EINDHOVEN
e UNIVERSITY OF
TECHNOLOGY

The quest for probabilistic parsing

Citation for published version (APA):
Ophoff, H. R. (1992). The quest for probabilistic parsing. (IPO rapport; Vol. 852). Instituut voor Perceptie
Onderzoek (IPO).

Document status and date:
Published: 21/05/1992

Document Version:
Publisher's PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

* A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOl to the publisher's website.

* The final author version and the galley proof are versions of the publication after peer review.

* The final published version features the final layout of the paper including the volume, issue and page
numbers.

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

» Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
* You may not further distribute the material or use it for any profit-making activity or commercial gain
* You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:

openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 17. Nov. 2023

https://research.tue.nl/en/publications/f19a23ea-534e-4aaa-b889-1965f82a8740

Institute for Perception Research 21.05.1992
PO Box 513, 5600 MB Eindhoven

The Quest for Probabilistic Parsing

Hielko R. Ophoff
May 1992

master thesis

supervisors:
prof. dr. ir. A. Nijholt
dr. R. Leermakers
dr. ir. H.J.A. op den Akker
drs. N. Sikkel

Contents

preface

1 overview
1.1 introduction
1.2 historical development
121 goal L. .,
1.22 therecognizer.
1.2.3 corpus and grammars
124 reflection
1.2.5 the ROSETTAgrammar............
1.2.6 examininggrammars
1.2.7 probabilisticparsing
1.28 theparsermodel
129 theresult
1.3 contents e e

I Recursive Ascent Marcus Look-Ahead Parsers

2 recursive ascent Marcus parsers

21 introduction,
2.2 notationalremarks
23 example o e .,
24 constructionof theparser

2.4.1 auxiliary functions

2.4.2 parsing: the action functions

2.4.3 parsing: climb functions
25 TeVieW e e e e e e e
2.6 correctnessiiieeeeeae ...

38 complexity of RAM parsers
31 introduction,
32 memoization,
3.3 spacecomplexity
3.3.1 numberofitems
3.32 numberofstates
34 timecomplexity.

o

O OWOWOOWHRINOOTHIOD

11

12
12
12
13
17
17
18
19
21
23

24
24
24
24
24
26
26

CONTENTS

11

3.5

conclusions

the use of attributes in RAM parsers
4.1 introduction e e e e e e e e e
4.2 definition e e e e e e e e . . .
43 effectonparsing e e e e e e e .
44 evaluationof attributes 0. .
4.4.1 evaluation in the first phase e e e e e e
4.4.2 evaluation in the second phase e e e e . . e
45 conclusions e e e e e e e e e ce
Marcus LR parsers
5.1 introduction e e e e e e e
5.2 functional LR(O)parser e e .
5.3 auxiliary functions it e e e e .
5.4 constructing the MaLR(1) parser: step1 e e e e e
5.5 constructing the MaLR(1) parser: step2.
5.6 constructing the MaLR(1) parser: step3 e e e ..
5.6.1 introduction. e e e e e e e e
56.2 comstruction. e e e e .
5.7 Teview i e e e e e e e e
5.8 complexity e e e e e e e e e e e e e e
5.9 reduction of look-ahead power. o o el
5.10 MaLR(k)parser 0ot e e e e
Grammars
large grammars of the English language
6.1 imtroduction e e e e e e e e e e e e
6.2 augmented phrase structure grammars e e e e ..
6.3 other approaches e e e e e e e e .
6.4 conclusions e e e e, -
the corpus grammar
7.1 description e e e e e
7.2 elimination of auxiliary categories and relations
7.3 over-generation e e e e e e e
7.4 conclusions e e e e e e e e e e e e e e e e e e
a grammar extracted from the corpus
8.1 introduction. e e e e e e e e e e
8.2 multiple replication of symbols ce c e e e e
8.2.1 existencec.000 0.
8.2.2 representation in grammar rules e e e “ e
8.2.3 effectonthegrammar e e e
8.3 optionalsymbols e e
8.4 otherreductions e e e e e et et

27

28
28
28
29
30
30
31
32

33
33
34
34
35
36
37
37
37
40
41
42
42

45

46
46
46
47
47

48
48
49
50
50

51
51
52
52
52
54
55
56

CONTENTS 3

8.5 numberofgrammarrules 0. 58
8.5.1 grammars withouterules 58
852 grammarswitherules 59
8.5.3 the number of sentences with respect to the number of grammar rules 59

8.6 conclusions ittt e e e e e e e 60

9 context-free grammars 61

9.1 introduction e e e e e e e e e 61

9.2 Zrammarize vt o v v vttt it e e e e e e 61
921 introductionttt e e e e e 61
922 aux-categories. i it it e e e e e e e e 61
923 optionalsymbols 63

9.3 numberof parsingstates i i e, 63

9.4 parsingcomplexity e e e e 64
9.4.1 computational complexity and e-rules 64
9.4.2 computational complexity and parsing search space. 65

9.5 conclusions Ll e e e e e e e e e e 66

III Probabilistic Parsing 67
10 probabilistic parsing 68

10.1 introduction L. L e e e e e e e e e e 68

10.2 statistical significance , computability and corpus size 69
10.2.1 probabilistic parsing with subtrees 69
1022 criticism o L L h e e e e e e e e e e 69
10.23 conclusions i e e e e e e e e 71

10.3 probabilistic context-free grammars 0 .. 71
10.3.1 description e e e e e e e e e 71
10.3.2 experiments with PCFGs 72

10.4 ID/LP grammars used for probabilistic parsing 73
10.4.1 description i e e e e e e e 73
1042 criticism L L L e e e e e e e e e e e e 73

10.5 context-sensitive probabilistic parsing 74
10.5.1 Pearl i e e e e et e e e e 74
10.5.2 probabilistic parsingof messages 74
10.5.3 probabilistic LR parsers, 75

106 conclusions i it e e e e e e 75

11 probabilistic LR-like parsing methods 76

11,1 dntroduction Lt e e e e e e e et e e e e 76

11.2 probabilistic LR parsing by Briscoeand Carroll 76
1121 theidea i i it i e et e e 76
11.2.2 experiment it ittt ettt 77
11.2.3 the experiment criticized 0. 77

11.3 a model for probabilisticparsing 78

11.3.1 Jook-aheads i i i it e e e e e e e e e 78

CONTENTS

11.3.2 subdividingreductions o oL
114 conclusions i i i e e e s e

12 the quest for probabilistic parsing
121 dntroduction oL L e e e e e e e e e e e
12.2 statistical significance, grammars, parsers and corpora
12.3 grammars for probabilistic LR parsers
12.3.1 sizeof Grammarsttt it e e e e e e e
12.3.2 statistical significance and grammars00 0L
1233 conclusions e e e e e
124 probabilistic LR parsers i

12.5 corpora

12.5.1 the need for a large analyzed corpus
12.5.2 making a new analyzed corpus
12.6 the trade-off between grammars, parsersand corpora
12.7 a proposal for a decisive experiment with probabilistic parsing.

A complexity

B implementation of the recursive ascent Marcus parser

B.1 overview

B.2 asmallreduction i
B.3 recognizing with treeinformation o o oL,

B.4 efficiency

bibliography

.....................................

80
81

83
83
83
84
84
85
86
86
86
86
87
88
88

89

90
90
91
91
92

93

preface

This report is the result of my work that started at Philips Research Laboratories in
Eindhoven and finished at the Institute for Perception Research in Eindhoven. The work
started in September 1991 and finished in May 1992. I worked on the Robust Parser
Project. Goal of this project was the development of a parser for natural languages with
use of statistics. I did my work as part of my study in Computer Science at the University
of Twente.

I would like to thank René Leermakers for his ideas and support. My work is based
on his ideas. I would also like to thank Jan Odijk for his assistance with typical linguistic
issues and Lex Augusteijn for his assistance with the use of the ELEGANT system. Anton
Nijholt, Klaas Sikkel and Rieks op den Akker have given valuable advices, comment and
sympathy. Thanks. Thanks to the (social) support of Lisette Appelo, Joep Rous and
Paul Jansen, I have worked with much pleasure.

Chapter 1

overview

1.1 introduction

Parsing! of a natural language? for large domains? is a big problem. A lot of information
that people use to determine sentence structures is not available for parsers (because of
representation problems). Because of this lack of information, the parser can often assign
a lot of parse trees (sometimes a few hundred) to one sentence. The computation of these
parse trees can take a very long time. For a lot of applications, parsing has to be done
quickly.

Another problem is the need for a grammar?®. It is hard to write a grammar that
describes all possible sentence structures of a language.

In the Robust Parser Project, it was tried to find a solution to these problems. It was
tried to develop a parser that does not compute all possible parse trees of a sentence, but
only the most reasonable one. It has to compute such a parse tree very fast. The parser
must also compute parse trees for syntactical correct or almost correct sentences that are
not described by the grammar.

During the project this goal of developing a robust parser disappeared. The project
became a quest for probabilistic parsing. In this chapter, the development of the project
is sketched. The organization of this report is given in the last section of this chapter.

1.2 historical development

1.2.1 goal

The first goal of the project was the development of a robust parser, working in linear® (or
almost linear) time. Robustness means that the parser will assign an acceptable parse tree
to grammatical sentences and to somewhat incorrect sentences that the grammar under
consideration cannot generate. Whether a parse tree is acceptable, is an application

1 A parser assigns one or more sentence structures to a sentence. A sentence structure is named a parse
tree. Parsing is the assignation process.

2Natural languages are languages like English and Dutch.

3A small domain is for example the set of sentences used for weather forecasts.

¢ A grammar describes the possible sentence structures of a language. It consists of grammar rules. A
parse tree is made by using a number of grammar rules.

*In general, the time needed to parse a sentence grows polynomially with respect to sentence length.

CHAPTER 1. OVERVIEW 7

dependent question. Some applications only need the general structure of a sentence.
Small errors in the structure are of no consequence. For other applications, one structural
error would make the parse tree useless. The parser must deliver exactly one parse tree
for a sentence.

If the parser has to work in linear time, the parser typically has to make the correct
decisions at once. In practice this is impossible. But it may be possible to make the
parser work in linear time by forcing a decision at the moment the parser can do more
than one action. Statistical information may indicate which decision is most likely. For a
parser working in linear time, it is hard to deliver the best parse tree for a given sentence.
However, only an acceptable parse tree has to be delivered.

Because collecting statistical information about parser decisions is only useful if there
are significant differences between competitive decisions, we wanted to use a parser that
uses look-aheads®. The longer the look-ahead, the less the number of parsing conflicts
(a parsing conflict is a set competitive decisions) and the more distinguishing statis-
tical information may work. Nonterminal as well as terminal symbols’ will be used
as look-aheads. The parser/recognizer® model is the Marcus-like parser of Leermakers
([Leermakers, 1993]).

To reach the goal of a robust parser working in (almost) linear time, a
parser/recognizer generator had to be made. A grammar was also needed, together with
statistical information.

1.2.2 the recognizer

An implementation of the recognizer was made (see appendix B). Starting point was
a grammar of a context-free, attribute-free grammar. With use of the Elegant system
([Augusteijn, 1990]), all the parsing information that can be computed before the actual
recognition of sentences is generated. C-code that represents the recognizer is delivered.
After compiling this code, there is an executable recognizer. In addition, functions for
collecting statistical information were implemented.

1.2.3 corpus and grammars

For the grammar and the statistical information, a corpus with analyzed sentences (for
every sentence one parse tree) seems pre-eminently suitable.

We used a part of the LDB® corpus from the University of Nijmegen
([Halteren & Heuvel, 1990]). The corpus consists of several pieces of English text from
the ’real world’. Together with the corpus we got a grammar from the developers of the
LDB-corpus that describes almost all sentences from the corpus. Because this grammar

SThe parser reads a sentence from left to right. While the parser reads a sentence, it has to take a
lot of decisions. If the parser may look at the next occurring words of the sentence, it can take better
decisions. These next occurring words that the parser may look at, are named look-aheads. The next
occurring word can be used as look-ahead, but also a sequence of next occurring words can be used as
look-ahead. In the latter case, the look-ahead is longer than in the former case. Other symbols than
words can be used as look-ahead.

"Terminal symbols are the syntactical classes of the words of the sentence, nonterminal symbols are
syntactical classes of groups of words.

® A recognizer says whether there exists a parse tree for a sentence.

?Linguistic DataBase

CHAPTER 1. OVERVIEW 8

has not been documented and because the grammar seemed difficult to work with, first
we did not use this grammar. Later examination showed that this grammar is untractable
for our purpose.

From the parse trees of the sentences from a part of the corpus, a grammar was
extracted (grammar G¢). Grammar G¢ describes precisely the parse trees of the corpus
sentences. Hence, it should suffice for collecting statistical information.

Grammar G¢ appeared to be relatively big. Gc had more grammar rules than there
are sentences from which the grammar rules have been derived. A lot of grammar rules
are rarely used (often only once a rule is used in a parse tree of a corpus sentence). So
two problems appeared:

o the generated parser is too big for experiments to work with

e collecting statistical information is not useful because too many parser decisions
rarely occur

All the grammar rules that were seldomly used in the corpus trees, were removed from
the grammar G¢. The resulting grammar is manageable. Our assumption was that a set
of commonly used grammar rules exists that forms the principal part of the rules which
are used in parse trees. The uncommonly used grammar rules describe exceptional cases
and are not interesting for a robust parser. It appeared that the reduced grammar only
could generate a restricted number of very short sentences, thus our assumption was too
optimistic.

A question is what the reduced grammar actually describes. Apparently, rarely occur-
ring grammar rules are essential for parsing sentences, so the commonly used grammar
rules do not fully describe general sentence structures (parse trees). Then it also will not
be meaningful to collect statistical information about decisions of the parser based on the
reduced grammar. It also will be very difficult to collect statistical information with this
reduced grammar.

1.2.4 reflection

On the one hand it was interesting to look more precisely at the grammar G¢o. Why uses
Gc so many rules to describe the sentences from which it was extracted? Is it possible to
use fewer rules? How much rules are absolutely necessary? Which factors are important
when the number of rules has to be reduced? What are the effects on parsing when the
grammar is transformed?

On the other hand it may be possible to use another grammar. In the ROSETTA
system a grammar for the English language is being used.

1.2.5 the ROSETTA grammar

First we tried to use the ROSETTA grammar. Using a grammar that does not correspond
with the grammar used to make up the parse trees of the analyzed corpus sentences causes
a problem. It will be difficult to collect statistical information from the parse trees. The
parse trees have to be rewritten according to the new grammar. We could try to do this
by parsing the corpus sentences with the new grammar, using information from the parse
trees of the sentences build with the old grammar (G¢). But first we had to build a
parser based on the ROSETTA grammar.

CHAPTER 1. OVERVIEW 9

The attributes used in the grammar were eliminated. The grammar has been written
in regular expressions. We rewrote the grammar in BNF notation (a growth from 20
to 300 grammar rules). The resulting recognizer needed very much time to recognize a
sentence. After eliminating the attributes the grammar became strongly over-generating.
Because of the existence of many empty rewritings (e-rewritings) it could be that the
parser has to do a lot of unnecessary work. So a variant on the recognizer was made
that uses e-rules more efficiently. But there were other reasons for the complexity in the
parsing process (see chapter 8), so it was not possible to use this grammar.

1.2.6 examining grammars

We had three grammars: the grammar delivered with the corpus, the grammar extracted
from the corpus (G¢) and the grammar used in the ROSETTA system. None of these
could be used for statistical parsing. So it seemed useful to examine these grammars.
Questions mentioned before had to be answered. The grammars could be compared
with each other. From an examination of the three grammars, conclusions about writing
context-free grammars for probabilistic parsing could be extracted.

1.2.7 probabilistic parsing

Other people have tried to make parsers that work with statistical information. Do they
use good models? Is our approach with a Marcus-like parser a good approach? We
examined other approaches and criticized them. We concluded that our approach is one
of the most realistic approaches for developing a probabilistic parser for common English.

The way a grammar is organized, has an effect on the information that can be ex-
pressed with the statistics. These eflects were examined.

1.2.8 the parser model

In our approach we promoted the use of the Recursive Ascent Marcus Parsers (RAM
parsers). We examined the properties of such a parser. The effects on the parser of the
way a grammar is organized were examined. Because RAM parsers could be very large for
a large grammar of a natural language, we developed a Reduced Recursive Ascent Parser,
the size of which does not exponentially grow with respect to the number of look-aheads.

1.2.9 the result

We were not able to experiment with probabilistic parsers. But we could conclude with
the properties of the grammar, the parser, the statistical information and the corpus that
are needed for a good, significant experiment with probabilistic parsing. It turned out
that a realistic experiment that can lead to a conclusion about the usability of statistical
information for parsing will take a lot of work. Such an experiment can only be done in
cooperation with other research groups.

1.3 contents

There are three parts in this report. In the first part, we describe the Recursive Ascent
Marcus Parser and its properties. We also describe an extension of the Recursive Ascent

CHAPTER 1. OVERVIEW 10

LR(0) parser with Marcus-like look-aheads. In the second part, context-free grammars
are examined. Probabilistic parsing is examined in part three.

Part I

Recursive Ascent Marcus

Look-Ahead Parsers

11

Chapter 2

recursive ascent Marcus parsers

2.1 introduction

In this chapter we construct a model for Marcus parsers. We use the recursive ascent
implementation for these parsers. In this way, parsers can be described functionally.
This has some benefits (see [Leermakers, 1992]). The parsers use constituent look-aheads.
Because the use of constituent look-aheads is essential for Marcus parsers, we name our
parsers recursive ascent Marcus (RAM) parsers.

The chapter starts with some notational remarks. An example that introduces some
ideas used in the parser model is given. A formal construction of the parsers follows. In
the last section of the chapter we prove the correctness of the parser model. In chapter
3 we examine the (time and space) complexity of the parser. In chapter 4 the parser is
extended so that attributes can be used. In chapter 5 another recursive ascent Marcus
parser is described. In fact we do not describe parsers but recognizers. The recognizers
we describe can always be extended with (synthesized) attribute evaluation components.
So the recognizers can always be extended to parsers.

2.2 notational remarks

We expect the reader of this report to have some knowledge of LR-like parsing techniques.
Vr is the set of terminal symbols (lexical categories). Vjy is the set of nonterminal symbols.
VrnVWn=0.VTUuVy=V.

In general, symbols like A, B, ...are nonterminals (A4, B,... € VN), z1,22,... € V1
and X,Y,Z € V. The greek symbols a,f,... are used for representing symbols strings,
s0 a,f,... € V*. ¢ represents the empty string.

We want to have a parser with constituent look-aheads. When the parser takes a
decision, the parser has to see look-ahead symbols. These look-aheads are the next
symbols to process. For representing symbols that have been recognized and the symbols
the parser has not yet recognized we use dotted items. An item is of the form Ay — a.8
with A € Vn,v,a,8 € V* and there is a grammar rule A — § with 6y = af. The
symbols a have been recognized, the symbols 8 have to be recognized. The symbols «
are the look-aheads of A. If an item is of the form Ay — a. then the symbols a have
been recognized, hence the symbols Ay have been recognized. Such an item is named a
final item. An item of the form Ay — .a is named an initial item.

12

CHAPTER 2. RECURSIVE ASCENT MARCUS PARSERS 13

2.3 example

Consider the grammar with rules:

S—-ABC C-D

A—-a C—-c¢FE

B—e C—-cA

B—-b D—=c¢
E—-aC

with S,A,B,C,D,E € Vn,a,b,c € V1,¢ is the empty string. The number of look-aheads
is one. Input sentence is "abc”.

With LR(0) parsing, the parser looks at the next symbol to process. With constituent
look-ahead, the parser looks not only at the next symbol to process but it also looks at the
Jook-aheads. Thus the parser looks at the next k& symbols to process, with £ = number
of look-aheads + 1.

The nonterminal ROOT is added to Vy to get a unique root item. Root item is
ROOT — .S . Nonterminal S has to be recognized. The left-most-symbol rewritings of
S are:

s S—-ABC
e S—=*aBC(S—ABCand A—a)

For recognizing S, the parser has to recognize A B C or a B C. Therefore initial items
originating from the root item ROOT — .S are:

e S=.ABC
e AB— .aB

One can see the work of the look-aheads in the second initial item. The parser sees the
first k symbols (here A and B) and their left rewriting. An item A — . a is not created
because the parser sees the first £ symbols (in this case two symbols) and not only the
first symbol. If the item A — .a would be created, the parser would not use existing look-
ahead information. If there do not exist & — 1 look-aheads, as in the item ROOT - .S,
as much look-ahead information as available is used. Thus with an item A - B.C D
and two look-aheads (k = 3), an item is created with C D — ... D. In this case, the
parser only uses one look-ahead (D).

With first input symbol a, the parser has recognized symbol a. It shifts this symbol
in item A B — . a B. The resulting item representing the new situation is:

e AB — a.B (ahas been recognized, B has not been recognized)

The new item is a product of a transition on the recognized symbol a. The transition
has been made from the item describing the original situation (A B — .a B). This is
illustrated in a picture (figure 2.1).

There are two possibilities for recognizing B. In the first case B rewrites to the empty
string ¢, in the second case B rewrites to b. If B rewrites to ¢, symbol B can be reduced
immediately as we will see later. In this example B rewrites to € and the symbol ¢ can
be recognized. The resulting item is:

CHAPTER 2. RECURSIVE ASCENT MARCUS PARSERS 14

Figure 2.1: states of the recognizer

e B—e.

In the other case symbol b has to be recognized. The item representing this situation is
B — .b. With second input symbol b, symbol b will be shifted. This results in item:

e B—b.

Thus symbol B has been recognized (with B — ¢. and B — b.). See figure 2.2.
Recognizing symbol B started from item A B — a.B. A reduce symbol B action

Figure 2.2: states of the recognizer

based on final item B — b. results in item:
e AB— aB.

Symbol string A B has been recognized two times: for B — ¢ and for B — b.
Recognizing symbol string A B started from item ROOT — .S . Symbol string A B

CHAPTER 2. RECURSIVE ASCENT MARCUS PARSERS 15

cannot be reduced in this item. Symbol string 4 B has been recognized while recognizing
the rewritings of symbol S. Symbol S rewrote to A B C and the prefix of A BC (A B)
rewrote to @ B. So the parser can reduce symbol string A B in the item corresponding
with the first rewriting of S. That item is the initial item S — . A BC. The reduce action
results in item:

e S— AB.C

S>AB.C
initial items:
C->.D
C>.cE
C>.cA
D->.c¢

Figure 2.3: states of the recognizer

Now the parser can try to recognize symbol C for two cases. In one case symbol b has been
recognized. In the other case symbol b has to be recognized (the case of the e-reduction).
Because symbol C does not left-rewrite to terminal b, the second case can be eliminated.

For item S — A B.C there are three initial items with shift symbol ¢ (see figure 2.3).
After recognizing symbol ¢ there are three new items:

o D— ¢c.
e C—c¢c.A
eC—-c¢.FE

These three items can be taken together, because they are produced on the basis of the
same transition symbols. Such a set of items is named a state. Thus a state is a set of
items derived from a set of items and the related initial items on the basis of the same
transition symbol(s). In the example all states except the last exist of only one item.
Transitions were made for one item with the corresponding initial items. But for a state
with more than one item a transition can be made on the basis of all the items in the
state and their corresponding initial items. In the case of the state:

e D—- c.

oeC—-c.A

CHAPTER 2. RECURSIVE ASCENT MARCUS PARSERS 16

e C—- ¢c.E

a new state can be made on a transition on symbol a, because there are following initial
items:

¢ A— .afromC— c. A
¢ F—~ .aCfromC— ¢c.E
In figure 2.4 all the states with their transitions are displayed.

ROOT > . §
initial items:
S>.ABC
AB<>.aB

S>AB.C
initial items:

C->c¢c.E
C>c.A
D>c.
initial items:
E>.aC
A->.a

A->a.
E>a.C
initial items:
C->.D
C>.¢cE
C>.cA
D->.

Figure 2.4: states of the recognizer

It is not possible to shift another input symbol because all input symbols have been
shifted. The final item D — c. leads to a reduce action of symbol D (transition to state
{C — D.}). So symbol C has been recognized and it can be reduced (transition to state
{S —- ABC.}). Symbol S has been recognized and can be reduced. This leads to the
final item ROOT — S.. It is easy to see that § —* abec.

CHAPTER 2. RECURSIVE ASCENT MARCUS PARSERS 17

2.4 construction of the parser

2.4.1 auxiliary functions
First we define the left-most-symbol rewriting =:

=: a relation between VNV* and V"

a=>f = Jps(a=AYAB=67ANA—=)

We also need a prefix and a suffix function for splitting up a symbol string in its look-
ahead prefix and the remaining string:

k: VSV, 0<t<k
+ k Ve V"

prefix function
k:a = ¢,k=0Va=c¢
k:Xa = X, XeVr
k:Xa = Xo,X€eEVNALk2|Xal
k:a = prefix of a with length k,otherwise

suffix function
a = k:at+tla:k
The k: and : k functions bind stronger than the ++ function. The prefix function does
not look further than the first symbol if the first symbol is a terminal symbol.

As we have seen before, the parser needs a function that generates the initial items
derived from a state. Therefore we define a function ¢ni that returns a set of initial items.
These initial items are derived from items in a state. The set of all items is I, the set of
all states is S.

ini : §—=P)

ini(g) = {Bp— wp|3aprs(y — aBE€gAS =" Bub
Ak:Bus=BuAB—vAv#e))
For each item 4 — a.f in state ¢ the rewritings of § are computed and the corresponding
initial items are produced. The parser sees only k — 1 look-aheads. For e-rewritings there
are no initial items. The parser skips all ¢-rewritings as we will see later.

The function goto returns a new state based on transition symbols §, derived from
the items in state ¢:

goto : Sx(VpUVNVY) = S0<t<k

goto(g,6) = {y— als.f|y— a.)é8 € (qUini(g))
Ao=k:68AN>"¢}

Symbols rewriting to ¢ are skipped. They can be reduced immediately.

CHAPTER 2. RECURSIVE ASCENT MARCUS PARSERS 18

2.4.2 parsing: the action functions
The parser is based on following definition (/1 is the set of all index-items, see below):

[gd : N—>PUI

[g)) = {(v—aBj)lr—aBEqAB =" 2i4y...2;} (2.1)

For each state g there is a function [g]. With input z;...z,, initial state { ROOT — .S},
S —=*z)...z, if and only if (ROOT — . S,n) € [{ ROOT — . 5})(0).

The parsing process works with indexed items (named index-items). The index j of
an index-item (y — a.8,7) indicates up to which input symbol 3 (thus also ¥) rewrites.
Other functions as we will see later can use such an index-item for reduce actions. The
items in the states determine a situation in the process of parsing a sentence. With the
items in a state the parser can see if it can take a shift action or a reduce action, what the
next symbols are to determine etc. An index-item says what the relation is between an
item and the input sentence. A function [g] returns index-items derived from the items
of state gq.

We will construct a functional implementation for each function [g](i). The construc-
tion is based on the equation:

Bo"zi41...2;, = (B=2"TiaTAY =" Tis2...Tj)
V(B—="€eAi=}) (2.2)

A string (non)terminals rewrites to € or it has a left most symbol rewriting to a terminal.
With equation 2.2, definition 2.1 can be written as:

9@ = {(r=aBi)|3u(y—aBEGAB 2" zinap
Ap—=°zi42...25)}
U{(y—apB,i)]y—=aBeEgAf—"¢} (2.3)
For each item ¥ — a.f in set g, a has been recognized. For recognizing 3 the parser looks
whether § rewrites to a terminal symbol or 8 =" € (8 =" z;4;...z;). In the first case
the parser shifts input symbol z;;, and tries to recognize a rewriting of . In the second
case the function returns an item with index. So we need a function to shift symbols like

Ti41 in definition 2.3. Such a symbol has been recognized. Therefore for every state ¢ we
introduce a function [g] with definition:

T : (VruWwVHYx N =PI, 0<t<k

[d,i) = {(v—=aB,5) | (v = aBEgAB =" bp
Ap—="Tis1...2;Ak:6p =6} (2.4)

Each function [-qj skips symbols 6 (and the possible e-rewritings before §). Because the
k-prefix of a symbol list zy with 2 € V1 and 4 € V* is z definition 2.3 can be written as:

[G) = {(v = a.8,5) | (v = a.B,5) € [d)(zisr,i + 1))
U{(y—=aB,i)|y—=aBEgAB—"¢} (2.5)

If we have a functional implementation for each function [g] we have a functional imple-
mentation for each function [g](i).

CHAPTER 2. RECURSIVE ASCENT MARCUS PARSERS 19

2.4.3 parsing: climb functions

In the definition of m (definition 2.4) there are two cases for the rewriting # =° éu. The
rewriting consists of zero steps or it consists of at least one step.

An example. In an item A — B.c (A,B € Vn,c € V1) the symbol ¢ can be shifted
immediately (without rewritings). This equals the case § = ¢. In the example in section
2.3 we saw that symbol string A B could not be reduced immediately in item ROOT — .§
. We solved this by reducing string A B in the item corresponding with the first rewriting
of S. This equals the situation § =* S A S = A B C with transition symbols § = A4 B.
If 3 = n and 7 = 1’ and so on the parser first tries to recognize the deepest rewriting
(recognizing starts at the level of terminal symbols) and then it tries to climb up. In this
way it tries to recognize S.

Because the parser skips e-rewritings, an e-rewriting is not considered as a rewriting
step. So with a division into zero steps and one or more steps, we get following equation:

B=2"6p = N(B=ApuAAr="¢)
VInB=2"nAn=AuAd—="¢)
Because we are not interested in e-rewritings, we also are not interested in left-most-
symbol-¢ rewritings. For a Adu with A =% ¢ it is possible that a lot of left-most-symbol
rewritings of the form A;6p = A6y with A, A3 —* € exists. Therefore in the case of
B ="n A n= Aou the rewriting n = Adu may not be of the form A\ 6p = Aéu. Thus
in the left-most-symbol rewriting 7 = Adpu, a prefix of § has to be written. Thus n must

be of the form A¥ and A — A prefix(é)v with 9, € V* and k : prefix(§)vd = 6.
This can be written as (X € V):

B=26u = B=ANpAr-"¢)
V3naax(B=2"AIANA = AXvAk: Xvd=§
AXvI:k=puAX="¢)

Now definition 2.4 can be written as:

[d,d) = {(v - aXp,j)lv— arbp€qhp ="z ...2;
Ak:bp=6A)>"¢}
U{(y = a.8,5) | Iovax(y = a.BEgAS =" AV
ANA=AXvAk: Xvd=6§
AXvd:k—="z...2;5
AX=>"6)) (2.6)

We will rewrite these two sets with use of the functions ini, goto, [] and ﬁ First we will
rewrite the first set.

rewriting the first set

In the first set of definition 26 onehas 7y = a AMp € ¢ A pu =" z,41...2; A k: ép =
6§ AX =" ¢. Then v — alé.u € goto(q, §).

Reversily if v — a)é.u € goto(q,6) Ay — a.\6u € g then k : éu = 8. After recognizing
6 the parser goes to a new state (state goto(g,é)) with new items representing the new

CHAPTER 2. RECURSIVE ASCENT MARCUS PARSERS 20

situation.
If

7 — ald.p € goto(q,6) A p =" Zi4y...T;
then

(v = aré.p, 5) € [goto(q, 6)](7)
Reversily if

(v = aXb.p, j) € [goto(q,6))(7)
then

¥ — alb.p € goto(q,8) A p =" z;41...2;
So the first set can be written as:

{(v = aXép,j) | v — a.r6p € gAX =" ¢

A(y = arb.p,j) € [goto(q, 6))(7)}

rewriting the second set

We will now rewrite the second set of definition 2.6. With the definition of ini(q) we
have:
if

T—=afeEGABI"AINASAXVAk: Xvd=86AX>"¢

(see the definition of the second set in 2.6)
then

Je(y—afEGAB " AIANEL: AV = A¢
ANAE = AXvEE ini(g)ANk: Xvd=6AX>"¢)

and reversily.
We have

[61S kA Xv[21A(I€|= min(k,|9]) - 1)

(The function min returns the minimum of its arguments.) If | v |> k=1 then k : Xvd =
k: Xv. Otherwise k : Xvd = Xve with | ¢ |< min(k,|9]|)=-1. Sok: Xvd=k: XvE =
é.

Hence, the second set in equation 2.6 can be written as:

{(y = @.B8,5) | Joaeeax(y = a.BEGAB =" AV
Ak:AY = AEA AE — A XvE € ini(g)
AXvE:k="Zip1...2¢ A AV k=" 144y...2;
Ak:XvE=86AX-"¢)})

CHAPTER 2. RECURSIVE ASCENT MARCUS PARSERS 21

With v = aBAB = (k: AV) AV : k) AAY : k —° 244, ...7; we can use the
definition of [g] (definition 2.4) to rewrite this set. The result is:

{(v = a.8,5) | Joreeax((r = a.B,5) € [g)(AE,¢)
A AE — AXVE € ini(q)
AXvEk =" Zip1...2¢ A k: XvE=6AN =" ¢€)}

Symbol string é§ has been recognized. The function goto can be used to describe this
situation. If

A - AXvE€eini(gQAk: XvE=86NAX—>"¢
then
A€ = Ak : XvE).(XvE : k) € goto(q,d)

The state goto(g,8) contains items of the form Af — A(k : Xv€).(Xv€ : k) with
(Xv€ : k) =* zi41...2¢. This equals the situation described in the definition of the
functions [g] (definition 2.1). If

Af — Mk : XvE€).(XvE: k)€ goto(q,8) A(XvE: k) =" zi4q...2¢
then

(A€ = Ak : Xv€).(XVE : k), £) € [goto(q, 6))(3)
Reversily if

(A€ = Mk : Xv€)(XvE : k), £) € [goto(q, 6))(7)
then

Af = Mk : XvE)(XvE: k) € goto(q,8) A(XvE 1 k) =" 2i41...2¢

So with use of the definitions of the functions goto, ini, [) and [] we can write for the
second set of equation 2.6:

{(v = @.8,3) | Jaervex((v = .8, 7) € [q)(A¢€, €)
ANAE— AXvEEini(Q)A k: XvE=86ANX>"¢
A (A€ = M6.(XvE - k),2) € [goto(q, 8))(i))}

2.5 review

a=>f = s(a=AYAB=6yANA =)

k:: V=Vt | 0<t<k
tk VTS V"

CHAPTER 2. RECURSIVE ASCENT MARCUS PARSERS

prefix function

k:a = ¢k=0Va=c¢
1: Xa = X, XeV
k:Xa = X, XeVr
k:Xa = Xa,X€VNALk2|Xa]l
k:a = prefix of a with length k,otherwise

suffix function
a = k:a+t+a:k

ini : S— P()

ini(q) = {Bp— wvp|3apys(y — @B €qAB =" Bub
Ak:Bus=BuAB—>vAv#e))

goto : Sx(VrUVNVY) = S5,0<t<k

goto(q,8) = {y—=alrs.f|y— a.Aé8 € (qUini(q))
Ab=k:86BAN>" ¢}

[¢d : N—=PUI

[= Td@ii+1)
U{(v—apB,i))|vT—=aBEgAB—"¢)

Td : (VruVwVY)x N —PUID),0<t<k

WG = {(v— arép,j)|vy— arbpeghrr—"¢
A (7 = alXd.pu,j) € [goto(q, 8))(i)}
U {(= a.8,5) | Jagrsue((v = a.B,5) € TqI(AE, 0)
ANAE = AXvE€Eini(g)AN k: XvE=6ANX—="¢
A (A€ = X6.(XVE : k),2) € [goto(q,8))(i))}

CHAPTER 2. RECURSIVE ASCENT MARCUS PARSERS 23

2.6 correctness

The recognizer works for fast all context-free grammars. Only for grammars that cause a
cyclicity problem (for the computation of a function call f(arguments) the function f is
called with the same arguments), the recognizer does not work. The proof is the construc-
tion of the recognizer in section 2.4. If the recognizer has no cyclicity problem then the
computation of the recognizer terminates because if z,4) ¢ V then V,goto(q,zn4+1) = 0.

A call [g)() may lead to a call [g](zi41,i + 1). Because a call of a function [g](4,1)
cannot lead to a call [¢'](¢) with £ < i, a call [g]() will never lead to a call [g](7).

For a call [g](6,i) the situation is different. A call [g](6,i) may lead to a call
[goto(g, 6))(¢) but this can never lead to a call [q](6 i) (because of the increment of index
i). But a call [g)(6,{) may also lead to a call [g](A€,£) with £ > i if Af — .AXvE € ini(q),
A" k: Xv€ =6 and (A — A.(XvE : k),€) € [goto(q,6))(i). f XvE : k /* € then
€£> i U Xv€: k —" eit is possible that £ = i. In that case, if Af = § or [g](A&, 1) leads
to a call [g](6,¢) then a cyclicity problem exists. Thus if there is a sequence of initial
items § = A Xnnén € ini(q), k : Xiatis1€iv1 = AiXivi€i € ini(g)(1 € i < n) and
k: Xavi&y — AXvE € ini(q) with (Xv€ 1 k), A =" €,V 1gicn : (Ai =" e A(Xivi€i 1 k) =
€) Ak : Xv€ = § then the recognizer may have a cyclicity problem.

One can check for a given grammar if this problem may occur. If it occurs, it is pos-
sible to overcome the problem by memoization of the functions [g). Memoized functions
memorize for which arguments they have been called. They do not recompute previous
computed results. If a call [g)(4,) occurs while computing the function call l_(b i), the
parser must stop the computation of the last call [q](6 t). The parser will still recognize
all sentences the grammar can generate, but an infinity of parse trees that only differ in
the derivation § =" év(v —° ¢) will not be computed.

Chapter 3

complexity of RAM parsers

3.1 introduction

In this section we will look at the complexity of the RAM parser. The theoretical upper
bound of the space complexity will be compared with some practical results.

3.2 memoization

The functions [g] and [g] are implemented as memo-functions. The first time a function
is called with a specific argument the function result is memoized. The function does
not recompute its result for that argument after this first call. Before recognizing all the
possible states are computed (thus all the possible function calls goto(g,6)). For every
state g the corresponding function call ini(q) is computed.

3.3 space complexity

3.3.1 number of items

First we will compute an approximation of the maximum number of different items of a
parser for grammar G'.
An average of the number of symbols in the right-hand-side of a grammar rule is #G

with #(G) the number of grammar rules and |G| the number of symbols in the right-hand-
sides of the grammar rules of G. An item is of the form Ay — a.5 (4 € Vn,a,8,7 € V*)

with tail(a8) = 4. On average every item in a RAM parser has (at most) ;% +k-1
symbols in its right-hand-side. For an undotted item (an item withoutadot)A— BC D
with £ = 1 the dot can be placed at three positions, resulting in the three items:

e A—-B.CD
e A-BC.D
e A—-BCD.

'In this section initial items are not considered as items. For computing the space complexity of the
RAM parser, the number of states is important. Only the root state contains an initial item.

24

CHAPTER 3. COMPLEXITY OF RAM PARSERS 25

So for a k = 1 parser of grammar G the maximum number of items is | G |.

For an undotted item A BC—-DEFGBC (A,B,C,D,E,F,G € VN, k = 3) the
dot can be placed at two positions (only k-prefixes can be shifted in the item, not parts
of a k-prefix), resulting in the two items:

e ABC—-DEF.GBC
e ABC—-DEFGBC.

For an undotted item with £ symbols in the right-hand-side and ¢ not a multiple of
k there are at most (£ + k — 1)/k positions to place the dot. In the case of terminal
symbols in the right-hand-side the dot can be placed at more positions. An approximation
of the average number of dot ositions in the right-hand-side of an undotted item is
(Fh+k-1+4k-1)/k=~ (k € {1,2,3,4)).

k

A RAM parser has at most Z #(G) | V |“! undotted items. So an approximation

=1
of the number of items of a RAM parser is

-1, |G
(2#(G)|V|)#(G)L

-y 1G|
g(#((") 1V #)k

ZIVI"‘IGI
=1

o)

So the number of items is in an approximation of the worst case of order of magnitude

o} 1V I*G)).

k
In practice the upper bound Z#(G) | V |! for the number of undotted items is
=1
unrealistic. Linguists write grammars with few terminal symbols in rewriting rules. For

example they will not write a rule
..— ...n0UN ...

but
eee— ...NP ..

k
together with the rule NP — noun. Also more realistic is the upper bound z#(G) I

(=1

Vn |

This upper bound has been derived from the form Ay — a.8 of an item with tail(af)
= v and A — prefix(af). In practice a lot of possible strings v (v € Vy,| 7 |< k) do
not occur in combination with a specific grammar rule. For a few very small grammars
the value of £ in § | V || G | has been computed (see appendix A for the results). A
result is that the value of ¢ will be less than k — 1. For the small grammars the value
of t strongly depends on the mean length of the right-hand-sides. It seems that a lower

CHAPTER 3. COMPLEXITY OF RAM PARSERS 26

bound of the number of items for our small test grammars is of order of magnitude
O} | Vw 134D G |). For a fictitious minimal grammar with 800 grammar rules, 30
nonterminal symbols and a grammar size (| G |) of 1600 the number of different items for
different values of k£ can be seen in figure 3.1.

E v 3¢-DG |
1 1600
2 2500
3 5100

Figure 3.1: number of items with respect to the number of look-aheads

3.3.2 number of states

A state is a set of items with the same last transition, thus the same look-ahead string
before the dot. For one collection of g items with the same look-ahead string before
the dot there could be in the worst case 29 — 1 different sets. The maximum number
of different look-ahead strings is |V | - |V |*"! + |Vr|. The maximum number of
items in a state with the same look-ahead string before the dot is smaller than the
maximum number of items. So the maximum number of states is of order of magnitude
O((IVN) - V=1 + [Vrl)(2EVWI191 - 1)) = o(abwitidl),

For LR parsers the space complexity is of order of magnitude 0(2"’7""1 IG1) (the length
of the look-ahead is k — 1). So there is not an important difference in space complexity.
For RAM parsers as well for LR parsers the space complexity is very bad. In practice the
size of the parsers is much better (smaller).

For the very small test grammars the number of states is displayed against the values
of k (figure 3.2).

3.4 time complexity

Let n be the sentence length and s the maximum number of states. We will compute a
rough calculation of the (time-)complexity of the recognizer. _

There are O(n [Vn|* s) different invocations of functions [g) and [g]. Each invocation
of a function [g] calls a function [goto(g,6)](i). This call returns a set of O(n) elements.
An invocation of [g] leads to O(n) invocations of functions [g](A€,€). This results in
O(n) sets of O(n) elements. Together with merging these sets and removing duplicates
each invocation of a function [g] takes O(n?) time. Hence, the total time complexity is
O(n3s |Vn[¥).

Without memo-functions every function result has to be computed by invocation.
Because every function [g] and [g] invokes other functions, the recognizing takes exponen-
tial time without memo-functions. Memo-functions are not necessary if the recognizing
process is deterministic. In that case the recognizer knows at every moment what to
do and it recognizes a sentence on the basis of only one parse tree. In the case of a
fully non-deterministic recognizing process memo-functions are necessary because of the
exponential time complexity.

CHAPTER 3. COMPLEXITY OF RAM PARSERS 27

number of sates

1000 / i/

100

2) k

Figure 3.2: number of states with respect to the number of look-aheads

3.5 conclusions

The space complexity of the recursive ascent Marcus parser is of order of magnitude
0(2*"’”'*"'6'). The time complexity is of order of magnitude O(n3) when memoizing
the function results of the functions [] and []. In practice, the space complexity is less
than 0(2* Wt IG1) but the number of states of the parser still highly grows with respect
to the length of the look-aheads. Time and space complexity of the RAM parser do not
really differ from the time and space complexity of LR(k) parsers.

Chapter 4

the use of attributes in RAM
parsers

4.1 introduction

Context-free grammars can be extended with attributes. Attributes are useful to make a
distinction within syntactical categories (attributes act as features) and they are useful
to work with context-sensitive information. Attributes are associated with the symbols of
the grammar (different attributes can be associated with different symbols). Attribute-
evaluation rules are associated with the grammar rules.

4.2 definition

An attribute grammar G is an extension of a context-free grammar Gorg with Gopg =
(Vn, V1, P, S). Vi is the set of nonterminal symbols, Vr is the set of terminal symbols,
S is the start symbol and P is a set of grammar rules. A grammar rule r in P is written
by:

r:A—=A...A,

where A € Vy, A; € VYN U VT (1 < i < n). For n =0, A rewrites to the empty string e.

Each nonterminal X € Vv has a set of synthesized attributes Syn(X) and a set of
inherited attributes Inh(X). Each terminal z € V7 has only a set of synthesized attributes
Syn(z). Aw(Y) = Inh(Y)USyn(Y') (Y € VN U V7). Each attribute a € Att(Y) has a finite
domain W(a) for allY € Vy U V7.

A rewriting r : A — A;... A, has attribute occurrence (a, k) if a € At{(Ax). With
each rewriting a finite set of semantic rules is associated. With a semantic rule of a
rewriting r, the occurrences of synthesized attributes of A and the occurrences of inherited
attributes of Ax (1 £ k < n) can be computed from the values of the inherited attributes
of A and the synthesized attributes of A; (1 £ k < n). A semantic rule f related with a
rewriting r is of the type :

J: W(ay) x W(a3) x...x W(an) = W(a),m>0
with a € Syn(A)U Inh(A))U...U Inh(AN) and V;1 < i < m: a; € Inh (A)U Syn(A))U...U
Syn(An).

28

CHAPTER 4. THE USE OF ATTRIBUTES IN RAM PARSERS 29

4.3 effect on parsing

Making a distinction within a syntactical category with attributes (thus defining subcat-
egories with use of attributes), reduces the number of grammar rules, because otherwise
the possible values of the attributes have to be described in terms of syntactical categories.
Also the use of context-sensitive information by attributes can bring about a reduction
of the number of grammar rules. For example the grammar rules

A—-BCD
A—-BCE

(A € VN;B,C,D,E € V) can be merged in the rule
A — B C optional.D optional.E

with an attribute optional_D_exists associated with symbol optional.D and an attribute
optional_E_exists associated with symbol optional.E and attribute-evaluation rule:

if (optional.D.exists & optional_E_exists) |
NOT (optional.D.exists | optional_E_exists)
then not ok

fi

Although evaluation of attributes takes time, evaluation of attributes while recog-
nizing/parsing (attribute-directed parsing) can speed up the parsing process. In the
preceding example in the cases the attribute-evaluation indicates that therule A = B C
optional_D optional_E cannot be applied. Symbol A cannot be reduced. This could have
effect on the following parsing actions.

Attribute-directed parsing can also speed up the parsing process if the attributes
are used to specify syntactical (sub)categories and if such a specification has a context-
sensitive aspect (as with the plurality of a verb and the related subject).

For grammars that describe natural languages, especially synthesized attributes are
used. The properties of the symbols on the right-hand-side determine the properties of
the symbol(s) on the left-hand-side and not the other way round.! Inherited attributes
can be used to speed up the parsing process. For example when recognizing the grammar
rule

A-BC

(A, C € Vn, B € V) recognizing B may return an attribute value that conflicts with an
attribute value that is computed while recognizing C. At the moment the conflict occurs
the recognizing of the rule can be stopped. If the conflicting attribute value of symbol
B is passed on to C (inherited attribute), the conflict can be recognized as soon as the
conflicting value in the recognizing of C has been computed.

1 Attributes used with a grammar for a formal language are used among other things for semantic
representation. In that case it will be necessary to use inherited attributes. For example for passing on
information about the declaration of variables.

CHAPTER 4. THE USE OF ATTRIBUTES IN RAM PARSERS 30

4.4 evaluation of attributes

The evaluation of inherited attributes with bottom-up parsers is a problem. For example
when recognizing a noun as the first symbol of a sentence and grammar rules:

e S— NPVP
¢ NP — noun
e NP — NP PP

it may be unclear what the values of the inherited attributes of the NP in the rule NP —
noun are, because this NP can be the NP from the rule S — NP VP or from the rule NP
— NP PP. Only if the attribute evaluation rules meet specific conditions, it is possible
to compute the values of the inherited attributes during parsing.

From the definition of the functions [g], it turns out that the recognizer/parser works
in two phases.

46,8 = {(v = ar6p,j)|7— ar6pegAr—"¢
A (1 = ard.p, j) € [goto(g, 6))(i)}
U {(y = o.8,5) | Japrsue((v = a.B,5) € Tql(AE,0)
ANAE— AXvE€eini(g)AN k: XvE=6AX>"¢

A (AE — A6.(XVE : k), €) € [goto(q, 6))(i))}

The parser first *walks’ from the left to the right through items (by calls of the form
goto(g,8)). As soon as the end of an item is reached (the item is a final item of the form
4 — a.f with 8 —* ¢) the second phase starts. An index-item related with the final item
is returned. For every step from the left to the right in the first phase, the dot in the
corresponding index-item is placed one step back from the right to the left.

It would be nice to evaluate the synthesized attributes in the first phase. If a conflict
between attribute values appears, the parser would be able to stop the recognizing of
the conflicting item immediately. If the conflict appears in the second phase, the parser
wastes time. This is an important point if the grammar has a lot of attributes which
work like filters (as a-exists attributes). The attribute component of the grammar is a
little more complicated because the parser has to know when an evaluation rule can be
applied.

The parser has enough information to evaluate synthesized attributes in the first
phase. A step from the left to the right in an item is made when the parser shifts or
reduces a symbol. If the parser shifts a symbol, the symbol has been recognized and its
attribute values are known. If the parser reduces a symbol, the rewriting of that symbol
has been recognized. Thus the attribute values of the rewriting are known and the values
of the synthesized attributes of the reduction symbol can be computed.

4.4.1 evaluation in the first phase

Computing the synthesized attributes of the right-hand-side of an item in the first phase,
requires that the values of the attributes of the symbols left from the dot are dragged along
when moving the dot to the right. Thus the values of the attributes have to be dragged
along when the parser makes a transition to a new state. There are two possibilities.

CHAPTER 4. THE USE OF ATTRIBUTES IN RAM PARSERS 31

The parser works on the same states as for the attribute-free version of the parser, but
during parsing an administration with attribute evaluation details is kept up. Another
possibility is to compute states with items and attribute evaluation details. So states
have to be generated during parsing, they cannot be computed before parsing. For an
item 9 — a.f with different attribute values (here the values of the synthesized attributes
of a) in different cases, the item has to be duplicated because the attribute values are
connected with the items. So the states are associated with a position in the sentence
that is parsed. The nature of LR parsing is affected with the second method.

The first method (keeping up an attribute administration) requires that for all items in
a state the attribute administration should keep accounts of the values of the synthesized
attributes before the dot. First we will look at a minimal attribute administration.

Suppose the parser concatenates the attribute values of the symbaols of the last transi-
tion with the list of attribute values of the symbols of transitions that are already made.
For an item 4 — NP MA6.€ in state S with §,£ € V*, NP e V,y € Vy, A € Vy and
A —* ¢, the parser has made two transitions from state S’ with initial item ¥ — . NP A6§
to state S with the first transition on symbol N P and the second transition on symbol §.
So there is an attribute administration list Attrs : (Attryp : tail) with Attrs the values
of the synthesized attributes of § and Attryp the values of the synthesized attributes of
NP. At this moment it is not always possible to reconstruct the attribute evaluation. It
is clear that Attr; must be associated with § in the item y — NP A6.£. But for Atiryp
it is possible that there is more than one NP with which it can be associated. It is
possible that A = Ay NP Ay, with A;, A2 € V5, A\j,A2 =* € and NP —* ¢. In that case
the attribute administration does not know to which NP Attryp belongs. This problem
occurs because the parser simply skips e-rewritings. (The problem would be solvable if
for every two items 73 — a1 A18.6; and 73 — azA26.62 (A1, A2 € V) in a state derived
from a state with the (initial) items 9; — a1.1;6£; and 42 — a2.226£2 on a transition on
é the equation |, |[=] A2] holds.) Thus a list of evaluated attributes of transition symbols
does not satisfy.

It is necessary to administrate more than a list of attribute values of transition sym-
bols. Therefore a (dynamic) attribute administration jis associated with a state, as soon
as the parser makes a transition to that state. In this administration all the items of
the state are copied and the values of the synthesized attributes are associated with the
correct symbols. The administration of the previous/original state has to be available so
that the values of the attributes of previous transitions can be associated with the correct
symbols. The values of the synthesized attributes of the left-hand-side of an item can be
computed when the right-hand-side has been recognized. They can be associated with
the left-hand-side in the corresponding index-item. For different values of attributes of §,
different calls [¢](,{) have to be made. So the effect of memoizing function calls reduces.

4.4.2 evaluation in the second phase

It is more natural and less expensive to handle the attribute evaluation in the second
phase, thus to link the attribute values with the index-items. Evaluating attributes in
the first phase requires that attribute values are associated with all items in a state.
Evaluating attributes in the second phase requires only that attributes are associated
with one or more index-items. These index-items are just like attributes results of the
actual parsing process, items are static objects of the parser.

CHAPTER 4. THE USE OF ATTRIBUTES IN RAM PARSERS 32

When replacing the dot from the right of a Aé to the left of a Ad in an index-item
(v = a)é.u,j), the values of the attributes of the symbols Aé are connected with the
index-item. The symbols § in a call [g)(4,) are attributed symbols. So there is a negative
effect on memoizing function calls.

With attribute evaluation in the second phase, the definitions of the functions [g] and
Td] of the RAM recognizer differ from the functions [g] and [q] as defined in the original
attribute-free version of the parser. An attributed index-item is an index-item with a
corresponding attribute administration. The set of all attributed index-items is AII.
The set A is the set of all attribute administrations.

g : N = P(AII)

[g)) = Tgl(zisr, Eval(zisr),i+1)
U{(y— a.p,Attr(y = a.f),i) |y = a.BEqAL >" ¢}

[: (VruWWVY) x Ax N —=PAIN0<t<k

m(é,attr-é, 1) = {(v — a.\ou,Insert(attrd,attrid),j) |
T alpegAAr-=T¢
A (7 = a)é.u,attrid, j) € [goto(q, 6))()}
U {(y = a.B,attr.1,j) | Jaeasutater.a(
(v = a.B,attr1,5) € [q)(A€,
Eval(Insert(attr.é,attr.2)),£)
ANAE = AXvE€Eini(g)N k: XvE=8ANX—>"¢
A (A€ = N6.(XvE : k),attr2,¢) € [goto(q, §))(i))}

Eval(a): evaluate synthesized attributes of a if a € V7.

Eval(a): evaluate synthesized attributes of v if (y — §,.£2,attrib£y,1) is an attributed
index-item and a represents the values of the attributes of §,§,.

Insert(attr.é, attributes): insert attr.é in the attribute administration attributes.
Attr(y — a.B): returns the attribute administration of ¥ — a.8 with the values of the
synthesized attributes of 8 for § =" ¢.

4.5 conclusions

Evaluation of attributes while parsing can speed up the parsing process. If a bottom-up
parser is used, only synthesized attributes can be evaluated while parsing. Evaluation
of synthesized attributes can be done as soon as possible, but this will take a lot of
administration. More natural is to postpone the attribute evaluation till an index-item
is returned.

Chapter 5

Marcus LR parsers

5.1 introduction

The RAM parser uses constituent look-aheads. The look-ahead symbols were represented
in the items, so with more look-aheads, the parser size (the number of states in the parser)
grows rapidly. In the case of LR(k) parsing the growth of the parser related to the number
of look-aheads is also a problem. With LALR(k) parsers the parser size is limited to the
size of a LR(0) parser. Terminal look-aheads are added to a LR(0) parser. States of a
LR(k) parser which only differ in the look-ahead strings of the items of these states are
merged in the LALR(k) variant of this parser.

We want to make a LALR-like variant of the parser with constituent look-aheads.
Thus we want to add constituent look-aheads to a LR(0) parser. In the RAM parser
there could be two states ¢; and ¢; with ¢;:

AB—-CD.EB
GJ—-D.J

and g¢2:
AE-CD.EE
GH-D.H

These states only differ in the look-ahead parts of the items (respectively the symbols
B,J and E,H). In the LALR variant of the parser (the Marcus LR parser, MaLR parser)
the states ¢; and ¢; are merged into the state with items and look-aheads:

A—CD.E {B,E}
G—D.{J,H}

The construction of the MaLR parser with one look-ahead (MaLR(1)) is described in the
next sections.

33

CHAPTER 5. MARCUS LR PARSERS 34

5.2 functional LR(0) parser

Starting-point is the LR(0) parser in functional notation as described in
[Leermakers, 1991a):

a=>f = e (a=AYANB=6yNA-ENE#¢)

ini(g) = {B— w|34ap5(A = a.fEQAL =" BS§AB — v)}

goto(¢g,X) = {A—-aX.f|A— a.Xp € (qUini(q))}

{(A—=apB,j)lA—aBeEgAP~>"zi41...7;}
[(zisr,i+1)
U{(A~ a.B,j)|3p(B — .c € ini(q)

A (A= a.B,5) € [gl(B, 1))}
U{(A—a.,i)|A— a.€gq}

la)(®)

WX, = {(A—aB,j)|3(A—aBeg
AB=2"XYAy—="zi41...25)}
{(A-a.XB,j)|A—a.XB€Egq
A (A — aX.B,j) € [goto(g, X))()}
U{(A—=apB,j)|3csm((A = apB,j)e m(c’m)
AC — . X6 € ini(q)
A (C = X.6,m) € [goto(q, X))(?))}

5.3 auxiliary functions

We need three auxiliary functions. The function goto for computing a sequence of transi-
tions, the function f for computing the look-aheads (followers) of an item and the function
parse for computing the possible parses of a set of (non)terminals.

goto : SxV*=S§

goto(q,¢€)
goto(g, X 6)

goto(g, X)

q
goto(goto(q, X), 6)
{A—aX.f| A— a.XB € (qUini(q))}

CHAPTER 5. MARCUS LR PARSERS 35
f : Sx(Iuvyp)—=PV)

f(gA=apf) = {X|3.(B=XpArXeV)}
U {Y | 3psBy(B = € A g = goto(p,a)
A B — v.A6 € (pU ini(p))
AY € f(goto(p,A), B — vA.5))}
fg,z) = {X| 3apa(A— azfegA X € f(qg,A— az.f)Az € Vr)}

The function f computes the set of symbols that immediately can be reached after the
current recognition. For an item A — a.f in state ¢ the current recognition is a in the
rewriting A — af in state ¢ and the look-ahead of A — a.§ in state ¢ is defined as
the first symbol of 8 (if B # €) or (if B = ¢) the first symbol(s) that can be recognized
after the rule A — a. (for example the symbol B in item C — .A B in state ¢’ with
goto(¢',a) = q).

The set F is the set of all possible indexed parses of all (non)terminals (F = V x
N). An indexed parse consists of the rewriting to terminal symbols (the parse) of a
(non)terminal, together with the index of the input symbol up to which the (non)terminal
rewrites. A symbol f in (f,7) € F rewrites up to the jth symbol of the input. The
function parse is of type P(V) x N — F. A function call parse(Z,¢) with Z € P(V)
returns the set {(2,7) |2 € ZAz =" zi41...2;}.

5.4 constructing the MaLR(1) parser: step 1

We are now able to write a first version of the MaLR(1) parser. The parser will only
shift a terminal symbol if there is a look-ahead (follower) of that symbol that can be
recognized after the shift action. The parser will only recognize a rewriting B — ¢ if
there is a look-ahead of the item B — ¢. that can be recognized. The parser will do the
same for a reduction of A — a. The new functions [g] have definition:

[G) = {(A—aBj)|(A=aB,j)elg(zisni+])
A parse(f(g,Zis1),i + 1) # 0}
U{(4—a.p,j)|3s(B — .c € ini(q)
A parse(f(q,B — .€),i) # 0
A (A = a.B,5) € [q)(B,i))}
U{(A—a.,i)|dg.(A—a.€q
A G = parse(f(g,A — a.),1)
AG#0Va=4a 1))}

The functions [g] will be the same as before.

The set f(g,zi41) is the set of immediate followers of ;) in the recognition process.
So if no element Y from the set f(g,z;41) rewrites to z;42...2¢ (£ > ¢ + 1) or to ¢,
shifting the symbol z,;, is useless. The set f(q, B — .¢) is the set of immediate followers
of B in the recognition process. So if no element Y from the set f(q,B — .¢) rewrites
10 Zi41...Z¢ (£ > i) or to ¢, recognizing the rule B — ¢ leads to a situation in which no
further recognition is possible. Recognizing the rule B — ¢ is in this case useless.

CHAPTER 5. MARCUS LR PARSERS 36

For the same reason there is no need to reduce a recognized rule A — a if the set of
recognized followers (followers that rewrite to the next part of the input or to €) is empty
(except in the case that the last symbol of the sentence (1) has been reached).

Thus if the LR(0) parser is correct! than this version with constituent look-ahead is
also correct.

5.5 constructing the MaLR(1) parser: step 2

The new definition of the functions [g] is not beautiful. Look-aheads are recognized, but
the result is thrown away. In two steps we will construct new definitions of [g) and [g]
which do not waste computed results. First the set of recognized look-aheads of z;4, will
be passed on to a function call [g](zi4+1,i + 1) and the set of recognized look-aheads of
an item B — ¢. will be passed onto a function call [¢g](B,%) and the set of recognized
look-aheads of a final item A — a. will be merged with the corresponding index item.
Thus an index item is now of type I X N X P(F). The set F in index item (item,i, F)
is the set of look-aheads of the (recognized) left-hand-side of item. If (Y,€) € F and
(A = a.,i,F) an index item produced in the recognition of a sentence z,...z, then
Y —° 2,41 ...2¢. This condition has to hold after every step in the construction of the
MaLR(1) parser. The set F € P(F) in a function call [9)(X,i, F) is the set of recognized
look-aheads of X.

The set F of recognized look-aheads of X will be passed onto a function call
[goto(g, X)](i). So we get function calls [¢](¢, F) with F the set of recognized look-aheads
of the last transition symbol (the transition symbol that causes the transition to g).

[, F) = {(A— a.8,5,G) | Iu((A = a.8,5,G)€lq)(zis1,i+1,H)
A H = parse(f(g,Zis1),i+ 1)
AH #0)}
U{(A— a.B,j,G)|3yp(B — .c€ini(q)AH #0
A H = parse(f(q,B — .€),1)
A (A = a.8,7,G) € [q)(B,i, H))}
U{(A—a,i,G)|3da(A—a.€q
A G = parse(f(q,A = a.),i)
AG#Ova=a 1))}

x,i,F) = {(A-a.X8,5,G)|A—~aXBeq
A (A - aX.B,j,G) € [goto(q, X))(¢, F)}
U {(A hd O.ﬂ,j,H) I
3gcms((A — a.8,j,H) € [¢(C,m,G)
AC — . X6 € ini(q)
A (C = X.6,m,G) € [goto(q, X))(i, F))}

1The LR(0) parser is correct as has been proven in [Leermakers, 1991a).

CHAPTER 5. MARCUS LR PARSERS 37

Nothing has really changed, information about parsable look-aheads is only passed
onto function calls and index items. The information is never used.

The implication (Y,£) € F and (4 — a.8,4, F) an index item produced in the recog-
nition of a sentence zy...Zn, implies Y —* z,4; ...z, has to hold. Index items are only
created when the third set of [g](¢, F) is computed. For every (Y,£) € G in an index item
(A = a.,1,G) in the third set of a function call [¢)(i, F) the condition Y —* z,4;...2,
holds.

We will prove that for every (Y,¢) € F and [g](i, F) a function call, Y —* 2,4, ...z,
We need this proof for the next step in the construction of the parser.

For every (Y,£) € F, Y rewrites up to z, (by definition). F is the set of parsable
followers of X in a function call [gl(X, i, F) (otherwise there is no call [g)(i, F)) and F # 0.
This invocation of [g] could have been made by a call [g)(, J) for computing the set:

{(A=a.3,5,G)|3up(B — c€ini(q) A\H #£0
A H = parse(f(q, B — .¢€),1)
A (A — a.8,5,G) € [q)(B,i, H)))

It is clear that in this case Y —° z,41...z, for all (Y,¢) € H, thus for all (Y,{) € F.
The call [g)(X,i, F) (F # 0) could a.Iso have been made by [q](Z n, H) for computing
the set:

{(A = a.p,j,H) | 3ccms((A = a.8, 5, H) € [g)(C,m,G)
A C — X6 € ini(q)
A (C = X.6,m,G) € [goto(g, Z))(n, H))}

In this case F' = G and G is the set of parsable followers of C and (C — X.§,m,G) is an
index item. By definition ¥ — z,,4 ...z, for all (Y,¢) € G.

u]

5.6 constructing the MaLR(1) parser: step 3

5.6.1 introduction

In step two the functions [g](¢) and [9)(X, i) have been adapted to functions [g)(i, F) and
[q](X i, F’) to pass on computed look-ahead information. In the third step we will adapt
the function [g)(¢, F) for the case F' # 0, thus for the case there is look-ahead information
that can be used.

5.6.2 construction

The function [goto(g, X)](i, F) returns index items of the form (A — aX.u,3,G) with
A = aX.u € goto(q,X). If X is the last symbol of the right-hand-side of A — aX.u
(p = €) the set of recognized look-aheads of the final item A — aX. is a subset of the set
F (the set of recognized look-aheads of X). If the set F is not empty (the recognized look-
aheads of X have been computed) then the function [goto(g, X)] can use this information.
It is not needed to compute again the set of recognized look-aheads of A — aX. .

CHAPTER 5. MARCUS LR PARSERS 38

If X is not the last symbol of the right-hand-side of A — aX.u (g # ¢€) then the
look-ahead of X in the item A4 — a.Xpu in state ¢ is the first symbol of u. If the set F
of recognized look-aheads of X in state ¢ has been computed and the first symbol of p is
element of this set then a transition on the first symbol of # can be made immediately.

For a more formal proof let us look at the invocation [goto(g, X))(i, F). This function
call returns three sets (¢’ = goto(q, X)):

set1 : {(A—> a.8,5,G)|3n((A = a.8,5,G) € [¢)(zis1,i + 1, H)
AH= parse(f(q"zi‘l-l)’i + 1)
A H #0)} (5.1)
set2 : {(A—-ap,;,G)|3us(B — c€ini(¢)AH#£0
A H = parse(f(¢', B — .€),1)
A (A = a.8,j,G) € [¢)(B,i, H))} (5.2)
set3 : {(A—aX.,i,G)|A—aX.€q
A G = parse(f(¢',A = aX.),i)
AG#0VX =1)} (5.3)
The third set represents the situation in which X is the last symbol of the right-hand-side
of an item A — aX.u € goto(g, X). G is the set of parsable followers of A — aX. . If the
parsable followers of X already have been computed, it is evident that it is not needed

to compute G. The set F is the set of parsable followers of X in a call [goto(g, X)](¢, F),
thus the third set can be replaced by:

{(A=aX.,i,F)|]A—aX.€dAF #0
AF = {(Y,0|Y € (¢, A — aX.)
A(Y,0) € F}) (5.4)

in the case F # 0. This is only true if for every (Y,€) € F,Y —* zi41...z,. We have
proved this in section 5.5.

For computing the first and second set of a function call [goto(g, X)](, F) with use
of computed look-ahead information, we will first rewrite the function [¢')}(Z,i, H) (¢’ =
goto(g, X)). The function [g)(Z,i,F) computes the same set as [g](Z,) except for the
look-ahead sets that are passed on. So we can use the specification

[z, = {(A=aBj)|3(A—aBEqg
AB="ZYyNy =" 2i41...2;5)}

as a specification of the function m(z, i, H). In the following equations we will use the
fact that there is a follower Y of X that rewrites to Z in zero or more steps. (F is the
set of parsable followers of X in goto(q, X).)

@12.¢,H) = {(A-aB,jG)|H(A~aBegd AB="2y
Ay =" Titgr .- Tj
A G = parse(f(goto(q', B), A — aB.), j))}
{(A-a.$,j,G) | (A= aBeEgdAB=Yp

CHAPTER 5. MARCUS LR PARSERS 39

AY =2*ZvAv->" Tirg1..-2¢
Ap—"Te4y...2;
A G = parse(f(goto(q', B), A — aB.), j))}

= {(A—ab,5,G)|3ve((A — a.8,5,G) € [gI(Y.£,0)
AY,0)e FAY € f(d, A= a.f)NY =" Zv
Av > zp4y...2¢))

So we have:

(5.1)u (5.2) =
{(A - a-ﬂ’j, G) l BYBIVV’((A - a-ﬂsj’G) € [q'](Y9 ¢, 0)
A(Y,0)e FAY € f(¢',A = a.p)
A((Y 2*BvAB— c€ini(¢)Av—="2i41...2¢)
VY 2" 20V AV =% 2042...20))))

If Y does not (left) rewrite to Bv with B — .¢ € ini(¢’) or to 2,41’ then Y =* Cv”
with C — .e ¢ ini(¢’) and C € Vy. In that case C =* C'v with C' — .¢ € ini(¢’) and
V="Zig1...2¢0r C = 2,1V with v/ =* z,42...2¢ because Y —* z,4;...2¢. Thus
the condition

(Y 2*BvAB— .c€ini(¢)Av—="2i41...7¢)
VY 22,V AV = 2i42...24))

always holds. So:

(5.1)U(5.2) =
{(A = @.8,5,G) | Iye((A = a.8,5,G) € [¢](¥.£,0)
AY,l)e FAY € f(d,A— a.f))} (5.5)

For a call [¢](¢, F) there are two cases, the set F is empty or it is not empty. In the
case F = { there is no look-ahead information that can be used. In the case F # 0 the
look-aheads of the transition symbol have been computed and we can replace the old
function [g](¢, F') by a function that computed the set (5.4) U (5.5). So we get:

[9)Gi,0) = {(4— «.B,5,G)|3n((A — a.8,§,G)€g)(zis1,i+1,H)
A H = parse(f(q,zi41),i +1)
A H #0)}
U{(A—a.p,j,G)|3up(B — .c€ini(¢g) AH#0
A H = parse(f(q,B — .€),1)
A(A > ap,jG)e m(B,i,H))}
U{(A—=a.,i,G)|3(A—a.€¢q
A G = parse(f(g,A — a.),i)
AG#0va=ad 1))

CHAPTER 5. MARCUS LR PARSERS

[¢)i,F) = {(A—a,i,F)|A—>a.€qgAF' #0
AF' ={(Y,0)|Y € f(A—= a)A(Y,{) € F}}
U {(4 = @.8,5,G) | 3re((A = a.8,5,G) € [q)(Y,£,0)
A(Y,0) € FAY € f(g,A = a.8))}
5.7 review
a=>f = p(a=AYAB=6YNA-ENE#)

ini : S— P)

ini(q) = {B— .w|34.p5(A—a.BEGAS="BSAB - v)}

goto : SxV'—=S§

goto(q,¢)
goto(g, X 6)
goto(q, X)

q
goto(goto(gq, X),)
{A—aX.p|A— a.XB e (qUini(g))}

f : Sx(uVp)—PV)

f(g,A— a.f) {X13.(8=XurXeV)}
U{Y | 3,18y (B = € A g = goto(p,a)
A B — .46 € (pU ini(p))
AY € f(goto(p,A), B — vA.5))}

flg,z) = {X|3p4(A—azBeEgAX € f(g,A— az.f)Az € VT)}

[g] : NxP(F)-—PI)

[9)6.9) = {(A— a.B,i,G)|3u((A — a.8,j,G)€lgl(zisr,i+ 1, H)
A H = parse(f(q,%is1),i + 1)
AH #0)}
U{(A - a.8,5,G) | 3yp(B — .c€ini(g) N\H £ 0
A H = parse(f(g,B — .€),1)

40

CHAPTER 5. MARCUS LR PARSERS 41

A (A = a.B,j,G) € [ql(B.i, H))}
U{(4-0,i,G)|3s(A—a.€q
A G = parse(f(q,A — a.),i)
AG#0Va=a'l)))

g, F) = {(A—a.,i,F)|A—>a.€qgAF #0
AF = {(Y,0)|Y € f(A— a.)A(Y,t) € F}}
U{(4 - a.8,5,G) | 3ye((A — a.8,5,G) € [qg](¥,£,0)
A(Y,8)e FAY € f(g,A = a.8))}

fad : VxNxPF)-PUI

x,i,F) = {(A—a.XB,5,G)|A—a.XBEg
A (A= aX.B,j,G) € [goto(q, X))(i, F)}
U {(A - O",Baij) l
Icoms((A — a.B,4, H) € [q)(C,m,G)
AC — .Xé € ini(q)
A (C = X.6,m,G) € [goto(g, X)](i, F))}

5.8 complexity

Look-aheads must be parsed by a function parse. If the function parse is not a MaLR(1)
parser, the parser will not always use look-ahead information. The results of computing
the parses of one look-ahead have to be memorized, otherwise a lot of subparses have to
be computed several times. So for the function parse the same parser has to be used as
the parser that calls the function parse and the parse results (in fact the function calls
[q)(i, F) and [g](X, i, F)) have to be memorized. For computing parses of look-aheads, the
parser must be extended with states for every nonterminal that can act as look-ahead (in
practice all nonterminals may act as look-ahead). Such a state is the root state used for
recognizing/parsing the corresponding look-ahead symbol. Thus for every nonterminal
Y € Vn a state {LookAhead — .Y L1} has to be added to the parser. The symbol 1 is
used to indicate that no symbols have to be recognized after the look-ahead symbol. The
parser does not stop with recognizing till the L symbol has been reached. The symbol
LookAhead has no meaning. It is used to create an initial item.

The number of states of a MaLR(1) parser equals the number of states of a LR(0)
parser (O(2!91)). But every item is connected with a set of look-ahead symbols. At most
| V | different look-aheads are connected with an item. If an item has symbols on the
right-hand-side of the dot then the item has only one look-ahead.

There are O(n | V |) different invocations of a function [g] and O(| V | n | V |)
different invocations of a function [g]. Each invocation of a function [g](X, i, F) leads to
an invocation of [goto(g, X)](i, F). A call [g](i, F) returns a set of O(n) elements. An
invocation [g](X, i, F) leads to an invocation of a function [g](X, i, F) for every element of

CHAPTER 5. MARCUS LR PARSERS 42

the set [goto(g, X)](i, F), thus O(n) invocations of functions | Ta)- A call [9)(X,i, F) returns
a set of O(n) elements. So O(n) invocations of functions [g] results in O(n) sets of O(n)
elements. Together with merging these sets and removing duplicates each invocation of
a function [g] takes O(n?) time. Hence the total time complexity of the MaLR(1) parser
is 0(2!°1 | V |2 n3).

5.9 reduction of look-ahead power

The Marcus LR parsers have less look-ahead power than the recursive ascent Marcus
parsers. Look-aheads are no longer part of the items. In figure 5.1 and figure 5.2 one can
see that this disconnection of look-aheads and items causes a loss of information. As

initial items: initial items:
AR->.CR A)l>.C)

AR->C.R Al-> C.J)

initial items: initdal items:

AR->CR. Al> CJ.

initial items: initial items:

Figure 5.1: use of look-ahead in RAM parsers

we will see in chapter 11, the difference between the RAM parsers and the MaLR parsers
has great influence on probabilistic parsing.

5.10 MaLR(k) parser

The number of look-aheads does not play a part in the construction of the MaLR(1)
parser. While constructing the parser we assumed one constituent look-ahead. In the
following extension of the parser we assume k look-aheads. Only the function f which
computes the followers and the functions [g] change. A function is needed to compare a
list of followers and a list of parsed followers. This function is named SymEgq.

CHAPTER 5. MARCUS LR PARSERS

Z>PQ.AR H>G.AJE

initial items:
A>.C

initial items:
A>.C

A>C. (J.R)

initial items:

Figure 5.2: use of look-ahead in MaLR parsers

f : Sx(IUVp)x N = P(V)

flggA—>apBk) = 0, ifk=0Vvp=1
= {X:tail |3,(B=XuAX eV

Atail € f(q,A = aX.u, k - 1))}
U {flist | 3pvs8y (B = € A g = goto(p,a)

A B — v.A6 € (pV ini(p))

A flist € f(goto(p, A), B — 7A.5,k))}
{X |30pa(A—azf€g

AXE€ f(g A= az.B,k)ANz € VT)}

f(q,z,k)

SymEq : V* x F* — Bool

SymEq([),plist) = True, if plist =)

False, if plist # []

False

SymEq(ftail,ptail), f X =Y
False, otherwise

SymEqg(Y : ftail,[))
SymEq(Y : ftail,(X,¢) : ptail)

[q] : NxP(F)-PUI

43

CHAPTER 5. MARCUS LR PARSERS

[6)i,0) = {(4— aB,5)|3u((4 - a.8,5) € [gl(zis1,i + 1, H)
A H = parse(f(q,zi+1,k),i +1)
A H #0)}
U{(A—- apB,jG)|3pH(B — .c€ini(¢g) AH #0
A H = parse(f(q,B — .€,k),1)
A (A= a.B,5,G) € [d)(B,i, H))}
U{(4—-a,i,G)|3y(A—a.€q
A G = parse(f(q,A = a.,k),1)
AG#0Va=a'l))}

[Q)G,F) = {(A=a.,i,F)|A—>a.€qAF' #0
A F' = {(Y,0) : ptail | Y : ftail € f(q,A — a.,k)
A (Y,0) : ptail € F
A SymEq(ftail,ptail)}}
U{(4 = a.8,j,G) | Iye((A — a.8,5,G)€q)(Y, L, ptail)

A (Y,€): ptail € F

AY : ftail € f(q,A — a.B,k)

A SymEq¢(ftail,ptail))}

44

Part 11

Grammars

45

Chapter 6

large grammars of the English
language

6.1 introduction

For parsing a large subset of a natural language, we need a grammar which describes
such a large subset. Three grammars are described in the following chapters (chapter 7
and 8). These three grammars were available during our research. In this chapter, we
describe some other large grammars of the English language. It is almost impossible to
compare these grammars. Grammars are written in different forms, with different lexical
and syntactical categories, with or without attributes and so on. An approach to compare
different grammars/parsers is given in {Grishman et al., 1992].

6.2 augmented phrase structure grammars

DIAGRAM ([Robinson, 1982]) is a system used for interpreting dialogues. The used
grammar consists of context-free rules augmented by procedures that constrain the ap-
plication of a rule, add information to the structure created by the rule and assign one
or more interpretations to the resulting enriched structural analyses. Attributes are used
in the grammar of DIAGRAM to set context-sensitive constraints on the acceptance of
analyses. Nothing is said about the computational aspects of the parser and about the
size of the subset of English that is described by the grammar. An important problem of
large grammars is mentioned: ”introducing new rules almost inevitably has a perturbing
effect as they interact with the old rules in unforeseen ways”.

Another augmented phrase structure grammar is the grammar used in the CRITIQUE
system, developed by IBM ([Richardson et al., 1988]). CRITIQUE is an extension of the
EPISTLE project ([Heidorn et al., 1982]). It is a system used to identify grammatical
and style errors in English text. The grammar produces parses which are approximate.
The system is (beside other tests) tested on 2254 sentences from 411 business letters.
The average word number of a sentence is 19. For 64 percent of the sentences, a parse
was produced. For 41 percent of the 2254 sentences, one parse tree was produced, for
11 percent two parse trees were produced and for 11 percent three to nine parse trees
were produced. For one percent of the 2254 sentences, ten or more parse trees were
produced. This is a very small number of ambiguities. A reason may be that the grammar

46

CHAPTER 6. LARGE GRAMMARS OF THE ENGLISH LANGUAGE 47

describes very general structures. The grammar only has to describe structures needed
for the critiquing tasks of the system. The CRITIQUE system works relatively fast: for
a sentence of 15-20 words, a large IBM-mainframe needs one CPU second to analyze the
sentence.

As will be made clear in chapter 9, the augmented phrase structure grammars used
in DIAGRAM and CRITIQUE cannot be used for our probabilistic parser.

6.3 other approaches

In [Sager, 1981] a linguistic string grammar is described. The grammar consists of BNF
rules together with a kind of attributes. These attributes are used to restrict the number
of syntactical analyses. The BNF component consists of three types of rules (string
definitions, adjunct set definitions and LXR definitions). A string definition is a rewriting
of a syntactical class in a sequence of syntactical classes and adjunct set definitions.
Adjunct set definitions are optional additions to sentences. An adjunct set definition may
rewrite to LXR definitions. A LXR definition only exists if X is a syntactical category.
A LXR definition is of the form

LXR — LX X RX

with LX the set of possible left adjuncts of X and RX the set of possible right adjuncts
of X. The complexity of the grammar and the size of the subset of English the grammar
can generate are not described.

At the university of Nijmegen (the Netherlands), corpus linguists work with a large
grammar for English. It is a detailed, attributed grammar. It is not usable for our
probabilistic parser. For correctly tagged sentences (words are tagged with their lexical
category), still a lot of analyses are produced (in contrast with the CRITIQUE system).
More than 100 analyses for one sentences is not an exception. About 80 percent of sen-
tences from written prose can be generated by the grammar. Parsing is really difficult for
long sentences. Parsing of a sentence is stopped after one hour (on a SUN3 workstation).
Other sentence types (for example from newspapers) are even more difficult to handle.

6.4 conclusions

Only few grammars exists that describe a large subset of the English language. Not all
of them have been mentioned in this chapter. Almost all of the existing large gram-
mars use attributes/features to restrict the number of possible analyses. Other grammar
formalisms exist like generalized phrase structure grammars ([Gazdar et al., 1985)) and
unification grammars ([Shieber, 1986]). In chapter 9 we show why the context-free ap-
proach is a more appropriate formalism to use for probabilistic parsing.

Chapter 7

the corpus grammar

7.1 description

Together with the LDB-corpus a grammar exists that describes many of the sentence
constructions that occur in the corpus. The grammar is context-free and attribute-free.
It describes rewritings of syntactical categories and grammatical relations!. So parse trees
are represented by rules like:

utterance:sf — subject:pn elliptic:ell

with sf2, pn3, ell* syntactical categories and utterance, subject, elliptic grammatical
relations.
The grammar has rules like®:

o {ell elliptic structure — c ell elliptic structure.
e c vitg® — nf vi ing code;
nf vi ing cv;
nf vi ing coord.
e { ic immediate constituent — nc constituent in ns utterance.
¢ nc constituent — nc basic;
nc phrasal.

A string 'f a’ represents a grammatical relation (a function). A string 'c a’ represents
a syntactical category. A string 'nc a’ represents an auxiliary syntactical category (aux-
category). Such a category only rewrites to other aux-categories and/or to syntactical
categories. A string ’'nf a’ represents an auxiliary grammatical relation (aux-relation),
that only rewrites to other aux-relations and/or to grammatical relations.

!Grammatical relations are used to distinguish different uses of a syntactical category. For example a
Noun Phrase may act as an Indirect Object, as an Object and as a Predicate.

3gf = finite sentence

3pn = pronoun

‘ell = elliptic phrase

5A semicolon represents OR, a comma represents concatenation.

Svitg = verb prespart intransitive

48

CHAPTER 7. THE CORPUS GRAMMAR 49

7.2 elimination of auxiliary categories and relations

To get a grammar that corresponds with the trees of the sentences of the corpus we have
to eliminate the nc and nf rewritings. We are not interested in the grammatical relations,
so we also want to eliminate the f rewritings. Here the first problem occurs: there are
cyclic rewritings of nf symbols, for example:

o | nf maybe inf va — nf filling, nf inf verb phrase.

e nf inf verb phrase — nf to option maybe ad, nf inf verb phrase tail;

nf to.

o nf inf verb phrase tail — { vb vap inf, nf maybe ed or ing vp;

f vb vas inf, [nf maybe inf vp}

nf inf no aux vp.

This makes eliminating nf rewritings very difficult. We have erased the cyclic structures
(so the grammar describes fewer constructions as before).

The second problem is the explosion of the number of rules if the nf, nc and f
rewritings are eliminated (when only the nf and nc rewritings are eliminated there is
also an explosion). There is an explosion because a lot of rules are of the same form as
(for example):

e c noca not a sentence — nf left, { ic immediate constituent,

nf constituent string, nf right.

o nf constituent string — ;
o {ici lia: . - onsti . ‘
e nc constituent in ns utterance — ¢ coop coordinator phrase;

¢ subp subordinator phrase;

c in interjection phrase;

The explosion is a real explosion. The original grammar (with nf, nc and f rewritings)
consists of more than 1400 rules. Eliminating nf, nc and f produces more than 800
rewritings for the category ¢ noca not a sentence. For other categories (as ¢ sf fin sentence,
¢ np noun phrase) there are much, much more rewritings.

In the original grammar the nf and nc symbols can be seen as extra grammatical re-
Jations and syntactical categories. Adding a category to a grammar increases the number
of grammar rules if the new category is a special case of an existing category. It could
decrease the number of grammar rules if the new category describes a set of existing
categories (as with the categories nc and relations n f).

CHAPTER 7. THE CORPUS GRAMMAR 50

7.3 over-generation

We have tried to compute the set of states of the parser without look-aheads for the
corpus grammar. It turned out that a considerable number of states have more than
1000 initial items. So computing all the states would take a lot of time and space. For
our system it was impossible to compute all the states within a week. The grammar
highly over-generates.

According to the original users of the corpus grammar (the people who developed
the LDB-corpus), the grammar describes in principle common English. For the LDB-
developers it was not a problem that the grammar highly over-generates because they
always used lexical categories with tree structure as input for the parser of the corpus
grammar. They used the grammar to label the tree structures.

7.4 conclusions

The corpus grammar cannot be used for an experiment with probabilistic parsing. The
grammar highly over-generates and it uses a lot of auxiliary categories. Auxiliary cate-
gories are of great use for reducing the size of a grammar.

Chapter 8

a grammar extracted from the
corpus

8.1 introduction

From two parts of the LDB-corpus we have extracted a grammar. Both the parts are two
short stories. There are 3566 analyzed sentences in the two stories. For every sentence
there is a unique parse tree. The grammar rules have been extracted from these parse
trees. Every node with sons in a tree represents a grammar rule. For example the tree

S
/\
NP NO

AJP AJ NO
represents grammar rules:
¢ S— NP NO
e NP — AJP AJ NO

The resulting grammar consists of more than 4200 rules. The grammar is a flat grammar?.
The category verb phrase (VP) has not been used in the parse trees. All the possible
rewritings of a VP are written out in other rules. An example is:

Finite.Sentence — Interjection Pronoun Verb-finite.modal
Verb.infinite.primary Verb.past_part.monotransitive
Noun.phrase Exclamation.mark

where Verb.infinite.primary Verb_past._part.monotransitive Noun.phrase can be seen as

a verb phrase.
In section 8.4 the influence of the absence of the category VP on the number of

grammar rules will be examined.

Parse trees written with a flat grammar relatively do not have deeply nested Tewritings.

51

CHAPTER 8. A GRAMMAR EXTRACTED FROM THE CORPUS 52

8.2 multiple replication of symbols

8.2.1 existence

The grammar does not contain empty rewritings (e-rules). In the parse trees e-rules
are not used, so every category always rewrites to other categories or the category is
a terminal symbol. Because of the used method for extracting grammar rules regular
expressions with multiple replication of a symbol have been written out, for instance:

¢ NP — DE AJ AJ NOUN PP
a pierced decorative border (in brickwork)
e NP - DE AJ AJ AJ NOUN PP
the only ordinary normal person (in the place)

The words between () make up one constituent.
Multiple replication of more than one symbol like

e NP — NP COOR NP COOR NP
(a great big home) and (a dozen farms in ..) and (a great deal of money ..)

also exists.

8.2.2 representation in grammar rules
Another construction without e-rules for rules as:
e NP — DE AJ AJ NOUN PP
e NP - DE AJ AJ AJ NOUN PP
is:
e NP — DE NOUN PP
e NP — DE AJ.P NOUN PP
o AJ.LP — AJ A).P
e AJ.P — AJ
With e-rules a shorter notation is possible:
e NP — DE AJ.P NOUN PP
e AJ.LP — AJ AJP
o AJ.P — ¢

In general, this construction is better than the written-out notation because in the
written-out case the number of AJ replications is bounded. It is also better because
in the written-out case the parser has to know the current situation for each applicable
rule. So for a noun phrase starting with DE AJ the used rule could be (for example):

CHAPTER 8. A GRAMMAR EXTRACTED FROM THE CORPUS 53

e NP — DE AJ NOUN PP
e NP — DE AJ AJ NOUN PP
e NP — DE AJ AJ AJ NOUN PP
But there are also rules like:
e NP — DE AJ NOUN NON.FINITE.SENTENCE
e NP — DE AJ AJ NOUN NON_FINITE.SENTENCE
e NP — DE AJ NOUN PP PP
e NP — DE AJ A) NOUN PP PP
etcetera

The effect of these written-out rules is a high number of states as the following example
shows.
We have the following grammar rules:

e NP — DE NOUN
e NP — DE AJ NOUN
e NP — DE AJ AJ NOUN

A state {y — a . NP 3} has a transition on symbol DE (parsing with k is one). See
figure 8.1 for the resulting state with related states.
With grammar rules:

e NP — DE AJ.P NOUN
e AJ.LP — AJ AJP
e AJLP —¢
a transition on symbol DE leads to a state with item:
e NP — DE . AJ.P NOUN

For this state there are transitions on symbol NOUN (because AJ_.P may rewrite to ¢),
on symbol AJ and on symbol AJ._P. The transition on symbol AJ leads to one or more
states that describe the recognition of the regular expression AJ_P ::= { AJ }+ 2. This
time fewer states are needed for the recognizing of an AJ-repetition string because the
already recognized part of the AJ string is not showed/memorized in the items of the
states but in function calls. From the next symbols the parser only knows that AJ.P
rewrites to € or to AJ followed by AJ_P.

A disadvantage of the short notation is the change of structure in a sequence of the
same symbol (see figure 8.2).

2{x}+ means one or more replications of symbol x.

CHAPTER 8. A GRAMMAR EXTRACTED FROM THE CORPUS 54

y->a NP
initial items:
NP -> . DE NOUN

NP -> . DE AJ NOUN
NP -> . DE A} A} NOUN

NP -> DE . NOUN
NP -> DE . AJ NOUN

NP -> DE . AJ AJ NOUN
initial items:

NP -> DE AJ . NOUN
NP -> DE AJ . AJ NOUN
initial items:

Figure 8.1: states for a grammar without e-rules

8.2.3 effect on the grammar

The number of rules of the grammar could be reduced if multiple replication of a sym-
bol/symbolstring would not be written out. What is the effect on the number of rules of
the grammar if we use a shorter notation for representing a multiple replication? How
many constructions contain a multiple replication? Or in other words: how bad is the
corpus-grammar with respect to multiple replication?

If all multiple replications of one symbol in a right-hand-side of a grammar rule are
replaced by a (new) symbol that represents a multiple replication for that symbol and
duplicate rules are erased, the number of rules reduces from 4250 to 4025. This means
that writing out the multiple replication of one symbol does not create many extra rules.

In the corpus multiple replication of more than one symbol only exists for symbol-

strings of length two. Almost all the rules with multiple replication of two symbols are
of the form:

Symbol — a« { SYM COOR } 8
or
Symbol — a« { COOR SYM } 38
An example of the first form is:
e NO — NO COOR NO COOR SF

(rock crystal) and shells and (what used to be called fossil bodies)

CHAPTER 8. A GRAMMAR EXTRACTED FROM THE CORPUS 55

NP NP

DE AJ AJ Al NOUN PP DE

Al AJP
/\
AJ AJP
/N
Al A.{P
€

Figure 8.2: change of structure in parse trees
For an example of the second form see section 8.2.1. Thus coordination creates multiple
replication of two symbols. Some other rules (not frequently used) are:
e VC3 — SUB* AV PP AV PP
if not (with authority) (at least) (with an exuberance of ..)
e SF — NO ASP® VITF AV PP AV PP
Straker (as a ’.. phenomena’) comes home (to us) now (with a ..)

In the corpus constructions with multiple replication of two symbols has been found 89
times partly describing the same rules. Thus multiple replication of two symbols will be
of little influence on the number of grammar rules.

8.3 optional symbols

Not only for multiple replication of a symbol the parser could use ¢-rules. In the grammar
extracted from the corpus the following rules occur:

e NP — DE AJ AJ NO

a slim youngish person
e NP — DE AJ AJ NO PP

a pierced decorative border (in brickwork)
e NP — DE AJ AJ NO SN

some shy elderly person (overtaken ..)

e NP — DE AJ AJ NO VC PP

3VC = verbless clause
4SUB = subordinator
SASP = as phrase

CHAPTER 8. A GRAMMAR EXTRACTED FROM THE CORPUS 56

a tall swarthy man (, very much the classic cockney,) (with a ..)

These rules describe the same phenomenon. In a regular expression this can be written
as ([x) means zero or one replication of symbol x):

e NP — DE {AJ}+ NO [VC] [PP] [SN]
With use of e-rules this can be written as:
e NP — DE one_or-more.AJ NO opt.VC opt.PP opt.SN
e oneor.more.AJ — AJ one.or.more-AJ
e one.or.more.AJ — Al
opt.SYMBOL — SYMBOL
opt.SYMBOL — ¢

And without e-rules this can be written as 8 (23) rewritings of NP:
e NP — DE one.or.more.AJ NO VC PP SN
e NP — DE one.or.more.AJ NO PP SN

e NP — DE one.or.more.AJ NO

As we can see the number of grammar rules explodes if all the rules would be written
out.

For multiple replication of symbol(s) e-rules are not needed. But without ¢-rules
optional symbols have to be written out. So a grammar for natural language without
e-rules uses (much?) more grammar rules to describe a language than a grammar with
e-rules.

8.4 other reductions

It is not possible to write a grammar that describes precisely all possible sentence struc-
tures of a natural language. For context-free grammars it is possible to use attributes
to reduce the number of rules. Without attributes the grammar needs more syntactical
categories to distinguish different sentence structures. Basically it is possible to write a
grammar of one rule with a lot of attributes. By contrast it is possible to write a very,
very large grammar without attributes with the same power as the one rule grammar
with a lot of attributes.

For a given context-free grammar without attributes, it is difficult to say whether it
is a good or a bad grammar. We are searching for a sort of minimal grammar that is
over-generating but acceptable with a minimal number of rules. Whether the grammar is
acceptable or not is an application dependent question. We are searching for a minimal
grammar that describes common English. In practice this grammar will over-generate too
much, but when trying to compute the minimal number of rules of a grammar such an

CHAPTER 8. A GRAMMAR EXTRACTED FROM THE CORPUS 57

over-generating-grammar is a good goal. A less over-generating-grammar always needs
more rules.

The grammar extracted from the corpus is small because it describes only syntactical
constructions of 3566 sentences (see section 8.5.3). Nearly 100 syntactical categories
are used. In the parse trees of the corpus syntactical categories are used as well as
grammatical relations. While extracting the grammar the grammatical relations have
been ignored/skipped. Thus for a subtree

UTTERANCE:SF
v AN
SUBJECT:PN ELLIPTICELL

the extracted rule is SF — PN ELL. Skipping the grammatical relation creates more
over-generating and it reduces the number of grammar rules, because sometimes words
belong to the same category but to a different grammatical relation .

Looking for the lower limit for the number of rules of a context-free grammar without
attributes and ¢-rules for common English, other reductions on the number of rules are
possible. In the corpus for a number of phrases there is a difference between the phrase
consisting of one element and the phrase consisting of more than one element (for ex-
ample AJ (adjective, one element) and AJP (adjective phrase, more than one element)).
Although there is a linguistic motivation for this phenomenon, we replace symbols X (X
€ Vn) by symbols XP (XP € Vn, XP is a X phrase and X represents a single element
XP). Because almost always a single element phrase behaves the same as a multiple ele-
ment phrase this is a natural reduction that does not create much over-generating. The
number of rules will be reduced because of rules like:

e AN — AN COOR AJ
e AN — AN COOR AJP

Because in the corpus spoken text exists, rules for phrases between quotes occur in
the grammar. These rules are not general but rather ad hoc as can be seen in following
rules (OPEN is an opening quote, CLOS is a closing quote):

e SF — OPEN IN IN PN VCOF AV SF CLOS
e SF — OPEN PN VITF AV CLOS
e SF — OPEN PN VCOF AV A]
e SF — NP VCOF PP CLOS
With fewer rules the same can be described:
e SF.QUOTE — OPEN_option SF CLOS
e SF.QUOTE — OPEN SF
e NP.QUOTE — OPEN NP CLOS

0 ...

CHAPTER 8. A GRAMMAR EXTRACTED FROM THE CORPUS 58

It is difficult to see what the effect of the absence of the category VP is on the number
of rules of the grammar. For each rule of the form

A—aVPg

one has to know how many rules of the same form exists in the corpus grammar with a
different written out VP.

For a random subset of grammar rules with a verb phrase we have examined this.
For each rule a linguist has determined the verb phrase in the right-hand-side. Then the
rules with the same left-hand-side and the same right-hand-side except the verb phrase
part have been counted. So for rules of the form A — a VP § we counted the rules A
— a v B (v € V*). It will be clear that v is not always a verb phrase, so there are fewer
rules A — a VP 3 than rules A — a v 8. For some rules there is only one sample of the
form A — a v . For other rules there are dozens of rules of the form A — a y 8. The
experiment indicates that the number of grammar rules reduces with a factor between
two and ten if the category VP is added to the grammar.

8.5 number of grammar rules

8.5.1 grammars without e-rules

Grammars without ¢-rules would not be a problem if they consisted of only a restricted
number of rules. Tomita describes a parser for natural language. For testing his parser,
the biggest grammar he uses consists of only 400 context-free rules without e-rules and
attributes. In his view this grammar is considered as one of the toughest natural language
grammars in practice®. In this section it will be explained that this is not a realistic view.

As described before, the pure grammar extracted from the corpus consists of more
than 4200 rules. Representing multiple replication without e-rules but with a compact
notation as described in section 8.2 reduces the number of rules to about 4000. Replacing
single element phrases by multiple element phrases as described in section 8.4 reduces
the number of grammar rules subsequently to about 3100. Erasing the quote symbols in
the rules (see section 8.4) delivers a grammar with about 2700 rules.

Fewer rules are only possible if the grammar is made less flat, if the grammar is
made more over-generating or if the grammar describes a smaller subset of English. The
grammar already describes a very small subset of English (this aspect will be analyzed
in section 8.5.3). As described before, the grammar already highly over-generates. More
over-generating with fewer grammar rules involves less sentence structure in parse trees.

With introducing the category VP the grammar will be less flat and the number of
rules can be reduced. Parse trees with a normal depth can be generated with the corpus
grammar including category VP. A less flat grammar (than a grammar including category
VP) is not natural.

In about 500 rules of the 2700 grammar rules there is no nonterminal representing a
verb in the right-hand-side. So our expectation is that with category VP the grammar
still consists of more than 1000 rules.

¢[Tomita, 1986), page 81

CHAPTER 8. A GRAMMAR EXTRACTED FROM THE CORPUS 59

8.5.2 grammars with e-rules

With use of e-rules it is possible to describe a large subset of a natural language with
fewer than 1000 rules.

The surface grammar used in the ROSETTA system (a context free grammar for
common English) consists of about 20 regular expressions. Replacing the regular expres-
sions for grammar rules in BNF notation with e-rules returns a grammar with about 300
rules. This grammar highly over-generates because the original surface grammar is an
attribute grammar and we have erased all the attributes. Some attributes exclude specific
rewritings’. For example for a regular expression

X = [o] [8] [4]

there could be an attribute a-exists of type Boolean (with a.exists = a rewrites not to
€) and evaluation rule

if a-exists
then X ::= a [8]
else X ::= [6] (7]

When replacing this grammar by a grammar without ¢-rules the number of rules explodes
(more than 10000 rules) because of many optional symbols in the right-hand-sides of the
grammar rules (see section 8.3). For natural language grammars a lot of grammar rules
can be written with optional symbols in the right-hand-side.

8.5.3 the number of sentences with respect to the number of grammar
rules

It is important to see if the part of the corpus we used to extract the grammar represents a
large part of the possible syntactical constructions. In other words: how does the number
of grammar rules increase if the number of sentences the grammar rules are extracted from
increases? In figure 8.3 the relation between the number of sentences and the number of
grammar rules is shown. We used four parts of the corpus. Starting with one part, we
added another part and so on. In the figure one can see the number of rules of the pure
grammar (without reductions), the number of rules of the reduced grammar (reduced for
multiple replication, single element phrases and quote symbols) and the number of rules
without verb of the reduced grammar.

The number of rules grows fast. While adding more analyzed sentences to extract from
at a moment the grammar growth will reduce. But with 5000 analyzed sentences a lot of
syntactical constructions does not occur.

"For this reason we were not able to use the ROSETTA grammar for our research on probabilistic
parsing. Besides the problem of the power of some attributes to exclude specific rewritings there is a
problem because the grammar uses few syntactical categories because a lot of syntactical information is
expressed in attributes. So it was not useful to rewrite the grammar-without-attributes for attributes that
exclude specific rewritings (in any case that would be a lot of work) because the syntactical categories
are too less expressive. Rewriting the grammar with new syntactical categories would take a lot of time
for a linguist.

CHAPTER 8. A GRAMMAR EXTRACTED FROM THE CORPUS 60

1500 2000 3000 4000 5000 seosnces

Figure 8.3: number of grammar rules with respect to the number of sentences

8.6 conclusions

A grammar that has been extracted from an analyzed corpus has great disadvantages.
Multiple replication of symbols is written out. It is easy to replace multiple replication
with a more compact notation. But using optional symbols will be difficult if a consistent,
not highly over-generating, manageable grammar is wanted. Using auxiliary categories is
possible if the auxiliary categories have been represented in the parse trees. Otherwise a
linguist has to rewrite the grammar with use of auxiliary categories if a consistent, not
highly over-generating, manageable grammar is wanted.

It is important which syntactic categories are used. The size of a grammar may be
large because of the absence of a syntactic category. The choices that have been made
when writing a grammar are not always the right choices for creating a minimal grammar.

Chapter 9

context-free grammars

9.1 introduction

In this section we will examine the factors that influence the size of a grammar on the
basis of the results described in the preceding chapters (section 9.2). We will look at the
effect on the parser if the grammar size is reduced (9.3, 9.4). The effect of the grammar
size reductions on probabilistic parsing will be examined in chapter 11. In section 9.5 we
will conclude the discussion about grammars with some general conclusions.

9.2 grammar size

9.2.1 introduction

In the original (pure) grammar extracted from the corpus, a lot of rules are needed because
all syntactical constructions have to be written out. In this way it is impossible to write
a grammar for common English. Such a grammar would need some tens of thousands
(or more) rules. A grammar with so many rules is not comprehensible. It is difficult
to modify a very large grammar. Adding one rule often has an effect on a lot of rules.
Also the parser would be very inefficient. As we will see, with many grammar rules many
states are needed for the parser and that has a negative effect on the parsing complexity
and on the statistical complexity®.

The number of rules can be strongly reduced if aux-categories or optional symbols are
used. Aux-categories are used in the grammar related with the LDB corpus (section 7).
Optional symbols are used in the surface grammar for English in the ROSETTA system.
In the following paragraphs these two methods are examined.

9.2.2 aux-categories

If aux-categories are used, the idea of a grammar with written out rules still exists.
Different parts of syntactical constructions in right-hand-sides of grammar rules are taken
together in aux-categories (or in aux-relations as in the corpus grammar). Aux-categories
and aux-relations can be taken together in other (aux-)categories and (aux-)grammatical

3The statistical complexity is the complexity with respect to the amount of statistical information that
is needed.

61

CHAPTER 9. CONTEXT-FREE GRAMMARS 62

relations and so on. An example is the rewriting for category noun phrase in the corpus
grammar:

e ¢ np noun phrase:

nf left, nf np noun phrase inner, nf right.

o nf np noun phrase inner:

nf np noun phrase simple;

nf np noun phrase coord;

nf np noun phrase axb;

nf np noun phrase apposition.

¢ nf np noun phrase simple:

nf normal noun phrase;

nf nominal adjective phrase;
nf gnp genitive noun phrase simple.
o nf np noun phrase coord:
nf coord option, f join np noun phrase, f coor,
nf coorded anything.
e nf np noun phrase axb:
f a np noun phrase, f lim pcl, { xb.
¢ nf np noun phrase apposition:
f a left appositive, f b right appositive.
¢ nf normal noun phrase:
nf np front, f hd in np, nf np tail.
¢ nf np front:
nf np det list, nf dumb filler like list, nf np prem list;
f prem in np, f det in np, nf dumb filler like list,
nf np prem list.

If a written out grammar is transformed into a grammar with aux-categories/aux-
relations, rules of the original grammar and parts of the right-hand-sides of rules are
split up in groups. For such a group an aux-category is introduced that rewrites to that
group. Because a group may occur at more than one place in the grammar, the number
of grammar rules reduces if aux-categories are used.

CHAPTER 9. CONTEXT-FREE GRAMMARS 63

9.2.3 optional symbols

The method used in the surface grammar for English of the ROSETTA system differs
from the method with aux-categories. In fact the grammar rules are not splitted up but
they are merged by using optional syntactical categories. For example with one regular
expression the rewriting of the prepositional phrase can be written as:

PREPP ::= [ADVP | NP) PREP NP | PREPP | ADVP | ADJP | SENTENCE]

(Something between [] is optional. The symbol ’|’ stands for OR. This regular expression
can be written in ten rules with BNF notation together with optional rewritings for the
categories ADVP, NP, PREPP, ADJP and SENTENCE.)

If attributes may be used the number of rules can be strongly decreased because
context-sensitive effects can be controlled by attributes. Then for the rules

A-BCE
A—-CEF
we can write
A — optional.B C E optional.F

and a little attribute administration/evaluation.
Without attributes only local optional effects can be used to decrease the number of
rules. An example is the rule

A — B optional.C D
derived from the rules

A-BD

A-BCD

Using optional symbols for reducing the grammar size is especially of great use if attributes
are used. Otherwise the reduction effect will be less big and over-generating will be easily
introduced.

9.3 number of parsing states

For the RAM parser without look-aheads the number of states is at most O([V] -2#(©)),
with #(G) the number of grammar rules. This is an extreme upper bound, in practice
often the number of states grows linear with the number of grammar rules (see section
3). The number of states depends on the number of (non)terminal symbols and on the
number of grammar rules.

With a grammar that uses aux-categories, it is possible to parse. In the produced
parse tree(s) the aux-categories can be eliminated (this can be done while parsing). If
aux-categories are added, the number of nonterminals increases, so the reduction of the
number of states because of fewer grammar rules will be opposed by the increase of the
number of nonterminals. Of course the reduction of the grammar size has a much greater

CHAPTER 9. CONTEXT-FREE GRAMMARS 64

effect than the increase of categories. With aux-categories the use of attributes will be
more complex. More evaluation rules have to be written.

Reducing the number of grammar rules by merging grammar rules and using optional
symbols does not strongly increase the number of categories, only for optional categories
new categories are needed. A disadvantage of this method is that attributes are needed
if one wants a considerable reduction of the grammar size (see section 9.2.3). In that
case the attribute administration will be complex. Such a grammar cannot be used for
probabilistic parsing (see section 11).

9.4 parsing complexity

Suppose we have a grammar G,.q that describes the same language as grammar G but
with fewer rules (reduction with aux-categories and/or with optional symbols). A parser
for G needs more states than a parser for G,.4. So the state complexity (in LR terms
the complexity of the parsing table) reduces. But with this transformation, another
complexity, the computational complexity of the parsing process increases. The growth
of the computational complexity may occur in the use of e-rules and in the parsing search
space. In following sections we will examine this complexity.

9.4.1 computational complexity and e-rules

If we use the original Marcus-like parser described in [Leermakers, 1993], the computa-
tional complexity of the parsing process for a parser of a grammar with e-rules is greater
than the computational complexity of the parsing process for a parser of a grammar
without e-rules. This can be seen in the definition/implementation of the functions [g):

[) = [al(=zisi+1)
U{(y = a.8,j) | 38(B — .¢ € ini(q)
A (v = a.8,5) € [q)(B, 1))}
U{(r—a,i)|y—a.€q)}
Without e-rules the set

{(v = @.8,5) | 38(B — .¢ € ini(g) A (1 — a.8,j) € [g)(B,))}

does not have to be computed. With e-rules the parser has to try all e-rewriting pos-
sibilities. Recognizing a e-rewriting causes other reductions. With a lot of e-rules this
could be a problem in practice. So if the problem of too much states is partly solved
by using optional symbols, a problem with the complexity of the actual parsing process
could occur.

In a variant of the original Marcus-like parser (the RAM parser) it was tried to
overcome this problem. This parser does not try to compute e-rewritings. The parser
simply skips them as can be seen in the definition of goto:

goto(g,8) = {7 — aXé.f |7 — a.A6p € (gUini(g))
AS=k:6AN—"¢)

This does not affect the parsing process. Before the actual parsing of sentences (or
afterwards), it can be computed in which ways a nonterminal rewrites to .

CHAPTER 9. CONTEXT-FREE GRAMMARS 65

A call goto(q,8) will return a greater set of items with e-skip than without e-skip.
Also the number of states will be a little higher. But the profit by using e-rules will be
kept. For example for a state gpp = { PP — « . opt.NP PREP 8 } with

opt-NP — ¢
opt.NP — NP

there are transitions on NP, opt_.NP and PREP. For computing the items of goto(gpp,
PREP), it is not important to know if opt_NP rewrites to € or to NP. In the case without
e-rules we have:

gpp = {PP —a.NPPREPS,
PP — o .PREP j3)

with transitions on PREP and NP. For the state goto(gpp, NP) there is also a transition
on PREP. It will be clear that the PREP-transition for state gpp corresponds with opt_NP
— ¢ and the PREP-transition for state goto(gpp, NP) corresponds with opt.NP — NP.

9.4.2 computational complexity and parsing search space

A grammar with aux-categories is less flat than a grammar without aux-categories. That
means that for most items 4 — a . § there are more rewritings of the form § =" v.
With an item 9 — a . 8, # has longer chains of derivations. This is an effect in the
depth of derivations. Shifting a terminal symbol ¢ leads to more reductions in depth. For
a grammar with optional symbols the same effect occurs, because of the extra optional
categories. Unless there are many extra categories this will not be a real problem. The
computational effect will be very small, certainly in contrast with the efficiency of the
parser for the original (not reduced) grammar.

The computational complexity may increase if it is possible after introduction of new
categories that

n=>"z...x3;

v S r;...2;
for an item

7—ap
with

B=°vm

B =*vam,

(v1,v2 € Vv (when k = 1); m,m € Vg5 4,5l € N; i < j;i <1< j:z € Vr.) The
recognizer has to compute more reductions than before. In practice this problem does
not occur if one will try to write consistent grammars.

CHAPTER 9. CONTEXT-FREE GRAMMARS 66

9.5 conclusions

For a context-free, attribute-free grammar that can be parsed and that describes a large
subset of a natural language, the way in which the grammar is written is important.
To work with such a grammar the grammar has to be not very big (more than 2000
rules). Grammars with fewer than 1000 rules are more attractive. Without attributes it
is difficult to describe a large subset of a natural language in 1000 or fewer context-free
rules. Auxiliary categories have to be introduced to make the grammar more compact.
Another possibility is to use optional symbols in the grammar rules, but then it will be
likely to use attributes for excluding specific rewritings. A combination of both methods
is possible. The (time) complexity of parsers for grammars written according to one
of these methods does not really differ. A parser for a grammar with a lot of optional
symbols has to handle ¢-rules efficiently.

Part 111

Probabilistic Parsing

67

Chapter 10

probabilistic parsing

10.1 introduction

Parsing with a grammar that describes a large subset of a natural language is a difficult
task. Such a grammar is highly ambiguous. Parsing will take cubic time (with respect
to sentence length) if only syntactical information is used. It has often been said that
the syntactical component has to be followed by a component that handles semantical
information. Typically one could read this in the section *future research’. For the time
being it is impossible to model semantical information for large domains.

It is necessary to find another way to reduce the ambiguity problem. Some
people think that a statistical approach is an important step to the solution (e.g.
[Bod, 1992], [Brill et al., 1990), [Briscoe & Carroll, 1991), [Chitrao & Grishman, 1990),
{Fujisaki et al., 1989], [Robinson, 1982], [Sharman et al., 1990]). Statistical information
could guide the parsing process in such a way that not all ambiguities have to be com-
puted. A probability is assigned to every parse tree of a sentence. For an ambiguous
sentence it is expected that in most cases the desired parse tree will be the parse tree
with the highest probability. But parsing with use of statistical information is a nega-
tive choice. Because we cannot model the knowledge needed for reducing ambiguity we
use a very rough approximation of this knowledge. The use of statistical information
has not yet been proven to be part of the solution to the ambiguity problem. In sec-
tion 10.2 we will examine the main problems of probabilistic parsing. An approach in
which a lot of statistical information can be expressed will be discussed. Thereafter two
other approaches to probabilistic parsing are presented. In one approach the statistical
information is collected about context-free data (section 10.3 and 10.4). In the other
approach statistical information is context-sensitive (section 10.5). In the next chapter
we will discuss in detail the case of context-sensitive probabilistic parsing with use of LR
like parsers.

68

CHAPTER 10. PROBABILISTIC PARSING 69

1

10.2 statistical significance', computability and corpus

size
10.2.1 probabilistic parsing with subtrees

For a given sentence, one wants the most likely parse tree. Statistical information can be
collected about syntactical structures and semantical information by using parse trees,
the words of the sentences and semantical features. With more aspects expressed in the
statistical information, more analyzed data will be required to train the ’parser’. Even
if only the lexical categories of the words of a sentence are used as input of the parser,
it is not possible to compute the most likely parse tree of every sentence (thus of every
sequence of lexical categories). Therefore, probabilities are assigned to parts of the parse
trees. The probability of a parse tree is computed from the probabilities of parts of the
parse tree. In most approaches to probabilistic parsing, grammar rules are used as the
basic parts statistical information is collected about. In the approach of Bod and Scha
({Bod, 1992]), these basic parts are parts of parse trees. Such a part can be a complete
parse tree, it can also be one rewriting from a parse tree. In this approach something like
semantical information has been included, because the words of the sentences are part of
the parse trees. With a corpus that consists of the two trees showed in figure 10.1, for the

|

A% NP VP PP
who opened N/\PP Fernando P P N
clinl' 9 p N opened I!I in November
in Amsterdam czi,,l- 9]

Figure 10.1: corpus consisting of two trees

sentence "Fernando opened clin’91 in Amsterdam in November” a tree can be constructed
from three parts of the two corpus sentences (figure 10.2). Because there is a complexity
measure for every part of a parse tree, their system handles ambiguous constructions with
ease. Only the parse tree with the smallest complexity will be constructed.

10.2.2 criticism

Our criticism against the Data Oriented Parsing (DOP) approach of Bod concerns the
use of a formal grammar, the matching process and the size of the analyzed corpus.

1We use the word significance to express the fact that statistical information can be collected about
data that expresses little information (for example (non)terminals) as well as data that expresses a lot of
information (for example parse trees). In the first case the statistical information is less significant than
in the second case.

CHAPTER 10. PROBABILISTIC PARSING 70

}\ /VP\ /PP\

NP VP \V/ NP P N
I~! VP/\PP oplned N PP zln November
F ""“"!“’ clin|'9l P/\N
ilu Amsllerdam

Figure 10.2: parts of the tree of the sentence "Fernando opened clin’91 in Amsterdam in
November”

In the view of Bod, language data in the form of an analyzed corpus constitutes the ba-
sis for language processing in DOP. The analysis of a sentence is constructed with existing
(sub)constructions in the corpus. Thus for analyzing sentences with DOP, an analyzed
corpus is needed. This analyzed corpus has to contain all sentence (sub)constructions
that cannot be constructed with (sub)constructions that occur in this analyzed corpus.
The basis of such an analyzed corpus is a grammar with grammar rules. Thus in fact
a formal grammar with grammar rules constitutes the basis for language processing in
DOP. The problems with developing a formal grammar for natural language are also
problems for the DOP model. For example, the grammar represented by parse trees
should not over-generate much. As we have shown in chapter 8, using a grammar that
is represented by parse trees (as is done in the DOP model) will give difficulties with for
example optional symbols and multiple replication of a symbol. So the use of an analyzed
corpus may have undesired effects.

For a very large corpus of analyzed sentences, the matching process used to construct
parse trees from parts of parse trees will take a lot of time. With rule based parsing,
the PP in figure 10.3 can be a daughter of grammar rules with the nonterminal PP in

PP

PREP NOUN

J

n November

Figure 10.3: a prepositional phrase

the right-hand-side. With Data Oriented Parsing, the PP can be a 'daughter’ of a lot
of different parts of parse trees that have a nonterminal PP as leaf. The parts of parse
trees that can be used to construct new parse trees can be seen as grammar rules. Such a
grammar will contain much more rules than the grammar that has been used to make an
analyzed corpus. If a lot of parse tree constructions do not have to be computed because
of the complexity measure, the matching process will not take as much time as in the
worst case. Our expectation is that for a very large corpus a lot of parts of parse trees
do not have such a bad complexity that they do not have to be computed.

The number of parse computations will be reduced because a lot of constructions
are not possible due to the fact that the words in a lot of parts of parse trees do not
correspond with the words of the input sentence. But because a very large corpus is

CHAPTER 10. PROBABILISTIC PARSING 71

needed (see hereafter), the matching (parse) process will still need a lot of computations.

Useful statistical information has been collected if almost all possible parse construc-
tions occur in the analyzed corpus with a realistic frequency. Only then a part of a parse
tree will not be used because there are no other possibilities, but because it is the most
likely one of a set of possible parts of parse trees. As we will show in section 11.2.3, for
grammar rules with a little context a very large corpus is needed to get useful statistical
information. So, with use of grammar rules with a lot of context (parts of parse trees) a
very, very large corpus will be needed to get useful statistical information.

10.2.3 conclusions

An approach like DOP uses large structures as basic units. Statistical information must
be collected about these structures. Because large structures are more specific than small
structures, more analyzed data is needed to get useful statistical information. Thus there
is a trade-off between the size of the train corpus and the size of basic units statistical
information is collected about (the statistical significance). With full parse trees as basic
units, we know that it is impossible in practice to get useful statistical information.
With an approach like DOP it is unrealistic that it is possible to get useful statistical
information. Besides this there may be a computational problem with the matching
process. In the approaches examined in the following sections, it may be possible to
collect a lot of statistical information, but the significance could reduce because the basic
units are too small.

10.3 probabilistic context-free grammars

10.3.1 description

To assign a probability to a parse tree, probabilistic context-free grammars (PCFGs)
are used (for example in [Jelinek et al., 1991}, [Wright et al., 1991], [Ng & Tomita, 1991],
[Fujisaki, 1984]). A PCFG is a context-free grammar with a probability of use assigned to
every grammar rule. A grammar rule is of the form A — a with A € Vy and a € V*U{¢}.
So with A a nonterminal with #(A) different rewritings and P(A;) the probability of the
ith rewriting of A the following holds:

#(4)

S P(A)=1

=1

The probability of a parse tree is computed from the probabilities of the grammar
rules used in that tree. The probability of a grammar rule represents its use score.
An assumption when using PCFGs is that a rule has a certain probability of use ir-
respective of the context of the rule. So with a PCFG the probability that the rule
NP — DET NOUN is used as daughter of a rule NP — ... NP... equals the proba-
bility that the rule NP — DET NOUN is used as daughter of a rule PP — ...NP...
(see figure 10.4 for an example). We have checked this for a part of the corpus. In almost
25% of the rewritings of the NP in the right-hand-side of a rule NP — .. . NP..., the
rule NP — DET NOQUN is used. The rule NP — DET NOUN is used in almost 44%
of the rewritings of the NP in the right-hand-side of a rule PP — ... NP.... The use of

CHAPTER 10. PROBABILISTIC PARSING 72

...............

.. her head buried in her arms

Figure 10.4: context-sensitive use of grammar rules

a rule in a derivation is not always independent of the use of other rules as is suggested
by PCFGs.

The statistical information can be collected from an analyzed corpus. In such a
corpus one parse tree has been assigned to every sentence. For every grammar rule it can
be counted how many times the rule has been applied in the parse trees of the corpus
sentences. The grammar that has been used to make the parse trees has to be (almost)
the same as the grammar that has to be made probabilistic.

Another possibility is to use the Inside Outside algorithm (derived from a Markov
model) as described in [Fujisaki, 1984]. This is an unsupervised method. Sentences are
parsed and the statistical information is updated for all parse trees. So all parse trees of
an ambiguous sentence contribute to the statistical information. Repetition of the process
over the used set of sentences will lead towards convergence. The result will approach the
result of the supervised method with an analyzed corpus. It is not clear whether the result
of unsupervised training is a good approach of the result of supervised training. With a
large, highly ambiguous grammar there is a lot of noise in the statistical information. If
one wants to see what is at most feasible with statistical information it is better to use
an analyzed corpus.

10.3.2 experiments with PCFGs

Fujisaki describes an experiment with a PCFG in [Fujisaki, 1984).2 He transforms a
grammar in Greibach Normal Form into a grammar with 7550 rules in Chomsky Normal
Form. He uses two unanalyzed corpora of 3582 respectively 624 sentences to train and
test the probabilistic parser. He does not describe the corpora (style of the sentences
etc.). The average wordcount of a sentence is 10.85 in the corpus with 3582 sentences.
The average wordcount of a sentence is 12.65 in the other corpus. The parser returns the
parse trees of a sentence in order of probability. After collecting statistical information
with use of the Inside Qutside algorithm, the parser is tested with respectively 63 (in the
case of the first corpus) and 21 (in the case of the second corpus) ambiguous sentences
from the train set. The delivered parse tree with the highest probability is the good parse

?In [Fujisaki et al., 1989) the same experiment is described. It seems that Fujisaki has not made real
progress in the research at the possibility of probabilistic parsing.

CHAPTER 10. PROBABILISTIC PARSING 3

tree in 85% of the test sentences. Because the experiment is not described in detail, it is
not possible to conclude that it is useful to parse statistically with PCFGs.

10.4 ID/LP grammars used for probabilistic parsing
10.4.1 description

In the view of Sharman, Jelinek and Mercer [Sharman et al., 1990] context-free gram-
mars of general natural language are large, very ambiguous and parsing takes a lot of
computations. So for unrestricted texts (a large subset of a natural language) compact
notations for grammars have to be found. Unification grammars use a compact notation.
Sharman et al. use the ID/LP principle of generalized phrase structure grammars for
writing a compact grammar. According to this principle a grammar has to be written in
two sorts of rules: immediate dominance (ID) and linear precedence (LP) rules. The ID
rules express to which symbols a nonterminal could rewrite. LP rules express in which
order symbols may appear. So the rules

ID:S—-ABC
IP:B< A (B before A)
are equivalent with the context-free grammar rules
S—-BAC
S—-BCA

To get a statistical parser, probabilities are assigned to ID rules as well as to LP rules.
In this case LP rules say with which probability symbols may appear in a specific order.
Probabilities are also assigned to the tags in the lexicon. An analyzed corpus and a
grammar with 16 nonterminal and 100 terminal symbols are used. The test set exists
of 42 sentences. If the test set diflers from the learn set the most likely parses are the
correct parses in 20 percent of the cases. Nearly correct or correct is 60 percent of the
most likely parses. If the sentences of the test set are used to extract the probabilities
(test set = learn set) the most likely parses equal the correct parses in 43 percent of the
cases. Nearly correct or correct is 88 percent of the most likely parses.

10.4.2 criticism

Sharman, Jelinek and Mercer do not answer the question whether the probabilities of ID
and LP rules are independent. But the answer on this question is of great importance. It
says whether the use of a probabilistic ID/LP grammar is justified or not. It is very likely
that the probability of the linear precedence of two symbols depends on the immediate
dominance rule in which the two symbols occur. For the rules

ID:S=-ABC
LP:B< A

CHAPTER 10. PROBABILISTIC PARSING 74

a probability is assigned to the LP rule on the basis of the use of this rule in the parses of
the Jearn sentences. The probability of the LP rule does not express the linear precedence
probability of A and B in the rule S — A B C if there are other rules with the symbols A
and B in the right-hand-side. So with probabilities assigned to written-out context-free
rules like

S—=BAC

more information can be expressed.

The probabilistic ID/LP model is presented for ID rules with two symbols in the
right-hand-side. For rewritings with an unlimited number of symbols on the right-hand-
side, the rewriting is modeled as successive applications of shorter rules. Here the same
disadvantage occurs: there is a difference between the probability of a rule

S—-ABC

and the probabilities of the rules
S—- AP
B —-BC

if the rule B’ — B C is used in other combinations than with the rule S — A B’.

The conclusion is that with a context-free grammar more information can be expressed
than with a ID/LP grammar. So the statistical information that can be collected with the
ID/LP grammar is less significant than the statistical information that can be collected
with context-free grammars.

Sharman, Jelinek and Mercer do not give enough information about the grammar
they used, to criticize their experiment in detail. It seems that it is not easy to attain
good results with probabilistic parsing for a subset of a natural language.

10.5 context-sensitive probabilistic parsing

10.5.1 Pearl

Magerman & Marcus [Magerman et al., 1991] criticize PCFGs because of the assumption
that the applications of two grammar rules in a parse tree are independent. They make
the probability of use of a grammar rule dependent of a small context (a part-of-speech®
trigram) and a parent theory’s rule (a rule with in the right-hand-side the left-hand-side
of the child rule). For their parser Pearl they need a big analyzed corpus. May be an
unanalyzed corpus is also possible (unsupervised training), but till now this has not been
tested. The description of their experiment does not give details of the used grammar,
the used corpus and the size of the tests.

10.5.2 probabilistic parsing of messages

Chitrao and Grishman [Chitrao & Grishman, 1990] use probabilistic parsing to parse
sentences from a small domain of Navy OPREP messages. A context-sensitive version

3A part-of-speech of a word is the lexical category assigned to that word.

CHAPTER 10. PROBABILISTIC PARSING 7%

of a probabilistic context-free grammar has been used. The probability of a grammar
rule depends on the place of occurrence of the left-hand-side of the rule. With a PCFG
small structures are preferred over ’'large’ structures, because when a rule is added to a
structure the probability of that structure is multiplied with a value smaller than one.
Chitrao and Grishman try to remedy this problem by using penalties for small structures.
This does not improve the result.

The grammar was trained with use of the Inside Outside algorithm. The train corpus
contained 300 sentences. From the train corpus 140 sentences were used to test the parser.
With the context-sensitive probabilistic parser, the correct parse was the most likely parse
of 38 percent of the 140 sentences. This is a bad result because only sentences from the
train corpus were used to test the parser.

10.5.3 probabilistic LR parsers

An approach in which statistical information is used in a context-sensitive way and
that joins with the architecture of LR parsers is proposed by Briscoe & Carroll
[Briscoe & Carroll, 1991} and by Leermakers [Leermakers, 1991). Parsing is a problem
because a grammar of a natural language is highly ambiguous. In terms of LR parsers:
parsing is a problem because there are shift-reduce and reduce-reduce conflicts in a lot of
states. If these conflicts could be eliminated, parsing of a large subset of a natural lan-
guage would be easy. So the most needed information for a LR parser is not the likelihood
of a specific grammar rule being used, but how likely a specific (shift or reduce) action
is in contrast with conflicting actions. With this information, the parser could restrict
the ambiguity in a state to the most likely actions. In the next chapter this approach is
described in detail.

10.6 conclusions

Statistical information can be collected about parse trees, about parts of parse trees,
about grammar rules and so on. With more complex structures statistical information
is collected about, the size of the analyzed corpus that is needed to get the statistical
information increases. A manageable approach seems to be probabilistic parsing with
use of probabilistic context-free grammars. With pure PCFGs a lot of context that can
increase the statistical power is thrown away. Therefore, people search for manageable,
context-sensitive approaches. The results of some (very) small experiments gives someone
no cause to expect miracles of probabilistic parsing methods.

Chapter 11

probabilistic LR-like parsing
methods

11.1 introduction

The general idea of probabilistic LR-like parsing is the use of statistical information about
the shift and reduce actions of the parser. In this way it is possible to compute the most
likely parse tree of a sentence from the set of all parse trees of that sentence. If the parser
only has to take the most likely action(s) in every situation in the parsing process, the
parser can work in (almost) linear time. With PCFGs the parser does not dispose of
the right statistical information. With a PCFG the probabilities of the occurrences of
grammar rules are known. The probabilities of shift and reduce actions are probabilities
of occurrences of grammar rules in specific contexts.

In section 11.2 we will describe and criticize the approach and experiment of Briscoe
and Carroll. The experiment is criticized. In section 11.3 we will present a better ap-
proach. In section 11.4 we will take some little conclusions about probabilistic LR parsing.
In the next chapter we will take general conclusions on the basis of our research results.

11.2 probabilistic LR parsing by Briscoe and Carroll
11.2.1 the idea

Briscoe and Carroll try to develop a model for parsing with large natural language gram-
mars. Their parser is based on a unification grammar. They generated a context-free
backbone grammar with attributes from this grammar. The parser they work with is a
LALR(1) parser. They choose a LALR parser, because the parsing table for a LALR(1)
parser is much smaller than the parsing table of a LR(1) parser. With large grammars
this is important. They only use one look-ahead because of the size of the parsing table.

For collecting statistical information sentences are analyzed to get one parse tree per
sentence. Briscoe and Carroll do not like the unsupervised learning method because
it is not certain how good this method is, compared to the supervised method. They
developed a tool to analyze sentences efficiently.

Statistical information is collected about the shift and reduce actions of the parser.
Reduce actions in a state depend on the look-ahead symbols. Because reduce actions are

76

CHAPTER 11. PROBABILISTIC LR-LIKE PARSING METHODS 7

not always distinguishable on the basis of the look-ahead symbols they are also distin-
guished by the state reached after the reduce action has been applied.

11.2.2 experiment

The grammar consists of 1758 rules. There are 575 syntactic categories. The parser has
3106 states and 1020860 different actions. The parser has been trained and tested with
noun definitions?. 246 noun definitions were parsed. The parser was able to parse 151 of
these definitions correctly. A few rules (14) were added to the grammar. It is not clear
why the other 95 definitions were eliminated.

The 151 definitions were analyzed and the results were used to get the statistical
information. The parser had to compute all possible parses. Because this took a lot of
time only 63 of the 151 definitions were tested. The noun definitions are short. Their
mean (word) length was 5.3. None of these 63 definitions had a length of 10 or more
words. 13 of the 63 definitions were not ambiguous. For 47 of the 63 definitions the most
highly ranked parse tree is also the correct one. For 4 of the remaining cases the most
highly ranked was correct, but the analyses of the definitions (used to get the statistical
information) were false. This gives a (most highly ranked parse = correct parse)/sentence
score of 81%. For a test with 54 noun definitions not in the train set this result was 57%.
These 54 definitions consist of at most ten words. 10 of the 54 definitions were not
ambiguous. In the view of Briscoe and Carroll, the bad results of this test were mainly
caused by the incompleteness of the grammar.

11.2.3 the experiment criticized?

The used grammar was derived from a unification based grammar. Syntactical cate-
gories were created from sets of features. Briscoe and Carroll tried to define syntactical
categories as good as possible. In their view a context-free backbone has to express as
much information as available in the unification grammar. In this way a large context-
free grammar results that probably expresses more than the needed information. For a
context-free grammar for probabilistic LR parsing one needs a grammar that describes
legal syntactical constructions and nothing more. Extra information can be expressed in
features (attributes).

The parser has 1020860 different shift and reduce actions. Suppose for sentences with
a length of ten words the mean number of applied grammar rules is 15. Then with 151
sentences with an average length of ten words or less at most some information about
2300 actions could have been collected. So only a very small part of the parser is trained.
Because the noun definitions are very short, the trained part is not the most ambiguous
part of the parser.

Our expectation is that for a number of sentences the correct parse tree is the most
likely one because the actions applied in the other (ambiguous) parse trees are (very)
unlikely due to the small train set. For a number of ambiguities the probabilistic parser

1A noun definition is a description of the meaning of a noun. Examples are "the act of washing
oneself”, "place where one lives” and "strong expressions of approval and praise”.

2Detailed criticism was only possible because of the detailed description of the experiment. If all people
would write so exhaustive as Briscoe and Carroll people could learn much more from each others research
than at the moment.

CHAPTER 11. PROBABILISTIC LR-LIKE PARSING METHODS 78

does not know that they could occur, because they occur nowhere in the parse trees of
the train set.

So our main criticism is that only a very small part of the parser has been used in the
experiment and that the number of train sentences is too small. It is not possible to say
something about the possibility of probabilistic parsing on the basis of this experiment.

Is it possible to build a probabilistic parser based on a parser with more than 1000000
actions? Suppose the average sentence length is 15 words. Suppose the average number
of applied grammar rules in a sentence of 15 words is 20. Then about 51000 sentences are
needed to apply every action one time if all actions used in the parse trees of the 51000
sentences are different. To get real statistical information the train set has to consist of
more than 10 times 51000 (analyzed) sentences. In practice a large number of applied
actions will be the same. Thus if one wants statistical information about all actions of
the parser the train set has to contain much more sentences. With a need for so many
analyzed sentences it is better to try to reduce the size of the grammar.

11.3 a model for probabilistic parsing

11.3.1 Jlook-aheads

Briscoe and Carroll use a small look-ahead of terminal symbols to reduce the ambiguity.
In the view of Marcus one should not only use terminal symbols as look-ahead but non-
terminal symbols as well. Using nonterminal and terminal symbols as look-ahead is more
powerful than only using terminal symbols as look-ahead (in the case nonterminal look-
aheads do not rewrite to €¢). One nonterminal look-ahead may examine more than one
terminal symbol. There is another advantage of constituent look-ahead for probabilistic
parsing. A lot of nonterminal symbols can left-rewrite to the same terminal symbol. So
with a reduce-reduce conflict or a shift-reduce conflict in a parser, a more significant
decision can be taken on the basis of the next nonterminal than on the basis of the next
terminal symbol. In the following example the difference between the power of terminal
and constituent look-ahead can be seen.

The use of look-aheads will reduce the number of parsing conflicts. Sometimes it is
possible to postpone parsing decisions if one or more look-aheads are used. With the
following grammar:

e ROOT - S
e S—AS

e S—d

e A—a

e A—aS

a parser without look-aheads has a shift-reduce conflict with sentence "ad” because sen-
tence "add” has the same left symbol string but a different rewriting of symbol A4 (figure
11.1). After recognizing symbol a the parser has to reduce symbol A or to shift the next
input symbol. The parser has to know what the following input symbols are, before it
can take the correct decision.

CHAPTER 11. PROBABILISTIC LR-LIKE PARSING METHODS 79

S S
/\ /\
A S A S
Al i
1,

Figure 11.1: parse trees for the sentences "add” and "ad”

With one Marcus-like look-ahead (k = 2) the parser can shift the first two input
symbols ad and then it can take the correct decision on the basis of the existence of
another input symbol d. The graph in figure 11.2 of the states with their transitions
shows this. After a shift of symbol a and a shift of symbol d the parser can reduce
rewriting § — d or it can shift the next input symbol. If there is not a next input symbol
the parser can only reduce S — d.

Figure 11.2: states with transitions

With terminal look-aheads (as with LR(k) parsing) one terminal look-ahead would be
not enough to solve the ambiguity. After recognizing symbol a the parser had to decide
between a shift and a reduce action. This decision depends on the third input symbol
and with one terminal look-ahead the parser does not know this symbol.

CHAPTER 11. PROBABILISTIC LR-LIKE PARSING METHODS 80

11.3.2 subdividing reductions

Briscoe and Carroll use the state reached after a reduction to distinguish between different
reduce actions. In this way a little bit context of the application of a grammar rule can
be processed in the statistical information. With the look-aheads of the RAM parser,
context of the application of a grammar rule is handled in a natural way. The following
example shows the use of nonterminal look-aheads for subdividing reduce actions.

We have the following grammar:

S—AD B—a
S—AF C—-b
S—=BC D—b
A-—-a E-b

From root state {ROOT — . S} the parser makes a transition on symbol a. The
resulting state is {4 — a.,B — a.} (figure 11.3). The parser has to reduce A4 or B.
This state can also be reached from other states. So the statistical information of the two

Figure 11.3: states without look-ahead, with statistical information

reduce actions of this state may have been influenced by transitions from other states than
the root state. Using a look-ahead context of one look-ahead will overcome this problem
a little bit (figure 11.4). The context information is not the state reached after reduction,
but the symbol after the reduction symbol. With one look-ahead this reduction is implicit,
it is represented in items like A D — a.D. Using the state reached after reduction as
context gives other information than constituent look-aheads. With the LALR(1) model,
probably it will be needed to use extra context information, because of the little look-

CHAPTER 11. PROBABILISTIC LR-LIKE PARSING METHODS 81

ahead power of terminal symbols. If the parser has to make a choice between two different
reductions, one terminal symbol does not distinguish these reductions very well. In the
view of Marcus, constituent look-aheads represent more significant information. Different
constituent look-aheads may left rewrite to the same terminal symbol, thus to the same
terminal look-ahead.

There is another effect on reductions when using constituent look-aheads. Suppose
there are no other states that have transitions to the states shown in figure 11.3. Statistical
information says for example that a reduction of A — a. is made 40 times and a reduction
of B — a. 30 times. If the parser chooses the most likely reduction a transition on symbol
A will be made. The state that is reached in this way has items:

e S—A.D
e S—-A.F

Suppose that according to the statistical information about this state the reductions
of D — b.and E — b. occur equally often. So the relation 40:30 for reductions of A
and B can be better specified. The frequencies for the rewritings AD, AE and BCof §
are respectively 20, 20, 30. It could be better to choose the reduction of B — a .. With
one look-ahead the rewritings AD, AE and BC can be distinguished because a choice
between a reduction A — a. and B — a. is postponed as can be seen in (figure 11.4):

Figure 11.4: states with one look-ahead and statistical information

11.4 conclusions

For probabilistic context-sensitive parsing, a probabilistic LR parser seems a realistic
model to work with. Distinguishing reductions is possible with terminal look-aheads

CHAPTER 11. PROBABILISTIC LR-LIKE PARSING METHODS 82

(LALR(k) parsing). Better (more significant) distinctions between reductions can be
made with constituent look-aheads (RAM parsing).

Chapter 12

the quest for probabilistic parsing

12.1 introduction

The development of a probabilistic parser is a difficult task. Small experiments can be
done. One cannot say that the results of a probabilistic parser of a large subset of a
natural language will be worse (or better) than the results of such a small parser. Small
subsets of a natural language do not cover all different common sentence styles, etcetera.
Thus, experiments with small probabilistic parsers give at most rough indications about
the usefulness of probabilistic parsing of large subsets of natural languages.

It is important to determine the factors that influence the success of probabilistic
parsing. Otherwise, a lot of work may be useless. In our research, these factors have been
determined. We recapitulate the results of our research in this chapter. Our research also
results in a proposal for an experiment which gives a decisive answer about the usefulness
of statistics in parsing of natural language in large domains.

12.2 statistical significance, grammars, parsers and cor-
pora

As we have seen in chapter 11, it will be very difficult to get enough information needed
for a probabilistic LR parser. For probabilistic parsing with use of (sub)trees, more
information is needed to 'train’ the parser. Hence, for the time being probabilistic parsing
with use of (sub)trees is not manageable. At the other hand, probabilistic parsing with
use of probabilistic context-free grammars seems unrealistic, because only the context
information represented in a grammar rule is used. Probabilistic LR parsers offer a
model with which a balance between manageability and the need for context information
can be found. In the next three sections we will respectively look at grammars, parsers
and corpora with respect to probabilistic LR parsing. In section 12.6 the relation between
grammars, parsers and corpora is described.

83

CHAPTER 12. THE QUEST FOR PROBABILISTIC PARSING 84

12.3 grammars for probabilistic LR parsers

12.3.1 size of grammars

For LR-like parsing methods a context-free grammar has to be used. It is not difficult
to write a context-free grammar with thousands of rules for a natural language. Such a
grammar is difficult to manage. A very large grammar causes computational problems.
The size of the parser will be (very) large. Generating such a parser will take a long
time. More important is the problem with the statistical component. Collecting sufficient
statistical information will be very problematic because a lot of analyzed sentences are
needed. As we have shown in section 11.2.3 the size of the grammar used by Briscoe and
Carroll creates a real problem for making the parser probabilistic.

It is realistic not to expect miracles from probabilistic parsing. May be the parser
needs look-aheads to get useful statistical information. In the view of Marcus a parser
needs a few constituents as look-ahead to parse deterministically. We believe likewise that
a probabilistic parser needs a few constituents as look-ahead to be able to take decisions
on the basis of significant statistics. The size of the parser grows rapidly when the number
of look-aheads increases. For a grammar of the size of the grammar of Briscoe and Carroll
it is impossible to use a parser with two or three look-aheads.

The size of the grammar has to be minimall. At the same time, the grammar has to
describe at least the basic part? of a large subset of a natural language. Syntactical con-
structions that are not in the basic part have to be handled by the robustness component
of the parser and/or by a set of extra grammar rules. Writing a minimal grammar which
describes at least the basic part of a natural language is difficult. The problem concerns
the number of syntactical categories (how specific are these categories), the use of at-
tributes and the manner of writing a context-free grammar. Because analyzed sentences
are needed for training the parser one would expect that extracting a grammar from a
corpus of analyzed sentences would be a useful way to get a grammar. As we have shown
in chapter 8 this is not the case. A grammar for a probabilistic parser has to be written
by linguists.

Different syntactical categories are used to distinguish between different language
constructions. It is easy to see that a grammar with a dozen syntactical categories
(eg. S, NP, VP, PP, noun, verb, prep, det) that describes a big subset of a natural
language extremely over-generates. But do we need 575 categories as with the grammar
of Briscoe and Carroll? A grammar for a probabilistic parser must have enough categories
to describe legal syntactical constructions and not (many) more. Information that is
irrelevant for this purpose should not be encoded in categories but should be expressed
with attributes. On the other hand, one should not introduce categories that are not
strictly needed to prevent over-generation. If a grammar over-generates because of too
few syntactical categories, some significant differences between syntactical categories are
ignored because these categories have been merged into one category. This is not good
for the language the grammar describes. It is also not good for the statistical component
of the parser, because significant different cases are not distinguished.

1At CLIN 1991 in Amsterdam, Pereira suggested a minimal use of rules together with statistical
information to be the only solution to the complexity problem of the computational linguistic.

2The basic part of a subset of a natural language is the set of common syntactical constructions in
that subset.

CHAPTER 12. THE QUEST FOR PROBABILISTIC PARSING 85

Attributes can be used for determining features (non-syntactical information) but
also for syntactical constructions (syntactical attributes). This has been done in the
ROSETTA surface grammars as shown in a previous chapter. In this way the number
of grammar rules can be reduced. For a grammar for a probabilistic parser this method
is not useful. If attributes are used for syntactical purposes, statistical information has
to be collected not only about shift and reduce actions, but about these attributes as
well. That would be very complicated, may be it will be impossible. So all important
syntactical information has to be expressed in syntactical categories.

Two techniques exist to reduce the number of grammar rules of a grammar without
loosing the power of this grammar. The writers of a grammar can introduce auxiliary
categories and/or they can use optional symbols. Both techniques have been described
in chapter 9. In the next section we will see that the statistical significance is influenced
by these reduction techniques.

12.3.2 statistical significance and grammars

For probabilistic parsers of natural language, small grammars are needed, otherwise the
size of the train corpus has to be very large. As we have seen in a previous chapter,
reduction of grammar size can reduce the significance of the statistical information that
can be collected (section 10.4.2). The reduction of statistical significance is caused by a
reduction in the amount of available context.

If auxiliary categories are used, the statistical significance will reduce. A sequence of
symbols will be replaced by an auxiliary category. For example the rule

A-BCDE

could be replaced by the rules
A-BFE
F-CD

Because the rule F — C D can be used in other rules with the sequence C D in the right-
hand-side, a reduction of the rule F — C D does not equal the recognition of symbols C
D in the rule A — B C D E. Hence, it could be that the statistical information cannot
express the probability that symbols C D reduce to F in the rule A = B F E.

Using optional symbols causes the same effect. An optional symbol category can be
seen as an auxiliary category. But there is another negative effect. The rule

A—-BCoptEDF
represents the two rules

A-BCEDF

A-BCDF

It is not possible to make a distinction in the version with optional symbols between the
possibility of the reduction of therule A = BCD F and therule A= BCED Fin
a state of the parser. This problem can also occur with auxiliary categories if they may
rewrite to different sequences of symbols.

CHAPTER 12. THE QUEST FOR PROBABILISTIC PARSING 86

12.3.3 conclusions

There is a trade-off between grammar size and statistical significance. The statistical
significance reduces when the grammar size reduces without loosing power in describing
sentence structures. The only way the grammar size can be reduced without loosing power
in describing sentence structures, is to take grammar rules together. Thus with reducing
the size of a grammar, different structures will be (partly) merged. It is not (always)
possible to make a distinction in the statistics between structures that are merged. So
the statistical significance will decrease.

The grammar has to describe parse trees. We have seen (section 10.2) that a grammar
describing parts of parse trees causes big problems with the size of the analyzed corpus.
Context-free grammars are better to work with, but a context-free grammar of a natural
language may be still too large. So perhaps there have to be made some reductions on
the grammar size. Using auxiliary categories that only rewrite to a single sequence of
symbols is a good way to reduce the grammar size. If optional symbols are used, one
should not have more than one or two optional symbols in a right-hand-side. Otherwise
the statistical significance will strongly decrease.

12.4 probabilistic LR parsers

The context information created in LR(0) parsers highly depends on the form the gram-
mar has been written. LR(0) parsers do not create a lot of context information of gram-
mar rules. So (probably) it will be needed to use look-aheads to add context information.
As we have seen in chapter 11, constituent look-aheads are more significant than termi-
nal look-aheads. Thus LR parsers with constituent look-ahead can be better used for
probabilistic parsing than LR parsers with terminal look-ahead. The recursive ascent
Marcus parser is described in chapter 2. This parser is able to use a lot of context in-
formation. That is why the parser size will be very large if a few look-aheads are used.
Another possibility is to use the Marcus LR parser, described in chapter 5. Look-aheads
are added to a LR(0) parser, so the number of states does not depend on the number
of look-aheads. A consequence is that the MaLR parser does not use as much context
information as the RAM parser. The only advantage with respect to LALR(k) parsing
is the significance of constituent look-aheads for making distinctions between reductions.
Subdividing reductions, as described in section 11.3.2, is not possible with MaLR parsing.

The RAM parser is the most appropriate parser for probabilistic LR parsing. If the
parser will be too large to handle, the MaLR parser can be used.

12.5 corpora

12.5.1 the need for a large analyzed corpus

The size of the corpus used to train a probabilistic LR parser depends on the number of
different actions in the parser. It is hard to say in general how many parser actions will
be created for a specific grammar. But for a large grammar the number of different shift
and reduce actions will be high. So the parser has to be trained with a lot of sentences.

In the view of some people, the parser could be trained with unsupervised learning.
It is not known how good the results are with this method. In practice, training with

CHAPTER 12. THE QUEST FOR PROBABILISTIC PARSING 87

unsupervised learning is a difficult task. For a very large set of sentences all parses have
to be computed. Because the average sentence length will be more than ten words3, the
sentences will be (very) ambiguous, so there will be a very large set of parses. Because
the result of unsupervised training is uncertain and because the result will be inferior to
the result with supervised learning, it seems unattractive to try to create a probabilistic
parser based on unsupervised learning.

With supervised training, a corpus of analyzed sentences has to be made. This will
take a lot of time if a hundreds of thousands analyzed sentences are needed. An approx-
imation of the time at least needed to make a useful analyzed corpus for an experiment
with probabilistic parsing is described in the following section.

12.5.2 making a new analyzed corpus

It took one person/month to make the train corpus of Briscoe and Carroll (150 sentences).
To get a more realistic approach of the costs of making an analyzed corpus, we asked the
corpus linguists at the University of Nijmegen how much time they needed for analyzing
sentences.4

The corpus linguists at the University of Nijmegen divide the analysis of sentences
in three phases. First, a sentence is supplied with lexical tags. For the lexical disam-
biguation together with a little syntactical analysis, one person has to work ten days to
analyze a sample of 20000 words. After lexical disambiguation, the sentences are parsed.
Ambiguous parts of the parse trees of a sentence are merged so that in the selection
phase of the correct parse tree not all the different trees are shown to the syntactical
disambiguator. If the parses of a sentence cannot be computed within one hour CPU
time (SUN3 system), the computation is stopped. With fiction (written prose) a lot of
sentences can be analyzed in this way. For one sample of 20000 words, the parser needs
about six nights to compute the parse trees. To select the correct analysis, a linguist
needs ten days to examine one sample. It is very difficult to analyze sentences from scien-
tific articles. The parser needs too much time, due to the long sentences (sometime more
than 99 words). Sentences from articles in newspapers etcetera are also more difficult to
handle in reasonable time. These data depends on the size of the grammar etcetera, so
for other grammars than used in Nijmegen, it could take less time to analyze one sample
of 20000 words.

Hence, when a new analyzed corpus has to be made for a large experiment with
probabilistic parsers, a lot of work must be done. The parser of Briscoe and Carroll has
more than 1,000,000 actions. Suppose, with a minimal grammar for probabilistic parsing,
one has a parser with 500,000 actions. Suppose, on average the sentences exists of 20
words. Suppose, on average 20 grammar rules are used to make up a parse tree. Thus
there are 20 reduce actions for one sentence and 20,000 reduce actions for one sample of
20,000 words. So at least 25 samples are needed to use every reduction one time. To
get significant probabilities of reduce actions, much more samples are needed. Thus one
linguist has to work many years before a large analyzed corpus has been made.

3Some parts of the LDB corpus have an average sentence length of more than 20 words.
“Thanks to Nelleke Oostdijk for her detailed information.

CHAPTER 12. THE QUEST FOR PROBABILISTIC PARSING 88

12.6 the trade-off between grammars, parsers and corpora

A grammar has to describe a large subset of a natural language. The grammar can
be written in different formalisms. The context-free formalism seems one of the most
natural approaches for probabilistic parsing (see section 12.3). The manner the grammar
is written influences the size of the grammar and the number of structures that are written
out in different grammar rules. This influences the size of the parser and the amount of
context information that can be used. In general, larger amounts of context information
are better, but with more context information a larger analyzed corpus is needed. So
the size of the grammar and the number of look-aheads are restricted by the size of the
analyzed corpus.

12.7 a proposal for a decisive experiment with probabilis-
tic parsing

Small experiments with probabilistic parsing do not give us any certainty about the
usefulness of statistics in parsing a large subset of a natural language (see 12.1). So we
propose to stop with small experiments (except for small domains that exist in real life).
We need a large experiment which can give us a decisive answer on the question whether
probabilistic parsing is useful or not. A large experiment with use of the recursive ascent
Marcus parser is appropriate for this goal.

For the experiment, we need a context-free grammar of a natural language. The
grammar must be suitable for probabilistic parsing, so the aspects of grammar writing
described in section 12.3 must be taken into account. As far as we know, such a context-
free grammar does not exist. Nowadays, grammars are written in other formalisms than
the (simple) context-free formalism. In addition, large grammars are rarely written.

An analyzed corpus is also needed for a large experiment. As has been written in
section 12.5, a very large analyzed corpus will take a lot of work and thus a lot of money.
May be existing corpora can be used, by transforming their analyses to the context-free
grammar that will be used in the experiment.

For the parser, we prefer the recursive ascent Marcus parser®. Its advantages have
been described in chapter 11. With a first experiment one can use one (constituent) look-
ahead. If the probabilities of conflicting actions in the parser are not distinctive enough,
more look-aheads can be used. Possibly, more look-aheads can be used only for those
states that contain conflicting actions without significant different probabilities. With
changeable look-ahead, it can be examined whether statistical information really solves
a lot of conflicts or whether much more context information is needed. It can be seen
whether it is practically realizable to get enough statistical information about the needed
context information for successful probabilistic parsing.

*If it is impossible to use the RAM parser (because of the size of the parser), the Marcus LR parser
can be used. This causes a large reduction of statistical significance.

Appendix A

[J
complexity
1 og &,emafk
grammar | [Vn || Ve || #(G) | |G| | k| #(items) | #(states) Tog Vy
extracted | 44 32 98 237 | 11237 207 0
2] 1191 1300 0.61
optional | 76 70 168 216 | 1] 216 173 0
2| 935 941 0.50
B 317 > 3200 ?
Tomita II | 13 9 43 90 1190 65 0
21432 662 0.88
3 | 1253 2116 1.46

The extracted grammar is extracted from 8 sentences out of the LDB-corpus. The op-
tional grammar is a part of the surface grammar of the ROSETTA system. The Tomita

Il grammar is the second example grammar described in [Tomita, 1986).

89

Appendix B

implementation of the recursive
ascent Marcus parser

B.1 overview

The implementation of the recursive ascent Marcus parser is not made with use of a
functional programming language. Such an implementation would not be efficient. We
use the compiler-generator system Elegant ([Augusteijn, 1990)) for our implementation.
On the base of a grammar of context-free grammars, a syntax-checker of context-free
grammars has been made by Elegant. This grammar of context-free (and attribute-free)
grammars looks like:

Grammar := 'TERMINAL’ { Terminal }
'GRAMMAR’ { GrammarRule } .

GrammarRule := Ident >’ { Symbol } ..

Symbol := Ident.

Terminal := Ildent.

With use of the attribute evaluation system and functions written in the languages El-
egant/CodeGen of the Elegant system, we have developed a program that has as input
a context-free and attribute-free grammar. Data that represent the states of the related
parser and their relations (the transitions), together with functions [g}, [¢] and goto(q,§)
for every state ¢ (written in the programming language C) are output of the program.
Other functions needed for the Marcus recognizer that not depend on the grammar are
also written in C. A Marcus recognizer with k — 1 constituent look-aheads for a context-
free and attribute-free grammar can be generated by compiling the C-code.

Parse trees in the format of the LDB-corpus are input of the recognizer. They look
like:

(SF (NO ("HELENA"), VAPF ("WAS”), VBKG ("TRYING”), SN (TO (
»TO"), VBKI ("STOP”) , VITG ("SHIVERING.”))))

The recognizer will only use the terminal categories, so the actual input of the recognizer
is

NO VAPF VBKG TO VBKI VITG

90

APPENDIX B. IMPLEMENTATION OF THE RAM PARSER 91

In a special mode, the recognizer can use the tree information to speed up the recognizing
process (see section B.3).

B.2 a small reduction

In the implementation of the recognizer, we have made a small reduction in the number
of computations. This reduction reduces the number of parse trees that are delivered.
We describe this reduction in this section.

In the definition of goto

goto(g,6) = {7— ar6.8|7 — a.)68 € (gUini(q))
AS=k:6BAN>" ¢}

and in the definitions of the functions [g]

TG, = {(v = aXp,j) v —arbpeghr—"¢
A (7 = aXb.p, j) € [goto(q, 6))(i)}
U {(7 = a.8,5) | Jagrsue((v = .B,5) € [g)(AE,£)
ANAE = AXvEEini(gIN k: XvE=6AX "¢
A (AE = N6(XVE : k),¢) € [goto(q,6))(:))}

for an item of the form v — a.\§8 with A =" ¢ following situation is possible:

(Adpv = Abv = A6P3)

A Al —"¢

Adp—"¢

A P>
In the right-hand-side after the dot of the item the parser founds in more than one place
a é with a preceding e-rewriting. If all the parse-trees for a sentence have to be delivered

it is not possible to reduce the number of computations. But for robust parsing probably
there is no fundamental difference between the trees:

A dpv A0V

| | |

yARd |\
It can be proved that in this case u can always rewrite to the empty string. If the parser
in the definitions of goto and [g] only looks for ¥ — a.Aé8, A —* € and |A| minimal, as in
our implementation, only the parse tree with § as left as possible in the right-hand-side
after the dot will remain. The number of ambiguous trees of a sentence reduces, but the
parser still can parse the same set of sentences as without this reduction.

B.3 recognizing with tree information

The recognizer can use the tree information of the input to speed up the recognition
process in the case no look-aheads are used (with look-aheads it will be more difficult

APPENDIX B. IMPLEMENTATION OF THE RAM PARSER 92

to use this information). If the recognizer uses this information, for the input showed in
figure B.1 the recognizer skips recognitions with for example the rewriting

SF
/I\
SF COOR SF
NOUN VTRF PN NOUN VTRF NP AV
DET NOUN
Edward accused her and Sam backed his cousin up

Figure B.1: input for the recognizer with tree information

NonTerminal —* accused her and Sam

Supposition with this reduction is that the structure of the parse tree of a sentence with
grammar A equals the structure of the parse tree of the same sentence with grammar B.

B.4 efficiency

It has not been tried to make an efficient implementation of the Marcus recognizer. Only
the administration of items and lists of symbols has been made efficient, because this
has a great influence on the number of computations. List of symbols are hashed on the
first symbol of the lists. Thus a list of lists of symbols is connected with every symbol
S (see figure B.2). Symbol S is the head of all these lists of symbols. In this way the

& 8
IC

Figure B.2: symbol list hash administration

concatenation of a symbol with a list is easy to implement. Every list is unique. Hence,
to equate two lists of symbols, only the pointers that point to these lists need to be
compared.

Items are hashed in the same way.

Bibliography

[op den Akker, 1988]

[Augusteijn, 1990]

[Bod, 1992]

{Brill et al., 1990]

[Briscoe & Carroll, 1991)

[Chitrao & Grishman, 1990)

[Fujisaki, 1984)

[Fujisaki et al., 1989]

[Gazdar et al., 1985)

[Grishman et al., 1992]

H.J.A. op den Akker. Parsing Attribute Grammars. Phd.
Thesis. University of Twente.

L. Augusteijn. The Elegant Compiler Generator System. At-
tribute Grammars and their Applications. Eds. P. Deransart
& M. Jourdan. Lecture Notes in Computer Science 461.
Berlin. 238-254.

R. Bod. A Computational Model of Language Performance:
Data Oriented Parsing. COLING 1992. Nantes.

E. Brill, D. Magerman, M. Marcus & B. Santorini. Deducing
Linguistic Structure from the Statistics of Large Corpora.
Proceedings of the June 1990 DARPA Speech and Natural
Language Workshop. Hidden Valley. Pennsylvania. 275-281.

T. Briscoe & J. Carroll. Generalised Probabilistic LR Pars-
ing of Natural Language (Corpora) with Unification-based
Grammars. University of Cambridge, Technical Report No.
224, June 1991.

M.V. Chitrao & R. Grishman. Statistical Parsing of Mes-
sages. Proceedings of the June 1990 DARPA Speech and
Natural Language Workshop. Hidden Valley. Pennsylvania.
263-266.

T. Fujisaki. A Stochastic Approach to Sentence Parsing.
COLING 1984. California, July 1984. 16-19.

T. Fujisaki, F. Jelinek, J. Cocke, E. Black & T. Nishino. 4
Probabilistic Method for Sentence Disambiguation. Proceed-
ings of the First International Workshop on Parsing Tech-
nologies. IWPT89. Pittsburgh, August 1989. 85-94.

G. Gazdar, E. Klein, G.K. Pullum & LA. Sag. General-
ized Phrase Structure Grammar. Harvard University Press.
Cambridge, Mass.

R. Grishman, C. Macleod & J. Sterling. Evaluating Pars-
ing Strategies Using Standardized Parse Files. Proceedings

93

BIBLIOGRAPHY

[Halteren & Heuvel, 1990]

[Heidorn et al., 1982)

{Horspool, 1991]

[Jelinek et al., 1991)

[Johnson, 1989)

[Kruseman Aretz, 1988]
[Leermakers, 1991]

[Leermakers, 1991a)

[Leermakers, 1992)
[Leermakers, 1993)

[Magerman et al., 1991]

[Marcus, 1980)

94

of the Third Conference on Applied Natural Language Pro-
cessing. ACL. Trento, April 1992. 156-161.

H. van Halteren & T. van den Heuvel. Linguistic Ezploita-
tion of Syntactic Databases, the use of the Nijmegen Lin-
guistic DataBase program. Amsterdam - Atlanta, GA 1990,
the Netherlands.

G.E. Heidorn, K. Jensen, L.A. Miller, R.J. Byrd & M.S.
Chodorow. The EPISTLE Tezt-critiquing System. IBM Sys-
tems Journal, vol. 21, no. 3. 305-326.

R. Nigel Horspool. Recursive Ascent-Descent Parsers. Lec-
ture Notes in Computer Science 477. Berlin. 1-10.

F. Jelinek & J.D. Lafferty. Computation of the Probability
of Initial Substring Generation by Stochastic Contexzt-Free
Grammars. Computational Linguistics, vol. 17, no. 3. 315-
324.

M. Johnson. The Computational Complezity of Tomita’s Al-
gorithm. Proceedings of the First International Workshop on
Parsing Technologies. IWPT89. Pittsburgh, August 1989.
203-207.

F.E.J. Kruseman Aretz. On a Recursive Ascent Parser. In-
formation Processing Letters 29, 201-206.

M.C.J. Leermakers. The Robust Parser Project. Philips Re-
search Laboratories. Internal Note.

M.C.J. Leermakers. Recursive Ascent Parsing. Proceedings
of the First Twente Workshop on Language Technology:
Tomita’s Algorithm, Extensions and Applications. Memo-
randa Informatica 91-68. R. Heemels, A. Nijholt & K. Sikkel
(eds.). 9-20.

M.C.J. Leermakers. Mathematics of Parsing. To appear in
1992 or 1993.

M.C.J. Leermakers. Recursive Ascent Marcus Parsers. The-
oretical Computer Science 106. To appear.

D.M. Magerman & M.P. Marcus. Pearl: A Probabilistic
Chart Parser. Proceedings of the Second Internatinal Work-
shop on Parsing Technologies. IWPT91. Cancun, February
1991. 193-199.

M.P. Marcus. A Theory of Syntactic Recognition of Natural
Language. Cambridge MA: MIT Press.

BIBLIOGRAPHY

[Ng & Tomita, 1991)

[Richardson et al., 1988]

[Robinson, 1982]

[Sager, 1981]

[Sharman et al., 1990]

[Shieber, 1986]

[Tomita, 1986]

[Ukkonen, 1983]

[Wright et al., 1991)

95

S. Ng & M. Tomita. Probabilistic LR Parsing for General
Contezt-Free Grammars. Proceedings of the Second Inter-
national Workshop on Parsing Technologies. IWPT91. Can-
cun, February 1991. 154-163.

S.D. Richardson & L.C. Braden-Harder. The Ezperience of
Developing a Large-scale Natural Language Tezt Processing
System: CRITIQUE. Proceedings of the Second Conference
on Applied Natural Language Processing. ACC. February
1988. 195-202.

J.J. Robinson. DIAGRAM: A Grammar for Dialogues.
Communications of the ACM, vol. 25, no. 1. 27-47.

N. Sager. Natural Language Information Processing, a Com-
puter Grammar of English and Its Applications. Addison-
Wesley Publishing Company, Inc. Massachusetts.

R.A. Sharman, F. Jelinek & R. Mercer. Generating a Gram-
mar for Statistical Training. Proceedings of the June 1990
DARPA Speech and Natural Language Workshop. Hidden
Valley. Pennsylvania. 267-274.

S.M. Shieber. An Introduction to Unification-Based Ap-
proaches to Grammar. CSLI Lecture Notes 4. Stanford Uni-
versity.

M. Tomita. Efficient Parsing for Natural Language, a fast
algorithm for practical systems. Kluwer Academic Publish-
ers.

E. Ukkonen. Upper Bounds on the Size of LR(k) Parsers
University of Helsinki, Department of Computer Science.
Report C-1983-11.

J. Wright & A. Wrigley. Adaptive Probabilistic Generalized
LR Parsing. Proceedings of the Second Internatinal Work-
shop on Parsing Technologies. IWPT91. Cancun, February
1991. 100-109.

