380 research outputs found

    Seven Dimensions of Portability for Language Documentation and Description

    Full text link
    The process of documenting and describing the world's languages is undergoing radical transformation with the rapid uptake of new digital technologies for capture, storage, annotation and dissemination. However, uncritical adoption of new tools and technologies is leading to resources that are difficult to reuse and which are less portable than the conventional printed resources they replace. We begin by reviewing current uses of software tools and digital technologies for language documentation and description. This sheds light on how digital language documentation and description are created and managed, leading to an analysis of seven portability problems under the following headings: content, format, discovery, access, citation, preservation and rights. After characterizing each problem we provide a series of value statements, and this provides the framework for a broad range of best practice recommendations.Comment: 8 page

    Computer-Assisted Language Learning and the Revolution in Computational Linguistics

    Get PDF
    For a long period, Computational Linguistics (CL) and Computer-Assisted Language Learning (CALL) have developed almost entirely independently of each other. A brief historical survey shows that the main reason for this state of affairs was the long preoccupation in CL with the general problem of Natural Language Understanding (NLU). As a consequence, much effort was directed to fields such as Machine Translation (MT), which were perceived as incorporating and testing NLU. CALL does not fit this model very well so that it was hardly considered worth pursuing in CL. In the 1990s the realization that products could not live up to expectations, even in the domain of MT, led to a crisis. After this crisis the dominant approach to CL has become much more problem-oriented. From this perspective, many of the earlier differences disadvantaging CALL with respect to MT have now disappeared. Therefore the revolution in CL offers promising perspectives for CALL

    The quest for probabilistic parsing

    Get PDF

    Carbon Sequestration in Synechococcus Sp.: From Molecular Machines to Hierarchical Modeling

    Full text link
    The U.S. Department of Energy recently announced the first five grants for the Genomes to Life (GTL) Program. The goal of this program is to "achieve the most far-reaching of all biological goals: a fundamental, comprehensive, and systematic understanding of life." While more information about the program can be found at the GTL website (www.doegenomestolife.org), this paper provides an overview of one of the five GTL projects funded, "Carbon Sequestration in Synechococcus Sp.: From Molecular Machines to Hierarchical Modeling." This project is a combined experimental and computational effort emphasizing developing, prototyping, and applying new computational tools and methods to ellucidate the biochemical mechanisms of the carbon sequestration of Synechococcus Sp., an abundant marine cyanobacteria known to play an important role in the global carbon cycle. Understanding, predicting, and perhaps manipulating carbon fixation in the oceans has long been a major focus of biological oceanography and has more recently been of interest to a broader audience of scientists and policy makers. It is clear that the oceanic sinks and sources of CO2 are important terms in the global environmental response to anthropogenic atmospheric inputs of CO2 and that oceanic microorganisms play a key role in this response. However, the relationship between this global phenomenon and the biochemical mechanisms of carbon fixation in these microorganisms is poorly understood. The project includes five subprojects: an experimental investigation, three computational biology efforts, and a fifth which deals with addressing computational infrastructure challenges of relevance to this project and the Genomes to Life program as a whole. Our experimental effort is designed to provide biology and data to drive the computational efforts and includes significant investment in developing new experimental methods for uncovering protein partners, characterizing protein complexes, identifying new binding domains. We will also develop and apply new data measurement and statistical methods for analyzing microarray experiments. Our computational efforts include coupling molecular simulation methods with knowledge discovery from diverse biological data sets for high-throughput discovery and characterization of protein-protein complexes and developing a set of novel capabilities for inference of regulatory pathways in microbial genomes across multiple sources of information through the integration of computational and experimental technologies. These capabilities will be applied to Synechococcus regulatory pathways to characterize their interaction map and identify component proteins in these pathways. We will also investigate methods for combining experimental and computational results with visualization and natural language tools to accelerate discovery of regulatory pathways. Furthermore, given that the ultimate goal of this effort is to develop a systems-level of understanding of how the Synechococcus genome affects carbon fixation at the global scale, we will develop and apply a set of tools for capturing the carbon fixation behavior of complex of Synechococcus at different levels of resolution. Finally, because the explosion of data being produced by high-throughput experiments requires data analysis and models which are more computationally complex, more heterogeneous, and require coupling to ever increasing amounts of experimentally obtained data in varying formats, we have also established a companion computational infrastructure to support this effort as well as the Genomes to Life program as a whole.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/63164/1/153623102321112746.pd

    The quest for probabilistic parsing

    Get PDF

    Speech tools and technologies

    Get PDF

    Adjunction in hierarchical phrase-based translation

    Get PDF

    The Human Language Project

    Full text link
    This is a "white paper" proposing the construction of a "universal corpus" containing digitizations of the world's languages. The proposed corpus is community-built and community-owned.http://deepblue.lib.umich.edu/bitstream/2027.42/64990/1/proposal.pd

    February 9, 1945

    Get PDF
    The Breeze is the student newspaper of James Madison University in Harrisonburg, Virginia
    corecore