15,753 research outputs found

    A simple encoding of a quantum circuit amplitude as a matrix permanent

    Full text link
    A simple construction is presented which allows computing the transition amplitude of a quantum circuit to be encoded as computing the permanent of a matrix which is of size proportional to the number of quantum gates in the circuit. This opens up some interesting classical monte-carlo algorithms for approximating quantum circuits.Comment: 6 figure

    The Effects of a Combined Output and Input-Oriented Approach in Teaching Reported Speech

    Get PDF
    The participants of the study are 74 first year students of the English philology who were divided into four groups: 3 treatment groups and a control one. The study results do not mirror those reported in the vast majority of relevant literature and points that although input manipulation appears to have more beneficial effect on the development of the interlanguage than the analysis of output, a combination of the two approaches turns out to be the most beneficial and economical

    Synthesis heuristics for large asynchronous sequential circuits

    Get PDF
    Many well-known synthesis procedures for asynchronous sequential circuits produce minimal or near-minimal results, but are practical only for very small problems. These algorithms become unwieldy when applied to large circuits with, for example, three or more input variables and twenty or more internal states. New heuristic procedures are described which permit the synthesis of very large machines. Although the resulting designs are generally not minimal, the heuristics are able to produce near-minimal solutions orders of magnitude more rapidly than the minimal algorithms. A method for specifying sequential circuit behavior is presented. Input-output sequences define submachines or modules. When properly interconnected, these modules form the required sequential circuit. It is shown that the waveform and interconnection specifications may easily be translated into flow table form. A large flow table simplification heuristic is developed. The algorithm may be applied to tables having hundreds of rows, and handles both normal and non-normal mode circuit specifications. Nonstandard state assignment procedures for normal, fundamental mode asynchronous sequential circuits are examined. An algorithm for rapidly generating large flow table internal state assignments is proposed. The algorithms described have been programmed in PL/1 and incorporated into an automated design system for asynchronous circuits; the system also includes minimum and near-minimum variable state assignment generators, a code evaluation routine, a design equation generator, and two Boolean equation simplification procedures. Large sequential circuits designed using the system illustrate the utility of the heuristic procedures --Abstract, pages ii-iii

    Task scheduling techniques for asymmetric multi-core systems

    Get PDF
    As performance and energy efficiency have become the main challenges for next-generation high-performance computing, asymmetric multi-core architectures can provide solutions to tackle these issues. Parallel programming models need to be able to suit the needs of such systems and keep on increasing the application’s portability and efficiency. This paper proposes two task scheduling approaches that target asymmetric systems. These dynamic scheduling policies reduce total execution time either by detecting the longest or the critical path of the dynamic task dependency graph of the application, or by finding the earliest executor of a task. They use dynamic scheduling and information discoverable during execution, fact that makes them implementable and functional without the need of off-line profiling. In our evaluation we compare these scheduling approaches with two existing state-of the art heterogeneous schedulers and we track their improvement over a FIFO baseline scheduler. We show that the heterogeneous schedulers improve the baseline by up to 1.45 in a real 8-core asymmetric system and up to 2.1 in a simulated 32-core asymmetric chip.This work has been supported by the Spanish Government (SEV2015-0493), by the Spanish Ministry of Science and Innovation (contract TIN2015-65316-P), by Generalitat de Catalunya (contracts 2014-SGR-1051 and 2014-SGR-1272), by the RoMoL ERC Advanced Grant (GA 321253) and the European HiPEAC Network of Excellence. The Mont-Blanc project receives funding from the EU’s Seventh Framework Programme (FP7/2007-2013) under grant agreement no 610402 and from the EU’s H2020 Framework Programme (H2020/2014-2020) under grant agreement no 671697. M. Moretó has been partially supported by the Ministry of Economy and Competitiveness under Juan de la Cierva postdoctoral fellowship number JCI-2012-15047. M. Casas is supported by the Secretary for Universities and Research of the Ministry of Economy and Knowledge of the Government of Catalonia and the Cofund programme of the Marie Curie Actions of the 7th R&D Framework Programme of the European Union (Contract 2013 BP B 00243).Peer ReviewedPostprint (author's final draft
    corecore