
“THEME ARTICLE”, “FEATURE ARTICLE”, or “COLUMN” goes here: The theme topic or
column/department name goes after the colon.

Heterogeneous	Hierarchical	
Workflow	Composition	

Workflow systems promise scientists

an automated end-to-end path from

hypothesis to discovery. However,

expecting any single workflow system

to deliver such a wide range of

capabilities is impractical. A more

practical solution is to compose the

end-to-end workflow from more than

one system. With this goal in mind, the

integration of task-based and in situ

workflows is explored, where the result

is a hierarchical heterogeneous

workflow composed of subworkflows,

with different levels of the hierarchy

using different programming,

execution, and data models. Materials

science use cases demonstrate the

advantages of such heterogeneous

hierarchical workflow composition.

Scientific computing consists of multiple related computational tasks. For instance, the detection
of highly turbulent potentially destructive features in plasma physics simulations requires the in
situ coupling of two simulation codes, a compression tool, a feature detection algorithm, and a
visualization library.1 Such complex workflows require significant effort from scientists to man-
age the scheduling and data exchange among those tasks. To help automate this process, scien-
tific workflow frameworks allow scientists to define the dependencies and data exchanges
among connected tasks instead of managing those manually, potentially resulting in increased
scientific productivity.

Orcun Yildiz
Argonne National Laboratory

Jorge Ejarque
Barcelona Supercomputing
Center
Henry Chan
Argonne National Laboratory
Subramanian
Sankaranarayanan
Argonne National Laboratory

Rosa M. Badia
Barcelona Supercomputing
Center
Spanish National Research
Council
Tom Peterka
Argonne National Laboratory

© 2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or
future media, including reprinting/republishing this material for advertising or promotional purposes,creating new collective works,
for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works. DOI 10.1109/
MCSE.2019.2918766

 MAGAZINE NAME HERE

Figure 1. Overview of the proposed approach where in situ workflows are integrated as tasks in an
end-to-end task-based workflow. The result is a heterogeneous workflow with two levels of
hierarchy shown in blue and yellow colors using different programming, execution, and data
models.

In this work, we consider two main classes of scientific workflows: in situ and task-based. In situ
workflows run within a single high-performance computing (HPC) system, and the data ex-
change is done through memory or the supercomputer interconnect during the same scheduled
execution of a job.2-5 Task-based workflows are task-parallel, high-throughput workflows that
exchange data through files, can run across several independent systems in a wide area such as
grids and clouds but do not have to.6-9 Heterogeneous workflow systems such as in situ and task-
based ones lack interoperability with each other. Hence, today’s workflow solutions often cannot
support an automated end-to-end path from hypothesis to discovery.

With the goal of automating the process of scientific discovery, we investigate the integration of
task-based and in situ HPC workflows. Figure 1 shows an example of our approach, where we
employ entire in situ workflows as single tasks of a high-level end-to-end workflow that is man-
aged by a task-based workflow tool. The result is a heterogeneous two-level hierarchy that is de-
signed to integrate two completely different workflow programming paradigms: task-based,
high-throughput workflows with in situ HPC workflows. This integration requires providing (1)
an interface to describe in situ computations in a task-based workflow without adding extra com-
plexity and (2) efficient execution of the in situ computations without interfering with the other
tasks of the task-based workflow.
We evaluated our approach by performing experiments in the field of materials science. In par-
ticular, the in situ workflow consists of a molecular dynamics simulation coupled with a parallel
in situ feature detector that selects nucleated molecule clusters during crystallization. Meanwhile,
the task-based workflow launches an ensemble of in situ workflows with different initial condi-
tions iterating until nucleation succeeds, saves results from experiments that successfully nucle-
ated, and collects snapshots from those ensemble members into an animation.
Our results reveal that heterogeneous workflow integration can benefit both task-based and in
situ workflow systems. We believe that the insights and lessons learned from our integration will
increase understanding and motivate further research into heterogeneous workflow composition.

 SECTION TITLE HERE

In Situ Workflows
In situ workflows address the mismatch between I/O and computing capabilities of supercomput-
ers by allowing users to perform data analysis at simulation time. This in turn minimizes the I/O
time and shortens the overall time to discovery.
Several in situ workflow solutions have been proposed. One example is Decaf5, middleware for
building and executing in situ workflows, allowing parallel communication of coupled tasks by
creating communication channels over HPC interconnects through MPI. It provides a Python
API to describe the workflow graph. Decaf does not impose any constraints on this graph topol-
ogy and can manage graphs with cycles.
Some widely used visualization tools also extended their APIs to expose the simulation data in
situ to their visualization engines. Examples of this approach include VisIt’s Libsim2 and Para-
View’s Catalyst3 libraries.
We have also witnessed the extension of I/O libraries to support in situ analysis. For example,
ADIOS,11 originally designed for I/O staging, can now couple analysis and visualization applica-
tions together with simulations through an I/O interface.4 Another example is Damaris12, I/O
middleware that supports in situ data processing and visualization using dedicated cores or nodes
of the simulation platform.

Distributed Workflows
Workflow management systems for distributed computing became popular a decade ago as a tool
to deploy scientific workflows in grid computing environments. Several survey papers13-14 pre-
sent taxonomies of representative systems from that period.

Distributed workflow systems execute in different ways. For example, Taverna6 orchestrates pre-
viously deployed web services. The web service model offers some advantages in decoupled en-
vironments and fits well in cloud computing, but its performance overheads are not well suited
for HPC workflows. Most workflow systems are oriented to compose external binaries and tools
(e.g., Galaxy7), and some can directly invoke methods described in programming languages
(e.g., PyCOMPSs/COMPSs8 and Swift10).

The use of parallelism inside a task of a distributed workflow has been limited and until recently,
most distributed workflow systems managed serial tasks. In some cases, tasks invoke parallel
MPI applications. For example, the fusion community use Kepler15 as a workflow management
system. Another example is the climate community, who use tailored workflow management
systems based on tagged scripts (Cylc16 or Autosubmit17); their workflows typically comprise
several invocations of simulations, programmed with MPI, which are offloaded for execution to
the job scheduler of a cluster or supercomputer.

Hybrid Workflows
End-to-end scientific applications can require different types of computation capabilities during
their lifetime. For instance, the Cybershake earthquake hazard model contains MPI jobs that in
turn generate distributed jobs that will run on grids.18 For this purpose, Cybershake uses Pegasus9
as a workflow management system. Our approach is similar, but rather than a single MPI pro-
gram, we integrate entire HPC subworkflows of multiple interconnected MPI tasks (communi-
cating with each other through the HPC interconnect using MPI) inside the task-based workflow.
Next, we present one such heterogeneous workflow integration.

HETEROGENEOUS WORKFLOW INTEGRATION
Traditionally, scientists only executed a single simulation that could be easily managed with
modifying a configuration file or running a simple shell script. Nowadays, the complexity of sci-
entific computing has increased significantly, and scientists require the combination of different
types of computations to perform their experiments. Tedious effort is required to automate all the

 MAGAZINE NAME HERE

necessary steps to obtain scientific results. These steps include data management to transfer the
required data among the workflow tasks, the configuration of the different simulations and work-
flow tools to perform the desired computations, and the efficient coordination of the different
executions on the available resources. Managing all these steps can be burdensome for scientists
unfamiliar with the complexity of parallel programming. Moreover, some dynamic workflows,
such as our science use case that launches in situ tasks until a rare event is encountered, cannot
be described with a static script.

Here, we present our methodology to hide the complexity by integrating task-based workflows
with in situ workflows. With this integration, we can automate the end-to-end path from hypoth-
esis to discovery by using these different workflows for what they do best. Our approach consists
of employing one or more in situ subworkflows as tasks of a high-level end-to-end workflow,
thereby integrating these in situ computations with the other pre/post processing phases. The
end-to-end workflow is managed by a task-based workflow tool that performs data dependency
analysis, schedules the tasks on available resources, performs the required data transfers, man-
ages the task execution, and retrieves the results of computations. In situ subworkflows can be
described inside this task-based workflow by indicating their input/output data and computa-
tional requirements. This approach is sufficient to enable the task-based workflow tool to man-
age entire in situ workflows as single tasks in terms of data dependencies, scheduling, and data
transfers. For execution of these in situ subworkflows, the task-based workflow tool configures
them to use the assigned resources and provides the location of the input and the output data.
Next, the task-based workflow tool starts the execution of the in situ subworkflows and monitors
them until completion. Then, the task-based workflow tool retrieves the results and makes them
available to other tasks of the end-to-end workflow.

Figure 2. Decaf and normal task description and invocation in PyCOMPSs. Decaf tasks are
described similarly to normal tasks.

We implemented our approach using PyCOMPSs and Decaf as the task-based and in situ work-
flow tools, respectively. PyCOMPSs enables users to program task-based parallel workflows as
Python scripts by annotating Python methods with a task decorator. Inside this decorator, users
annotate the direction of the method arguments as input or output. Besides the task decorator,
users can specify constraints for a task (e.g., amount of memory, number of CPU cores) with the
constraint decorator. With this information, the PyCOMPSs runtime automatically detects data
dependencies between the annotated tasks and builds a directed acyclic graph (DAG), where
nodes represent task executions, and edges represent data dependencies. If the PyCOMPSs code
contains loop statements, PyCOMPSs will unroll these cycles and represent them as a DAG. We
will see this occurring in our use case. According to this DAG and the defined constraints, task
executions are scheduled and remotely executed on the available resources automatically. Decaf,
on the other hand, is a parallel dataflow engine designed to perform efficient in situ computa-
tions over HPC interconnects through MPI. Decaf has a Python API, where users can define the
different nodes and edges of a dataflow and the number of processes assigned to each dataflow

 SECTION TITLE HERE

entity. Once the dataflow is defined, it is executed as a multiple-program-multiple-data (MPMD)
MPI application.

To integrate a Decaf execution in a PyCOMPSs workflow, we have extended the PyCOMPSs
syntax with a decaf decorator, which is used to identify and describe the task as an in situ Decaf
subworkflow. Figure 2 shows an example of a simple usage of the decaf decorator. Users need to
define a method without the implementation details, which has the same arguments as the Decaf
execution. In the task and constraint decorators, users state the direction of the parameters and
the resource requirements as for a normal PyCOMPSs task. In the decaf decorator, users indicate
that the defined task is a Decaf subworkflow whose description is provided in the dfScript prop-
erty. Once the Decaf task is defined, users can invoke it as a regular Python method call and
combine with other PyCOMPSs tasks as shown in Figure 2 (lines 12 and 13).

When the PyCOMPSs runtime detects a Decaf invocation, it treats the entire subworkflow as a
single PyCOMPSs task; analyzes the data dependencies of the new node in the DAG; and, once
the task has satisfied its data dependencies, schedules it on the available resources according to
the defined constraints. Then, PyCOMPSs transfers the required data to the selected computing
nodes and issues the command to proceed with the Decaf execution. PyCOMPSs provides the
number of MPI processes to spawn (the ComputingUnits specified in the constraint decorator),
the MPI hostfile, and any command-line arguments, and generates the command to execute the
workflow as a MPMD MPI execution. This command is automatically executed by the Py-
COMPSs worker runtime, which monitors the execution state. Once the Decaf execution fin-
ishes, the PyCOMPSs master runtime is notified in order to proceed with the remaining tasks in
the workflow graph that depend on the results of this Decaf execution.

Science Use Case
The materials science problem we study using our heterogeneous workflow composition is nu-
cleation as a material cools and crystallizes. In particular, we study water freezing, but the same
workflow applies to nucleation in many other material systems.

Application Description
Understanding the mechanisms and kinetics of crystallization events is key to understanding a
wide range of natural and technological systems. Nucleation is a stochastic event that requires a
large number of statistics to elucidate its kinetics. Capturing nucleation in simulations is diffi-
cult, especially during the early stages when only a few atoms have crystallized.

Scientists simulate nucleation by running either a single large simulation or many instances of
small simulations. However, both scenarios have their drawbacks. For a large simulation, mas-
sive computing power is needed, prohibiting most scientists from conducting such computations.
On the other hand, observing nucleation in small simulation systems is difficult. To increase
their chances, scientists employ advanced sampling techniques by performing many instances of
crystallization simulations. Given the stochastic nature of the nucleation process, nucleation can
be observed in only a few of these instances. Managing such ensemble workflows can be tedi-
ous—especially without the aid of workflow systems—where scientists need to run and analyze
many simulation instances hoping to achieve the results they need from only a few such in-
stances. We demonstrate the applicability of our heterogeneous workflow composition for both
scenarios: one large molecular system and many small systems.

Diamond Structure Classifier
The analysis of the molecular system requires identifying the different phases of ice—hexagonal,
cubic, and amorphous/liquid—by using a diamond structure classifier originally implemented in
the OVITO visualization software. Briefly, the classifier labels crystalline atoms based on the
topological relationship between the nearby first shell and second shell neighbors. Unlabeled at-
oms, including atoms in the grain boundaries, are considered amorphous.

 MAGAZINE NAME HERE

We developed a parallel version of the diamond structure classifier and coupled it in situ with the
LAMMPS19 molecular dynamics model using Decaf. Our in situ subworkflow consists of two
parallel MPI HPC tasks—LAMMPS and our diamond classifier—communicating with each
other using the HPC interconnect and MPI. This allowed us to avoid the potential I/O bottleneck
associated with writing/reading all atoms to/from storage; instead we detected diamond-shaped
structures in situ alongside LAMMPS. To further improve the I/O performance, we stored time
steps only after a minimum number of atoms (1/8 of the total number of atoms) crystallized.
Moreover, within a time step we stored only the crystallized atoms.

To find the optimal number of processes for the parallel diamond structure classifier, we per-
formed a scalability test where we used a LAMMPS input file consisting of 2,000,000 atoms.
We used up to 128 MPI processes. Optimal performance was achieved when using 16 processes.
The reason is that each subdomain in the parallel decomposition includes the nearest first and
second neighbors of any atom in the subdomain. As the subdomains shrink in size with increas-
ing numbers of processes, the size of this ghost region dominates the computation, limiting
scalability.

EXPERIMENTAL METHODOLOGY

Platform Description
Our experiments were conducted on the MareNostrum 4 (MN4) supercomputer, which has 3,456
computing nodes, each with 2 Intel Xeon Platinum 8160 CPUs with 24 cores each at 2.1 GHz,
and 2 GB or 8 GB of DDR4 RAM memory per core. All nodes are connected to each other by a
100 Gb Intel Omni-Path interconnection network and a 10 Gb Ethernet network.

The experiments in MN4 were executed as a batch job using the PyCOMPSs submission scripts,
which request a set of computing nodes. One of the assigned nodes acts as a PyCOMPSs master,
and the rest of the nodes act as workers. PyCOMPSs manages the allocation and execution of the
Decaf subworkflows in a subset of these worker nodes.

The MN4 supercomputer was the only facility that our science use case required. PyCOMPSs, as
a distributed task-based workflow tool, supports the execution of workflow tasks in different
computing environments as demonstrated in previous work.20 However, distributing the compu-
tation among multiple sites is not the objective of our current work.

Experimental Deployment
We studied the nucleation problem with two simulation sizes: the large simulation is a molecular
model of a box of water composed of 2,000,000 atoms, and the small simulation is composed of
4,000 atoms. For the large simulation, PyCOMPSs launched a single instance of a Decaf sub-
workflow, which used 2,000 processes for LAMMPS with a temperature value of 210K, and 16
processes for the diamond structure classifier. The results of the Decaf subworkflow were further
post-processed and rendered by the remainder of the end-to-end workflow, which was also paral-
lelized and managed by PyCOMPSs. For the small simulation, many instances of LAMMPS
crystallization simulations were performed. In this regime, PyCOMPSs launched multiple in-
stances of Decaf subworkflows with different configurations, and evaluated the results to check
whether one of the simulation instances nucleated. This cycle was repeated until a nucleation
event occurred or a limit on the number of cycles was reached. In this experiment, we used three
different undercoolings (210K, 220K, and 230K) with different random seed values, each Decaf
instance using 44 processes for LAMMPS and 4 processes for the parallel diamond structure
classifier.

Figure 3 shows the hierarchical workflow graph for the ensemble of such simulations. The graph
is generated from the perspective of the end-to-end task-based workflow, such that the in situ
subworkflows appear as single nodes. Blue nodes are the generate configurations tasks that gen-
erate a configuration file with different initial conditions (seed variable, temperature) for each

 SECTION TITLE HERE

simulation instance. Red nodes represent the Decaf subworkflows. White nodes are get atoms
tasks that fetch the output files from these subworkflows. Pink nodes are render tasks, and the
dark red node is the generate animation task, which combines the rendered frames into an ani-
mation.

Figure 3. Hierarchical workflow graph dynamically executed by PyCOMPSs, which loops on the
first set of tasks until a successful nucleation event occurs. Blue nodes generate a configuration file
with different initial conditions (seed variable, temperature) for each simulation instance; red nodes
represent the Decaf subworkflows; white nodes fetch the output files from these subworkflows and
evaluate the results to check for nucleation; the red hexagon is the synchronization point to decide
whether to run another cycle or to proceed with the post-processing phase, where pink nodes are
render tasks and the dark red node combines the rendered frames into an animation.

The task graph is dynamic and varies depending on whether nucleation succeeds. When nuclea-
tion does not occur, PyCOMPSs discards the output files produced by Decaf subworkflows and
continues spawning more of these subworkflows. When it detects a successful nucleation, the
workflow executes the render and generate animation tasks to create the animation.

Figure 3 shows that we can compose dynamic and complex workflow graphs by using our ap-
proach. Moreover, our approach has widespread applicability to other domains. The scenario of
running multiple simulation instances to sample rare events is common, for example, in protein
folding, self-assembled structures, and genetic algorithms.

Capturing Nucleation in a Single Large Simulation Instance
We ran LAMMPS for 5,000,000 iterations and performed the diamond structure analysis every
10,000 iterations. Figure 4 shows the different phases of ice nucleation we were able to observe
with our heterogeneous workflow model. This result demonstrates that our hierarchical work-
flow composition can support the full science pipeline from the hypothesis of a nucleation event
to the animation of a successful nucleation without any human interaction. To succeed, we used
each system for what it does best. The task-based workflow system combines different workflow
tasks (generating configuration files for different simulation instances, launching in situ sub-
workflows, rendering) while the in situ workflow system accelerates the performance of this hi-
erarchical workflow by performing the detection of diamond-shaped structures in situ alongside
the molecular dynamics simulations.

Our approach has also several benefits compared with the traditional post hoc detection of dia-
mond structures. The first is time savings, as shown in Table I. Normally, scientists have to per-
form the post-processing manually (i.e., diamond structure classification by using OVITO
visualization software) for each of the 500 snapshots generated by the simulation. Our results
indicate that this takes 12 seconds on average per snapshot, or a total of approximately 17 hours

 MAGAZINE NAME HERE

of post-processing time. This is a conservative estimate that does not include the extra time re-
quired to transfer files to the post-processing environment, the time for reading files in OVITO,
and the user interaction time. We hide this post-processing time by detecting diamond-shaped
structures in situ alongside LAMMPS.

 (a) before nucleation (b) nucleating

Figure 4. Stages of nucleation in freezing water system composed of 2,000,000 atoms

Table I. Time and storage requirements for the different approaches when simulating the nucleation
process. With a hierarchical workflow, we can fully automate the science path from hypothesis to

discovery without requiring any human interaction. This also results in 64x storage savings.

Approach Simulation
Time

Post-pro-
cessing Time

End-to-End Ex-
ecution Time

Storage Re-
quirements

Heterogeneous
workflow

11 hours - 11 hours 250 MB

Traditional (post
hoc)

11 hours 17+ hours 28+ hours 16 GB

The second benefit is space savings, as shown in Table I. We reduced the storage requirements
by storing only the positions of the nucleated atoms in the LAMMPS output files and assembling
those into an animation, which requires only 250 MB storage space. On the other hand, the tradi-
tional approach saves all of the 500 output files (32 MB each) generated by LAMMPS for fur-
ther post-processing. This output occupies 16 GB of storage, which is 64 times higher than our
approach does.

Although we observed nucleation with a single large simulation, this problem size requires mas-
sive computing power, prohibiting most scientists from conducting such computations. For ex-
ample, this experiment used 22,780 core-hours on the MN4 supercomputer. Next, we use fewer
water molecules, which is more difficult to nucleate.

 SECTION TITLE HERE

Capturing Nucleation by Running Many Instances of Small
Simulations
We launched 60 instances of a Decaf subworkflow at three undercoolings (210K, 220K, and
230K) with PyCOMPSs. We ran LAMMPS for 5,000,000 iterations and performed the diamond
structure analysis every 10,000 iterations. We observed nucleation in only 1 of the 60 simulation
instances with 210K because of the stochastic nature of the nucleation process. Moreover, cap-
turing the nucleation with higher temperatures becomes much harder. We discarded the snap-
shots generated from unsuccessful simulation instances and saved only the results from
experiments that successfully nucleated. In addition to saving 98% of storage space, this ap-
proach allows scientists to focus on the results that they need. Figure 5 shows the stages of this
nucleation in a freezing water system composed of 4,000 atoms.

 (a) before nucleation (b) subcritical nuclei (c) nucleating
 (starting to nucleate)

Figure 5. Stages of nucleation in freezing water system composed of 4,000 atoms

This result further demonstrates that the heterogeneous workflow model supports the automated
end-to-end science path for a complex science problem, which would otherwise require signifi-
cant effort from scientists. The dynamic nature of the task-based workflow, which afforded flexi-
ble control of running multiple simulation instances, and in situ coupling of the diamond detector
with LAMMPS using the in situ subworkflow, were the keys to being able to capture rare events
in an ensemble of simulations.

Table II. Number of processes and core-hours used by each simulation problem on MareNostrum.
With hierarchical workflow, we can simulate the nucleation process by using 94% fewer computing

resources.

Simulation Size Processes Wall-Clock Time Core-Hours

Large (2M) 2,016 11 hours 22,780

Small (4K) 480 2.5 hours 1,210

Moreover, by using much fewer resources, our hierarchical workflow composition achieved re-
sults similar to those with large simulations. For instance, this experiment used only 1,210 core-
hours on the MN4 supercomputer compared with the large simulation problem’s use of 22,780
core-hours (94% reduction in the required resources), as shown in Table II. This result shows
that our approach can help scientists who usually do not have an access to large computing re-
sources conduct such experiments.

 MAGAZINE NAME HERE

CONCLUSION
Our results reveal that heterogeneous workflow integration is advantageous to both task-based
and in situ workflow systems. On the one hand, we can accelerate the performance of task-based
workflows by providing access to HPC dataflow, where information is exchanged through
shared memory or HPC interconnect instead of files. On the other hand, this composition of
workflows extends in situ workflows with dynamicity and different programming models such
as bag-of-tasks and looping that are not available in the dataflow HPC programming model. Our
solution also combines Python and C++ workflow tasks, which can lead to the easier implemen-
tation of multilevel workflows for science applications.

Several avenues remain open for future work. One is to expand our scientific use cases to include
distributed multifacility environments. Currently, we are exploring a particle accelerator physics
problem that involves simulations running on HPC systems, experiments on particle accelera-
tors, and optimization algorithms on workstations. In the short term, we will also investigate ex-
tending our system to support finer-grained synchronization. Coarse-grained synchronization
model is common in most workflow tools where tasks in the workflow graph can start their exe-
cution only after the tasks on which they depend finish their execution. With finer-grained syn-
chronization, one could start rendering the individual output files as soon as they are produced
by the in situ subworkflows instead of waiting for an entire simulation snapshot. Our long-term
goal is to create a common interface for different workflow systems to communicate with each
other. A standardized interface would allow the propagation of the required information for
workflow composition (e.g., resource requirements, input and output file locations, executable
information) without being specific to any one workflow tool.

ACKNOWLEDGMENTS
This work is a collaboration between Argonne National Laboratory
and the Barcelona Supercomputing Center within the Joint Labora-
tory for Extreme-Scale Computing. This research is supported by the
U.S. Department of Energy, Office of Science, Office of Advanced
Scientific Computing Research, under contract number DE-AC02-
06CH11357, program manager Laura Biven, and by the Spanish
Government (SEV2015-0493), by the Spanish Ministry of Science
and Innovation (contract TIN2015-65316-P), by Generalitat de Cata-
lunya (contract 2014-SGR-1051).

REFERENCES
1. J. Y. Choi et al., “Coupling exascale multiphysics applications:

Methods and lessons learned,” in Proceedings of IEEE
International Conference on eScience, 2018.

2. T. Kuhlen et al., “Parallel in situ coupling of simulation with a
fully featured visualization system,” in Proceedings of the 11th
Eurographics Conference on Parallel Graphics and
Visualization (EGPGV), 2011.  

3. U. Ayachit et al., “Paraview catalyst: Enabling in situ data
analysis and visualization,” in Proceedings of the First

 SECTION TITLE HERE

Workshop on In Situ Infrastructures for Enabling Extreme-Scale
Analysis and Visualization. ACM, pp. 25–29, 2015.  

4. F. Zheng et al., “PreDatA – preparatory data analytics on peta-
scale machines,” in Proceedings of the IEEE International
Symposium on Parallel Distributed Processing (IPDPS ’10),
2010.  

5. M. Dreher and T. Peterka, “Decaf: Decoupled dataflows for in
situ high-performance workflows,” Argonne National
Laboratory, Lemont, IL, Tech. Rep. ANL/MCS-TM-371, 2017.  

6. D.Hull et al., “Taverna: A tool for building and running
workflows of services,” Nucleic Acids Research, vol. 34, no.
suppl. 2, pp. W729–W732, 2006.

7. E. Afgan et al., “The galaxy platform for accessible,
reproducible and collaborative biomedical analyses: 2016
update,” Nucleic Acids Research, p. gkw343, 2016.  

8. E. Tejedor et al., “Pycompss: Parallel computational workflows
in python,” The International Journal of High Performance
Computing Applications, vol. 31, no. 1, pp. 66–82, 2017.  

9. E. Deelman et al., “Pegasus, a workflow management system for
science automation,” Future Generation Computer Systems, vol.
46, pp. 17–35, 2015.

10. M. Wilde et al., “Swift: A language for distributed parallel
scripting,” Parallel Computing, vol. 37, no. 9, pp. 633–652,
2011.

11. J. F. Lofstead et al., “Flexible IO and integration for scientific
codes through the adaptable IO system (ADIOS),” in
Proceedings of the 6th International Workshop on Challenges of
Large Applications in Distributed Environments, ser. CLADE
’08. New York, NY: ACM, 2008.  

12. M. Dorier et al., “Damaris: Addressing performance variability
in data management for post-petascale simulations,” ACM
Transactions on Parallel Computing (TOPC), vol. 3, no. 3, p. 15,
2016.  

13. J. Yu and R. Buyya, “A taxonomy of workflow management
systems for grid computing,” Journal of Grid Computing, vol. 3,
no. 3-4, pp. 171–200, 2005.

14. E. Deelman et al., “Workflows and e-science: An overview of
workflow system features and capabilities,” Future Generation
Computer Systems, vol. 25, no. 5, pp. 528–540, 2009.

15. I. Altintas et al., “Kepler: An extensible system for design and
execution of scientific workflows,” in Proceedings of the 16th
International Conference on Scientific and Statistical Database
Management, IEEE, pp. 423–424, 2004.  

 MAGAZINE NAME HERE

16. H. J. Oliver et al., (2018). Cylc: A workflow engine for cycling
systems. Journal of Open Source Software, vol. 3, no. 27, p. 737,
2018. 

17. D. Manubens-Gil et al., “Seamless management of ensemble
climate prediction experiments on HPC platforms,” in
International Conference on High Performance Computing &
Simulation (HPCS), IEEE, pp. 895–900, 2016.  

18. R. Graves et al., “Cybershake: A physics-based seismic hazard
model for southern California,” Pure and Applied Geophysics,
vol. 168, no. 3–4, pp. 367–381, 2011.  

19. S. Plimpton et al., “LAMMPS - large-scale atomic/molecular
massively parallel simulator,” Sandia National Laboratories,
vol. 18, p. 43, 2007.

20. E. Tejedor, J. Álvarez, and R. M. Badia. “Infrastructure-agnostic
programming and interoperable execution in heterogeneous
grids,” Computing and Informatics, vol. 35, no. 4, pp. 986–1004,
2017.

ABOUT THE AUTHORS
Orcun Yildiz is a postdoctoral researcher in the Mathematics and
Computer Science Division at Argonne National Laboratory. He re-
ceived his Ph.D. degree in computer science from Ecole Normale
Superieure de Rennes (France) in December 2017. His research in-
terests include scientific workflows, big data processing, I/O man-
agement, and high-performance computing. Contact him at
oyildiz@anl.gov.

Jorge Ejarque holds a Ph.D. from the Technical University of Cata-
lonia (UPC) in 2015. He is a researcher at the Barcelona Supercom-
puting Center contributing to the design and development of tools
and programming models for distributed computing. He has worked
in several national and international R&D projects and was a mem-
ber of the experts’ board of the Spanish National Grid Initiative. His
current research interests are parallel programming models for dis-
tributed platforms and energy-efficient execution of distributed ap-
plications. Contact him at jorge.ejarque@bsc.es.
Henry Chan is a postdoctoral researcher at the Center for Nanoscale
Materials (CNM), Argonne National Laboratory. He received his
Ph.D. in computational chemistry from the University of Illinois at
Chicago in 2015. He has extensive experience in simulations of soft-
matter material systems and has published in high-impact scientific
journals. His current research focus is on the application of machine
learning principles in the development of interatomic force fields

 SECTION TITLE HERE

and techniques that enable accurate large-scale molecular simula-
tions. Contact him at hchan@anl.gov.
Subramanian Sankaranarayanan is a scientist in the Nanoscale
Science and Technology (NST) Division at Argonne and a senior
scientist at the Institute of Molecular Engineering at the University
of Chicago. He obtained his Ph.D. in chemical engineering from the
University of South Florida in 2007. Prior to joining Argonne,
Subramanian was a postdoctoral fellow at the School of Engineering
and Applied Sciences at Harvard University from 2007 to 2010. His
research at Argonne focuses on the use of machine learning to bridge
the electronic, atomistic and mesoscopic scales. He uses supervised
machine learning techniques to develop first-principles-based force
fields for simulating reactive and mesoscopic systems. Other inter-
ests include machine learnt computational tool development for inte-
grated X-ray imaging of ultrafast energy transport across solid-solid
and solid-liquid interfaces. His interests span a diverse range of ap-
plications from tribology and corrosion to neuromorphic computing
and thermal management. Contact him at ssankarana-
rayanan@anl.gov.

Rosa M. Badia holds a Ph.D. in computer science (1994) from the
Technical University of Catalonia (UPC). She is a researcher from
the Spanish National Research Council (CSIC) and team leader of
the Workflows and Distributed Computing research group at the
Barcelona Supercomputing Center. She was involved in teaching
and research activities at UPC from 1989 to 2008, where she was an
associate professor from 1997. Her current research interests are pro-
gramming models for complex platforms (from multicore CPUs, to
GPUs, to grid and cloud systems). She has published more than 150
papers in international conferences and journals and has participated
in several international R&D projects. Contact her at rosa.m.ba-
dia@bsc.es.

Tom Peterka is a computer scientist in the Mathematics and Com-
puter Science Division at Argonne National Laboratory, scientist at
the University of Chicago Consortium for Advanced Science and
Engineering, adjunct assistant professor at the University of Illinois
at Chicago, and fellow of the Northwestern Argonne Institute for
Science and Engineering. His research interests are large-scale paral-
lel in situ analysis of scientific data. He received his Ph.D. in com-
puter science from the University of Illinois at Chicago in 2007, and
he currently works actively in several DOE- and NSF-funded pro-
jects. Contact him at tpeterka@mcs.anl.gov.

