34 research outputs found

    Internally 4-Connected Binary Matroids with Every Element in Three Triangles

    Get PDF
    Let M be an internally 4-connected binary matroid with every element in exactly three triangles. Then M has at least four elements e such that si(M/e) is internally 4-connected. This technical result is a crucial ingredient in Abdi and Guenin’s theorem determining the minimally non-ideal binary clutters that have a triangle

    Cuboids, a class of clutters

    Get PDF
    The Ď„=2 Conjecture, the Replication Conjecture and the f-Flowing Conjecture, and the classification of binary matroids with the sums of circuits property are foundational to Clutter Theory and have far-reaching consequences in Combinatorial Optimization, Matroid Theory and Graph Theory. We prove that these conjectures and result can equivalently be formulated in terms of cuboids, which form a special class of clutters. Cuboids are used as means to (a) manifest the geometry behind primal integrality and dual integrality of set covering linear programs, and (b) reveal a geometric rift between these two properties, in turn explaining why primal integrality does not imply dual integrality for set covering linear programs. Along the way, we see that the geometry supports the Ď„=2 Conjecture. Studying the geometry also leads to over 700 new ideal minimally non-packing clutters over at most 14 elements, a surprising revelation as there was once thought to be only one such clutter

    Ideal Clutters

    Get PDF
    Let E be a finite set of elements, and let C be a family of subsets of E called members. We say that C is a clutter over ground set E if no member is contained in another. The clutter C is ideal if every extreme point of the polyhedron { x>=0 : x(C) >= 1 for every member C } is integral. Ideal clutters are central objects in Combinatorial Optimization, and they have deep connections to several other areas. To integer programmers, they are the underlying structure of set covering integer programs that are easily solvable. To graph theorists, they are manifest in the famous theorems of Edmonds and Johnson on T-joins, of Lucchesi and Younger on dijoins, and of Guenin on the characterization of weakly bipartite graphs; not to mention they are also the set covering analogue of perfect graphs. To matroid theorists, they are abstractions of Seymour’s sums of circuits property as well as his f-flowing property. And finally, to combinatorial optimizers, ideal clutters host many minimax theorems and are extensions of totally unimodular and balanced matrices. This thesis embarks on a mission to develop the theory of general ideal clutters. In the first half of the thesis, we introduce and/or study tools for finding deltas, extended odd holes and their blockers as minors; identically self-blocking clutters; exclusive, coexclusive and opposite pairs; ideal minimally non-packing clutters and the τ = 2 Conjecture; cuboids; cube-idealness; strict polarity; resistance; the sums of circuits property; and minimally non-ideal binary clutters and the f-Flowing Conjecture. While the first half of the thesis includes many broad and high-level contributions that are accessible to a non-expert reader, the second half contains three deep and technical contributions, namely, a character- ization of an infinite family of ideal minimally non-packing clutters, a structure theorem for ±1-resistant sets, and a characterization of the minimally non-ideal binary clutters with a member of cardinality three. In addition to developing the theory of ideal clutters, a main goal of the thesis is to trigger further research on ideal clutters. We hope to have achieved this by introducing a handful of new and exciting conjectures on ideal clutters

    Idealness of k-wise intersecting families

    Get PDF
    A clutter is k-wise intersecting if every k members have a common element, yet no element belongs to all members. We conjecture that, for some integer k ≥ 4, every k-wise intersecting clutter is non-ideal. As evidence for our conjecture, we prove it for k = 4 for the class of binary clutters. Two key ingredients for our proof are Jaeger’s 8-flow theorem for graphs, and Seymour’s characterization of the binary matroids with the sums of circuits property. As further evidence for our conjecture, we also note that it follows from an unpublished conjecture of Seymour from 1975. We also discuss connections to the chromatic number of a clutter, projective geometries over the two-element field, uniform cycle covers in graphs, and quarter-integral packings of value two in ideal clutters

    From coordinate subspaces over finite fields to ideal multipartite uniform clutters

    Full text link
    Take a prime power qq, an integer n≥2n\geq 2, and a coordinate subspace S⊆GF(q)nS\subseteq GF(q)^n over the Galois field GF(q)GF(q). One can associate with SS an nn-partite nn-uniform clutter C\mathcal{C}, where every part has size qq and there is a bijection between the vectors in SS and the members of C\mathcal{C}. In this paper, we determine when the clutter C\mathcal{C} is ideal, a property developed in connection to Packing and Covering problems in the areas of Integer Programming and Combinatorial Optimization. Interestingly, the characterization differs depending on whether qq is 2,42,4, a higher power of 22, or otherwise. Each characterization uses crucially that idealness is a minor-closed property: first the list of excluded minors is identified, and only then is the global structure determined. A key insight is that idealness of C\mathcal{C} depends solely on the underlying matroid of SS. Our theorems also extend from idealness to the stronger max-flow min-cut property. As a consequence, we prove the Replication and τ=2\tau=2 Conjectures for this class of clutters.Comment: 32 pages, 6 figure

    Opposite elements in clutters

    Get PDF
    Let E be a finite set of elements, and let L be a clutter over ground set E. We say distinct elements e, f are opposite if every member and every minimal cover of L contains at most one of e, f. In this paper, we investigate opposite elements and reveal a rich theory underlying such a seemingly simple restriction. The clutter C obtained from L after identifying some opposite elements is called an identification of L; inversely, L is called a split of C. We will show that splitting preserves three clutter properties, i.e., idealness, the max-flow min-cut property, and the packing property. We will also display several natural examples in which a clutter does not have these properties but a split of them does. We will develop tools for recognizing when splitting is not a useful operation, and as well, we will characterize when identification preserves the three mentioned properties. We will also make connections to spanning arborescences, Steiner trees, comparability graphs, degenerate projective planes, binary clutters, matroids, as well as the results of Menger, Ford and Fulkerson, the Replication Conjecture, and a conjecture on ideal, minimally nonpacking clutters

    Rees algebras, Monomial Subrings and Linear Optimization Problems

    Full text link
    In this thesis we are interested in studying algebraic properties of monomial algebras, that can be linked to combinatorial structures, such as graphs and clutters, and to optimization problems. A goal here is to establish bridges between commutative algebra, combinatorics and optimization. We study the normality and the Gorenstein property-as well as the canonical module and the a-invariant-of Rees algebras and subrings arising from linear optimization problems. In particular, we study algebraic properties of edge ideals and algebras associated to uniform clutters with the max-flow min-cut property or the packing property. We also study algebraic properties of symbolic Rees algebras of edge ideals of graphs, edge ideals of clique clutters of comparability graphs, and Stanley-Reisner rings.Comment: PhD thesis, Cinvestav-IPN, June 201

    Single Commodity Flow Algorithms for Lifts of Graphic and Cographic Matroids

    Get PDF
    Consider a binary matroid M given by its matrix representation. We show that if M is a lift of a graphic or a cographic matroid, then in polynomial time we can either solve the single commodity flow problem for M or find an obstruction for which the Max-Flow Min-Cut relation does not hold. The key tool is an algorithmic version of Lehman's Theorem for the set covering polyhedron
    corecore