9 research outputs found

    AMAPstudio: a 3D Interactive Software Suite for Plants Architecture Modelling

    Get PDF
    Plants architecture modelling results in building complex models. Turning them into simulators requires strong interaction between scientists and software developers. The AMAPstudio project adapts a methodology that has been successfully conducted in the forestry modelling field for 12 years. It focuses on a long-term supported software environment and a strong customized technical backing to help modellers integrate their simulators in highly 3D interactive softwar

    L-Py, an open L-systems framework in Python

    Get PDF
    International audienceL-systems were conceived as a mathematical framework for modeling growth of plants. In this paper, we present L-Py, a simulation software that mixes L-systems construction with the Python high-level modeling language. In addition to this software module, an integrated visual development environment has been developed that facilitates the creation of plant models. In particular, easy to use optimization tools have been integrated. Thanks to Python and its modular approach, this framework makes it possible to integrate a variety of tools defined in different modeling context, in particular tools from the OpenAlea platform. Additionally, it can be integrated as a simple growth simulation module into more complex computational pipelines

    L-Py: L-Systems in Python

    Get PDF
    International audienceLindenmayer-systems were conceived as a mathematical framework for modeling growth of plants. In this paper, we present L-Py, a simulation package that mixes L-systems construction with the Python high-level modeling language. In addition to this software module, an integrated visual development environment has been developed that facilitates the creation of plant models. In particular, easy to use optimization tools have been integrated. Thanks to Python and its modular approach, this framework makes it possible to integrate a variety of tools defined in different modeling context, in particular tools from the OpenAlea platform [Pradal08]. Additionally, it can be integrated as a simple growth simulation module into more complex computational pipelines

    Ludo: A Case Study for Graph Transformation Tools

    Get PDF
    In this paper we describe the Ludo case, one of the case studies of the AGTIVE 2007 Tool Contest (see [22]). After summarising the case description, we give an overview of the submitted solutions. In particular, we propose a number of dimensions along which choices had to be made when solving the case, essentially setting up a solution space; we then plot the spectrum of solutions actually encountered into this solution space. In addition, there is a brief description of the special features of each of the submissions, to do justice to those aspects that are not distinguished in the general solution space

    L-Py: An L-System Simulation Framework for Modeling Plant Architecture Development Based on a Dynamic Language

    Get PDF
    The study of plant development requires increasingly powerful modeling tools to help understand and simulate the growth and functioning of plants. In the last decade, the formalism of L-systems has emerged as a major paradigm for modeling plant development. Previous implementations of this formalism were made based on static languages, i.e., languages that require explicit definition of variable types before using them. These languages are often efficient but involve quite a lot of syntactic overhead, thus restricting the flexibility of use for modelers. In this work, we present an adaptation of L-systems to the Python language, a popular and powerful open-license dynamic language. We show that the use of dynamic language properties makes it possible to enhance the development of plant growth models: (i) by keeping a simple syntax while allowing for high-level programming constructs, (ii) by making code execution easy and avoiding compilation overhead, (iii) by allowing a high-level of model reusability and the building of complex modular models, and (iv) by providing powerful solutions to integrate MTG data-structures (that are a common way to represent plants at several scales) into L-systems and thus enabling to use a wide spectrum of computer tools based on MTGs developed for plant architecture. We then illustrate the use of L-Py in real applications to build complex models or to teach plant modeling in the classroom

    Influence of canopy structure on light interception and productivity of greenhouse cucumber

    Get PDF
    [no abstract

    Proceedings of the 7th International Conference on Functional-Structural Plant Models, SaariselkÀ, Finland, 9 - 14 June 2013

    Get PDF
    corecore