18,310 research outputs found

    Dynamic Adaptable Asynchronous Progress Model for MPI RMA Multiphase Applications

    Get PDF
    Casper is a process-based asynchronous progress model for MPI one-sided communication on multi- and many-core architectures. The one-sided communication is not truly one-sided in most MPI implementations: the target process still relies on software progress to complete incoming operations. Casper allows the user to specify an arbitrary number of cores dedicated to background ghost processes and transparently redirects the RMA operations to ghost processes by utilizing the PMPI redirection and MPI-3 shared-memory technologies. Although Casper benefits applications that suffer from lack of asynchronous progress, the operation redirection design might not support complex multiphase applications effectively, which often involve dynamically changing communication density and computing workloads. In this paper, we present an adaptive mechanism in Casper to address the limitation of static asynchronous progress in multiphase applications. We exploit two adaptive strategies, a user-guided strategy and a fully transparent and automatic strategy based on self-profiling and prediction, to dynamically reconfigure the asynchronous progress in Casper according to real-time performance characteristics during multiphase execution. We evaluate the adaptive approaches in both microbenchmarks and a real quantum chemistry application suite, NWChem, on the Cray XC30 supercomputer and an Intel Omni-Path cluster.This material was based upon work supported by the U.S. Dept. of Energy, Office of Science, Advanced Scientific Computing Research (SC-21), under contract DE-AC02- 06CH11357. The experimental resources for this paper were provided by the National Energy Research Scientific Computing Center (NERSC) on the Edison Cray XC30 supercomputer and by the Laboratory Computing Resource Center on the Bebop cluster at Argonne National Laboratory. Antonio J. Peña is co-financed by the Spanish Ministry of Economy and Competitiveness under Juan de la Cierva fellowship number IJCI-2015-23266.Peer ReviewedPostprint (author's final draft

    Utilising optimised operators and distillation to extract scattering phase shifts

    Get PDF
    In this investigation, we examine how the precision of energy spectra and scattering phase shifts, extracted in lattice QCD, depend upon the degree of distillation type smearing. We use the variational method to extract energy spectra for the isospin-1, JPC^{PC} = 1^{−−} channel and use the Lüscher method to compute scattering amplitudes, relevant for the ρ resonance, in ππ elastic scattering. Optimised interpolating operators for a single ground state pion are constructed and these are used to construct two pion operators. Calculations are performed on an anisotropic lattice with a pion mass of mπ_{π} = 236MeV. We provide a comprehensive comparison of energy spectra and scattering phase shifts across distillation spaces of varying rank.AW is supported by the U.K. Science and Technology Facilities Council (STFC). CET acknowledges support from STFC [grant ST/L000385/1]. Computations were performed at Jefferson Laboratory under the USQCD Initiative and the LQCD ARRA project. The software codes Chroma, QUDA, QPhiX, and QOPQDP were used to compute the propagators required for this project. This research was supported in part under an ALCC award, and used resources of the Oak Ridge Leadership Computing Facility at the Oak Ridge National Laboratory, which is supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC05-00OR22725. This research is also part of the Blue Waters sustained-petascale computing project, which is supported by the National Science Foundation (awards OCI-0725070 and ACI-1238993) and the state of Illinois. Blue Waters is a joint effort of the University of Illinois at Urbana-Champaign and its National Center for Supercomputing Applications. This work is also part of the PRAC “Lattice QCD on Blue Waters”. This research used resources of the National Energy Research Scientific Computing Center (NERSC), a DOE Office of Science User Facility supported by the Office of Science of the U.S. Department of Energy under Contract No. DEAC02-05CH11231. The authors acknowledge the Texas Advanced Computing Center (TACC) at The University of Texas at Austin for providing HPC resources that have contributed to the research results reported within this paper. Gauge configurations were generated using resources awarded from the U.S. Department of Energy INCITE program at the Oak Ridge Leadership Computing Facility, the NERSC, the NSF Teragrid at the TACC and the Pittsburgh Supercomputer Center, as well as at Jefferson Lab

    Solving the Klein-Gordon equation using Fourier spectral methods: A benchmark test for computer performance

    Get PDF
    The cubic Klein-Gordon equation is a simple but non-trivial partial differential equation whose numerical solution has the main building blocks required for the solution of many other partial differential equations. In this study, the library 2DECOMP&FFT is used in a Fourier spectral scheme to solve the Klein-Gordon equation and strong scaling of the code is examined on thirteen different machines for a problem size of 512^3. The results are useful in assessing likely performance of other parallel fast Fourier transform based programs for solving partial differential equations. The problem is chosen to be large enough to solve on a workstation, yet also of interest to solve quickly on a supercomputer, in particular for parametric studies. Unlike other high performance computing benchmarks, for this problem size, the time to solution will not be improved by simply building a bigger supercomputer.Comment: 10 page

    NASA's supercomputing experience

    Get PDF
    A brief overview of NASA's recent experience in supercomputing is presented from two perspectives: early systems development and advanced supercomputing applications. NASA's role in supercomputing systems development is illustrated by discussion of activities carried out by the Numerical Aerodynamical Simulation Program. Current capabilities in advanced technology applications are illustrated with examples in turbulence physics, aerodynamics, aerothermodynamics, chemistry, and structural mechanics. Capabilities in science applications are illustrated by examples in astrophysics and atmospheric modeling. Future directions and NASA's new High Performance Computing Program are briefly discussed

    Heterogeneous hierarchical workflow composition

    Get PDF
    Workflow systems promise scientists an automated end-to-end path from hypothesis to discovery. However, expecting any single workflow system to deliver such a wide range of capabilities is impractical. A more practical solution is to compose the end-to-end workflow from more than one system. With this goal in mind, the integration of task-based and in situ workflows is explored, where the result is a hierarchical heterogeneous workflow composed of subworkflows, with different levels of the hierarchy using different programming, execution, and data models. Materials science use cases demonstrate the advantages of such heterogeneous hierarchical workflow composition.This work is a collaboration between Argonne National Laboratory and the Barcelona Supercomputing Center within the Joint Laboratory for Extreme-Scale Computing. This research is supported by the U.S. Department of Energy, Office of Science, Office of Advanced Scientific Computing Research, under contract number DE-AC02- 06CH11357, program manager Laura Biven, and by the Spanish Government (SEV2015-0493), by the Spanish Ministry of Science and Innovation (contract TIN2015-65316-P), by Generalitat de Catalunya (contract 2014-SGR-1051).Peer ReviewedPostprint (author's final draft

    QCD Thermodynamics at Nt=8N_t=8 and 12

    Full text link
    We present results from studies of high temperature QCD with two flavors of Kogut-Susskind quarks on 163×816^3\times 8 lattices at a quark mass of amq=0.00625am_q=0.00625 and on 243×1224^3\times 12 lattices at quark masses amq=0.008am_q=0.008 and 0.016. The value of the crossover temperature is consistent with that obtained on coarser lattices and/or at larger quark masses. Results are presented for the chiral order parameter and for the baryon number susceptibility.Comment: 3-pages, uuencoded compressed postscript file, contribution to Lattice'94 conferenc
    corecore