform the secret internal state of the Photon hash.

5. CONCLUSIONS

The implemented HMAC based on Photon-80/20/16 fea-
tures low power and hardware costs together with a suit-
able speed when processing short messages.Using this pro-
posal, well-known authentication protocols can be used in
lightweight applications, avoiding the construction of ad-
hoc designed protocols. HMAC security resistance against
differential power attacks has been tested. Results show that
even for such a constrained implementation without any pro-
tection and without key refreshment, it is possible to inter-
change up to 13,000 messages without compromising the
system security.

6. ACKNOWLEDGMENTS

Authors would like to thank the EMSEC of Ruhr-University
of Bochum, in particular, A. Moradi and C. Paar.

7. REFERENCES

[1] M. Bellare, R. Canetti, and H. Krawczyk, “Keying hash func-
tions for message authentication,” in CRYPTO’96, 1996, pp.
1–15.

[2] J. M. Turner, “The keyed-hash message authentication code
(hmac),” Federal Information Processing Standards Publica-
tion, 2008.

[3] I. Mironov, “Hash functions: Theory, attacks, and applica-
tions,” Microsoft Research, Silicon Valley Campus, 2005.

[4] G. Bertoni, J. Daemen, M. Peeters, and G. Van Assche, “Kec-
cak sponge function family main document,” National Insti-
tute of Standards and Technology (NIST), 2009.

[5] ——, “Sponge functions,” in ECRYPT Workshop on Hash
Functions 2007.

[6] J. Guo, T. Peyrin, and A. Poschmann, “The Photon family
of lightweight hash functions,” in CRYPTO’11. Springer,
2011, pp. 222–239.

[7] K. Jarvinen, M. Tommiska, and J. Skytta, “Hardware im-
plementation analysis of the MD5 hash algorithm,” in
HICSS’05, 2005, pp. 298a–298a.

[8] K. Jarvinen, “Design and implementation of a SHA-1 hash
module on FPGAs,” Helsinki University of Technology Signal
Processing Laboratory, 2004.

[9] K. Kobayashi, J. Ikegami, M. Knezevic, E. X. Guo, S. Mat-
suo, S. Huang, L. Nazhandali, U. Kocabas, J. Fan, and
A. Satoh, “Prototyping platform for performance evaluation
of SHA-3 candidates,” in HOST’10, 2010, pp. 60–63.

[10] S. Kerckhof, F. Durvaux, N. Veyrat-Charvillon, F. Regazzoni,
G. de Dormale, and F.-X. Standaert, “Compact FPGA imple-
mentations of the five SHA-3 finalists,” in CARDIS’11, pp.
217–233, 2011.

[11] H. Michail, A. Kakarountas, A. Milidonis, and C. Goutis,
“Efficient implementation of the keyed-hash message authen-
tication code (HMAC) using the SHA-1 hash function,” in
ICECS’04, 2004, pp. 567–570.

[12] M. Juliato and C. Gebotys, “FPGA implementation of an
HMAC processor based on the SHA-2 family of hash func-
tions,” University of Waterloo, Tech. Rep, 2011.

[13] S. Mangard, E. Oswald, and T. Popp, Power analysis attacks:
Revealing the secrets of smart cards. Springer-Verlag New
York Inc, 2007, vol. 31.

[14] “Side-channel attack standard evaluation board
SASEBO-GII specification.” [Online]. Available:
http://www.toptdc.com/en/product/sasebo/


