

The quest for probabilistic parsing

Citation for published version (APA):
Ophoff, H. R. (1992). The quest for probabilistic parsing. (IPO rapport; Vol. 852). Instituut voor Perceptie
Onderzoek (IPO).

Document status and date:
Published: 21/05/1992

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 17. Nov. 2023

https://research.tue.nl/en/publications/f19a23ea-534e-4aaa-b889-1965f82a8740

lnstitute for Perception Research
PO Box 513,5600 MB Eindhoven

21.05.1992

Rapport no. 852

The Ouest for Probabilistic
Parsing

H.R. Ophoff

The Quest for Probabilistic Parsing

Hielko R. Ophoff
May 1992

master thesis

supervisors:
prof. dr. ir. A. Nijholt
dr. R. Leermakers
dr. ir. H.J.A. op den Akker
drs. N. Sikkel

Contents

preface

I overview
l.l introduction

1.2.1 goal

t.2.3
1.2.4
r.2.5

1.2 historical development

1.2.2 the recognizer
corpus and grammars
reflection
the ROSETTA grammar

6

o
6
6
6
7

7

8
8
I
9
I
I
I

1.2.6 examining grammaf,s . .

1.2.7 probabilistic parsing
1.2.8 the parser model
f .2.9 the result

f .3 contents

I Recursive Ascent Marcus Look-Ahead Parsers

2 recursive ascent Marcus parsers
2.1 introduction
2,2 notational rema^rks

2.3 example
2.4 construction of the parser

2.4.1 auxiliary functions
2.4.2 parsing: the action functions
2.4.3 parsing: dimb functions

2.í review
2.6 correctness

I complexity of RAM parsens
3.1 introduction
3.2 memoization
3.3 §pace complexity

3.3.f number of items
3.3.2 number of states

tl
t2
t2
t2
l3
t7
t7
l8
r9
2t
23

24
24
24
24
24
26
26

I

3.4 time complexity

CONTENTS

3.5 conclusions

2

4 the
4.1
4.2
4.3
4.4

use of attributes in RAM parsers

27

28
28
28
29
30
30
31

32

33
33
34

34
35
36
37
37
37
40
4t
42
42

4t

48
48
49
50
50

51
5r
52
52
62
54
55
56

introduction
definition
effect on parsing
evaluation of attributes
4.4.1 evaluation in the first phase

4.4,2 evaluation in the second phase
4.5 conclusions

6 Marcus LR, parsers
5.1 introduction . .

6.2 functional tR(0) paÍser

5.3 auxiliary functions
5.4 constructing the MaLR(1) parser: step I
5.5 constructing the MaLR(1) parser: step 2
5.6 constructing the MaLR(l) parser: step 3

5.6.f introduction...
5.6.2 construction

5.7 review
5.8 complexity
5.9 reduction of look-ahead porver

5.10 MaLR(k) parser

rI Grammars

6 large grammars of the English language
6.1 introduction
6,2 augmented phrase stÍucture granrmars

6.3 other approaches
6.4 conclusions

7 the corpus grammar
7.1 desoiption
7.2 elimination of auxiliary categories and relations
7.3 over-generation
7.4 conclusions

I a trammar extracted from the corpus
8.1 introduction
8.2 multiple replication of symbols

8.2.1 existence
8.2.2 representation in grammar rules
8.2.3 effect on the grammar

8.3 optional symbols
8.4 other reductions

46
46
46
47
47

CON?ENT§

8.5 number of grammar rules
8.5.1 grammars without e-rules

8.5.2 grammars with e-rules
8.5.3 the number of sentences with respect to the number of gramma.r rules

8.6 conclusions

e context-fneegrammars
9.1 introduction
9.2 grammar size

9.2.f introduction
9.2.2 aux-categories
9.2.3 optional symbols

9.3 number of parsing states
9.4 parsing complexity

9.4.1 computational complexity and e-rules
9.4.2 computational complexity and parsing search space .

9.5 conclusions

UI ProbabilisticParsing

l0 probabilistic parsing
10.1 introduction
10.2 statistical significance , computability and corpus size

10.2.f probabilistic parsing with subtrees
10.2.2 oiticism
10.2.3 conclusions

10.3 probabilistic context-free gramma"rs

f0.3.1 desoiption
f0.3.2 experiments with PCFGs

f0.4 ID/IP grammars used for probabilistic parsing
10.4.1 desoiption

3

58
58
59
59
60

61
6l
6l
6l
6l
63
63
64
64

65
66

67

10.4.2 oiticism

68
68
69
69
69
7t
7l
7l
72
73
73
73
74

74

74

75

75

10.5 context-sensitive probabilistic parsing
10.5.1 Pearl
10.5.2 probabilistic pa,rsing of messages

f0.5.3 probabilistic LR parsers
10.6 conclusions

11 probabilistic LR-like parsing methods
l1.l introduction
ll.2 probabilistic LR parsing by Briscoe and Carroll

ll.2.l the idea
11.2.2 experiment
11.2.3 the experiment criticized

11.3 a model for probabilistic parsing

7A
76
76
76
77
77
78
78lf.3.l look-aheads

CON?ENTS

11.3.2 subdividing reductions .

ll.4 conclusions

12 the quest for probabilistic parsing
12.l introduction
12.2 statistical significance, grammaÍs, paÍsers and corpora
12.3 gramma.rs for probabilistic LR parsers

12.3.1 size of grammars
12.3.2 statistical significance and grammars . .

12.3.3 conclusions
12.4 probabilistic LR parsers
12.5 corpora

12.5.1 the need for a large analyzed corpus
12,5.2 making a new analyzed corpus

12.6 the trade-off between grammars, parsers and corpora

12.7 a proposal for a decisive experiment with probabilistic parsing

A complexity

B implementation of the recursive ascent Marcus parser
B.l overview
8.2 a small reduction
8.3 recognizing with tree information
B.4 efficiency

bibliography

4

80

81

83
83
83

84

84

85
86
86
86
86

87
88
88

89

90
90
9l
9l
92

e3

preface

This report is the result of my work that started at Phiïps Research Laboratories in
Eindhoven and finished at the Institute for Perception Research in Eindhoven. The work
started in September l99l and finished in May 1992. I worked on the Robust Parser
Project. Goal of this project was the development of a pa^rseÍ for naturd languages with
use of statistics. I did my work as part of my study in Computer Science at the University
of Twente.

I would like to thank René Leermakers for his ideas and support. My work is based
on his ideas. I would also like to thank Jan Odijk for his assistance with typical linguistic
issues and Lex Augusteijn for his assistance with the use of the ETEGANT system. Anton
Nijholt, Klaas Sikkel and Rieks op den Akker have given valuable advices, comment and
sympathy. Thanks. Thanks to the (social) §upport of Lisette Appelo, Joep Rous and
Paul Jansen, I have worked with much pleasure.

5

Chapter 1

aovervlel\r

1.1 introduction
Parsingr of a natural language2 for la"rge domains3 is a big problem. A lot of information
that people use to determine sentence structures is not available for pa.rsers (because of
representation problems). Because of this lack of information, the parser can often assign

a lot of parse trees (sometimes a few hundred) to one sentence. The computation of these
parse trees can talie a very long time. For a lot of applications, parsing has to be done
quickly.

Another problem is the need for a grammar{. It is hard to write a grammar that
describes all possible sentence structures of a language.

In the Robust Parser Project, it was tried to find a solution to these problems. It was
tried to develop a parser that does not compute all possible parse trees of a sentence, but
only the most Íeasonable one. It has to compute such a parse tree very fast. The parser
must also compute parse trees for syntactical correct or dmost correct sentences that are
not desoibed by the grammar.

During the project this goal of developing a robust paxser disappeared. The project
became a quest for probabilistic parsing. In this chapter, the development of the project
is sketched. The organization of this report is given in the last section of this chapter.

L.2 historical development

1.2.t goal

The first god of the project was the development of a robust pa^rser, working in linears (or
almost linear) time. Robustness means that the parseÍ will assign an acceptable parse tree
to grammatical sentences and to somewhat incorrect sentences that the gratnmar under
consideration cannot generate. Whether a parse tree is acceptable, is an application

lA paraer rssignc onc or more sentcncc structures to r aentcnce. A rcntence stlucture ie named r parlc
tree. Parsing ie 3bc rssignation process.

2Ndural languages are lenguagcs likc English ud Dutch.
tA emdl domain is for example the cct oÍ eentcnceg used Íor wcather Íorccrsts.

'A grarnmar describcs the poseible sentence structures of a language. It conaists of grammar ruleg. A
prr§,e tree is made by using a numbcr oÍ grammar rules.

lln gcneral, the time needed to parse a sentencc grows polynomially with respcct l.o scntenc€ length.

6

CHAPTDR 1. OVERVIEW

dependent question. Some applications only need the general structure of a sentence.
Small eÍrors in the structure are ofno consequence. For other applications, one structural
error would make the pa.rse tree useless. The parser must deliver exactly one parse tree
for a sentence.

If the parser has to work in linear time, the parser typically has to make the correct
decisions at once. In practice this is impossible. But it may be possible to make the
Pa^rser work in linear time by forcing a decision at the moment the parser can do more
than one action. §tatistical information may indicate which decision is most likely. For a
patser wotking in linear time, it is hard to deliver the best parse tree for a given sentence.
However, only an acceptable parse tree has to be delivered.

Because collecting statistical information about paxser decisions is only useful if there
are significant differences between competitive decisions, we wanted to use a pa^rser that
uses look-aheads6. The longer the look-ahead, the less the number of parsing conflicts
(a parsing conflict is a set competitive decisions) and the more distinguishing statis-
tical information may work. Nonterminal as well as terminal symbolsT will be used
as look-aheads. The parser/recognizers model is the Marcus-like parser of Leermakers
([Leermakers, lgg3]).

To reach the goal of a robust parser working in (almost) linear time, a
parser/recognizer generator had to be made. A gramma,Í was also needed, together with
statistical information.

1.2.2 the recognizer

An implementation of the recognizer was made (see appendix B). Starting point was
a grammar of a context-free, attribute-free grammar. With use of the Elegant system
([Augusteijn, 1990]), all the parsing information that can be computed before the actual
recognition of sentences is generated. C-code that represents the recognizer is delivered.
After compiling this code, there is an executable recognizer. In addition, functions for
collecting statistical information were implemented.

1.2.3 corpus and grammars

For the grammar and the statistical information, a corpus with analyzed sentences (for
every sentence one par6e tree) seems pre-eminently suitable.

lve used a part of the LDBe coÍpus from the University of Nijmegen
([Halteren & Heuvel, 1990]). The corpus consists of several pieces of English text fràm
the 'real world'. Together with the corpus we got a grammar from the developers of the
LDB-corpus that describes almost all sentences from the corpus. Because this gra,mmar

cThe paracr reads a lcrtence from lcft to right. While the parser reads I tentcnce, it has to tele 1,
lot of dccisions. IÍ the parccr may look at thc next occurring words of the rntence, it can tale bcttcr
dccigiong. Thcrc ncxt occurring words that the parser may lool tt, Erc named look-ehcadg. Thc next
occurring rord can bc uaed as lool-$ead, but also a s€quencc of next occurring words can bc uecd rs
lool-ahcad. In thc latter crse, thc loo&-ahead ie longer than in the formq crsc. Other rymbola than
wordg cm be used as look-rherd.

?Termiual rymbote ere the ryntacticel classes of the words oÍ the ccnt nce, nonterminal rymbolr lre
ryatrticel clec6cr of grcupa of worda.

tA recognizer rays whether there crigts a parsc tree for r gcntcnce.
tlinguistic DataBasc

7

CHAPTER 1. OVERVIEW

has not been documented and because the grammar seemed difficult to work with, first
we did not use this grammar. Later examination showed that this grammar is untractable
for our purpose.

Flom the parse trees of the sentences from a part of the corpus, a grammar was
extracted (gra,mma.r G6'). Grammar Gc describes precisely the parse trees of the corpus
sentences. Hence, it should suffice for collecting statistical information.

Grammar G6: appeared to be relatively big. G6 had more grammar rules than there
are sentences from which the grammar rules have been derived. A lot of grammar rules
are rarely used (often only once a rule is used in a parse tree of a corpus sentence). So
two problems appeared:

o the generated parseÍ is too big for experiments to work with

r collecting statistical information is not useful because too many paraer decisions
ra^rely occur

All the grammar rules that were seldomly used in the corpus trees, were Íemoved from
the grammat Gc. The resulting gÍammax is manageable. Our assumption was that a set
of commonly used grammar rules e.xists that forms the principal pa,rt of the rules which
are used in parse trees. The uncommonly used grammar rules describe exceptional cases

and are not interesting for a robust parcer. It appeared that the reduced grammar only
could generate a restricted number of very short sentences, thus our assumption was too
optimistic.

A question is what the reduced grammar actually describes. Apparently, rarely occur-
ring gramma.r rules are essential for parsing sentences, so the commonly used grammar
rules do not fully describe general sentence structures (parse trees). Then it also will not
be meaningful to collect statistical information about decisions of the parseÍ based on the
reduced grammar. It also will be very difficult to collect statistical information with this
reduced grammar.

1.2.4 reflection

On the one hand it was interesting to look more precisely at the grammar Gc. lVhy uses

Gc so many rules to describe the sentences from rvhich it was extracted? Is it possible to
use fewer rules? How much rules are absolutely necessary? Which factors are important
when the number of rules has to be reduced? What are the effects on parsing when the
gramma,r is transformed?

On the other hand it may be possible to use another grammaÍ. In the ROSETTA
system a grammar for the English language is being used.

1.2.5 the ROSETTA grammar

First we tried to use the ROSETTA grammar. Using a grammar that does not correspond
with the grammar used to make up the parse trees of the analyzed corpus sentences causes
a problem. It wil be difficult to collect statistical information from the pa.rse trees. The
parse trees have to be rewritten according to the new grammaJ. lVe could try to do this
by parsing the corpus sentences with the new grammar, using information from the parse
trees of the sentences build with the old grammar (Gc). But first we had to build a
pa^rser based on the ROSETTA gramma,r.

8

CHAPTDR 1. OVDRVIEW

The attributes used in the grammar were eliminated. The grammar has been written
in regular expressions. We rewrote the grammar in BNF notation (a growth from 20
to 300 gramma,r rules). The resulting recognizer needed very much time to recognize a
sentence. After eliminating the attributes the grammar became strongly over-generating.
Because of the existence of many empty rewritings (e-rewritings) it could be that the
Parser has to do a lot of unnecessary work. So a variant on the recognizer was made
that uses e-rules more efrciently. But there were other reasons for the complexity in the
parsing process (see chapter 8), so it was not possible to use this grammar.

L2.A examininggrammars

ïVe had three gramma^rs: the grammar delivered with the corpus, the gramma.r extracted
from the coÍpus (Gc) and the grammar used in the ROSETTA system. None of these
could be used for statistical parsing. So it seemed useful to examine these grammars.

Questions mentioned before had to be answered. The grammars could be compared
with each other. From an examination of the three grammars, conclusions about writing
context-free grammaf,s for probabilistic parsing could be extracted.

1.2.7 probabilistic parsing

Other people have tried to make parsers that work with statistical information. Do they
use good models? Is our approach with a Marcus-like parser a good approach? We
examined other approaches and criticized them. We concluded that our approach is one
of the most realistic approaches for developing a probabilistic parser for common English.

The way a gtammax is organized, has an effect on the information that can be ex-
pressed with the statistics. These eflects were examined.

1.2.8 the parser model

In our approach we promoted the use of the Recursive Ascent Marcus Parsers (RAM
parsers). lVe examined the properties of such a parser. The effects on the parser of the
way a grammar is organized were examined. Because RAM parsers could be very large for
a large grammax of a natural language, we developed a Reduced Recursive Ascent Parser,
the size of which does not exponentially grow with respect to the number of look-aheads.

1.2,9 the result

We were not able to experiment with probabilistic parsers. But we could conclude with
the properties of the grammar, the parser, the statistical information and the corpus that
are needed for a good, significant experiment with probabilistic parsing. It turned out
that a realistic experiment that can lead to a conclusion about the usability of statistical
inÍormation for parsing will take a lot of work. Such an experiment can only be done in
cooperation with other research groups.

1.3 contents

There are three parts in this report. In the first part, we describe the Recursive Ascent
Ma.rcus Parser and its properties. \À'e also describe an extension of the Recursive Ascent

I

CTIAPTER 1. OVERVIEW 10

LR(Q) parcer with Marcus-like look-aheads. In the second part, context-free grammars

a,re examined. Probabilistic parsing is examined in part three.

Part I

Recursive Ascent Marcus
Look-Ahead Parsers

ll

Chapter 2

recursive ascent Marcus parsers

2.L introduction
In this chapter we construct a model for Marcus parsers. \4'e use the recursive ascent
implementation for these parsers. In this way, parseÍs can be described functionally.
This has some benefits (see [Leermakers, 1992]). The parsers use constituent look-aheads.
Because the use of constituent look-aheads is essential for Marcus parsers, we name our
parsers recursive ascent Marcus (RAM) parsers.

The chapter starts with some notational remarks. An example that introduces some
ideas used in the parser model is given. A formal construction of the pa^rsers follows. In
the last section of the chapter we prove the correctness of the parser model. In chapter
3 we ora,nrine the (time and space) complexity of the parser. In chapter 4 the parser is
extended so that attributes can be used. In chapter 5 another recursive ascent Ma,rcus
parser is described. In fact we do not describe parsers but recognizers. The recognizers
we describe can always be extended with (synthesized) attribute evaluation components.
So the recognizers can always be extended to parsers.

2.2 notational remarks

lVe expect the reader of this repoÍt to have some knowledge of LR-like parsing techniques.
Vr is the set of terminal symbols (lexical categories). V;y is the set of nonterminal symbols.
Vr nVN = 0. Vr UVy = V.

In general, symbols like A, Br...are nonterminals (r{,8r... € Vrv), xttxzt... e Vr
atd XrYrZ g V. The greek symbols o,p,... are used for representing symbols strings,
fi ar§t... e V'. e represents the empty string.

lVe want to have a pa.rser with constituent look-aheads. When the parser tales a
decision, the parser has to see look-ahead symbols. These look-aheads are the next
symbols to process. For representing symbols that have been recognized and the symbols
the parser has not yet recognized we use dotted items. An item is of the form rl7 + a.P
with .A E Vyr1,a,§ e V' and there is a grammar rule A - 6 with ó7 = a9. The
symbols a have been recognized, the symbols É have to be recognized. The symbols 7
are the look-aheads of .d. If an item is of the form .r{7 .* a. then the symbols o have
been recognized, hence the symbols .47 have been recognized. Such an item is named a
final item. An item of the form .A7 - .c is named an initial item.

12

CHAPTER 2. RECURSIYE ASCENT ATARCUS PARSERS r3

2.3 example

Consider the grammar with rules:

S-ABC C-D
A-o C-cE
B-e C-cA
B-b D-c

E-oC
with §,.4, BrC,DrE eVn,a,b,c e Vrre is the empty string. The number of look-aheads
is one. lnput sentence is "oöc".

With LR(0) parsing, the parser looks at the next symbol to process. With constituent
look-ahead, the parser looks not only at the next symbol to process but it also looks at the
look-aheads. Thus the parser looks at the next & symbols to process, with È = number
oflook-aheads * l.

The nonterminal fuOOT is added to I/N to get a unique root item. Root item is
ROOT + .§ . Nonterminal 5 has to be recognized. The left-most-symbol rewritings of
§ a.re:

o §- ABC

o 5 -' aB C (§*,4 B C and A - a)

For recognizing §, the pa^rser has to recognize A B C or a B C. Therefore initid items
originating from the root item ROOT - . § are:

o §-.ABC
c AB -.oB

One can see the work of the look-aheads in the second initial item. The parser sees the
first Ic symbols (here A and .B) and their left rervriting. An item C + . o, is not created
because the parser sees the first & symbols (in this case two symbols) and not only the
first symbol. If the item A - .a would be oeated, the parser would not use existing look-
ahead information. If there do not exist lr - I look-aheads, as in the item ROO? -- .§,
as much look-ahead information as available is used. Thus with an item A - B . C D
and two look-a^heads (lc = 3), an item is created with C D - ... D. In this case, the
parser only uses one look-ahead (D).

lVith first input symbol o, the parser has recognized symbol o. It shifts this symbol
in item A B -. o B. The resulting item representing the new situation is:

o A B - o..B (a has been recognized, B has not been recognized)

The new item is a product of a transition on the recognized symbol a. The transition
has been made from the item describing the original situation (A B ,- . o B). This is
illustrated in a picture (figure 2.1).

There are two possibilities for recognizing B. In the first case B rewrites to the empty
string e, in the second case I rewrites to à. If I rewrites to e, symbol B can be reduced
immediately as we will see later. In this example B rewrites to e and the symbol e can
be recognized. The resulting item is:

CTIAPTDN 2, RECURSIYE ASCENT MARCUS PARSERS l4

Figure 2.1: states of the recognizer

o B-e .

In the other case symbol ö has to be recognized. The item representing this situation is
B + .ö . With second input symbol ö, symbol ö will be shifted. This results in item:

o B-b,
Thus symbol B has been recognized (with B - e . and B - ö.). See figure 2.2.
Recognizingsymbol .B started from item AB - o.B. A reducesymbol I action

Figure 2.2: states of the recognizer

based on find item B -.' ö. results in item:

o AB- oB.

Symbol string r{ .B has been recognized two times: for B ..r e and for B - ö.

Becognizing eymbol string r{ I started from irem ROOT + . § . Symbol string .d .B

I

a

B

ROOT -> . S
ioitid ttcor:

s.>.ABC
AB->.eB

AB->r.B
initid itcor

B->.
B->.b

ROOT -> . S
ioitid itcos:

s->.ABC
AB->.eB

B->.b

AB->r.B
hitid ilcu

B .>.

B->. ->b. B->rB

CHAPTDR 2. RECURSIYE ASCENT AIARCUS PARSERS t5

cannot be reduced in this item. Symbol string 4 B has been recognized while recognizing
therewritings of symbol §. Symbol § rewrote to AB C and the prefix oÍ ABC (AB)
rewrote to aB. So the parser can reduce symbol string AB in the item comesponding
with the first rewriting of §. That item is the initial item § + . AB C. The reduce action
results in item:

o §- AB.C

AB

Pigure 2.3: states of the recognizer

Now the parseÍ can try to recognize symbol C for two ca,ses. In one case symbol ö has been
recognized. In the other case symbol ö has to be recognized (the case of the e-reduction).
Because symbol C does not left-rewrite to terminal ö, the second case can be eliminated.

For item S - A8.C there are three initial items with shift symbol c (see figure 2.3).
After recognizing symbol c there are three new items:

o D+ c.

o C - c.A

o C - c.E

These three items can be taken together, because they are produced on the basis of the
same transition symbols. Such a set of items is named a state. Thus a state is a set of
items derived from a set of items and the related initial items on the basis of the same
transition symbol(s). In the example all states except the last exist of only one item.
llansitions were made for one item with the corresponding initid items. But for a state
with more than one item a transition can be made on the basis of all the items in the
state and their corresponding initial items. In the case of the state:

o D- c.

s

B

->s
ROOI -> . S
hitid itcor:

s->.ABC
AB->.eB

AB->e.B
bitid it!6r

B ->.
B->.b

S.>AB.C
initid itctns:

c->.D
C->.cE
C->.cA
D->.c

B-> ->b. B->rB

o C - c.A

CHAPTER 2. BECURSIT/E ASCENT MARCUS PABSERS 16

o C - c.E
a new state can be made on a transition on symbol o, because there are following initial
items:

o A- .ofrom C * c.A

oE-.aCfromC-c.E
In figure 2.4 all the states with their transitions are displayed.

AB

D

Figure 2.4: states of the recognizer

It is not possible to shift another input symbol because all input symbols have been
shifted. The final item D - c. leads to a reduce action of symbol D (transition to state

{C - D.}). So symbol C has been recognized and it can be reduced (transition to state

{.9 * A B C.}). Symbol § has been recognized and can be reduced. This leads to the
final item ROOT --+ §. . It is easy to see that § -' oöc.

s

a

B c

D

c
E

A

->s.
R@T->.S
iniÉd itror:

s->.ABC
AB.>.rB

AB->e.B
ioitid itco

B ->.
B->.b

s->AB.C
inirid iams:

c->.D
E
A

.c

.c

.c

c.>
c->
D->

B->eBB->. ->b ->ABC.

c.>D.
C->c.A
D->c.
initial itcms:

E->.rC

->c.E

A->.r

->cE.

->cA.

E.>a.C
initid itcms:

c->.D
C->.cE
C->.cA

.>

D->.c
->rC.

CHAPTEN 2. RECURSIVE ASCENT MANCUS PARSERS t7

2.4 construction of the parser

2.4.1 auxiliary functions

Pirst we define the left-most-symbol rewriting +:
+: a relation between VxV' and V'

a+P = ï7',e(a=A1 A9=fuAA-6)
l,Ve also need a prefix and a suffix function for splitting up a symbol string in its look-
a,head prefix and the remaining string:

&: :V'-Vt , 0S/Slc
:& iV'-V'

prefix function

Ic:a = €r&=0Va=e
k:Xa = X,XeV7
kzXa = Xo,X €VrvAk)l;al

k z a = prefix of o with length k,otheruise

suffix function

a rt:o+*la:lc
The lc: and : Ic functions bind stronger than the {* function. The prefix function does
not look further than the first symbol if the first symbol is a terminal symbol.

As we have seen before, the parser needs a function that generates the initial items
derived from a state. Therefore we define a function íni that returns a set of initial items.
These iuitial items are derived from items in a state. The set of all items is f, the set of
all states is §.

ini I S_p(I)

ini(q) = lBp - .uttl)"a+('t - o.0 eq A P +' Bp6

Ak:By6=BpAB-vAvle)l
For each item 7 ,-- a.9 in state g the rewritings of p are computed and the corresponding
initial items are produced. The parser sees only È - I look-aheads. For e-rewritings there
are no initial items. The parser skips dl e-rewritings as we will see later.

The function goto returns a new state based on transition symbols ó, derived from
the items in state g:

goto : §x (VrUVxVt)-§,0 <t<k

gotdq,6) = {1 - aÀ6.§ l1 - a.\6p € (q u iad(q))

Aó= kt60AÀ+'6)
Symbols rewriting to € are skipped. They can be reduced immediately.

CHAPTEN 2. RECURSIYE ASCENT MARCUS PARSEBS 18

2.4.2 parsing: the action functions

The parser is based on following definition (II is the set of all index-items, see below):

[s] : rY-P(ID

[g](;) = {(r - a.P,i)lt - a.9 eqa9 --'ci+r...ci} (2.1)

For each state g there is a function [q]. lilith input c1 ...c1' initial state { ROOT -* .§},
§ -' tt...xa if and only if (ROOT -. . §,n) ell ROOT - . S)l(0).

The pa.rsing process works with indexed items (named index-items). The index j of
an index-item (? -- a.p,i\ indicates up to which input symbol p (thus also 1) rewrites.
Other functions as we will see later can use such an index-item for reduce actions. The
items in the states determine a situation in the process of parsing a sentence. With the
items in a state the parser can see if it can take a shift action or a reduce action, what the
next symbols are to determine etc. An index-item says what the relation is between an
item and the input sentence. A function [g] returns index-items derived from the items
of state g.

We will construct a functional implementation for each function [g](í). The construc-
tion is based on the equation:

9 -' q+t ...xi =)r(§ +' ad+l? À 7 -' xi+z ...xi)
Y (0 -'e A i = i) (2.2)

A string (non)terminds rewrites to € or it has a left most symbol rewriting to a terminal.
lVith equation 2.2, definition 2.1 can be written as:

[q](i) = {(r- a.P,i) l3r(r -a.geqn9 *'ci+rt,
A lt '' ti+2 "'ti)l

u {(r -* a.p,r) I r'.. a.0 e q A I -' el (2.3)

For each item 7 - a.9 in set 9, o has been recognized. For recognizing p the parser looks
whether p rewrites to a terminal symbol or p <' e (0 -'rd+r...c;). In the first case

the parser shifts input symbol r;11 and tries to recognize a rewriting of p. In the second
case the function returns an item with index. So we need a function to shift symbols like
c;.p1 in definition 2.3. Such a symbol has been recognized. Therefore for every state g we

introduce a function [ql with definition:

Ei . (VrvVyVt)x /v + P(II\,o S t < k

Iq-i(e,i) = {(r - a.P,ill 3er(z - a.9 eq a I +' 6p

A p -'sd+l...ti Ak:6p= $\ (2.4)

Each function iA skips symbols ó (and the possible e-rewritings before ó). Because the
&-prefix of a symbol list c1 with o € ft and 'y e V' is s definition 2.3 can be written as:

lql(;) = {(r - a.p,ill (r - a.p,j)€ i!i(r,+r,i+ t)}
u{(r -a.§,i)Ir-. a.PeqAA-'el (2.5)

If we have a functional implementation for each function iA we have a functional imple-
mentation for each function [q](;).

CHAPTER 2. RECURSIVE ASCENT ATARCUS PARSERS r9

2.4.3 parsing: climb functions

In the definition of jlilaennition 2.4) there are two cases for the rewriting p +' 6p. The
rewriting consists of zeto steps or it consists of at least one step.

An example. In an item .A -* fl . c (A,B € Vry,c e Vr) the symbol c can be shifted
immediately (without rewritings). This equals the case § = c. In the example in section
2.3 we saw that symbol string,4.B could not be reduced immediately in item ROOT - .S
. We solved this by reducing string AB in the item corresponding with the first rewriting
of §. Thisequals the situation § +'§A§ + AB C with transition symbols 6 = AB.
lf 9 + ? and q + q' and so on the paÍser first tries to recognize the deepest rewriting
(recognizing starts at the level of terminal symbols) and then it tries to climb up. In this
way it tries to rccqnize p.

Because the parser skips e-rewritings, an e-rewriting is not considered as a rewriting
step. So with a division into zero steps and one or more steps, we get following equation:

9 +' 6p =)»(9 = \6p A l.-' e)

v)n»(0 +' ?A q + À6pA À *' e)

Because we are not interested in e-rewritings, we also are not interested in left-most-
symbol-e rewritings. For a Àóp with À -* e it is possible that a lot of left-most-symbol
rewritings of the form À16p + À26p with À1,À2 *'e exists. Therefore in the case of
9+'q A q+ À6p, therewritingq+ Àóp may not beof theform À16p+ l2ó1r. Thus
in the left-most-symbol rewriting q +)$p, a prefix of ó has to be written. Thus ? must
be of the form Ad and .r{ -r À prefix(ó)z with 0,,v €. V' and Ic : prefix(d)uf = 6.

This can be written as (X E V):

9+'6p =){9=À6pAÀ.*'e)
Y 3o»x(0 +' A0 A A - \Xu Ak: Xu$ = 6

AXvfl:k=p^À-'e)
Now definition 2.4 can be written as:

Ei(a,;) = {(,r - a.\6p,i)lt - a.\6p É q A p -'ri+r...rr.
Alc:tÍp=óA^-'e)

u {(z - a.0,i)l 3ro",rx(z - a.9 e q n 9 +' Att

AA-ÀXvAk:Xu$=6
A Xy$: rt.-. ri+r...sj
n À -'e)) (2'6)

l{e will rewrite these two sets with use of the functions ind, goto, I and ii. First we will
rewrite the first set.

rewriting the Orst set

In thefirstsetof definition 2.6onehas? -a.À6p € g
^ lt-'

oi+r...c;A & 26p=
6 À) -'e. Then 1 - aÀ6.p É, goto(q,6).
Reversilyif 7- a\6.pÉ,goto(9,6)nt-* a.\6p €gthen k:6p =6. Afterrecognizing
ó the parser goes to a new state (state goto(q,6)) with new items representing the new

CHAPTER 2. RECURSIYE ASCENT AIARCUS PARSERS 20

situation.
If

1 1 a^6.p €, goto(q,6) tt p *' oi+l . . . oj

then

(t - a\6.p,i) elgoto(q,ó)l(r)

Reversily if

(1 + a\6.p,i) €,lgoto(q,ó)J(r)

theu

1 - a\6.p €, goto(q,6) n p *' ,i+l ...ai

So the first set can be written as:

{(r - a.\6P,i) I'Y - a.ÀóP € gÀ À -' e

À (? - aÀ6.p,i) € lsoto(q,ó)l(r))

rewriting the second set

We will now rewrite the second set of definition 2.6. With the definition of izd(g) we
have:
if

.t - o.P e q h § +' A0 A A - à-f,y A k : Xy$ = ó A l.-' €

(see the definition of the second set in 2.6)
then

3c(t - a.9 e q A § +' A0 Ak : A0 = l§
A .df - .\Xu§€ rni(q) Ak z Xv$= ón À -' e)

and reversily.
We have

I ó lS e Al Xul> I
^(l

f l= min(k,l d l) - l)
(Thefunction rndn retuÍns the minimum of its arguments.) If lu l> &- I then k: Xv$ =
kzXv. Otherwise k:Xu$= Xvg with | 9l!min(k,1., l)-1. So k zXv$= k:Xv(,=
6-

Hence, the second set in equation 2.6 can be written as:

{(r - a.§, j) I 3or"er,rx(l - a.§ e q t\ I +' A0
A k: A0 = A(h AÍ - .ÀXv(€ iní(q)
À Xul: Ic *' oi+r .. .x1 À A0 : Ic.*' tt+t..,ti
AkzXv§=óA^*'e))

CITAPTER 2. RECURSIVE ASCENT AIARCUS PARSEBS 2t

With 7 aa.P ttI +' $ z A0)(Arl : È) AA0 z tt -.' rc+r...rj we can use the
definition of [q] (definition 2.4) to rewrite this set. The result is:

{(r - a.9,il I 3or,ec,rx((t - o.9,i) e i-qJ(/§,/)
A A(- .ÀXuf e ini(q)
A Xvf,:lb -' ri+r .. .x1A k z Xv§, = ó A À "*' e))

Symbol string ó has been recognized. The function goto can be used to describe this
situation. If

A€ - .ÀXv(,€ dni(q) Ak : Xu{= óA À -' 6

then

Af - À(e : Xzf).(Xv€: È) € soto(q,6)

The state goto(q,6) contains items of the form A€ - À(lc : ïzf)\Xu€ : lc) with
(Xv€,: lt) +' oi+r...ab This equals the situation desoibed in the definition of the
functions [q] (definition 2.1). If

Af - À(lc : Xz§).(Xv€: k) e goto(q,ó)
^

(Xu§, z È) -' xi+t...xt

then

(r{f - À(k t Xuf).(Xu€,: À),/) € [soto(q,ó)](f)

Reversily if
(A€ - À(ls : Xzf).(Xu€,: &),/) € [eoto(q,ó)](d)

then

AC - À(Ic: Xzf).(Xu€,: k) e goto(g,ó)
^

(Xu{: &) -'cd+r ...c.

So with use of the definitions of the functions golo, ízi, [J and [$,e can write for the
second set of equation 2.6:

{('t - o.§,il l3,rcr,rx(('t - o.P,i)elgJ-gJ(/§,/)

A A{ -- .\Xvf € índ(g) A k: Xu(, = óÀ À -'€
A (,4f -* Àó.(ïzf : È),/) e leoto(q,6)l(r)))

2.5 review

a+p =)ere(o=A1 A0=61 hA-6)

kzzV'-Vr,0Stsk
:È zV'-V'

CHAPTEN 2, RECURSIYE ASCENT ATARCUS PARSERS 22

prefix function

&:o =
l:Xa =
k:Xo =
k:Xa =

Ic:o =

Grlc=0Vo=e
X,X eV
X,X eVI
Xa,X€VrvAÈ)lXal
prefix of a with length k,otheruise

suffix function

ini z S-P$\

ini(q)

a = lc:a**a:&

lBp - .vF l)"ne("r - a.P e q n § +' Bp,6

A k: Bp6 = Bp A I -- u Au I e)l

goto : §x (VrUVNVtl-5,0 <t <k

goto(q,6\ lt - oÀ6.0 1t - a.À6§ e (q u íni(q))
Aó= k:60AÀ-'e)

lql : JV*P(II)

[q](;) ffi(c;a1,d + l)
U {(f - d.p,r) I f - o.§ e q A § -' el

Ei | (vruVyVt\x.,lv - PUI),o < t < k

Ïïi(e,;) = {(.t - o.À6p,j)lt - a.\6p€ sÀÀ *' e

A (? - a\6.p,j) € [goto(q,ó)](i)]
u {(r * a.§,i) I 3,rcre,r((.y - a.p,i) € Ei(Af,/)

A A(- .\Xv§,€ dni(q) h k z Xvf= ó
^

À -' €

A (/(- \6.(Xu§,: lr),/) e,lgoto(q,6»(r)))

CHAPTER 2. RECURSIYE ASCENT MARCUS PABSERS 23

2.6 correctness

The recognizer works for fast all context-free grammars. Only for grammars that cause a
cyclicity problem (for the computation of a function call t@rguments) the function / is
called with the same arguments), the recognizer does not work. The proof is the construc-
tion of the recognizer in section 2.4, lÍ the recognizer has no cyclicity problem then the
computation of the recognizer terminates because if c111 / V thenVrgoto(q,tn+[= Q.

A call [gJ(i) may lead to a call i[i(r,*r,d + l). Because a call of a function i91-11C,i1

ca,nnot lead to a call Íq'l() with / (i, a ca[[q](d) will never lead to a caU [q](d).
For a cat ililó,i) the situation is diffeient. A .U i]i(O,i) may lead to a call

[goÍo(g,ó)J(i) igt this can never lead to a cal i!j(ó, i) (because of the inoement of index
i). But a call [g](ó,i) may also lead to a call lql[€,,t) with í > iif Af, - .\Xu(, € dad(q),
À -'€, kzXv(= ó and (A(,- À6.(Xu(:tc),/) €,lgoto(q,6)J(d). If Xu(, L f'e then
l> i.ï Pe :k--'e it is possible that /= i. In that case, iÍ A(= ó or [q](/f,d) leads
to a call [q](ó, i) then a cyclicity problem exists. Thus if there is a Eequence of initial
items 6 +.À"Xaun€,n €, ini(q), &: X;q1z;1r(i+r - .\;X;u;e; € ini(qxl < i < n) and
k: Xp1f1 - .\Xuf € dad(g) with (Xzf : &),À -'e,Vi,rSiS" : (À;.-*'€À (X;ui§,;: Ic).+'
e) n rt : Xuf = ó then the recognizer may have a cyclicity problem.

One can check for a given grammar if this problem may occur. If it occurs, it is pos-
sible to overcome the problem by memoization of the functions [qJ. Memoized functions
memorize for which arguments they have been called. They do not recompute previous
computed results. If a call iqi(C, i) occurs while computing the function cail l-9(ó, i), the
parser must stop the computation of the last call [qJ(ó, i). The parcer will still recognize
all sentences the grammar can generate, but an infinity of parse trees that only differ in
the derivation ó +' 6v(u *'e) will not be computed.

Chapter 3

complexity of RAM parsers

3.1 introduction
In this section we will look at the complexity of the RAM paf,ser. The theoretical upper
bound of the space complexity will be compared with some practical results.

3.2 memoization

The functioor [qJ and lij are implemented as memo-functions. The first time a function
is called with a specific argument the function result is memoized. The function does
not recompute its result for that argument after this first call. Before recognizing all the
possible states a.re computed (thus all the possible function calls goÍo(9,6)). For every
state g the corresponding function call inr(q) is computed.

3.3 space complexity

3.3.1 number of items

First we will compute an approximation of the ma:cimum number of different items of a
parser for grammar Gl.

An .r"i"g" of the number of symbols in the right-hand-side of a grammar role is jS
with #(6) the number of grammar rules and lGl the number of symbols in the right-hand-
sides of the grammar rules of G. An item is of the form z{1 - o.9 (A e VN,a,9,.t É V')
with tail(a §) = t. On average every item in a RAM parser has (at most) JË + t - f
symbols in its right-hand-side. For an undotted item (an item without a dot) A - B C D
with & = I the dot can be placed at three positions, resulting in the three items:

o A- B .C D

tA-BC.D
o A- B C D.

lln thic rction initid items uc noi considered as items. For computing thc apace complcxity of the
RAM Derser, the number of rtatca is important. Only the root state contains en initial item.

24

CHAPTEL 3. COMPLEXITY OF nAIt[PARSERS 25

So Íor a & = I parser of grammar G the maximum number of items is I G l.
For an undotted item / B C - D E F G B C (A,B,C,D,E,F,G eVx, k= 3) the

dot can be placed at two positions (only rt-prefixes can be shifted in the item, not parts
of a È-prefi:c), resulting in the two items:

t ABC-DEF.GBC
o ABC-DEFGBC.

For an undotted item with / symbols in the right-hand-side and I not a multiple of
lc there are at most (/ + & - f)/,t positions to place the dot. In the case of terminal
symbols in the right-hand-side the dot can be placed at more positions. An approximation
of the average number of dot positions in the right-hand-side of an undotted item is
(J8 + t - ï+ t - r)tk= 7(& (È e {r,2,s,4}):

È

A RAM parser has at most » #(C) I 11 1t-t undotted items. So an appro<imation
l=l

of the number of items of a RAM parser is

*
ri+rcr rv y-,)JÉjE

l
= it+rolrv;r-rffir

g rv rr-rr6 |= 1-T
t=l

So the number of items is in an approximation of the worst case of order of magnitude
o(tlvl&-rlGl).

&

In practice the upper bound D +tCl I V 1r-t for the number of undotted items is

unrealistic. Linguists write gramíïrs with few terminal symbols in rewriting rules. For
example they will not write a rule

...r...nouD...
but

...+...NP...

together with the rule NP ..+ noun. Also more realistic is the upper bound i+«"t t

Vry ;r-r.
2=t

This upper bound has been derived from the form .41 - a.§ of an item with tai(oÉ)
= 7 and / + prefix(ap). In practice alot of possiblestrings r (r e vfi,lt l< Ic) do
aot occut in combination with a specific grammar rule. For a few very small gra,mmars
thevalueof tin I ty l'l C lhasbeencomputed (seeappendixAfortheresults). A
result is that the value of Í will be less than lc - l. For the small grammars the rnlue
of Í strongly depends on the mean length of the right-hand-sides. It seems that a lower

CHAPTEN 3. COMPLEXITY OF RAAI PABSERS 26

bound of the number of items for our small test grammars is of order of magnitude
O(l I yx là(È-r)l C l). For a fictitious minimal gr"--ar with 800 grammar rules, 30
nonterminal symbols and a grammar size (l C l) of 1600 the number of different items for
different values of /c can be seen in figure 3.1.

È l I lzrv ;à«t-t)1C ;

I 1600
2 2500
3 5100

Figure 3.1: number of items with respect to the number of look-aheads

3.3.2 number of states

À state is a set of items with the same last transition, thus the same look-ahead string
before the dot. For one collection of g items with the same look-ahead string before
the dot there could be in the worst case 2e - | different sets. The maximum number
of different look-ahead strings is llz, | . ly lt-r + lVr l. The ma;cimum number of
items in a state with the same look-ahead string before the dot is smaller than the
maximum number of item-s. So the maximum number of states is of order of magnitude
o((vrvl .lr;r-t + lvrlx2tll' lr-tlcl - l)) = o(2*lvxr-!lc1).

Iior LRparsers the space compledty is of order of magnitud e O(2lvrlr-r16l) (the length
of the look-ahead is È - 1). So there is not an important difference in space complexity.
For RAM paÍsers as well for LR parsers the space complexity is very bad. In practice the
size of the parsers is much better (smaller).

Iior the very small test grammars the number of states is displayed against the values
of & (figure 3.2).

3.4 time complexity

l*t n be the sentence length and s the maximum number of states. We will compute a
rough calculation of the (time-)complexity of the recognizer.

There arcp(n lVrvlÈ s) different invocations of functions [qJ and iii. Uach invocation
of a function lql "1§

. function lgoto(q,6\l(r). This call returns a set of O(n) elements.
An invocation of [9] leads to O(a) invocations of functions [q](.4(,í). This results in
O(z) sets of O(n) elements. lggethet with-merging these sets and removing duplicates
each invocation of a function lfl takes O("2) time. Hence, the total time complexity is
O(nse lYrvlr).

lVithout memo-functions every function result has to be computed by invocation.
Because every function [q] and [g] invokes other functions, the recognizing ta^kes exponen-
tial time without memofunctions. Memofunctions are not necessary if the recoguizing
process is deterministic. In that case the recognizer knows at every moment what to
do and it recognizes a sentence on the basis of only one parse tree. In the case of a
fully non-deterministic recognizing process memo-functions are necessary because of the
exponential time complexity.

CITAPTER 3. COMPLEXITY OF RAM PARSERS 27

Figure 3.2: number of states with respect to the number of look-aheads

3.5 conclusions

The.space.complexity of the recursive ascent Marcus parser is of order of magnitude
OQ*lvx)i-'lol). The time complexity is of order of malnitude O(n3) when meàoizing
the function results of the functions [] and [J. In practice, the space complexity is less

than OlZl lvrlr-t lcl) but the number of states of the parser still highly grou,s with respect
to the lenglh of the look-aheads. Time and space complexity of the RAM pa,Íser do not
really differ from the time and space complexity of LR(k) parsers.

I
I
T
E
G

1

Chapter 4

the use of attributes in RAM
parsers

4.L introduction
Coatext-free gÍammars can be extended with attributes. Attributes are useful to male a
distinction within syntactical categories (attributes act as features) and they are useful
to work with context-sensitil'e information. Attributes are associated with the symbols of
the grammar (different attributes can be associated with different symbols). Attribute-
evaluation rules are associated with the grammar rules.

4.2 definition
An attribute grammar G is an extension of a context-free grammaÍ Gcro with G6rp6 =
(Vx,Vr, P, S). V1y is the set of nonterminal symbols, V1 is the set of terminal symbols,
S is the sta"rt symbol and P is a set of grammar rules. A grammar rule r in P is written
by:

r: A- Ar...An

where A eVn, Ai€,VxUVr Q <, < a). For n =0, A rewrites to the empty string e.

Each nonterminal X e Vx has a set of synthesized attributes .Syn(X) and a set of
inherited attributes Inà(X). Each terminal c € Va has only a set of synthesized attributes
§yn(c). Att(Y) = Inh(Y)USv(y) (Y eVNvVr).Each attribute a € Att(Y) has afinite
domain W(r) for dl Y ÉVN UVr.

A rewriting r z A - Ar...À'n has attribute occurrence (a, &) if a € /tÍ(.Aj). With
each rewriting a finite set of semantic rules is associated. lVith a semantic rule of a
rewriting r, the occurrences of synthesized attributes of .4 and the occurrences of inherited
attributes oÍ A* (l S e J n) can be computed from the values of the inherited attributes
of z{ and the synthesized attributes of ,{r (l S lc < n). A semantic rule / related with a
rewriting r is of the type :

/ : lV(as) x 1V(o2) x ... x W(o-) -. W(a), rn > 0

with a € §yn(A)u InldAl)U...u Inh(Ap) and Vil 3 i S m : a; É Inh (/)u §yn(z{r)U.. .U
§y(r{").

28

CHAPTER 4. THE ASE OF ATTRIBUTES IN RAM PARSERS 29

4.3 effect on parsing

Ma,Ling a distinction within a syntactical category with attributes (thus defining subcat-
egories with use of attributes), reduces the number of grammar rules, because otherwise
the possible values ofthe attributes have to be described in terms ofsyntactical categories.
Also the use of context-sensitive information by attributes can bring about a reduction
of the number of grammar rules. For example the grammar rules

A-BCD
A-BCE

(A e Vrv; B, C, D, E € V) can be merged in the rule

A - B C optional-D optional-E

with an attribute optional-D-exists associated with symbol optional-D and an attribute
optionalE-exists associated with symbol optional-E and attribute-evaluation rule:

if (optional-D-exists & optional-E-exists) l

N OT(optional-D-exists I optional-E-exi sts)

then not ok

fi

Although enaluation of attributes takes time, evaluation of attributes while recog-
nizing/parsing (attribute-directed parsing) can speed up the parsing process. In the
preceding example in the cases the attribute-evaluation indicates that the rule A - B C
optional-D optional-E cannot be applied. Symbol A cannot be reduced. This could have
effect on the following parsing actions.

Attribute-directed pa,rsing can also speed up the parsing process if the attributes
a^re used to specify syntactical (sub)categories and if such a specification has a context-
sensitive aspect (as with the plurality of a verb and the related subject).

For gra,urmars that describe natural languages, especially synthesized attributes are
used. The properties of the symbols on the right-hand-side determine the properties of
the symbol(s) on the left-hand-side and not the other way round.l Inherited attributes
can be used to speed up the parsing process. For example when recognizing the gramma^r
rule

tr-+BC
(4, C e VN, B € y) recognizing B may return an attribute value that conflicts with an
attribute value that is computed while recognizing C. At the moment the conflict occurs
the recognizing of the rule can be stopped. If the conflicting attribute value of symbol
B is passed on to C (inherited attribute), the conf,ict can be recognized as soon as the
conflicting value in the recognizing of C has been computed.

lAttributca used with l grrmmar Íor r formal language rre used rmong other thingr for ccmaatic
rcprerentrtion. In that crsc it will bc nccessary to usc inherited rttributee. For cxemplc for prssing on
inÍormrtion about thc declaration oÍ variables.

CTTAPTEN 4. TTIE USE OF ATTRIBUTES IN RAM PARSERS 30

4.4 evaluation of attributes
The evduation of inherited attributes with bottom-up parsers is a problem. For example
when recognizing a noun as the first symbol of a sentence and grammar rules:

o S-NPVP
r NP -r noun

rNP-*NPPP

it may be unclea,r what the values of the inherited attributes of the NP in the rule NP .-
roun a.re, because this NP can be the NP from the rule S -- NP VP or from the rule NP

-. NP PP. Only if the attribute evaluation rules meet specific conditions, it is possible
to compute the values of the inherited attributes during parsing.

Flom the definition of the functions iqi, it turns out that the recognizer/parser works
in two phases.

Iïi(C,i) = {(r - a.À6p,i)lt - o.À6p€ sAÀ -*' e

A (r.- aÀ6.1r,j) € [goto(q,ó)J(i)]
u {(r .- a.g,j') I 3aerc,r((r - a.g,j) € fq'l(,{f,/)

À /(- .ÀXu§ e ini(q) A k z Xuf= ó^ À -' €

^
(/(- À6.(Xve,: &),í) elsoto(q,6)l(d)))

The parser first 'walks' from the left to the right through items (by calls of the form
goto(q,6)). As soon as the end of an item is reached (the item is a final item of the form
1 - a.P with É -' e) the second phase starts. An index-item related with the final item
is returned. For every step from the left to the right in the first phase, the dot in the
corresponding index-item is placed one step back from the right to the left.

It would be nice to evaluate the synthesized attributes in the first phase. If a conflict
between attribute values appears, the parser would be able to stop the recognizing of
the conflicting item immediately. If the conflict appears in the second phase, the parser
wastes time. This is an important point if the gramma,r has a lot of attributes which
work like filters (as o-exists attributes). The attribute component of the grammar is a
little more complicated because the parser has to know when an evaluation rule can be
applied.

The parser has enough inÍormation to evaluate synthesized attributes in the first
phase. A step Írom the left to the right in an item is made when the parser shifts or
reduces a symbol. If the pa.rser shifts a symbol, the symbol has been recognized and its
attribute values are known. If the parser reduces a symbol, the rewriting of that symbol
has been recognized. Thus the attribute values of the rewriting a.re known and the values
of the synthesized attributes of the reduction symbol can be computed.

4.4.1 evaluation in the ffrst phase

Computing the synthesized attributes of the right-hand-side of an item in the first phase,
requires that the values ofthe attributes of the symbols left from the dot are dragged along
when moving the dot to the right. Thus the values of the attributes have to be dragged
dong when the parser makes a transition to a new 6tate. There are two possibilities.

CHAPTER,4. THE USE OF ATTRIBUTES IN RAM PARSER§ 3l

The parser works on the same states as for the attribute-free version of the parser, but
during pa,rsing an administration with attribute evaluation details is kept up. Another
possibility is to compute states with items ond attribute evaluation details. So states
have to be generated during parsing, they cannot be computed before parsing. For an
item 'y - a.9 with different attribute values (here the values of the synthesized attributes
of o) in different cases, the item has to be duplicated because the attribute values are
connected with the items. So the states are associated with a position in the sentence
that is parsed. The nature of LR parsing is affected with the second method.

The first method (keeping up an attribute administration) requires that for all items in
a state the attribute administration should keep accounts of the values of the synthesized
attributes before the dot. First we will look at a minimal attribute administration.

Suppose the parser concatenates the attribute values ofthe symbols ofthe last transi-
tion with the list of attribute values of the symbols of transitions that are already made.
Iior an item 7 - NP tó.f in state S with ó,f €,V', NP eV,1€ Vrv, À € Vfi and
À -' €, the pa^rser has made two transitions from state S'with initial item 7 -* . /VP Àó§

to state S with the first transition on symbol /VP and the second transition on symbol ó.

So thereis an attribute administration list.AÍÍr5 :(Attrxp ztail) with.4ÍÍr5 the values
of the synthesized attributes of 6 and Attryp the values of the synthesized attributes of
/VP. At this moment it is not always possible to reconstruct the attribute evaluation. It
is clea.r that Attr5, must be associated with ó in the item 1 -' JVP Àó.f. But fot Attryp
it is possible that there is more than one /VP with which it can be associated. It is
possible that À = Àr /VP À2, with Àr,Àz € y^ï, Àr,Àe -*'€ and JVP -.'e. In that case
the attribute administration does not knorv to which N P Atlryp belongs. This problem
occurs because the parser simply skips e-rewritings. (The problem would be solvable if
for every two items ?l - alÀró.f1 and 1z - azÀzó.fz (Àr,Àz € yli) in a state derived
from a state with the (initial) items ?l .+ ar.Àró(r and 1z - az.\zó(z on a transition on
ó the equation lÀ1 l=l Àz I holds.) Thus a list of evaluated attributes of transition symbols
does not satisfy.

It is necessary to administrate more than a list of attribute values of transition sym-
bols. Therefore a (dynamic) attribute administration is associated with a state, as soon
as the parser males a transition to that state. In this administration all the items of
the state are copied and the values of the synthesized attributes are associated with the
correct symbols. The administration of the previous/original state has to be available so
that the values ofthe attributes ofprevious transitions can be associated with the correct
symbols. The values of the synthesized attributes of the left-hand-side of an item can be
computed when the right-hand-side has been recognized. They can be associated with
the left-hand-side in the corresponding index-item. For different values of attributes of ó,
different catts i[i10, d) have to be made. So the effect of memoizing function calls reduces.

4.4.2 evaluation in the second phase

It is more natuml and less expensive to handle the attribute evaluation in the second
phase, thus to link the attribute values with the index-items. Evaluating attributes in
the first phase requires that attribute values are associated with all items in a state.
Evaluating attributes in the second phase requires only that attributes are associated
with one or more index-items. These index-items are just like attributes results of the
actual parsing process, items are static objects of the parser.

CHAPTER 4. THE USE OF ATTRIBUTES IN RAM PARSERS 32

When replacing the dot from the right of a Àó to the left of a À6 in an index-item
(t -. o\6.p,,j), the values of the attributes of the symbols Àó are connected with the
index-item. tl" symbols ó in a catt i!'i1ó, i) are attributed symbols. So there is a negative
effect on memoizing function calls.

ltrith attribute evaluation in the second phase, the definitions of the functions [g] and

Iq-iof the RAM recognizer differ from the functions [q] and [i as defined in the original
attribute-free version of the parser. An attributed index-item is an index-item with a
corresponding attribute administration. The set of dl attributed index-items is AII.
The set A is the set of all attribute administrations.

lql N - P(Arr)

lql(;) = iïi(rr+r,Eoal(c;11),r+ l)
u {('y - a.9,Attr(1 - a.9),d) I r -* a.9 e q A 0 -' el

ÏAi | (vrvvyvt)xAx N-P(AII),ISt<k

[ql(6,attr-6,i) {(r - a.À6 p, I nsert(atbJ, aÍtriö),i) |

'l-a.À6p€gAÀ"*'e
À (? - aÀ6.p,attrrö,i) € [goto(q,ó)Xi)]

u {(r + a.9,attr-l,i) I 1$,xe,zorr,-z(
(t - o.g, attr-t, j) € Ej(ef ,

E a al (I n s e r t(atb -6, att r 2\),, t)
A A€ - .\Xu§€ ind(q) A k : Xuf= ó

^
À..*' €

A (A€, -- Àó.(-l'z(z k),ottr2,t) e lgoto(q, d)J(t)))

Eoal(a\: evaluate synthesized attributes of a if o É,V7.
Eoal(a): evaluate synthesized attributes of 7 if (? * fr.(2, ottribt2,i) is an attributed
index-item and o repÍesents the values of the attributes of (r§2.
Insert(ottr-i,ottfibutes): insert ottr-6 in the attribute administration ottribates.
Attt{t - a.9): returns the attribute administration of 7 .- o.p with the values of the
synthesized attributes oÍ p Íor § -' e.

4.6 conclusions

Eraluation of attributes while parsing can speed up the parsing process. If a bottom-up
pa,Íser is used, only synthesized attributes can be evaluated while parsing. Evaluation
of synthesized attributes can be done as soon as possible, but this will take a lot of
administration. More natural is to postpone the attribute evaluation till an index-item
is returned.

Chapter 5

Marcus tR parsers

5.1 introduction
The RAM parser uses constituent look-aheads. The look-ahead symbols were represented
in the items, so with more look-aheads, the parser size (the number of states in the pa,rser)
grows rapidly. In the case oÍ tR(k) parsing the growth of the parser related to the number
of look-aheads is also a problem. With LALR(k) pa^rsers the parser size is limited to the
size of a LR(0) parser. Terminal look-aheads are added to a LR(O) parser. States of a
tR(k) parser which only differ in the look-ahead strings of the items of these states are
merged in the tALR(k) variant of this parser.

We want to make a LALR-like variant of the parser with constituent look-aheads.
Thus we want to add constituent look-aheads to a LR(0) parser. In the RAM parser
there could be two states Q1 and 92 with 91:

AB.-CD.EB
GJ-D.J

and 92:

AE-CD.EE
GH-D.H

These states only differ in the look-ahead parts of the items (respectively the symbols
B,J aod E,H). In the LAIR variant of the parseÍ (the Marcus LR parser, MaLR pa^rser)

the states gr and 82 arc merged into the state with items and look-a^heads:

A.-CD.E{B,E}
G-D.{J,H}

The construction of the MatR parser rvith one look-ahead (MaLR(1)) is desoibed in the
noct sections.

33

CHAPTER 5. MARCUS IR PARSERS u

5.2 functional LR(O) parser

Starting-point is the tR(0) paÍser in functional notation as descibed in
[Leermakers, 1991aJ:

o+p = Sner(a=A1 A9=hAA-*6n6t'e)

iai(s) {B - .v lïe"pa(A -* a.9 e q A P +' 86 A B - v))

goto(q,X) lA - aX.p I A - a.Xp € (qu dni(q)))

[q(l) = {(.4r o.§,j)l A- o.§ eqA§ -'ci+r...cj}
= i?i(r,*,,í + l)

u {(/ .-. o.0, j) l)a@ -+ .6 € ini(q)

^
(/ - a.9,i) e l[i1a,;111

U {(,4 -+ o.,t) l/ - o. € 9}

ili(x,i) = {(A - a.p,il I 3r(A -t a.g € Q

A 0 +' Xt At *' ci+l ...ci))
= {(r{ - a.X§,j)l A- a.X§eq

A (A - aX.§, j) Elsoto(q,X)l(d))
u {(l{ - o.A, j) I 3ce-((/ * o.§,i) e Gi(C,rn)

AC-.Xó€ini(q)
A (C -* X.6,m'1 É,lgoto(q,X »(r)))

5.3 auxiliary functions
'We need three auxiliary functions. The function goto for computing a seguence of transi-
tions, the function / for computing the look-aheads (followers) of an item and the function
W"se for computing the possible parses of a set of (non)terminals.

goto: §xV'-S

goto(q,e)

goto(q,X6)
goto(q,X)

=q
= goto(goto(q, X), ó)

= lA- oX.pl A- a.Xp € (qudai(s)))

CHAPTEN 5. MARCUS IR PARSERS 35

t : §x(IuV7)-P(V)

Í(q,A- a.F) = lX l3r(p = Xp^X € Y))
U {f I)yreav(A = e AQ = goto(p,a)

AB-1.A6€(pudai(p))

^
Y € t@oto(p,A), B.- 1,a.ó)))

Í(q,z) = {X l)"ae(A+ a.xp e qAX e Í(q,A-ax.9)Àc € Va)}

The function / computes the set of symbols that immediately can be reached after the
current recognition. For an item A - a.§ in state g the'current recognition is o in the
rewriting A - a0 in state g and the look-ahead of A - a.9 in state g is defined as

the first symbol oÍ p (iÍ § * e) or (if 0 = e) the first symbol(s) that can be recognized
after the rule rl - o. (for example the symbol B in item C - .A B in state y' with
goto(q',a) = q).

The set f is the set of dl possible indexed parses of dl (non)terminals (f = V x
.IV). An indexed parse consists of the rewriting to terminal symbols (the pa,rse) of a
(non)terminal, together with the index of the input symbol up to which the (non)terminal
rewrites. A symbol Í in (Í,i) € f rewrites up to the jth symbol of the input. The
function prse is of type P(V) x N * f . A function call parse(Z,i) with Z e P(V)
returns the set lp,j) | z e Z A z -' c;+r ...aj).

1.4 constructing the MaLR(1) parser: step 1

lUe are now able to write a first version of the MatR(l) parser. The parser will only
shift a terminal symbol if there is a look-ahead (follower) of that symbol that can be
recognized after the shift action. The parser will only recognize a rewriting B - e it
there is a look-ahead of the item I -- e. that can be recognized. The parser will do the
sa,me for a reduction oÍ A - a. The new functions [g] have definition:

tql(;) = {(À * a.P,ill (A - a.P,i)€ i]i(r,*,,d + l)
A parse(t(Q,xi+r),d + l) I 0)

u {(/ - o.§,j) l3a(8 -.€ € ;ni(q)
A parse(t(q,8 - .e),i) 710

^
(A - a.p,il € Ei(^B, i)))

U {(À + o., d) | 36q,(/ - a. e g

À G = Porce(f(q,.,| - o.)'d)
A(G*0vo=a'a)))

The functions ffi wi[be the same as before.
The set Í(g,ti+t) is the set of immediate followers of c;11 in the recognition proces§.

So if no element Y from the set Í(q,ti+r) rewrites to c;12...q (t > d+ 1) or to e,

shifting the symbol c;.1.1 is useless. The set Í(q,B - .e) is the set of immediate followers
of .B in the recognition process. So if no element Y from the set Í(q,B -* .e) rewrites
to a;11 ,..q (t > i) or to e, recognizing the rule .B - e leads to a situation in which no
further recognition is possible. Recognizing the rule B - e is in this case useless.

CHAPTER 5. MARCUS TR PABSEBS 36

For the same reason there is no need to reduce a recognized rule A * a if the set of
recognized followers (followers that rervrite to the next part of the input or to e) is empty
(except in the case that the last symbol of the sentence (J-) has been reached).

Thus if the tR(O) parser is correctl than this version with constituent look-ahead is
also corect.

5.5 constructing the MatR(l) parser: step 2

The new definition of the functions [g] is not beautiful. Look-aheads are recognized, but
the result is thrown away. In two sieps we will construct new definitions of tq] a"d EI
which do not waste computed results. First the set of recognized look-aheads of c;11 will
be passed on to a function call [q](e;1r,d+ l) and the set of recognized look-aheads of
an item B - e. will be passed onto a function call [q](A,d) and the set of recognized
look-aheads of a final item A - a. rvill be merged with the corresponding index item.
Thus an index item is now of type f x /V x P(f). The set F in index item (dÍern, i, P)
is the set of look-aheads of the (recognized) left-hand-side of dÍem. lf (Y,l) € P and
(A - a.p,,irF) an index item produced in the recognition of asentence er...ca then
Y -'ri+r...sr. This condition has to hold after every step in the construction of the
MatR(I) parser. The set F e PV) in a function ca[l-q(X, i, F) is the set of recognized
look-aheads of X.

The set F of recognized look-aheads of X will be passed onto a function call

lgoto(q,X)l(r). So we get function calls [q](i,F) with F the set of recognized look-aheads
of the last transition symbol (the transition symbol that causes the transition to g).

lqJ(t'r) {(r{ * o.P,j,c) I 3r((r{ -o.P,i,G)eÏïl(r,*r,d+l,Ií)
A H = parce(t(g,ti+r),i+ l)

^
H *0)l

u {(A - o.p,j,G)l)na@ + .6 € dai(g)
^

H *0
AH=parce(t(q,B-.e),i)
A (.4 - a.p,i,G) € iA(.B,r, fl)))

u {(a + o'r''G) I =;t=-;irïro,o.- o.),í)

^(G*0va=o'a)))

À (.A -- aX.p,j,G) É,lgoto(q,X»(i,F))
U {(e - a.p,i,il)l

)oc^e((A - a.p,i,rí) € fq'l(C,rn,G)
AC-.X6eini(q)
A (C - X.6,m,G) Clgoto(q,X)l(r,f)))

lThe LR(O) parscr is correct rs has bcen plovcn in [Lccrmakcre, l99la].

CHAPTER 5. MARCUS I,R PARSERS 37

Nothing has really changed, information about parsable look-aheads is only passed

onto function calls and index items. The information is never used.
The implication (Y,í) € .F and (A - o.p,d,F) an index item produced in the recog-

nition of a sentenc€ 11 .. . crr, implies Y -' ad+l . . . c1 has to hold. lndex items a,re only
created when the third set of [ql(i, F) is computed. ['ior every (Y,í) € G in an index item
(A - a.,i,G) in the third set of a function call [q](i,.F) the condition Y -' t;+r,,.tt
holds.

We will pÍove that for every (Y,/) € F and [qJ(r, F) a function call, Y +' ,i+r . ..z.t.
We need this proof for the next step in the construction of the parser.

fior every (Y,l) e .F, Y rewrites up to r. (by definition). r' is the set of parsable
followers of X in a function call [9](X, d,.F) (otherwise there is no call [qJ(d, F.)) aad F I 0.
This invocation of ifi could have been made by a call [qJ(i, J) for coàlutinj the set:

{(e - a.p,i,G)l3ua@ + .(€ ini(q) A H * 0

A II = parce(t(q,,8 - .e),i)

^
(/ * a.p,j,G) € iA(A,r,fl)))

It is clea^r that in this case Y -'oi+I.. .x1for
"ll

(y, l) e II, thus for all (y,/) € .F.
The call {q-i(X,d,P) (F I 0) could also have been made byfi1z,n,Ií) ior computing

the set:

{(r{ - a.p,i,fl) l)cc^e((d - a.0,i,H) ep1Q,m,G)
Ac-.x6eini(q)
A (C -* X.6,m,G) €,lgoto(q,Z)l(n,,H))l

In this case Jr = G and 6 is the set of parsable followers of C and (C - X.ó, ar, G) is an
indu item. By definition l' - om+l . .. c1 for all (y,/) € C.

tr

5.6 constructing the MatR(l) parser: step 3

5.6.1 introduction

In step two the functions [g](r) and {q-i(x,d) have been adapted to functions [g](i,f) and

[ql(Xri,F) to pass on computed look-ahead information. In the third step we will adapt
the function [gJ(i, f) for the case F * 0,, thus for the case there is look-a^head information
that can be used.

í.O.2 construction

The functiot lgoto(q,X)J(;,f) returns index items of the form (.4 + ax.hi,G) with
| + aX.p C goto(q,X). If X is the last symbol of the right-hand-side of A - aX.p
Ot = e) the eet of recognized look-aheads of the final item A -- aX. is a subset of the set
f (the set of recognized look-aheads of X). If the set F is not empty (the recognized look-
aheads of X have been computed) then the functiotlgoto(q,X)] can use this information.
It is not needed to compute again the set of recognized look-aheads of .4 - aX. .

CHAPTEN 5. MARCUS TR PARSERS 38

If X is not the last symbol of the right-hand-side of A - oX.P 0, * e) then the
look-ahead of X in the item A - a.X p in state g is the first symbol of p. If the set P
oí recognized look-aheads of X in state g has been computed and the first symbol of p is
element of this set then a transition on the first symbol of p can be made immediately.

fior a more formal proof let us look at the invocation lgoto(q,X»(i, F). This function
calt returns three sets (q' = goto(Q,X)):

set I : {(4 -o.p,j,G)l3r((A -a.p,j,G)eÏ7i(r,*1,i+ 1,.8)

A II = parse(t(q',r;+r),i + 1)

^
H *0\l (5.1)

set 2 : {(e - a.P,i,G)l3na@+.€ € ini(q')hH *0
AH=parce(t@',8*.e),i)

^
(e - a.p,j,G) € Eï(.B,d,IÍ))) (5.2)

set 3 : {(A + eX,,r,G)l A- aX.€,ql
A G = parse(t(q',A - aX.),i)

^
(G # 0v x =a)) (5.3)

The third set represents the situation in which X is the last symbol of the right-hand-side
of an item A - aX.p e. goto(q,X). G is the set of parsable followers oÍ A - aX. . If the
parsable followers of X already have been computed, it is evident that it is not needed

to compute G. The set f' is the set of parsable followers of X in a call lgoto(q,X)l(d, F),
thus the third set can be replaced by:

{(e - aX.,i,F) I A-.+ aX. e q' n P * 0

À F' = {(Y, /) lY e Í(q' , A - aX.)

^
(l',/) € F)) (5.4)

in the case F # 0. This is only true if for every (Y,C) e F,Y .-,'ri+r...c1. We have
proved this in section 5.5.

Fior computing thefirst and second set of afunction call [goto(g,{Ir,F) with use

of computed look-ahead information, we will first rewrite the function lq'l(Z,i', fl) U =
goto(q,X)). The function 6Q,i,F) computes the same set asfr1Z,;) except for the
look-ahead sets that are passed on. So we can use the specification

6Q,» = {(r{-a.p,i)l 3r(/-o.A€Q
A § +' Zt At -'ri+l ...rj))

as a specification of the function @@,i',fl).In the following equations we will use the
fact that there is a follower Y oÍ X that rewrites to Z in zero or more steps. (f is the
set of parsable followers of X in goto(q, X).)

fq'l(Z,i',fl) = {(r{ - a.p,i,C) 1 3"(/ - a.g € q'A A +' Z't
A ? .*' tit11 ...ti
A G = prse(t@oto(q',p),A -' ap.),i)))

= {(.,{ - a.9,i,G\ l)y pre(A .- a.§ e q' h I = Y p

CHAPTER 5. MARCUS IR PARSERS

lsl(t'o)

^
Y :+' Zu A v +' g1q1 .,,t1

A Lt -' ,a+r .. . tj

{(A - a.§,i,c) l)vd! - a.P,i,c) e Ï|i(r,z,O)

^
(Y,/) € Í'A Y e t(qt,,A - a.9) AY +' Zu

A V -' ,i,+l ...r1))

39

So we have:

(5.1) u (5.2) =
{(e - o.P,i,G) I)v sbu,((A + a.p,j1G) e i7i(y,Z,O)

A(Y,l) € f
^Y

e Í(q',A- a.0)

^
((y +' Bv A B - .e e ini(q') A u +' r;+r ... er)

V (Y +' ci+rut Av' -' ci+2.,.cr))))

If Y does not (left) rewrite to By with .B + .€ € ini(q') or to ,d+rrl' then Y +' Cv"
with C - .e í ini(q') and C e Vn. In that case C +' C'u with C' -r .6 € dni(y') and
v -'ui+t...tt or C +'Íi+tu'with v'+'xi+2...c1 because Y -r'rd+t...a1. Thus
the condition

((Y +' Bv A B + .G € ini(q') Av -' ei+r ...tr)
V (Y +' r;+tvt A u' -'ci+z...er))

always holds. So:

(5.1) u (5.2) =
{(r{ - a.p, j,G) I 3yr((,a - a.9,,i,q e@V,t,O)

^
(1,,/) € FA Y e Í(q,,A- o.p))l (5.5)

fior a call [q](r,.F) there are two cases, the set .F is empty or it is not empty. In the
case F = 0 there is no look-ahead information that can be used. In the case P I 0 the
look-aheads of the transition symbol have been computed and we can replace the old
function [qJ(r, .F) by a function that computed the set (5.4) U (5.5). So we get:

{(r{ - a.P,i,c) l3r((r{ - a.P,i,c)eÏii(r,*r,i+1,fl)
A II = parce(t(q,c;11),i * t)

^H *0)l
U {(/ + a.p, j,G) l)ua@ + .€ € iní(q) A il * 0

A II = prse(t(q,B -' .e),i)
À (.,{ ... a.p,i,G\ € ÏíNB,d,rí))}

U {(.4 + o.rd,G) I)o,(A + a. € I
AG=parce(t(q,í-o.),i)
A(G*0va=a'a)))

CHAPTER 5. MARCUS TR PARSERS

[sJ(d,r) {(A * a.,i,F') I A - a. e q n F { 0

À.F'= {(y,d) lt' e Í(A * a.) A(Y,t) € r}}
U {(r{ + a.p, j,G) I 3yr((e - o.§,i,G) e lq-l(y,e'O)

A (l',/) € F^ l' e Í(q,A* a.É)))

5.7 revieïv

a+p = leer(a-A1 A9=fiAA-ó^6*e)

iai : S-PU)

ini(q) lB - .u l)a,e5(A - a.0 e q n I +' 86n I - v))

40

goto(q,e) =
gotdq,X6) =
gotdq,X) =

goto : §xV'-S

q

goto(goto(q, X),6)

lA - aX.p I A - a.X 0 € (qu ind(q)))

Í : §x(Iutr71-P(l/)

tk,A- a.§) = lX l)u@= Xp^X€ Y))
U {Y I)nreav(p = € A0 = goto(p,a)

AB-1.A6€.(puizd(p))
A Y € f(goto(p,A),8 -* ?/.6)))

Í(q,t) = {X l)"pe(A- o.cp É,qnX e Í(q,A- at.p)Àe € V1)}

tql : JVxPV\-PUI)

[s](i,$) = {(4 - a.P,i,G) lla((.,{ - a.9,i,G)eEI(r,*,,d+1,fl)
A II = parce(t(q,t;11),i * l)

^
H *0)l

u {(/ - a.0,i,G)l3ne@ + .(€ ini(q) A H * 0

A II = parse(t(q,8 - .e),d)

CHAPTER 5. MARCAS IR PARSERS

A (/ -- a.p,i,G) e iïi(.B,r,/í)))
U {(/ + o.rr,G) I 1o,(A + a. € g

A G = parse(Í(q,,/ - a.),r')

A(G*0va=a'a)))

[s](r'r) {(/ -. 4.,í,F') I A - a. e q A F * 0

A .F'= {(Y,f) lY e Í(A - a.) A(Y,q € f}}
u {(/ - o.P,i,c) I 3yr((/ - a.9,i,G) e i-qJ(y,r,O)

A (Y,t')€ F
^
l' e Í(q,A - a.P)))

4l

1q-i1x,;, r;

Ei : vxNxP@)-PUI)

{(A - a.X p,j,G) I A - o.X9 e g

^
(A-- aX.p,, j,G) € lsoto(q,X)J(i,.F))

U {(e - a.§,j,Hll
ïco^e((A - a.9,j,il e6Q,n,G)
Ac-.x6eini(q)
A (C - X.6,nr,G) elgoto(q,X)J(i,.F)))

5.8 complexity

Iook-aheads must be parsed by a function parse. If the function porse is not a MaLR(l)
parser, the parser will not always use look-ahead information. The results of computing
the parses of one look-ahead have to be memorized, otherwise a lot of subparses have to
be computed several times. So for the function porse the same parser has to be used as

the parser that calls the function Wrse and the parse results (in fact the function calls

[q](r, Í') and [q](X, i,.F)) have to be memorized. For computing parses of look-aheads, the
parser must be extended with states for every nonterminal that can act as look-ahead (in
practice all nonterminals may act as look-ahead). Such a state is the root state used for
recognizing/parsing the corresponding looli-ahead symbol. Thus for every nontermind
Y e Vx a state llookAhead - .Y I) has to be added to the Parser. The symbol I is
used to indicate that no symbols have to be recognized after the look-ahead symbol. The
parser does not stop with recognizing till the J- symbol has been reached. The symbol
LookAhead, has no meaning. It is used to create an initial item.

The number of states of a MaLR(l) parser equals the number of states of a tR(O)
parser (O(Zlol11. But every item is connected with a set of look-ahead symbols. At most

I V I different look-aheads are connected with an item. If an item has symbols on the
right-hand-side of the dot then the item has only one look-a.head.

There are O(z I y l) different invocations of a function [q] an{_.O(l V I n I y l)
different invocations of a function ffi. n."n invocation of a function itJ(X, i, F) leads to
an invocation of lgoto(q,X)l(d,f). A call [qJ(i,F) returns a set of O(n) elements. An
invocation [g](X, d, F) leads to an invocation of a function [gXX, r, F) for every element of

the set lgoto(q, x)J(i, P), thus o(n) invocations of functions ifi. A call iïi(x, d, .F) returns

a set of O(a) elements. So O(a) invocations of functions [g] results in O(a) sets of O(a)
elements. Together with merging these sets and removing duplicates each invocation of
a function l[i takes O(n2) time. Hence the total time complexity of the MaLR(l) parser

is O(zlol lV 12 os).

CHAPTER 5. MARCAS TR PABSERS 42

5.9 reduction of look-ahead power

The Ma,rcus LR pa.rsers have less look-ahead power than the recursive ascent Marcus
parsers. Look-aheads are no longer part of the items. In figure 5.1 and figure 5.2 one can

eee that this disconnection of look-aheads and items causes a loss of information. As

R

Figure 5.1: use of look-ahead in RAM parsers

we will see in chapter ll, the difference between the RAM parsers and the MaLR parsers

has great influence on probabilistic parsing.

5.10 MaLR(k) parser

The number of look-aheads does not play a part in the construction of the MaLR(f)
parser. lyVhile constructing the parser we assumed one constituent look-ahead. In the
following extension of the parser we alisume Ic look-aheads. Only the function / which
computes the follourers and the functions [q] change. A function is needed to compare a
list of followers and a list of pa^rsed followers. This function is named SymEq.

cc

J

initial itcms:
AR->.C

inidal itcms:

AR.> c.

ini i.t i.rr,
RA c R

initial items:
Ar->.cJ

ini,i.t i,rs
J-> C.

ii,i.t i,rrt
J.> CJ

z->PQ.AR

initial items:
A->.C

H.>G.AJ

initial icms:
A->.C

A.>C. (J,R

initial items:

CHAPTER 5. MANCUS TR PARSERS

Figure 5.2: use of look-ahead in MaLR parsers

Í : 5 x (I Ullr)X,lV -* P(V)

Í(q, A - a.p,k)

43

cc

0,iflr=0V0=t
lX:taitl)r(p=Xp^XeV

A tail e Í(q,A - aX.p,e - l)))
U ltlistlSyreav(9 = €A0 = goto(p,a)

AB-1.A68(puini(p))
A tlist e Í(goto(p,A),8 - 1A.6,k))l

{X l3"p,r(A-a$peq

^
.N € Í(q,A - at.p,&)À c eVr)l

SymEq : V'xF-Bool

.f(9, c, &)

SymBq(ll,plist) =
=

SsmEq(Y : ftail,ll) =
SymEq(Y | Ítail,(X,l): ptail) =

=

True, if plist = []
False, if plist I [J

Folse

SymEq(ftoil,ptoil), iÍ X =Y
False, otherwise

tql : /vxP(f)-P(II)

CHAPTER 5. MARCUS TR PABSERS

{(A - a.§, j) I 3s((a - a.9,i) € i!i(r;*,,i + l,Ií)
A H = parse(t(q,oi+t,k),t + l)

^H#0)lU {(À - a.§,i,G\ l)au@ --r .€ € izd(q) A II * 0

A H = prse(t(q,B * .e,È),i)

^
(.4 - a.p,i,G) e i-qJ(.B,í,fl)))

U {(e .+ o.ri,G) I)q,(A --+ o. € I
À G = parse(t(q,.A -. o.,,t),i)
A(G*0va=o'f)))

[qXi,F) {(/ - a.,i,F') I A - a.e q A Ft # 0

A F'= {(y,/) t ptail ll' z ttail e Í(q,.4 - a.,&)
A ()',1) :ptail e P
A S y m E q(t t ail, pt ail\ll

u {(A - a.g,i,G) I 3r.r((e - a.9,j,G)efil1l',e,ptatt'1
A (Y,t): ptail €, F
Ar' | Ítail e Í(q,A - a.0,k)
n S ym E (tU tail, ptail))\

44

lsl(i'o)

Part II

Grammars

45

Chapter 6

large grammars of the English
language

6.1 introduction
For parsing a large subset of a natural language, we need a grammar which describes
such a large subset. Three grammars a.re described in the following chapters (chapter 7

and 8). These three grammars were available during our research. In this chapter, we

describe some other large grammars of the English language. It is almost impossible to
compare these grammals. Grammars are written in different forms, with different lexical
and syntactical categories, with or without attributes and so on. An approach to compare
different grammars/parseÍs is given in [Grishman et al., 1992J.

6.2 augmented phrase structure grammars

DIAGRAM ([Robinson, 1982]) is a system used for interpreting didogues. The used
grammar consists of context-free rules augmented by procedures that constrain the ap-
plication of a rule, add information to the structure created by the rule and assign one
or more interpretations to the resulting enriched structural analyses. Attributes are used

in the gralnmar of DIAGRAIT{ to set context-sensitive constraints on the acceptance of
analyses. Nothing is said about the computational aspects of the parser and about the
size of the subset of English that is described by the grammar. An important problem of
la^rge grammars is mentioned: "intrcducing neu rrles almost ineaitably àas a prturbing
efrect as they intemct with the old rules ín antorcseen ways'.

Another augmented phrase structuÍe grammar is the grammar used in the CRITIQUE
Bystem, developed by IBM ([Richardson et al., 1988J). CRITIQUE is an extension of the
EPISTLE project ([Heidorn et al., 1982J). It is a system used to identify grammatical
and style erÍors in English text. The grammar produces parses which a^re approximate.
The system is (beside other tests) tested on 2264 §entences from 4ll business letters.
The average word number of a sentence is lg. For 64 percent of the sentences, a parse
was produced. For 4l percent of the 2254 sentences, one pa.rse tree was produced, for
ll percent two parse trees were produced and for ll percent three to nine parse trees
were produced. For one percent of the 2254 sentences, ten or more parse trees were
produced. This is a very small number of ambiguities. A reason may be that the grammar

46

CHAPTER 6. LANGE GRAMMAAS OF THE ENGLISH LANGUAGE 47

describes very general structures. The grammar only has to describe structures needed
for the oitiquing tasks of the system. The CRITIQUE system works relatively fast: for
a sentence of 15-20 words, a large IBM-mainframe needs one CPU second to analyze the
sentence.

As will be made clear in chapter 9, the augmented phrase structure grammars used
in DIAGRAM and CRITIQUE cannot be used for our probabilistic parser.

6.3 other approaches

In [Sager, f98f] a Inguistic string grammar is described. The grammar consists of BNF
rules together with a kind of attributes. These attributes are used to restrict the number
oÍ syntactical analyses. The BNF component consists of three types of rules (string
definitions, adjunct set definitions and LXR definitions). A string definition is a rewriting
of a syntactical class in a sequence of syntactical classes and adjunct set definitions.
Adjunct set definitions are optional additions to sentences. An adjunct set definition may
rewrite to LXR definitions. A LXR definition only exists if X is a syntactical category.
A LXR definition is of the form

LXR-LXXRX
with LX the set of possible left adjuncts of X and RX the set of possible right adjuncts
of X. The complexity of the grammar and the size of the subset of English the grammar
caÍl generate are not described.

At the university of Nijmegen (the Netherlands), corpus linguists work with a large
grammar for English. It is a detailed, attributed grammar. It is not usable for our
probabilistic parser. For correctly ta.gged sentences (words are tagged with their lexical
category), still a lot of andyses are produced (in contrast with the CRITIQUE system).
More than 100 analyses for one sentences is not an exception. About 80 percent of sen-
tences from written prose can be generated by the grammar. Parsing is really difrcult for
long sentences. Parsing of a sentence is stopped after one hour (on a SUN3 workstation).
Other sentence types (for example from newspapers) are even more difficult to handle.

6.4 conclusions

Only few grammars exists that describe a large subset of the English lurguage. Not all
of them have been mentioned in this chapter. Almost all of the existing la,rge gra,E-
ma"rs use attributes/features to restrict the number of possible analyses. Other grammar
formalisms exist like generalized phrase structure grammars ([Gazdar et al., 1985J) and
unification grammars ([Shieber, 1986J). In chapter 9 we show why the context-free ap-
proach is a more appropriate formalism to uEe for probabilistic parsing.

Chapter 7

the corpus grammar

7.L description

Together with the LDB-corpus a grammar exists that describes many of the sentence
constructions that occur in the corpus. The grammar is context-free and attribute-free.
It describes rewritings of syntactical categories and grammatical relationsl. So parse trees
aÍe Íepresented by rules like:

utterance:sf - subject:pn elliptic:ell

with s/2, pn3., ella syntactical categories and utterance, subject, elliptic grammatical
relations.

The grammar has rules likes:

o f ell elliptic structure * c ell elliptic structure.

o c vitgo * nf vi ing code;

nf vi ing cv;

nf vi ing coord.

o f ic immediate constituent r nc constituent in ns utterance.

o nc constituent - nc basic;

nc phrasal.

A string 'f a' represents a grammatical relation (a function). A string 'c o' represents
a syntactical category. A string'nc o'represents an auxiliary syntactical category (aux-
category). Such a category only rewrites to other aux-categories and/or to syntactical
categories. A string 'nf o' represents an auxiliary gtammatical relation (aux-relation),
that only rewrites to other aux-relations and/or to grammatical relations.

tGrammaticel reletions rre uacd to dietinguish difierent uecs oÍ a ryntrcticd crtetosy. For example a
Noun Phrrse may rct es an Indircct Objcct, as an Object and rs a Prcdicatc.

2ef
= finitc scntcncc

3pn
= pronoun

'ell = clliptic phrrse
5A semicolon rcplcscnts OR, a commr reprcsents concatcnation.
6vitg

= verb prcspart intransitive

48

CHAPTEN 7. TTIE CORPUS GRAMuTAR

7.2 elimination of auxiliary categories and relations

49

To get a gÍammar that corresponds with the trees of the sentences of the corpus we have

to eliminate the nc and n/rewritings. We are not interested in the grammatical relations,
so we also want to eliminate the / rewritings. Here the first problem occurs: there are
cyclic rewritings of n/symbols, for example:

a nf maybe inf vp - nf filling, nf inf verb phrase.

o nfinfverb phrase - nfto option maybe ad, nf inf verb ohrase tail:

nf to.

o nfinf verb phrase tail -- f vb vap inf, nf maybe ed or ing vp;

f vb vas inf,

nf inf no aux vp.

This makes eliminating n/rewritings very difficult. We have erased the cyclic structures
(so the grammar describes fewer constructions as before).

The second problem is the explosion of the number of rules if the nt, nc aÍrd /
rewritings a^re eliminated (when only the nt and ac rewritings are eliminated there is

also an explosion). There is an explosion because a lot of rules are of the same form as

(for example):

. c noca not a sentence - nf left, @,
nf constituent stri nf right

o nf constituent strinq -. t

f ic immediate constituent.

o@- .

. + c coop coordinator phrase;

c subp subordinator phrase;

c in interjection phrase;

The explosion is a real explosion. The original grammar (with a/, nc and / rewritings)
consists of more than 1400 rules. Eliminating nt, nc and / produces more than 800
rewritings for the category c n(na nol a sentence. For other categories (as c et fin eentene,
c np noun phmse) there are much, much more rewritings.

In the origind grammar the a/ and nc symbols can be seen as extra grammatical re-
lations and syntactical categories. Adding a category to a gramma.r increases the number
of grammar rules if the new category is a special case of an existing category. It could
decrease the number of gramma,r rules if the new category describes a set of existing
categories (as with the categories nc and relations nr).

nf maybe inf vp

CHAPTEN 7. THE CORPUS GRAIilAíAR 50

7.3 over-generation

lVe have tried to compute the set of states of the parser without look-aheads for the
corpus grammar. It turned out that a considerable number of states have more than
1000 initial items. So computing all the states would take a lot of time and space. For
our system it was impossible to compute all the states within a week. The gramma^r

hi ghly over- generates.
According to the original users of the corpus grammar (the people who developed

the LDB-corpus), the grammar describes in principle common English. For the tDB-
developers it was not a problem that the gÍammar highly oveÍ-generates because they
always used lexical categories with tree structure as input for the parser of the coÍpus
graÍrmar. They used the grammar to label the tree structures.

7.4 conclusions

The corpus grammar caÍrnot be used for an experiment with probabilistic pa^rsing. The
grammaÍ highly oveÍ-generates and it uses a lot of auxiliary categories. Auxiliary cate-
gories are of great use for reducing the size of a grammar.

Chapter 8

a grammar extracted from the
corpus

8.1 introduction
Flom two parts of the LDB-corpus we have extracted a gramma,r. Both the parts are two
short stories. There are 3566 analyzed sentences in the two stories. Por every sentence
there is a unique parse tree. The grammar rules have been extracted from these parse
trees. Every node with sons in a tree repÍesents a grammar rule. For example the tree

NP

,4\..
NO

AJP AJ NO

reprcsents grammar rules:

oS-NPNO
o NP-AJPAJNO

The resulting grammar consists of more than 4200 rules. The grammar is aflat gra.mmarr.
The category verb phrase (VP) has not been used in the parse trees. All the possible
rewritings of a VP are written out in other rules. An example is:

Finite§entence { Interjection Pronoun Verb-fi ni te-modal

Verbinfi nite-primary Verb-past-part$onotransitive

Noun-phrase Exclamation-mark

where Verbjnfinite-primary Verb-past-part-rnonotransitive Noun-phrase can be seen as
a verb phrase.

In section 8.4 the influence of the absence of the category VP on the number of
grammaÍ rulea will be examined.

I Pssc trece wriiten with a íat grammar retatively do not have deeply neeted rewritingr.

5l

CHAPTEN 8. A GRAMMAR EXTR ACTED FNOM THE CORPUS 52

8.2 multiple replication of symbols

8.2.f existence

The grammar does not contain empty rervritings (e-rules). In the Parse trees e'rules

are not used, so eveÍy category always rewrites to other categories or the category is
a terminal symbol. Because of the used method Íor extracting grammar rules regular
expressions with multiple replication of a symbol have been written out, for instance:

o NP -- DE AJ AJ NOUN PP

a pierced decr,mtiue border (in brickrvork)

O NP - DE AJ AJ AJ NOUN PP

the only otdinary nonnal person (in the place)

The words between O make up one constituent.
Multiple replication of more than one symbol like

o NP -- NP COOR NP COOR NP

(a great big home) and (a dozen farms in ..) and (a great deal of money ..)

also exists.

8.2,2 representation in grammar rules

Another construction without e-rules for rules as:

O NP - DE AJ AJ NOUN PP

o NP - DE AJ AJ eJ NOUN PP

is:

e NP -.* DE NOUN PP

r NP - DE AJJ NOUN PP

O AJJ * AJ AJJ

o AJ-P - AJ

lUith e-rules a shorter notation is possible:

r NP .- DE AJ-P NOUN PP

o AJJ -* AJ AJ-P

r AJJ+(
In general, this construction is better than the written-out notation because in the
written-out case the number of AJ replications is bounded. It is dso better because

in the written-out case the parser has to know the current situation for each applicable
rule. So for a noun phrase starting rvith DE AJ the used rule could be (for example):

CTTAPTER 8. A GRAMMAN EXTRACTED FROM THE CORPUS 53

. NP .+ DE AJ NOUN PP

. NP -- DE AJ AJ NOUN PP

O NP - DEAJ AJ AJ NOUN PP

But there are also rules like:

o NP - DE AJ NOUN NON-PINITESENTENCE

O NP + DE AJ AJ NOUN NONJINITE.SENTENCE

o NP -. DEAJ NOUN PP PP

o NP .- DE AJ AJ NOUN PP PP

etcetera

The effect of these written-out rules is o high number of states as the following example
shows.

We have the following grammar rules:

o NP - DE NOUN

o NP - DE AJ NOUN

o NP - DEAJ AJ NOUN

A state {'y -. a . NP p} h.s a transition on symbol DE (parsing with lc is one). See

figure 8.1 for the resulting state with related states.
lVith grammar rules:

o NP - DE AJJ NOUN

o AJJ -' AJ AJJ

o AJ-P-e
a transition on symbol DE leads to a state with item:

o NP -' DE . AJ-P NOUN

For this state there a^re transitions on symbol NOUN (because AJJ may rewrite to e),
on symbol AJ and on symbol AJJ. The transition on symbol AJ leads to one or more
states that describe the recognition oÍ the regular expression AJ-P ::= { AJ }+ 2. This
time fewer states are needed for the recognizing of an AJ-repetition string because the
already recognized part of the AJ string is not showed/memorized in the items of the
states but in function calls. From the next symbols the parser only knows that AJJ
rewrites to e or to AJ followed by AJJ.

A disa.dvantage of the short notation is the change of structure in a sequence of the
same symbol (see figure 8.2).

'{r}+ mctns onc or more rcplications oÍ symbol x.

ï->aNPp
initid items:

l'lP -> . DE NOUN
NP.>.DEA,NOUN
NP.>.DEA,A,NOT.IN

I,fP -> DE . NOUN
IITP.> DE . AJ NOUN
NP.> DE . A' A, NOUN
inirid ircmr:

N?.>DEA,.NOUN
NP.> DE A, . A' NOUN
t01..1.,''

CHAPTER 8. A GRAMMAR EXTRACTED FROM THE CORPUS 54

DE

A,

NOUN NOUN A,

Figure 8.1: states for a grammar rvithout €-rules

8.2.3 effect on the granrmar

The number of rules of the gÍammar could be reduced if multiple replication of a sym-
bol/symbolstring would not be written out. What is the effect on the number of rules of
the grammar if we use a shorter notation for representing a multiple replication? How
many constructions contain a multiple replication? Or in other words: how bad is the
corpus-grammar with respect to multiple replication?

If dl multiple replications of one symbol in a right-hand-side of a grammar rule are
replaced by a (new) symbol that represents a multiple replication for that symbol and
duplicate rules are erased, the number of rules reduces from 4250 to 4025. This means

that writing out the multiple replication of one symbol does not create many extra rules.
In the corpus multiple replication of more than one symbol only exists for symbol-

strings of length two. Almost all the rules with multiple replication of two symbols are
of the form:

Symbol-o{SYMCOOR}P

or

Symbol -* a { COOB SYM } P

An example of the first form is:

o NO - NO COOR NO COOR SF

(rock crystal) and shells and (what used to be called fossil bodies)

CHAPTER 8. A GRAMIuIAR EXTRACTED FROM THE CORPUS 55

DE AJ AJ AJ NOUN PP DE NOUN PP

AJ

AJ

Figure 8.2: change of structure in parse trees

For an otample of the second form see section 8.2.1. Thus coordination creates multiple
replication of two symbols. Some other rules (not frequently used) are:

r VC3.- SUB{ AV PP AV PP

if not (with authority) (at least) (with an exuberance of ..)

O SF * NO ASP5 VITF AV PP AV PP

Straler (as a'.. phenomena') comes home (to us) now (with a ..)

In the corpus constructions with multiple replication of two symbols has been found 89
times partly describing the same rules. Thus multiple replication of two symbols will be
of little influence on the number of grammar rules.

8.3 optional symbols

Not only for multiple replication of a symbol the parser could use e-rules. In the grammar
extracted from the corpus the following rules occur:

o NP-DEAJAJNO

a slim youngish person

r NP--DEAJAJNOPP

a pierced decorative border (in brickwork)

o NP - DEAJ AJ NO SN

some shy elderly person (overtaken ..)

o NP-DEAJAJNOVCPP
tVC

= vcrblcas claucc

'SUB = subordinator
IASP

= as phrrsc

AJ

CHAPTEN 8. A GNAMMAR EXTRACTED FROM THE CORPUS 56

a tall swarthy man (, very much the classic cockney,) (with a ..)

These rules describe the same phenomenon. In a regular expression this can be written
as ([xl means zero ot one replication of symbol x):

r NP - DE {AJ}+ No lvcl PP] [sN]

lVith use of e-rules this can be written as:

o NP - DE onerrunore-AJ NO opt-VC opt-PP opt§N

. one-oÍJnore-AJ - AJ one-or-rnore-AJ

. one-ounore-AJ - AJ

o opt-SYMBOL -* SYMBOL

o optSYMBOL - e

And without e-rules this can be written as 8 (23) rervritings of NP:

o NP - DE onegrnore-AJ NO VC PP SN

r NP - DE one-orrnore-AJ NO PP SN

o NP - DE one-orrnore-AJ NO

As we can 6ee the number of grammar rules explodes if all the rules would be written
out.

For multiple replication of symbol(s) e-rules are not needed. But without e-rules
optional symbols have to be written out. So a grammaÍ for natural language without
e-rules uses (much?) more grammar rules to describe a language than a grammar with
e-rules.

8.4 other reductions

It is not possible to write a grammar that describes precisely all possible sentence struc-
tures of a naturd language. For context-free grammars it is possible to use attributes
to reduce the number of rules. Without attributes the grammar needs more syntactical
categories to distinguish different sentence structures. Basically it is possible to write a
grammar of one rule with a lot of attributes. By contrast it is possible to write a very,
very la.rge grammar without attributes with the same power as the one rule grammaÍ
with a lot of attributes.

For a given contexÈÍree grammar without attributes, it is difficult to say whether it
is a good or a bad graÍnmar. lile are searching for a sort of minimal grammar that is
over-generating but acceptable with a minimal number of rules. Whether the gramma"r is
acceptable or not is an application dependent question. We are searching for a minimal
gra,mmar that describes common English. In practice this grammar will over-generate too
much, but when trying to compute the minimd number of rules of a grammar such an

CHAPTEN 8. A GNAMMAR EXTRACTED FROM THE CORPUS í7

over-generating-grammar is a good goal. A less oveÍ-generating-grammar always needs

more rules.
The grammar extracted from the corpus is small because it describes only syntactical

constnrctions of 3566 sentences (see section 8.5.3). Nearly 100 syntactical categories
are used. In the parse trees of the corpus syntactical categories are used as well as
gra,mmatical relations. ti{hile extracting the grammar the grammatical relations have
been iguored/skipped. Thus for a subtree

UTTERANCE:SF

SUBJECT:PN EUP.IIC.E.L

the extracted rule is SF .- PN ELL. Skipping the grammatical relation oeates more
over-generating and it reduces the number of grammar rules, because sometimes words
belong to the same category but to a different grammatical relation .

Looking for the lower limit for the number of rules of a context-free gramma^r without
attributes and e-rules for common English, other reductions on the number of rules are
possible. In the corpus for a number of phrases there is a difference between the phrase
consisting of one element and the phrase consisting of more than one element (for ex-
ample AJ (adjective, one element) and AJP (adjective phrase, more than one element)).
Although there is a linguistic motivation for this phenomenon, we replace symbols X (X
e Vrv) by symbols XP (XP É Vp, XP is a X phrase and X represents a single element
XP). Because almost always a single element phrase behaves the same as a multiple ele-
ment phrase this is a natural reduction that does not create much over-generating. The
number of rules will be reduced because of rules like:

o AN -- AN COOR AJ

e AN - AN COOR AJP

Because in the corpus spoken text exists, rules for phrases between quotes occur in
the grammar. These rules are not general but rather ad hoc as can be seen in following
rules (OPEN is an opening quote, CLOS is a closing quote):

o SF * OPEN IN IN PN VCOF Av SF CLOS

o SF -- OPEN PN VITF AV CLOS

o SP * OPEN PN VCOF AV AJ

o SF * NP VCOP PP CLOS

With fewer rules the 6ame can be desoibed:

o SF-QUOTE -- OPEN-option SF CLOS

r SF-QUOTE - OPEN SF

o NP-QUOTE -- OPEN NP CIOS

o ...

CHAPTER 8. A GNAMAIAR EXTRACTED FROM THE CORPUS 58

It is difrcult to see what the effect of the absence of the category VP is on the number

of rules of the grammar. For each rule of the form

A-oVPp
one has to know how many rules of the same form exists in the corPus grammar with a
different written out VP.

For a random subset of grammar rules with a verb phrase we have examined this.
For each rule a linguist has determined the verb phrase in the right-hand-side. Then the
rules with the same left-hand-side and the same right-hand-side except the verb phrase
part have been counted. So for rules of the form A -+ o VP p we counted the rules A

- o ,l 0 b e V'). It will be clear that 7 is not always a verb phrase, so there are fewer
rules A - o VP p than rules A --* a ? É. Forsome rules thereisonly onesampleof the
forur A -+ o .t p. For other rules there are dozens of rules of the form A - a 1 É. The
experiment indicates that the number of grammar rules reduces with a factor between

two and ten ií the category VP is added to the gÍammax.

8.5 number of grammar rules

8.5.1 gratnmars without e-rules

Grasrmars without e-rules would not be a problem if they consisted of only a restricted
uumber of rules. Tomita describes a parser for natural language. For testing his parser,

the biggest grammar he uses consists of only 400 context-free rules without e-rules and
attributes. In his view this grarnmar is considered as one of the toughest natural language
gÍammars in practice6. In this section it will be explained that this is not a realistic view.

As described before, the pure grammar extracted from the coÍpus consists of more
than 4200 rules. Representing multiple replication without e-rules but with a compact
notation as described in section 8.2 reduces the number of rules to about 4000. Replacing
single element phrases by multiple element phrases as described in section 8.4 reduces

the number of grammar rules subsequently to about 3100. Erasing the quote symbols in
the rules (see section 8.4) delivers a grammar with about 2700 rules.

Fbwer rules a^re only possible if the grammar is made less flat, if the grammar is

made more over-generating or if the grammar describes a smaller subset of English. The
grammar already desoibes a veÍy small subset of English (this aspect will be analyzed
in section 8.5.3). As described before, the grammar already highly over-generates. More
over-generating with fewer grammar rules involves less sentence structure in pa^rse trees.

lVith introducing the category VP the grammar will be less flat and the number of
rules can be reduced. Parse trees witlt a normal depth can be generated with the corpus
grarnmar including category VP. A less flat grammaÍ (than a grammar including category
VP) is not natural.

In about 500 rules of the 2700 grammar rules there is no nonterminal representing a
verb in the right-hand-side. So our expectation is that with category VP the gra^rnmar

still consists of more than 1000 rules.
c[Tomitl I9EGJ, page 8l

CITAPTER 8. A GNAMMAR EX?R ACTED FROÀí THE CORPUS 59

8.5.2 grammars with e-rules

With use of e-rules it is possible to describe a large subset of a natural language with
fewer than 1000 rules.

The surface grammar used in the ROSETTA system (a context free grammar for
common English) consists of about 20 regular expressions. Replacing the regula,r expres-
sions for grammar rules in BNF notation with e-rules returns a grammar with about 300

rules. This gramma^r highly over-generates because the original surface grammar is an
attribute grarnmar and we have erased all the attributes. Some attributes exclude specific
rewritingsT. For example for a regular expression

X ::= t"l tÉl t'yl

there could be an attribute o-exists of type Boolean (with a-exists = o rewrites not to
e) and eraluation rule

if a-exists

then X ::= alPl

else X ::= [P] hl
ïVhen replacing this grammar by a grammar without e-rules the number of rules explodes
(more than 10000 rules) because of many optional symbols in the right-hand-sides of the
grammaÍ rules (see section 8.3). For natural language grammars a lot of grammar rules
can be written with optional symbols in the right-hand-side.

8.5.3 the number of sentences with respect to the number of grammar
rule§

It is important to see if the part of the corpus we used to extract the grammar represents a
large part of the possible syntactical constructions. In other words: how does the number
of grammar rules increase if the number of sentences the grammar rules are extracted from
increases? In figure 8.3 the relation between the number of sentences and the number of
graÍnmar rules is shown. lÀte used four parts of the corpus. Starting with one part, we

added another part and so on. In the figure one can see the number of rules of the pure
gÍarnmar (without reductions), the number of rules of the reduced grammar (reduced for
multiple replication, single element phrases and quote symbols) and the number of rules
without verb of the reduced grammar.
The number of rules grows fast. lVhile adding more analyzed sentences to extract from
at a moment the grammar growth will reduce. But with 5000 analyzed sentences a lot of
syntactical constructions does not occur.

tFot this rcraon we wcrc not oblc to use the ROSETTA grammar Íor our res€trch on probabilistic
prraing. Bcsidcr thc problem oÍ the powcr oÍ come attributes 3o cxclude epccific rewritings thcrc ic r
problem becausc the grrmmar uaes Íew eyntrctical catcgorics bccausc a lot oÍ ryntrctical iaÍormrtion ie
cxprcrred in attributes. So it was not ueeÍul to rewrite thc grammar-without-iltributcs for Ítributcs thet
cxclude ryecific rewritings (in any cese that would be a lol oÍ wor}) becaure thc 3yntrtical crtcgoricr
.rc too lees cxprccsivc. Rewriting the grammar with new eyntactical categorics would tale r lot of timc
for r linguiat.

CIIAPTDL 8. A GRAMIIAR EXTRACTED FROtt[THE CORPUS

iiEo er

r&nl

iöb..,.

60

.!!

í@

rl@

a@

a

..aa ''
a.-'

Figure 8.3: number of grammar rules with respect to the number of sentences

8.6 conclusions

A grammar that has been extracted from an analyzed corpus has great disadvantages.
Multiple replication of symbols is written out. lt is easy to replace multiple replication
with a more compact notation. But using optional symbols will be difficult if a consistent,
not highly over-generating, manageable grammar is wanted. Using auxiliary categories is
possible if the auxiliary categories have been represented in the parse trees. Otherwise a
linguist has to rewrite the grammar with use of auxiliary categories if a consistent, not
highly over-geneÍating, manageable grammar is wanted.

It is important which syntactic categories are used. The size of a grammal may be
Ia.rge because of the absence of a syntactic ca.tegory. The choices that have been made
when writing a grammar are not ahvays the right choices for creating a minimal grammar.

Chapter I

context-free grammars

9.1 introduction
In this section we will examine the factors that influence the size of a grammar on the

basis of the results descibed in the preceding chapters (section 9.2). We will look at the

effect on the parser if the grammar size is reduced (9.3, 9.4). The effect of the grammaÍ

size reductions on probabilistic parsing rvill be examined in chapter ll. In section 9.5 we

will conclude the discussion about grammars with some general conclusions.

9.2 grammar size

9.2.1 introduction

In the original (pure) grammar extracted from the corpus, a lot of rules are needed because

all syntactical constructions have to be written out. In this way it is impossible to write
a grarnmar for common English. Such a grammar would need some tens of thousands

(or more) rules. A gramma,r with so many rules is not comprehensible. It is difrcult
to modify a very large grammar. Adding one rule often has an effect on a lot of rules.

Also the parser would be very inefficient. As we will see, with many grammar rules many

states a.re needed for the parser and tha.t has a negative effect on the parsing complexity
and on the statistical complexityl.

The number of rules can be strongly reduced if aux-categories or optional symbols are

used. Aux-categories are used in the grammar related with the LDB corpus (section 7).

Optional symbols are used in the surface grammar for English in the ROSETTA system.

In the following paragraphs these two methods are examined.

9.2.2 aux-categories

If aux-categories are used, the idea of a grammar with written out rules still exists.

Different parts of syntactical constructions in right-hand-sides of grammar rules a^re ta,ken

together in aux-categories (or in aux-relations as in the corpus grammar). Aux-categories
and aux-relations can be taken together in other (aux-)categories and (aux-)grammatical

lThc drtisticd complexity ie the complcxity with rcspcci to lhc emount oÍ staticticrl inÍormrtion that
ia nccded.

6r

CHAPTER 9. CONTEXT.FREE GRAATI{ARS 62

relations and so on. An example is the rervriting for category noun phrase in the corpus
gÍammar:

. c np noun phrase:

nf left, nf np noun phrase inner , nf right.

o nf np noun phrase inner:

nf np noun phrase simple:

nf np noun phrase coord

nf np noun phrase axb;

nf np noun phrase apposition.

r nf np noun phrase simple:

nf normal noun phr

nf nominal adjective phrase;

nf gnp genitive noun phrase simple.

o nf np noun phrase coord:

nfcoord option, fjoin np noun phrase, fcoor,

nf coorded anything.

o nfnp noun phrase axb:

f a np noun phrase, f lim pcl, f xb.

o nf np noun phrase apposition:

f a left appositive, f b right appositive.

r nf normal noun phrase:

nf np front, f hd in np, nf np tail.

r nf np front:

nf np det list, nf dumb filler like list, nf np prem list;

f prem in np, f det in np, nf dumb filler like list,

nf np prem list.

If a written out grammaÍ is transformed into a gÍammar with aux-categories/aux-
relations, rules of the original gra.mmar and parts of the right-hand-sides of rules are
split up in groups. For such a group an aux-category is introduced that rewrites to that
grouP. Because a group may occur at more than one place in the grammar, the number
of grammar rules reduces if aux-categories are used.

CHAPTER 9. CON"EXT.TREE GRAMÀíARS 63

9.2.3 optional symbols

The method used in the surface gra.mmar for EngUsh of the ROSETTA system differs

from the method with aux-categories. In fact the grammar rules are not splitted up but

they are merged by using optional syntactical categories. For example with one regular

expression the rewriting of the prepositional phrase can be written as:

PREPP 3;= [ADVP I NPJ PREP INP I PREPP I ADVP I ADJP I SENTENCE]

(Something between I is optional. The symbol 'l' stands for OR. This regular expression

can be written in ten rules with BNF notation together with optional rewritings for the

categories ADVP, NP, PREPP, ADJP and SENTENCE.)
If attributes may be used the number of rules can be strongly decreased because

context-sensitive effects can be controlled by attributes. Then for the rules

A-BCE
A-CEF

we can write

A .* optional-B C E oPtional-F

and a little attribute administration/evaluation.
lVithout attributes only local optional effects can be used to decrease the number of

rules. An example is the rule

A .-. B optional-C D

derived from the rules

A-BD
A-BCD

Using optional symbols for reducing the grammar size is especially of great use if attributes
are used. Otherwise the reduction effect will be less big and over-generating will be easily

introduced.

9.3 number of parsing states

For the RAM paÍseÍ without look-aheads the number of states is at most O(lVl.2#(o)1,
with #(G) the number of grammar rules. This is an extreme upper bound, in practice

often the number of states grows linear with the number of grammar rules (see section

3). The number of states depends on the number of (non)terminal symbols and on the

number of grammar rules.
lVith a gÍarnmar that uses aux-categories, it is possible to parse. In the produced

parse tree(s) the aux-categories can be eliminated (this can be done while parsing). If
aux-categories are added, the number of nonterminals increases, so the reduction of the

number of states because of fewer grammar rules will be opposed by the increase of the

number of nonterminals. Of course the reduction of the grammar size has a much greater

CIIAPTER 9. CONTEXT-FREE GRAITIII ARS 64

effect than the increase of categories. With aux-categories the use of attributes will be
more complex. More evaluation rules have to be written.

Reducing the number of grammar rules by merging grammar rules and using optional
symbols does not strongly increase the number of categories, only for optional categories
new categories are needed. A disadvantage of this method is that attributes are needed
if one waÍrts a considerable reduction of the grammar size (see section 9.2.3). In that
case the attribute administration will be complex. Such a grammar cannot be used for
probabilistic parsing (see section ll).

9.4 parsing complexity

Suppose we have a grammar Grca that describes the same language as grammar G but
with fewer rules (reduction with aux-categories and/or with optional symbols). A parser
for 6 needs more states than a parser for Grr4. So the state complexity (in LR terms
the complexity of the parsing table) reduces. But with this transformation, another
complexity, the computational complexity of the parsing process increases. The growth
of the computational complexity may occur in the use of e-rules and in the patsing sea^rch

space. In following sections we will examine this complexity.

9.4.1 computational complexity and e-rules

If we use the original Marcus-like parser described in [Leermal«ers, 1993], the computa-
tional complexity of the parsing process for a parser of a grammar with e-rules is greater
than the computational complexity of the parsing process for a parser of a grammaÍ
without e-rules. This can be seen in the definition/implementation of the functions [g]:

lql(i) = Iq-i(r,*,,i + l)
u {(r - a.p,j) l3a(8 -.€ € dní(q)

A (z - o.p,il e ffi1a,;111
u{(z+o.ri)lr-o.€g}

Without e-rules the set

{('y .- a.0,i) l3a@ -+ .€ € ini(q) A (? - a.A,il e {q-i1a,;111

does not have to be computed. With e-rules the parser has to try all e-rewriting pos-
sibilities. Recognizing a e-rewriting causes other reductions. With a lot of e-rules this
could be a problem in practice. So if the problem of too much states is partly solved
by using optional symbols, a problem with the complexity of the actual pa^rsing process
could occuÍ.

In a variant of the original Marcus-like pameÍ (the RAM parser) it was tried to
overcome this problem. This parser does not try to compute e-rewritings. The parser
simply skips them as can be seen in the definition oÍ goto:

goto(q,6) = 11 * a\6.§ lt - a.À60€ (qUiad(q))
Àó= k:60n^'-'e)

This does not affect the parsing process. Before the actual parsing of sentences (or
afterwards), it can be computed in which ways a nonterminal rewrites to e.

CHAPTER 9. CONTEX?.FREE GRAMAIARS 65

A call goto(q,6) will return a greater set of items with e-skip than without e-skip.

Also the number of states will be a little higher. But the profit by using e-rules will be
kept. For example for a state qpp = { PP - a . opt-NP PREP p } with

opt-NP .- e

opLNP .* NP

there are transitions on NP, opt-NP and PREP. For computing the items of goto(qpp,
PREP), it is not important to knorv if opt-NP rewrites to e or to NP. In the case without
e-rules we have:

qpp = {PP-a.NPPREPp,
pp-o.pREpÉ)

with transitions on PREP and NP. For the state goto(qpp, NP) there is dso a transition
on PREP. It will be clear that the PREP-transition for state gpp corresponds with opt-NP

- e and the PREP-transition for state goto(qpp, NP) corresponds with opt-NP - NP.

9.4.2 computational complexity and parsing search space

A grammar with aux-categories is less flat than a grammar without aux-categories. That
means that for most items 1 - o. É there are more rewritings of the form É :+' u.
lVith an item 7 + o . 9, I has longer chains of derivations. This is an effect in the
depth of derivations. Shifting a terminal symbol Í leads to more reductions in depth. For
a gramma^r with optional symbols the same effect occurs, because of the extra optional
categories. Unless there are many extra categories this will not be a real problem. The
computational effect will be very small, certainly in contrast with the efrciency of the
parser for the original (not reduced) grammar.

The computational complexity may increase if it is possible after introduction of new
categories that

lrl *' C; . . ,8i

v2 *' xi...r j

for an item

1- a.p

with

I +' vtqr

I +' uzw

(q,vzEVx (when Ic= 1); tr,rh€Vfi;i,i,l € N; iSi; íSt < i:xr € Vr.) The
recognizer has to compute more reductions than before. In practice this problem does
not occur if one will try to write consistent grammar§.

CHAPTEN 9. CONTEXT.FREE GRAAIAIARS 66

9.5 conclusions

For a context-free, attribute-free grammar that can be parsed and that describes a large
subset of a natural language, the way in which the grammar is written is important.
To work with such a grammax the grammar has to be not very big (more than 2000

rules). Gra,mmars with fewer than 1000 rules are more attractive. Without attributes it
is difficult to describe a la.rge subset of a natural language in 1000 or fewer context-free
rules. Auxilia,ry categories have to be introduced to make the grammar more compact.
Another possibility is to use optional symbols in the grammar rules, but then it will be
likely to use attributes for excluding specific rewritings. A combination of both methods
is possible. The (time) complexity of parsers for grammars written according to one

of these methods does not really differ. A parser for a grammar with a lot of optional
symbols has to handle e-rules efficiently.

Part III

Probabilistic Parsing

67

Chapter 10

probabilistic parsing

10.1 introduction
Pa,rsing with a grammar that describes a large subset of a natural language is a difficult
task. Such a grammar is highly ambiguous. Parsing will talie cubic time (with respect
to sentence length) if only syntactical information is used. It has often been said that
the syntactical component has to be followed by a component that handles semantical
information. Typically one could read this in the section 'future research'. For the time
being it is impossible to model semantical information for large domains.

It is necessary to find another way to reduce the ambiguity problem. Some
people think that a statistical approach is an important step to the solution (e.g.

[Pod, r992J, [Brill et aI., 1990J, [Briscoe & Carroll, l99l], [Chitrao & Grishman, lgg0],
[Fujisaki et al., 1989J, [Robinson, 1982], [Sharman et d., 1990]). Statistical information
could guide the parsing process in such a way that not all ambiguities have to be com-
puted. A probability is assigned to every parse tree of a sentence. For an ambiguous
sentence it is expected that in most cases the desired parse tree will be the parse tree
with the highest probability. But parsing with use of statistical information is a nega-
tive choice. Because we cannot model the knowledge needed for reducing ambiguity we
use a very rough approximation of this knowledge. The use of statistical information
has not yet been proven to be part of the solution to the ambiguity problem. In sec-
tion 10.2 we will examine the main problems of probabilistic parsing. An approach in
which a lot of statistical information can be expressed will be discussed. Thereafter two
other approaches to probabilistic parsing are presented. In one approach the statistical
information is collected about context-free data (section 10.3 and f0.4). In the other
approach statistical information is context-sensitive (section 10.5). In the next chapter
we will discuss in detail the case of context-sensitive probabilistic parsing with use of LR
like parsers.

68

CHAPTER
'0.

PNOBABILISTIC PARSING 69

LO.z statistical significancel, computability and corpus
size

10.2.1 probabilistic parsing with subtrees

For a given sentence, one wants the most likely parse tree. Statistical information can be
collected about syntactical structures and semantical information by using parse trees,
the words of the sentences and semantical features. lVith more aspects expressed in the
statistical information, more analyzed data will be required to train the 'parser'. Even
if only the lexical categories of the words of a sentence are used as input of the parser,
it is not possible to compute the most likely parse tree of every sentence (thus of every
sequence oflexical categories). Therefore, probabilities are assigned to parts ofthe parse
trees. The probability of a parse tree is computed from the probabilities of parts of the
par6e tree. In most approaches to probabilistic parsing, grammar rules a.re used as the
basic parts statistical information is collected about. In the approach of Bod and Scha
([Bod, 1992J), these basic parts are parts of paÍse trees. Such a part can be a complete
parse tree, it can also be one rewriting from a parse tree. In this approach something like
semantical information has been included, because the words of the sentences are part of
the parse trees. With a corpus that consists of the two trees showed in figure 10.1, for the

clin'91

clin'91

Figure l0.l: corpus consisting of two trees

§entence "Fernando opened clin'9l in Amsterdam in November" a tree can be constructed
from three parts of the two corpus sentences (figure 10.2). Because there is a complexity
measure for every part of a pat6e tree, their system handles ambiguous constructions with
ease. Only tbe parse tree with the smallest complexity will be constructed.

1O.2.2 criticism

Our criticism against the Data Oriented Parsing (DOP) approach of Bod concerns the
use of a formal grarnmar, the matching process and the size of the analyzed corpus.

rWe urc the word rignificrncc to cxprcss the fact that ctatisticrt information can bc collccted tbout
datr that cxptclscs little inÍormation (Íor example (non)terminds) as well rs data 3hat exprcaser r lot of
iníormation (for example parse trces). In the firet case the statisticd inÍormation is less eignificant than
in the rccond cue.

ï'
N
IJ Fernando

CTIAPTER 10. PROBABILISTIC PARSING 70

clin'91

Figure 10.2: parts of the tree of the sentence "Fernando opened clin'9l in Amsterdam in
November'

In the view of Bod, language data in the form ofan analyzed corpus constitutes the ba-
sis for language processing in DOP. The analysis of a sentence is constructed with existing
(sub)constructions in the corpus. Thus for analyzing sentences with DOP, an analyzed
corpus is needed. This uralyzed corpus has to contain all sentence (sub)constructions
that cannot be constructed with (sub)constructions that occur in this analyzed corpus.
The basis of such an analyzed corpus is a grammar with grammaÍ rules. Thus in fact
a formal gÍatrmar with grammar rules constitutes the basis for language processing in
DOP. The problems with developing a formal gramma,r for natural language are also
problems for the DOP model. For example, the grammar represented by parse trees
should not over-generate much. As we have shown in chapter 8, using a grammar that
is represented by parse trees (as is done in the DOP model) will give difficulties with for
example optional symbols and multiple replication of a symbol. So the use of an andyzed
corpus may have undesired effects.

Por a very large corpus ofanalyzed sentences, the matching process used to construct
parse trees from parts of pa.rse trees will take a lot of time. With rule based parsing,
the PP in figure 10.3 can be a daughter of grammar rules with the nonterminal PP in

P

Fcrrunb

I\
l

I\

PP

,4..PN
l, xol,,,o,,VP

,r*^^
L noL*,,

Figure 10.3: a prepositional phrase

the right-hand-side. ïVith Data Oriented Parsing, the PP can be a 'daughter' of a lot
of different pa,rts of parse trees that have a nonterminal PP as leaf. The parts of pa^rse

trees that can be used to construct new parse trees can be seen as grammar rules. Such a
grammar will contain much more rules than the grammar that has been used to make an
analyzed corpus. If a lot of parse tree constructions do not have to be computed because
of the complexity measure, the matching process will not take as much time as in the
worst case. Our expectation is that for a very large corpus a lot of pa,rts of pa^rse trees
do not have such a bad complexity that they do not have to be computed.

The number of parse computations will be reduced because a lot of constmctions
are not possible due to the fact that the words in a lot of parts of pa.rse trees do not
corespond with the words of the input sentence. But because a very large corpus is

CHAPTDR 10. PROBABILISTIC PARSING 7l

needed (see hereafter), the matching (parse) process will still need a lot of computations.
Useful statistical information has been collected if almost all possible pa^rse construc-

tions occur in the andyzed corpus with a realistic frequency. Only then a part of a parse

tree will not be used because there are no other possibilities, but because it is the most
likely one of a set of possible parts of parse trees. As we will show in section 11.2.3, for
gÍanrmar rules with a little context a veÍy la.rge corpus is needed to get useful statistical
information. So, with use of grammar rules with a lot of context (parts oÍ parse trees) a
v€ry, very large corpus will be needed to get useful statistical information.

10.2.3 conclusions

An approach like DOP uses large structures as basic units. Statistical information must
be collected about these structures. Because large structures are more specific than small
structures, more analyzed data is needed to get useful statistical information. Thus there
is a trade'off between the size of the train corpus and the size of basic units statistical
information is collected about (the statistical sigrrificance). With full parse trees as basic

units, we know that it is impossible in practice to get useful statistical information.
lVith an approach Uke DOP it is unrealistic that it is possible to get useful statistical
information. Besides this there may be a computational problem with the matching
process. In the approaches examined in the following sections, it may be possible to
collect a lot of statisticd information, but the significance could reduce because the basic
units are too small.

10.3 probabilistic context-free grammars

10.3.1 description

To assign a probability to a parse tree, probabilistic context-free grammars (PCFGs)
are used (for example in [Jelinek et al., 199U, [\4lright et al., 199U, INS & Tomita, 1991J,

[Fujisaki, 1984J). A PCFG is a context-free grammar with a probability of use assigned to
eveÍygrammarrule. A grammarruleisof theform / -* a with A CVx and a e V'u{e}.
So with A a nonterminal with #(e) different rewritings and P(/;) the probability of the
ith rewritingof A the following holds:

#(r)
! r1a;; = t
i=1

The probability of a parse tree is computed from the probabilities of the grammar
rules used in that tree. The probability of a grammar rule represents its use score.
An assumption when using PCFGs is that a rule has a certain probability of use ir-
respective of the context of the rule. So with a PCFG the probability that the rule
N P - DET NOU N is used as daughter of a rule JVP d ... JVP... equals the proba'
bility that the rule NP - DET NOUN is used as daughter of a rule PP i ... NP...
(see figure 10.4 for an example). !1'e have checked this for a part of the corpus. In almost
25Vo oÍ the rewritings of the NP in the right-hand-side of a rule JVP - .. . JVP. . . , the
rule /VP - DET NOU N is used. The rule JVP -- DET NOA N is used in almost 44%
of therewritingsof theNPintheright-hand-sideof arule PP-.../VP.... Theuseof

CHAPTER 10. PNOBABILISTIC PARSING 72

DE;r

DET

her head buried in her anns

Figure 10.4: context-sensitive use of grammar rules

a nrle in a derivation is not ahvays independent of the use of other rules as is suggested
by PCFGs.

The statistical information can be collected from an analyzed corpus. In such a
corPus one Paree tree has been assigned to every sentence. For every grarnmar rule it can
be counted how many times the rule has been applied in the parse trees of the corpus
sentences. The grammar that has been used to make the parse trees has to be (almost)
the same as the gsammar that has to be made probabilistic.

Another possibility is to use the Inside Outside algorithm (derived from a Markov
model) as described in [Fujisal'i, 1984J. This is an unsupervised method. Sentences are
parsed and the statistical information is updated for all parse trees. So all pa.rse trees of
an a.mbiguous sentence contribute to the statistical information. Repetition of the process
over the used set of sentences will lead torvards convergence. The result will approach the
result of the supervised method with an analyzed corpus. It is not clear whether the result
of unsupervised training is a good approach of the result of supervised training. lVith a
la.rge, highly ambiguous grammar there is a lot of noise in the statistical information. If
one wants to §ee what is at most feasible with statistical information it is better to use
an analyzed corpus.

10.3.2 experiments with PCFGs

Fujisaki desoibes an experiment with a PCPG in [Fujisaki, 1984J.2 He transforms a
grammar in Greibach Normal Porm into a grarnmar with 7550 rules in Chomsky Normal
Form. He uses two unanalyzed corpora of 3582 respectively 624 sentences to train and
test the probabilistic parser. He does not describe the corpora (style of the sentences
etc.). The average wordcount of a sentence is 10.85 in the corpus with 8582 sentences.
The average wordcount of a sentence is 12.65 in the other corpus. The parser returns the
Parse trees of a oentence in order of probability. After collecting statistical information
with use of the Inside Outside algorithm, the pa^rser is tested with respectivety 63 (in the
case of the first corpus) and 2l (in the case of the second corpus) ambiguous sentences
from the train set. The delivered parse tree with the highest probability is the good parse

2In
[Fujisali ct al., l9E9J the game experiment is described. It eeems that Fujisaki has noi mede rcat

protrcss in the reeerch at thc possibility oÍ probabilistic parsing.

PREP

CHAPTEN N. PROBABILISTIC PARSING 73

tree in 85Vo oi the test sentences. Because the experiment is not described in detail, it is
not possible to conclude that it is useful to parse statistically with PCFGs.

10.4

r0.4.1

lD /LP grammars used for probabilistic parsing

description

In the view of Sharman, Jelinek and Mercer [Sharman et al., 1990J context-free gram-

mars of generd natural language are large, very ambiguous and parsing takes a lot of
computations. So for unrestricted texts (a large subset of a natural language) compact
notations for grammars have to be found. Unification grammars use a comPact notation.
Sharman et d. use the IDILP principle of generalized phrase structure gra^mmars for
writing a compact gra.mmar. According to this principle a grammar has to be written in
two sorts of rules: immediate dominance (ID) and linear precedence (LP) rules. The ID
rules express to which symbols a nonterminal could rewrite. LP rules express in which
order symbols may appear. So the rules

ID:S-ABC
LP:B<A (BbeforeA)

are equivalent with the context-free grammar rules

S-BAC
S..*BCA

To get a statisticd parser, probabilities are assigned to ID rules as well as to LP nrles.

In this case LP rules say with which probability symbols may appear in a specific order.
Probabilities are also assigned to the tags in the lexicon. An analyzed corpus and a
grammar with 16 nonterminal and 100 terminal symbols are used. The test set exists
of 42 sentences. If the test set diflers from the learn set the most likely parses a.re the
correct parses in 20 percent of the cases. Nearly correct or correct is 60 percent of the
most likely parses. If the sentences of the test set are used to extrart the probabilities
(test set = lea.rn set) the most likely parses equal the correct parses in 43 percent of the
cases. Nearly correct or correct is 88 percent of the most likely Parses.

1O.4.2 criticism

Sha,rman, Jelinek and Mercer do not answer the question whether the probabilities of ID
and LP rules a,re independent. But the answer on this question is of great importance. It
says whether the use of a probabilistic ID/LP grammar is justified or not. It is very likely
that the probability of the linear precedence of two symbols depends on the immediate
dominance rule in which the two symbols occur. For the rules

ID:S-ABC
LP:B<A

CHAPTER IO. PROBABILISTIC PARSING 74

a probability is assigned to the LP rule on the basis of the use of this rule in the parses of
the learn sentences. The probability of the LP rule does not express the linear precedence
probability of A and B in the rule S - A B C if there are other rules with the symbols A
and B in the right-hand-side. So with probabilities assigned to written-out context-free
rules like

S-BAC
more information can be expressed.

The probabilistic ID/LP model is presented for ID rules with two symbols in the
right-hand-side. For rewritings with an unlimited number of symbols on the right-hand-
side, the rewriting is modeled as successive applications of shorter rules. Here the same
disadvantage occurs: there is a difference between the probability of a rule

S--ABC
and the probabilities of the rules

S--AB'
B'-BC

if the rule B' - B C is used in other combinations than with the rule S - A B'.
The conclusion is that with a context-free grammar more information can be expressed

than with alD ILP grammar. So the statistical information that can be collected with the
IDILP gramma^r is less significant than the statistical information that can be collected
with context-free grammars.

Sharman, Jelinek and Mercer do not give enough information about the grammar
they used, to criticize their experinrent in detail. It seems that it is not easy to attain
good results with probabilistic parsing for a subset of a natural language.

10.5 context-sensitive probabilistic parsing

10.5.1 Pearl

Magerman & À{arcus [Magerman et al., l99lJ criticize PCFGs because of the assumption
that the applications of two gÍammar rules in a parse tree a,re independent. They make
the probability of use of a grammaÍ rule dependent of a small context (a pa^rt-of-speechs
trigram) and a parent theory's rule (a rule with in the right-hand-side the left-hand-side
of the child rule). For their parser Peatl they need a big analyzed corpus. May be an
unanalyzed corpus is also possible (unsupervised training), but till now this has not been
tested. The description of their experiment does not give details of the used gramma.r,
the used corpus and the size oÍ the tests.

10.5.2 probabilistic parsing of messates

Chitrao and Grishman [Chitrao & Grishman, lgg0J use probabilistic parsing to parse
sentences from a small domain of Navy OPREP messages. A context-sensitive version

3A part-oÍ-spccch of a word is the lexicat crtetory assigncd to that word.

CHAPTEN N. PROBABILISTIC PARSING 76

of a probabilistic context-free grammar has been used. The probability of a grammar

rule depends on the place of occurÍence of the left-hand-side of the rule. With a PCFG

small structures are preferred over 'large' structures, because when a rule is added to a
structure the probability of that structure is multiplied with a value smaller than one.

Chitrao and Grishman try to remedy this problem by using penalties for small etructures.
This does not improve the result.

The grammar $,as trained with use of the Inside Outside algorithm. The train corPus

contained 300 sentences. From the train corpus 140 sentences were used to test the par§er.

lVith the context-sensitive probabilistic paf,ser, the correct parse was the most likely parse

of 38 percent of the 140 sentences. This is a bad result because only sentences from the
train corpus were used to test the parser.

10.5.3 probabilistic LR parsers

An approach in which statistical information is used in a context-sensitive way and

that joins with the architecture of LR parsers is proposed by Briscoe & Caroll
[Briscoe & Carroll, l99l] and by Leermakers [Leermakers, 199U. Parsing is a problem

because a grammar of a natural language is highly ambiguous. In terms of LR parser§:

parsing is a problem because there are shift-reduce and reduce,reduce conflicts in a lot of
§tates. If these conflicts could be eliminated, parsing of a large subset of a naturd lan-
guage would be easy. So the most needed information for a LR parser is not the likelihood
of a specific grammar rule being used, but how likely a specific (shift or reduce) action
is in contrast with conflicting actions. lVith this information, the parser could restrict
the a,mbiguity in a state to the most likely actions. In the next chapter this approach is
described in detail.

10.6 conclusions

Statistical information can be collected about pa.rse trees, about parts of parse trees,

about grammar rules and so on. With more complex structures statistical information
is collected about, the size of the analyzed corpus that is needed to get the statisticd
information increases. A manageable approach seems to be probabilistic parsing with
use of probabilistic context-íree grammars. With pure PCPGs a lot of context that can

increase the statistical power is thrown away. Therefore, people search for manageable,
context-sensitive approaches. The results of some (very) small experiments gives someone

no cause to expect miracles of probabilistic parsing methods.

Chapter 11

probabilistic LR-like parsing
rnethods

11.1 introduction
The general idea of probabilistic LR-like parsing is the use of statistical information about
the shift and reduce actions of the parser. In this way it is possible to compute the most
likely parse tree ofa sentence from the set ofall parse trees ofthat sentence. Ifthe parser
only has to take the most likely action(s) in every situation in the pa.rsing process, the
paÍser can work in (almost) linear time. With PCFGs the parseÍ does not dispose of
the right statistical information. With a PCFG the probabilities of the occurrences of
gramma^r rules are known. The probabilities of shift and reduce actions are probabilities
of occurrences of grammar rules in specific contexts.

In section ll.2 we will describe and criticize the approach and experiment of Briscoe
and Carroll. The experiment is criticized. In section ll.3 we will pÍesent a better ap-
proach. In section 11.4 we will take some little conclusions about probabilistic LR pa"rsing.
In the next chapter we will take general conclusions on the basis of our research results.

LL.z probabilistic LR parsing by Briscoe and Camoll
1f.2.1 the idea

Briscoe and Carroll try to develop a model for parsing with la^rge natural language ga,m-
mar§. Their parser is based on a unification grammar. They generated a context-free
backbone grammaÍ with attributes from this grammar. The parser they work with is a
LALR(f) parser. They choose a LALR parser, because the pa.rsing table for a LAtR(l)
parser is much smaller than the parsing table of a tR(l) parser. With large grammars
this is important. They only use one look-ahead because of the size of the parsing table.

Iior collecting statistical information sentences are analyzed to get one parse tree per
sentence. Briscoe and Carroll do not like the unsupervised learning method because
it is not certain how good this method is, compared to the supervised method. They
developed a tool to analyze sentences efficiently.

Statistical information is collected about the shift and reduce actions of the parseÍ.
Reduce actions in a state depend on the look-ahead symbols. Because reduce actions are

76

CHAPTEN il, PROBABILISTIC LN.LIIfi PARSING METHODS 77

not always distinguishable on the basis of the look-ahead symbols they are also distin-
guished by the state reached after the reduce action has been applied.

t1.2.2 experiment

The grammar consists of 1758 rules. There are 575 syntactic categories. The parser has

3106 states and 1020860 different actions. The parser has been trained and tested with
noun definitionsr. 246 noun definitions were parsed. The parser was able to parse 151 of
these definitions correctly. A few rules (14) were added to the griunmar. It is not clear

why the other 95 definitions were eliminated.
The 151 definitions were analyzed and the results were used to get the statisticd

informatiou. The parser had to compute all possible parses. Because this took a lot of
time only 63 of the 151 definitions were tested. The noun definitions are short. Their
mean (word) length was 5.3. None of these 63 definitions had a length of l0 or more
words. 13 of the 63 definitions were not ambiguous. For 47 of the 63 definitions the most
highly ranked parse tree is also the correct one. For 4 of the remaining cases the most
highly ranked was correct, but the analyses of the definitions (used to get the statistical
information) were fdse. This gives a (most highly ranked parse = correct parse)/sentence

score of 81%. For a test with 54 noun definitions not in the train set this result was57To.

These 54 definitions consist of at most ten words. l0 of the 54 definitions were not
ambiguous. In the view of Briscoe and Carroll, the bad results of this test were mainly
caused by the incompleteness of the grammar.

1f.2.3 the experiment criticized2

The ueed grammar was derived from a unification based gÍammar. Syntactical cate
gories were cÍeated from sets of features. Briscoe and Carroll tried to define syntactical
categories as good as possible. In their view a context-free backbone has to express as

much information as available in the unification grammar. In this way a large context-
free gra,urmar results that probably expresses more than the needed information. For a
context-free grammaÍ for probabilistic LR parsing one needs a grarnmar that describes
legal syntactical constructions and nothing moÍe. Extra information can be expressed in
features (attri butes).

The parser has 1020860 different shift and reduce actions. Suppose for sentences with
a length of ten words the mean number of applied grammar rules is 15. Then with l5l
sentences with an average length of ten words or less at most some information about
2300 actions could have been collected. So only a very smdl part of the pa.rser is trained.
Because the noun definitions are very short, the trained part is not the most ambiguous
part of the parser.

Our expectation is that for a number of sentences the correct parse tree is the most
likely one because the actions applied in the other (ambiguous) pa^rse trees are (very)
unlikely due to the smdl train set. For a number of ambiguities the probabilistic pa,rser

rA toua definition b r deacriptioo oí thc merning oÍ r noul. Exrmpleo rrc 'thc rct oÍ ruhiag
oncrclÍ", "plrcc wherc one livce" and "rtrong expreesionc oÍ rpproval rnd prriac".

2Detritd cdticLm wrs only poasible bccausc oÍ thc dctaited description of the cxpcrimcni. IÍ rll people
sould write ro cxhauetivc rs Briscoc rnd Carroll pcople could lcarn much more from cach othcrs rëcerch
ahu rt thc moment.

CHAPTEN U. PROBABILISTIC LR.LIIiE PARSING METHODS 78

does not know that they could occur, because they occur nowhere in the parse trees of
the train set.

So our main criticism is that only a very small part of the parser has been used in the
experiment and that the number of train sentences is too small. It is not possible to say
something about the possibility of probabilistic parsing on the basis of this experiment.

Is it possible to build a probabilistic parser based on a parser with more than 1000000
actions? Suppose the average sentence length is l5 words. Suppose the average number
of applied gÍammar rules in a Bentence of 15 words is 20. Then about 51000 sentences are
needed to apply every action one time if all actions used in the parse trees of the 51000
sentences are different. To get real statistical information the train set has to consist of
more than l0 times 51000 (analyzed) sentences. In practice a large number of applied
actions will be the same. Thus if one wants statistical information about all actions of
the pa,rser the train set has to contain much more sentences. lVith a need for so many
andyzed sentences it is better to try to reduce the size of the grammar.

11.3 a model for probabilistic parsing

ll.3.l look-aheads

Briscoe and Carroll use a small look-ahead of terminal symbols to reduce the ambiguity.
In the view of Marcus one should not only use terminal symbols as look-ahead but non-
terminal symbols as well. Using nonterminal and terminal symbols as look-ahead is more
powerful thaa only using terminal symbols as look-alread (in the case nonterminal look-
aheads do not rewrite to e). One nonterminal look-ahead may examine more than one
terminal symbol. There is another advantage of constituent look-ahead for probabilistic
parsing. A lot of nonterminal symbols can left-rewrite to the same terminal symbol. So
with a reducereduce conflict or a shift-reduce conflict in a parser, a more significant
decision can be taken on the basis of the next nonterminal than on the basis of the next
terminal symbol. In the follorving example the difference between the power of terminal
and constituent look-ahead can be seen.

The use of look-aheads will reduce the number of parsing conflicts. Sometimes it is
possible to postpone parsing decisions if one or more look-aheads are used. With the
following griunmar:

o ROOT-S
o §*.l{§

o §-d
o A+o
o A-oS

a Parser without look-aheads has a shift-reduce conflict with sentence 'ad' because sen-
tence 'add" has the same left symbol string but a different rewriting of symbol r{ (figure
ll.l). After recognizing symbol a the parser has to reduce symbol A or to shift the next
input symbol. The pa^rser has to know what the following input symbols are, before it
can take the correct decision.

CHAPTER 11. PROBABILISTIC LN.LII{E PARSING METHODS 79

Figure ll.l: parse trees for the sentences'add" and "ad"

lVith one Marcus-like look-ahead (Ic = 2) the parser can shift the first two input
symbols ad and then it can take the correct decision on the basis of the existence of
another input symbol d. The graph in figure ll.2 of the states with their transitions
shows this. After a shift of symbol a and a shift of symbol d the parser can reduce
rewriting S - d, or it can shiÍt the next input symbol. If there is not a next input symbol
the parser can only reduce S - d,.

s

d

d

AS ss
s

Figure ll.2: states with transitions

With terminal look-aheads (as with LR(k) parsing) one terminal look-ahead would be
not enough to solve the ambiguity. After recognizing symbol o the parser had to decide
between a shift and a reduce action. This decision depends on the third input symbol
and with one terminal look-ahead the parser does not know this symbol.

s
/\

A

/\,

s

/\
s
I
d

A
I
a

s

t
I

a

d

a

ROOT ->. S
inirial iarns:

s->.As
s.>.d
AS->.aS
AS->.aS

s->d.
AS

AS

a

AS->r.SS
initial iams:

s->.As
s->.d
AS->.rS
AS->.aS
ss->.As
ss->.ds

S->a.S

s
s

s->d.
ss->d.s
initirl itcrns:

s->.As
s->.d
AS->.rS
AS->.rSS

CIIAPTER 11. PNOBABILISTIC LN.IJI(E PABSING ME,THODS 80

f1.3.2 subdividing reductions

Briscoe and Ca^rtoll use the state reached a,fter a reduction to distinguish between different
reduce actions. In this way a little bit context of the application of a grammar rule can
be processed in the statistical information. With the look-aheads of the RAM pa$er,
context of the application of a grammar rule is handled in a natural way. The following
example shows the use of nonterminal look-aheads for subdividing reduce actions.

lVe have the following grammar:

S-AD B-o
S - AE C -bS-BC D+b
A-a E-b

flom root state {8OOT + . §} the parser makes a transition on symbol a. The
resulting state is {r{ * o.,B - a.} (figure f l.3). The parser has to reduce A ot B.
This state can also be reached from other states. So the statistical information of the two

A

Figure 11.3: states without look-ahead, with statistical information

reduce actions of this 6tate may have been influenced by transitions from other states than
the root state. Using a look-ahead context of one look-ahead will overcome this problem
a little bit (ffgure 11.4). The context information is not the state reached after reduction,
but the symbol after the reduction symbol. With one look-ahead this reduction is implicit,
it is represented in items like z{ D - a. D. Using the state reached after reduction as
context gives other information than constituent look-aheads. lVith the LALR(1) model,
probably it will be needed to use extra context information, because of the little look-

a

E
b

D

R@T->.S
initial iams:

s->.A
s->.A
s->.B
A.>.a
B->.r

D
E
c

c->.
s.>B.c
initiel items:

.>A.D
s->A.E
initial itcms:

D->.b
E->

(201

(20)
->b

E.>b.

CHAPTER 11. PNOBABILISTIC LR.LIIfi PABSING METHODS 8l

ahead po$,er of terminal symbols. If the parser has to make a choice between two diflerent
reductions, one termind symbol does not distinguish these reductions very well. In the
view of Marcus, constituent look-aheads represent more significant information. Different
constituent look-aheads may left rewrite to the same terminal symbol, thus to the same

terminal look-ahead.
There is another eflect on reductions when using constituent look-aheads. Suppose

there are no other states that have transitions to the states shown in figure I 1.3. Statistical
information says for example that a reduction of A - a. is made 40 times and a reduction
oÍ B - a. 30 times. If the parser chooses the most likely reduction a transition on symbol
zl will be made. The state that is reached in this way has items:

o S - A.D
o S - A.E
Suppose that according to the statistical information about this state the reductions

oÍ D - ö. and E - b. occuÍ equally often. So the relation 40:30 for reductions of C
and B can be better specified. The frequencies for the rewritings A D,4 E and B C oÍ S
are respectively 20,20, 30. It could be better to choose the reduction of B - o. . l[ith
one look-ahead the rewritings AD, AE and BC can be distinguished because a choice
between a reduction A - a. and .B + o. is postponed as can be seen in (figure ll.4):

E

Figure ll.4: states with one look-ahead and statistical information

lL.4 conclusions

For probabilistic context-sensitive parsitrB, a probabilistic LR parser seems a realistic
model to work with. Distinguishing reductions is possible with terminal look-aheads

o

b

ROOT -> . S
initial itcms:

s->.A D
E
c
rD
eE
eC

s->.A
s->.8
AD.>.
AE.>.
BC->.

AD->a.D
AE->r.E
BC->e.C
initiat itcms:

b
b
b

D->
E->
c->

(20)
(20)
(30)

D->b
E->b
c->b

CHAPTER 11. PROBABILISTIC LR.LIIiE PARSING AIETHODS 82

(tAtR(k) parsing). Better (more significurt) distinctions between reductions can be
made with constituent look-aheads (RAIU parsing).

Chapter L2

the quest for probabilistic parsing

t2.l introduction
The development of a probabilistic parser is a difrcult task. Small experiments can be
done. One cannot say that the results of a probabilistic parser of a large subset of a
natural language will be worse (or better) than the results of such a small parser. Small
subsets of a natural language do not cover all different common Eentence styles, etcetera.
Thus, experiments with small probabilistic parsers give at most rough indications about
the usefulness of probabilistic parsing of large subsets of naturd languages.

It is important to determine the factors that influence the success of probabilistic
parsing. Otherwise, a lot of work may be useless. In our research, these factors have been

determined. We recapitulate the results of our research in this chapter. Our resea,rch dso
results in a proposal for an experiment which gives a decisive answer about the usefulness

of statistics in parsing of natural language in large domains.

L2.2 statistical signiffcance, grammars, parsers and cor-
pora

As we have seen in chapter ll, it will be very difficult to get enough information needed
for a probabilistic LR parser. For probabilistic parsing with use of (sub)trees, more
information is needed to 'train' the parser. Hence, for the time being probabilistic parsing
with use of (sub)trees is not manageable. At the other hand, probabilistic parsing with
use of probabilistic context-free grammars seems unrealistic, because only the context
information represented in a gratnmar rule is used. Probabilistic LR parsers offer a
model with which a balance between manageability and the need for context information
can be found. In the next three sections we will respectively look at grammars, parsers
and corpora with respect to probabilistic LR parsing. In section 12.6 the relation between
grarnmars, parsers and corpora is described.

83

CHAPTER 12. TIIE QUES? FOR PBOBABILISTIC PARSING

t2.3 grammars for probabilistic LR parsers

f 2.3.1 size of grammars

u

For LR-like parsing methods a context-free grammar has to be used. It is not difficult
to write a context-free grammar with thousands of rules for a natural language. Such a
gÍrmmar is difficult to manage. A very large grammar causes computationd problems.
The size of the parser will be (very) large. Generating such a parser will take a long
time. More important is the problem with the statistical component. Collecting sufrcient
statistical information will be very problematic because a lot of analyzed sentences are
needed. As we have shown in section 11.2.3 the size of the grammar used by Briscoe and
Carroll creates a real problem for maliing the parser probabilistic.

It is realistic not to expect miracles from probabilistic parsing. May be the parser
needs look-aheads to get useful statistical information. In the view of Marcus a parser
needs a few constituents as look-ahead to parse deterministically. We believe likewise that
a probabilistic parser needs a few constituents as look-ahead to be able to talie decisions
on the basis of significant statistics. The size of the parser grows rapidly when the number
of look-aheads increases. For a grammar of the size of the grammar of Briscoe and Carroll
it is impossible to use a parser with two or three look-aheads.

The size of the grammaÍ has to be minimall. At the same time, the grammar has to
describe at least the basic part2 of a large subset of a naturd language. Syntactical con-

structions that are not in the basic part have to be handled by the robustness component
of the parser and/or by a set of extra grammar rules. Writing a minimal grammar which
describes at least the basic part of a natural language is difficult. The problem concerns
the number of syntactical categories (horv specific are these categories), the use of at-
tributes and the manner of writing a context-free grammar. Because analyzed sentences
are needed for training the parser one would expect that extracting a grammar from a
corpus of analyzed sentences would be a useful way to get a gÍammar. As we have shown
in chapter 8 this is not the case. A grammar for a probabilistic parseÍ has to be written
by linguists.

Different syntactical categories are used to distinguish between different language
constructions. It is easy to see that a grammar with a dozen syntactical categories
(e.g. S, NP, VP, PP, noun, verb, prep, det) that describes a big subset of a natural
language extremely over-generates. But do we need 575 categories as with the gramma^r
of Briscoe and Carroll? A grammar for a probabilistic parser must have enough categories
to describe legd syntactical constructions and not (many) more. Information that is
irrelevant Íor this puÍpose should not be encoded in categories but should be expressed
with attributes. On the other hand, one should not introduce categories that a^re not
strictly needed to prevent over-generation. If a grammar over-generates because of too
few syntactical categories, some significant differences between syntactical categories are
ignored because these categories have been merged into one category. This is not good
for the language the grammar desoibes. It is also not good for the statistical component
of the parser, because significant different cases are not distinguished.

t.At CLIN l99l in Amstcrdam, Pereira euggested a minimal u* of rulce togethcr with rtrtigtical
inÍormrtion to be the only solution to thc complexity problem oÍ the computational linguistic.

zThe basic part oÍ a subsct oÍ r natural language is the cet oÍ common eyntectical conetructions in
tbrt sub6ct.

CHAPTDN D. THE QUE,ST FOR PROBABILISTIC PABSING 85

Attributes can be used for determining features (non-syntactical information) but

also for syntactical constructions (syntactical attributes). This has been done in the

ROSETTA surface gratnmars as shown in a previous chapter. In this way the number

of grammar rules can be reduced. For a grammar for a probabilistic parser this method

is not useful. If attributes are used for syntactical purposes, statistical information has

to be collected not only about shift and reduce actions, but about these attributes as

well. That would be very complicated, may be it will be impossible. So dl important
syntactical information has to be expressed in syntactical categories.

Two techniques exist to reduce the number of gramma.r rules of a grammar without
loosing the power of this grammar. The writers of a grammar can introduce auxiliary

categories and/or they can use optional symbols. Both techniques have been described

in chapter 9. In the next section we will see that the statistical significance is influenced

by these reduction techniques.

12.9.2 statistical signiffcance and grammars

For probabilistic parsers of natural language, small grammars aÍe needed, otherwise the

size of the train corpus has to be very large. As we have seen in a previous chapter,

reduction of grammar size can reduce the significance of the statistical information that
can be collected (section 10.4.2). The reduction of statistical significance is caused by a
reduction in the amount of available context.

If auxilia.ry categories are used, the statistical significance will reduce. A sequence of
symbols will be replaced by an auxiliary category. For example the rule

A-*BCDE
could be replaced by the rules

A-BFE
F-CD

Because the rule F * C D can be used in other rules with the seguence C D in the right-
hand-side, a reduction of the rule F -.. C D does not equal the recognition of symbols C
D in the rule A - B C D E. Hence, it could be that the statistical information cannot

ocpress the probability that symbols C D reduce to F in the rule A - B F E.
Using optional symbols causes the same effect. An optional symbol category can be

seen as an auxiliary category. But there is another negative effect. The rule

A-BCopt-EDF
represents the two rules

A-BCEDF
A-BCDt

It is not possible to make a distinction in the version with optional symbols between the
possibility of the reduction of the rule A - B C D F and the rule A - B C E D F in
a state of the parser. This problem can also occur with auxiliary categories if they may
rewrite to different sequences of symbols.

CHAPTER 12. THE QUES? FOR PROBABILISTTC pARSrNc 86

12.3.3 conclusions

There is a trade-off between grammar size and statistical significance. The statistical
significance reduces when the gramma^r size reduces without loosing power in describing
sentence structures. The only way the grammaÍ size can be reduced without loosing power
in describing sentence structures, is to take grammar rules together. Thus with reducing
the size of a gra^rnmar, different structures will be (partly) merged. It is not (always)
possible to make a distinction in the statistics between structures that are merged. So
the statistical significance will decrease.

The gra,mmar has to describe parse trees. \Ue have seen (section f0.2) that agramma^r
describing parts of paÍse trees causes big problems with the size of the analyzeà corpus.
Context'free grammars are better to work with, but a context-free grammar of a natural
language may be still too large. So perhaps there have to be made some reductions on
the grammar size. Using auxiliary categories that only rewrite to a single sequence of
symbols is a good way to reduce the grammar size. If optional symbols are used, one
should not have more than one oÍ trvo optional symbols in a right-hand-side. Otherwise
the statistical significance will strongly decrease.

t2.4 probabilistic LR parsers

The context information oeated in LR(0) parsers highly depends on the form the gram-
mar has been written. LR(0) parsers do not create a lot of context information of gram-
mar rules. So (probably) it will be needed to use look-aheads to add context information.
As we have seen in cbapter 11, constituent look-aheads are more significant than termi-
nal look-aheads. Thus LR parsers with constituent look-ahead can be better used for
probabilistic parsing than LR parsers with terminal look-ahead. The recursive ascent
Marcus parser is described in chapter 2. This parser is able to use a lot of context in-
Íormation. That is why the parset size will be very large if a few look-aheads are used.
Another possibility is to use the Marcus LR parser, desoibed in chapter 5. Look-aheads
are added to a LR.(O) Parser, so the number of states does not depend on the number
of look'aheads. A conseguence is that the MaLR parser does not use as much context
information as the RAM parseÍ. The only advantage with respect to LALR(k) parsing
is the significance of constituent look-aheads for making distinctions between reductions.
§ubdividing reductions, as desoibed in section 11.3.2, is not possibte with MaLR parsing.

The RAM Parser is the most appropriate parser for probabilistic LR pa,rsinj. If the
par6eÍ will be too large to handle, the IUaLR parser can be used.

corPora

the need for a large analyzed corpus

The size of the corpus used to train a probabilistic LR parser depends on the number of
different actions in the parser. It is hard to say in general how many parser actions will
be created Íor a specific grammar. But for a large grammar the number of different shift
and reduce actions will be high. So the parser has to be trained with a lot of sentences.

In the view of some people, the parser could be trained with unsupervised learning.
It is not known how good the results are with this method. In prartice, training wiÀ

12.5

12.5.r

9TTAPTER 12. THE QUEST rOR PROBABILISTTC PARSTNG 87

unsupervised learning is a difrcult task. For a very large set of sentences all parses have

to Ue computed. Beàuse the average sentence length will be more than ten words3, the

Bentences will be (very) ambiguous, so there will be a very large set of parses. Because

the result of unsupervised training is unceÍtain and because the result will be inferior to

the result with supervised learning, it seems unattractive to try to create a probabilistic

parseÍ based on unsupervised learning.
With supervised training, a corpus of analyzed sentences has to be made. This will

take a lot of time if a hundreds of thousands analyzed sentences are needed. An approx'

imation of the time at least needed to make a useful andyzed corPus for an experiment

with probabilistic parsing is described in the following section.

12.5.2 making a new analyzed corPus

It took one person/month to malie the train corpus of Briscoe and Camoll (150 sentences).

To get a more realistic approach of the costs of making an analyzed corPus, we asked the

"orf,rr
linguists at the University of Nijmegen horv much time they needed for analyzing

sentences.4
The corpus linguists at the University of Nijmegen divide the analysis of sentences

in three phases. First, a sentence is supplied with lexicd tags. For the lexical disam-

biguation together with a little syntactical analysis, one person has to work ten days to
analyze a sample of 20000 words. After lexical disambiguation, the sentences are parsed.

Ambiguous parts of the parse trees of a sentence are merged so that in the selection

phase of the correct parse tree not all the different trees are shown to the syntactical

disambiguator. If the parses of a sentence ca.nnot be computed within one hour CPU

time (SUN3 system), the computation is stopped. With fiction (written prose) a lot of
sentences can be analyzed in this way. For one sample of 20000 words, the parser needs

about six nights to compute the parse trees. To select the correct andysis, a linguist

needs ten days to examine one sample. It is very difrcult to analyze sentences from scien'

tific a.rticlee. The parcer needs too much time, due to the long sentences (sometime more

than 99 words). Sentences from articles in newspapers etcetera are also more difficult to
handle in reasonable time. These data depends on the size of the grammar etcetera, so

for other grammaÍs than used in Nijmegen, it could take less time to analyze one sample

of 20000 words.
Hence, when a new analyzed corpus has to be made for a large experiment with

probabilistic parsers, a lot of work must be done. The parser of Briscoe and Carroll has

more than 1,000,000 actions. Suppose, with a minimal grammar for probabilistic pa,rsing'

one has a parser with 500,000 actions. Suppose, on average the sentences exists of 20

words. Suppose, on average 20 grammar rules are used to make up a parse tree. Thus

there a.re 20 reduce actions for one sentence and 201000 reduce actions for one sample of
20,000 words. So at least 25 samples a^re needed to use every reduction one time. To
get significant probabilities of reduce actions, much more samples are needed. Thus one

lingUist has to work many years before a large analyzed corPus has been made.

tSomc prrts of thc LDB corpus hrve an rvcrrte scntcnce lcngth of morc than 20 words.

'Thanls to Nellekc Oootdijk fol her dctailed inÍormetion.

CHAPTEL D. THE QUEST FOR PROBABILTSTIC pARSTNG 88

12.6 the trade-off between grammars, parsers and corpora
A grammar has to describe a large subset of a natural language. The griunmar can
be written in diflerent formalisms. The context-free formalism seems one of the most
natural approaches for probabilistic parsing (see section 12.3). The manner the grammar
is written influences the size of the grammar and the number of structures that are written
out in different grammar rules. This influences the size of the paÍseÍ and the amount of
context information that can be used. In general, larger amounts of context information
are better, but with more context information a larger analyzed coÍpus is needed. So
the size of the grammar and the number of look-aheads are restricted by the size of the
analyzed corpus.

12.7 a proposal for a decisive experiment with probabilis-
tic parsing

Small experiments with probabilistic parsing do not give us any certainty about the
usefulness of statistics in parsing a large subset of a natural language (see 12.l). So we
ProPose to stop with small experiments (except for small domains that exist in real life).
lUe need a large experiment whiclr can give us a decisive answer on the question whether
probabilistic parsing is useful or not. A large experiment with use of the recursive ascent
Marcus parseÍ is appropriate for this goal.

For the experiment, we need a context-free grammar of a natural language. The
grammar must be suitable for probabilistic parsing, so the aspects of grammar writing
described in section 12.3 must be taken into account. As far as we know, such a context-
free grammar does not exist. Norvadays, grammars are written in other formalisms than
the (simple) context-free formalism. In addition, large grammars are rarely written.

An analyzed corpus is also needed for a large experiment. As has been written in
section 12.5, a very large analyzed corpus rvill take a lot of work and thus a lot of money.
May be existing corpora can be used, by transforming their analyses to the context-free
gÍatnmar that will be used in the experiment.

Fbr the parser, we prefer the recursive ascent Marcus parsers. Its advantages have
been described in chapter ll. With a first experiment one can use one (constituent) look-
ahead. If the probabilities of conflicting actions in the parseÍ are not distinctive enough,
more look'aheads can be used. Possibly, more look-aheads can be used only for thóse
states that contain conflicting actions without significant different probabilities. With
changeable look-ahead, it can be examined whether statistical information really solves
a lot of conflicts or whether much more context information is needed. It can be seen
whether it is practically realizable to get enough statistical information about the needed
context information for successful probabilistic parsing.

5IÍ it is impossible to usc the RAIrí parser (becausc oÍ thc cize of the pareer), thc Marcua LB parscr
can be uscd. This cruses a large reduction oÍ statistical significance.

Appendix A

complexity

The extracted grammar is extracted from 8 sentences out of the LDB-corpus. The op-
tiond grammar is a part of the surface gÍammaÍ of the ROSETTA system. The Tomita
II grammar is the second example grammar described in [Tomita, 1986].

tGt k f (items) f (states)
tosËï#

loE Vpgrammar lYlv I lvr I #(c)
044 32 98 237 I 237 207extracted

1300 0.612 ll9l
70 168 216 I 216 173 0optional 76

2 935 941 0.50
> 3200 ?3 ?

I 43 90 I 90 65 0Tomita II l3
2 432 662 0.88

2116 1.463 1253

IIIIII

89

Appendix B

implementation of the recursive
ascent Marcus parser

8.1 overview

The implementation of the recursive ascent Marcus parseÍ is not made with use of a
functional programming language. Such an implementation would not be efficient. We
use the compiler-generator system Elegant ([Augusteijn, 1990J) for our implementation.
On the base of a grammar of context-free grammars. a syntarc-checker of context-free
grammars has been made by Elegant. This grammar of context-free (and attribute-free)
gramma$ looks like:

Gra.rnmar

Gra,mmarRule
Symbol
Terminal

'TERIÍINAL' { Terminal }
'GRAIUÀíAR'{ GrammarRule } .

Ident '->'{ Symbol } '.' .

Ident .

Ident .

lilith use of the attribute evaluation system and functions written in the languages El-
egant/CodeGen of the Elegant system, we have developed a program that has as input
a context-free and attribute-free grammar. Data that repÍesent the states of the related
Parser and their relations (the transitions), together with functions [9J, iii *d goto(g,6)
for every state g (written in the programming language C) are output of the progran.
Other functions needed for the Marcus recognizer that not depend on the grammar a^re
also written in C. A Marcus recognizer with & - I constituent look-aheads for a context-
free and attribute-free grammar can be generated by compiling the C-code.

Parse trees in the format of the LDB-corpus are input of the recognizer. They look
Uke:

(sF(NO ('HELENA'), VAPF ('WAS"),VBKG ("TRYING"),SN (TO (
'TO'), VBKI ("STOP"), VITG ("SHMRING."))))

The recognizer will only use the terminal categories, so the actual input of the recognizer
is

NO VAPF VBKG TO VBKI VITG

90

APPENDIX B.IMPLEMEN?ATION OF THE NAM PARSER 9l

In a specid mode, the recognizer call use the tree information to speed up the recognizing

process (see section 8.3).

8.2 a small reduction

In the implementation of the recognizer, we have made a small reduction in the number

of computations. This reduction reduces the number of parse trees that are delivered.

lVe describe this reduction in this section.
In the definition oÍ goto

goto(q,6) = 11 - o/t6.§ l1 - a)6p € (q u ini(q))
Àó= k:6PAl-'e)

and in the definitions of the functions Ï;i
Ïq-i(e,i) = {(r - o.À6p,j)lt - o.\6p€ 9ÀÀ -' e

À (? - aÀ6.p,i) E lgoto(q,ó»(t))
u {(r - a.9,i) I 3,rcre,r((r - o.g,i) € i;i(,4(,/)

^
ef - .ÀÏz(€ iai(q) A k : Xv(,= óA À'.*' c

A (e(- \6.(Xu(,: È),/) C,lgoto(q,6»(d)))

for an item of the form 1 - o.^6P with À -- e following situation is possible:

(À$1tu=À26u=^6P\
À À1 -+'6
À À2 -+'6

^ lÀ21>lÀrl

In the right-hurd-side after the dot of the item the parser founds in more than one place

a ó with a preceding e-rewriting. If atl the parse- trees for a sentence have to be delivered

it is not possible to reduce the number of computations. But for robust pa.rsing probably

there is no fundamental difference between the trees:

It can be proved that in this case p carl. always rewrite to the empty string. If the parser

in the definitions of goto and [g] only looks for 7 - a.\69, À --' € and lÀl minimal, as in
our implementation, only the parse tree with ó as left as possible in the right-hand-side
a.fter the dot will remain. The number of ambiguous trees of a sentence reduces, but the
parser still can parse the same set of sentences as without this reduction.

8.3 recognizing with tree information

The recognizer can use the tree information of the input to speed up the recognition
process in the case no look-aheads are used (with look-aheads it will be more difrcult

Lövi/\Löpv
{at \

APPENDTX B. IMPLEMENT}T?ION OF THE NAM PARSER 92

to use this information). If the recognizer uses this information, for the input showed in
figure 8.1 the recognizer skips recognitions with for example the rewriting

SF

NOUN NOT,,N VTRF AV

DET NOI'N

Hwod ucuscd lur oÀd Som bclcd his cousia up

Figure B.l: input for the recognizer with tree information

NonTerminal -' acr'used her and Sam

Supposition with this reduction is that the structure of the paÍse tree of a sentence with
grammar A equals the structure of the parse tree of the sarne sentence with grammar B.

8.4 efficiency

It has not been tried to make an efficient implementation of the Marcus recognizer. Only
the administration of items and lists of symbols has been made efrcient, because this
has a great influence on the number of computations. List of symbols are hashed on the
first symbol of the [sts. Thus a list of lists of symbols is connected with every symbol
S (see figure 8.2). Symbol S is the head of all these lists of symbols. In this way the

Figure 8.2: symbol list hash administration

concatenation of a symbol with a list is easy to implement. Every list is unique. Hence,
to equate two lists of symbols, only the pointers that point to these lists need to be
compared.

Items are hashed in the same way.

SF

Bibliography

[op den Akker, 1988J H.J.A. op den Akker. Parsing Attribute Grummars. Phd.
Thesis. University of Twente.

L. Augusteijn. The Elegant Compiler Genemtor System. At'
tribute Grammars and their Applications. Eds. P. Deransart
& M. Jourdan. Lecture Notes in Computer Science 461.

Berlin.238-254.

[Augusteijn, 1990J

[Bod, 1992] R. Bod. A Computational Model of Language Pertormane:
Data Oriented Parcing. COLING 1992. Nantes.

E. Brill, D. Magerman, M. Marcus & B. Santorini, Deducing

Linguistic Structurc fiom the §tatístícs of Larye Cowom.
Proceedings of the June 1990 DARPA Speech and Natural
Lan gu age lVorkshop. H i dden Valley. Pennsylvania. 27 5-281,

T. Briscoe & J. Carroll. Generclised PrchbílisÍic LR Parc-
ing of Natuml Language (Corpom)'with Unification-hsed
Grcmmars. University of Cambridge, Technical Report No.
224, June 1991.

[Brill et al., f990J

[Briscoe & Carroll, l99l]

[Chitrao & Grishman, 1990] M.V. Chitrao & R. Grishman. Statistical Parsing of Mes-
sages. Proceedings of the June 1990 DABPA Speech and
Natural Language Workshop. Hidden Valley. Pennsylvania.
263-266.

[Fujisa^ki, f98 J T. Fujisaki. A Stochastic Apprcach to Sentence Parsing.
COTING 1984. California, July f984. 16-19.

T. Fujisaki, F. Jelinek, J. Cocke, E. Black & T. Nishino. A
Prcbbilistic Method lor Sentene DisambigwÍíon. Prcceed-
ings of the First International Workshop on Parsing Tech-
nologies. IWPT89. Pittsburgh, August f989. 85-94.

G. Gazda,r, E. Klein, G.K. Pullum & I.A. Sag. 6cneml-
ized Phmse Structurc Gmmmar. Harva.rd University Press.

Cambridge, Mass.

R. Grishman, C. Macleod & J. Sterlitg, Evaluating Pare-
ing Strutegies Using Standatdizd Parse Files. Proceedings

[F\rjisa.ki et al., 1989]

[Gaadar et al., 1985]

[Grishman et al., 1992]

93

BIBLIOGNAPHY

[Halteren & Heuvel, 1990]

[Heidorn et al., 1982]

[Horspool, l99l]

[Jelinek et al., l99lJ

[Johnson, 1989]

[Kruseman Aretz, 1988]

[kermakers, l99lJ

[Leermakers, l99la]

[Leermakers, 1992]

[[,eerma.kers, 1993]

[Magerman et al., 1991]

94

of the Third Conference on Applied Natural Language Pro
cessing. ACL. Trento, April 1992. 156-161.

H. van Halteren & T. van den Heuvel. Linguistic Exploita-
tion ol Syntactic Data0r,ses, the we of the Nijmegen Lin-
guistic DataBase prcgmm, Amsterdam - Atlanta, GA 1990,
the Netherlands.

G.E. Heidorn, K. Jensen, L.A. Miller, R.J. Byrd & M.S.
Chodorow. The EPISTLE Ted-critiquing §ysÍem.IBM Sys-
tems Journal, vol. 21, no. 3. 305-326.

R. Nigel Horspool. Recwsioe Ascent-Deecent Parsers. Lec-
ture Notes in Computer Science 477. Berlin. 1-10.

F. Jelinek & J.D. Lafferty. Compatation of the Ptobability
of Initial Substring Genemtion by Strchastic Conteil-Ilve
Glmrnars. Computational Linguistics, vol. 17, no. 3. 3lS
324.

M. Johnson. The Computalional Complexity of Tomita'e Al-
goilthm. Proceedings of the First International l{orkshop on
Parsing Technologies. IWPT89. Pittsburgh, August 1989.
203-207.

F.E.J. Kruseman Aretz. On a Rer.ursiue Asent Parser. In-
formation Processing Letters 29, 201-206.

M.C.J. Leermakers. The Robusl Parser Prcject. Philips Re-
search Laboratories. Internal Note.

M.C.J. Leermakers . Recarsioe Ascent Parsing, Proceedings
of the First Twente l4rorkshop on Language TechnologSr:
Tomita's Algorithm, Extensions and Applications. Memo
randa Informatica 91-68. R. Heemels, A. Nijholt & K. Sikkel
(eds.).9-20.

M.C.J. Leermakers. Mathematics of Parcing. 1b appear in
1992 or 1993.

M.C.J. Leermakers. Recursiue Asent Marclus Poreers. The
oretical Computer Science 106. To appear.

D.M. Magerman & M.P. Ma.rc\s, Parl: A Prv,lrtbilistic
Chart Parsen Proceedings of the Second Internatinal Work-
shop on Parsing Technologies. IWPTgl. Cancun, February
199r. t93-199.

M.P. Marcw. A Theory ol Syntactic Reagnition of Natwd
Language. Cambridge MA: MIT Press.

[Marcus, 1980]

BIBLIOGRAPHY

[Ng & Tomita, 1991]

[Richardson et al., 1988]

[Robinson, 1982]

[Sager, 1981]

[Sharman et al., 1990]

[Shieber, 1986]

[Tomita, 1986]

[Ukkonen, 1983]

[\atright et al., 1991]

95

S. Ne & IU. Tomita. Prcbabilistic LR Parsing tor General

Conteil-Free Grummarc, Proceedings of the Second Inter'
national \4'orkshop on Parsi ng Technologies. IWPT9 1. Can'
cun, February 1991. 154-163.

S.D. Richardson & L.C. Braden-Harder. The Eryeience ot
Deoeloping o Large-scale Natuml I'anguage Teil Plessing
§ysÍenu CRITIQUE. Proceedings of the Second Conference
on Applied Natural Language Processing. ACC. February
1988.195-202.

J.J. Robinson. DIAGRAM: A Glmmar for Dialogues.
Communications of the ACM, vol. 25, no. l. 27-47.

N. Sager. Natural Language Information Prcessing, a Com-
puler Gmmntar of English and lts Applications. Addison-
\\'esley Pu blishi n g Compa ny, Inc. M assachusetts.

R.A. Slrarman, F. Jelinek & R. Mercet. Genenting a Gmm-
mar tor Statistical Tfuining. Proceedings of the June 1990

DARPA Speech and Natural Language Workshop. Hidden
Valley. Pennsylvania. 267 -274.

S.M. Slrieber. An Intrcduction to Unification-Based Ap-
proaches to Gmmmar. CSLI Lecture Notes 4. Stanford Uni-
versity.

M. Tomita. Eficient Parsing lor Natuml Language, a last
algorithtn lor pmctical syslems. Kluwer Academic Publish-
ers.

E. Ukkonen. Upper Bounds on the Size of LR(k) Parsers
University of Helsinki, Department of Computer Science.
Report C-1983-ll.

J. !\'riglrt & A. \Vrigley, Adaptioe Prohbilistic Genemlized
LR Parsing. Proceedings of the Second Internatinal lilork-
shop on Parsing Technologies. IWPT9I. Cancun, February
1991. 100-109.

